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Abstract. In 1872, G. Darboux defined a family of curves on surfaces
of R3 which are preserved by the action of the Möbius group and share many
properties with geodesics. Here, we characterize these curves under the view
point of Lorentz geometry and prove that they are geodesics in a 3-dimensional
sub-variety of a quadric Λ4 contained in the 5-dimensional Lorentz space R5

1
naturally associated to the surface. We construct a new conformal object:
the Darboux plane-field D and give a condition depending on the conformal
principal curvatures of the surface which guarantees its integrability. We show
that D is integrable when the surface is a special canal.

1. Introduction.

Here, we study a family of curves on a surface called Darboux curves1. They are
characterized by a relation between the geometry of the curve and of the surface: the
osculating sphere to a Darboux curve is always tangent to the surface which contains the
curve. This definition means that Darboux curves are conformally defined. The study of
these curves started with Darboux at the end of 19th century, and was continued until
now. See [Da1], [En], [Ha], [Pe], [Ri], [Sa1], [Sa2], [Se].

Our main tool is the space of oriented spheres. It is a quadric Λ4 contained in the
5-dimensional Lorentz space R5

1. Given a surface M ⊂ S3 (or in R3), the spheres tangent
to M form a 3-dimensional variety (a manifold with singularities) contained in Λ4. These
constructions have already been used by Lie, Darboux and Klein (see [Li], [Da2] and
[Kle]). Here, we consider only spheres which have contact of saddle type with M , and
denote the set of all such spheres by V (M). It is, except above umbilical points, an
interval bundle with light-like fibers. We show here that the osculating spheres along
a Darboux curve form a geodesic in V (M) endowed with the semi-Riemannian metric
induced from the Lorentz quadratic form in R5

1. From the two geodesics passing through
a point of V (M), we construct an intriguing plane-field D, integrable for a few classical
families of surfaces.

2. Preliminaries.

2.1. The set of spheres in S3.
In the Lorentz space R5

1 endowed with the Lorentz quadratic form L. We will use
the terminology of relativity theory to qualify vectors of R5

1: v is space-like if L(v) > 0,
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time-like if L(v) < 0 and light-like if L(v) = 0. A subspace will be space-like if it contains
only space-like non-zero vectors, time-like if it contains some time-like non-zero vectors,
and light-like if it contains some light-like non-zero vectors but no time-like non-zero
vectors.

The points of the de Sitter quadric Λ4 ⊂ R5
1 given by L = 1 represent oriented

spheres of S3 (see [H-J] and [La-Wa]).
The points of S3 are represented by the intersection of the light cone Light given by

L = 0 and the hyperplane {x0 = 1}.
It is convenient to have a formula giving the point σ ∈ Λ4 in terms of the Riemannian

geometry of the corresponding oriented sphere Σ ⊂ S3 ⊂ Light and a point m on it. For
that we need the unit vector n tangent to S3 ⊂ Light and normal to Σ at m and the
geodesic curvature of Σ, that is the geodesic curvature kg of any geodesic circle on Σ.

Proposition 1. The point σ ∈ Λ4 corresponding to the sphere Σ ⊂ S3 ⊂ Light is
given by

σ = kgm + n. (1)

Remark. The same formula holds for spheres in the Euclidean space E3 seen as
a section of the light cone by an affine hyperplane parallel to an hyperplane tangent to
the light cone, kg is now the curvature of a geodesic circle of Σ.

The proof of Proposition 1 can be found in [H-J] and [La-Oh].

2.2. Curves in Λ4 and canal surfaces.
A differentiable curve γ = γ(t) is called space-like if at each point its tangent vector

•
γ(t) is space-like, that is L(

•
γ) > 0; it is called time-like if at each point its tangent

vector
•
γ(t) is time-like, that is L(

•
γ) < 0 (see Figure 1). When the curve is time-like, the

corresponding spheres are nested. When the curve is space-like, the family of spheres
Σt associated to the points γ(t) defines an envelope which is a surface, union of circles
called the characteristic circles of the surface; notice that the surface may have singular
cuspidal edges. From now on we will suppose that the space-like curve γ is parameterized
by arc-length, that is |L(

•
γ)| = 1. There is one characteristic circle ΓCar on each sphere

Figure 1. Spheres corresponding to a space-like and to a time-like paths.
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Σt of the family and it is the intersection of Σt and the sphere
•
Σt = [Span(

•
γ(t))]⊥ ∩ S3.

We call such an envelope of a one-parameter family of spheres a canal surface. The
sphere Σ(t) is tangent to the canal surface along the characteristic circle except at maybe
two points where the surface is singular. As any curve on a sphere is a line of principal
curvature, all the characteristic circles are also lines of principal curvature on the canal
surface.

We say that the curve γ(t), the one-parameter family of spheres Σ(t) and the canal
surface, envelope of the family, correspond. Reciprocally, when a one-parameter family of
spheres admits an envelope, the corresponding curve is space-like, as the existence of an
envelope forces nearby spheres to intersect. One can refer, for example, to [Ba-La-Wa]
for some proofs concerning canal surfaces.

An extra condition is necessary to guarantee that the envelope is immersed. The
geodesic curvature vector ~kg =

••
γ (t) + γ(t) should be time-like. We call the envelope of

the spheres Σt corresponding to the points of such a curve γ a regular canal surface.

Lemma 2. Let γ = {γ(t)} ⊂ Λ4 be a space-like curve which has space-like geodesic
curvature vector. Then the canal surface, envelope of the spheres Σ(t) = (γ(t))⊥∩S3, has
two cuspidal edges. The two points of the cuspidal edges belonging to the characteristic
circle Car(t) of the canal are {m1(t) ∪ m2(t)} = [Rγ(t) ⊕ R•

γ(t) ⊕ R••γ (t)]⊥ ∩ S3; the
characteristic circles are tangent to the two cuspidal edges.

Here, let us just prove that the characteristic circles are tangent to the curves mi(t).

We need to prove that
•
mi(t) is tangent to Car(t), that is tangent to Σ(t) and to

•
Σ(t).

This is the case if L(
•
mi(t), γ(t)) = L(

•
mi(t),

•
γ(t)) = 0. As the point mi(t) belong to

the three spheres Σ(t),
•
Σ(t) and

••
Σ(t), we know that L(mi(t), γ(t)) = L(mi(t),

•
γ(t)) =

L(mi(t),
••
γ (t)) = 0. Differentiating the first two Lorentz scalar products, and using the

previous equalities, we get the desired relations L(
•
mi(t), γ(t)) = L(

•
mi(t),

•
γ(t)) = 0.

Notice that when a regular point µ of the envelope tends to a point mi(t) of the
singular locus, the tangent plane at µ tends to the tangent plane at mi(t) to the sphere
Σ(t).

When the geodesic curvature vector ~kg is light-like, we call the curve γ ⊂ Λ4 a drill.
Then generically it is the family of osculating spheres to a curve C ⊂ S3 (see [Tho] and
[La-So]). In that case, the characteristic circles coincide with the osculating circles of
the curve.

3. Spheres and surfaces.

3.1. Local conformal invariants of surfaces.
Assume that S is a surface which is umbilic free, that is, that the principal curvatures

k1(x) ≥ k2(x) of S are different at any point x of S. We will keep the convention
k1 ≥ k2 throughout the paper and refer to the principal direction associated to k1 as
first principal direction. Let X1 and X2 be unit vector fields tangent to the curvature
lines corresponding to, respectively, k1 and k2. Put µ = (k1 − k2)/2. Since more than
100 years, it is known ([Tr], see also [CSW]) that the vector fields ξi = Xi/µ and the
coefficients θi (i = 1, 2) in
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[ξ1, ξ2] = −1
2
(θ2ξ1 + θ1ξ2) (2)

are invariant under arbitrary (orientation preserving) conformal transformation of R3.
(In fact, they are invariant under arbitrary conformal change of the Riemannian metric
on the ambient space. This follows form the known (see [La-Wa, page 142], for instance)
relation Ã = e−φ(A − g(∇φ,N) × Id) between the Weingarten operators of a surface S

with respect to conformally equivalent Riemannian metrics g̃ = e2φg on the ambient
space; here ∇φ and N denote, respectively, the g-gradient of φ and the g-unit normal to
S. Elementary calculation involving Codazzi equations shows that

θ1 =
1
µ2
·X1(k1) and θ2 =

1
µ2
·X2(k2). (3)

The quantities θi (i = 1, 2) are called conformal principal curvatures of S.
Let ω1, ω2 be the 1-forms dual to the vectors ξ1, ξ2.

Lemma 3. The equalities

dω1 =
1
2
θ2ω1 ∧ ω2, dω2 =

1
2
θ1ω1 ∧ ω2 (4)

hold.

Proof. Standard calculation. For example

dω1(ξ1, ξ2) = ξ1(ω1(ξ2))− ξ2(ω1(ξ1))− ω1([ξ1, ξ2])

=
1
2
ω1(θ2ξ1 + θ1ξ2) =

1
2
θ2. ¤

3.2. Spheres tangent to a surface.
From Proposition 1, we see that the points in Λ4 corresponding to a pencil of spheres

tangent to a surface M at a point m form two parallel light-rays (one for each choice
of normal vector n). Let us now choose the normal vector n, and consider the spheres
Σm,k, k ∈ R, associated to the points σm,k = km + n (see Formula 1). All the spheres
Σm,k, but for at most two, have either a center contact or a saddle contact with M (see
Figures 2 and 3).

When m is not an umbilic, the exceptional spheres have curvature kg equal to one
of the principal curvatures k1 and k2 of M at m; they are called osculating spheres.

We need to consider the germ at m of the intersection of a sphere tangent to M at
m and M , that we will call local intersection.

When k /∈ [k1, k2], the local intersection of Σm,k and M near the origin reduces to a
point, the origin (center contact).

When k ∈]k1, k2[, the local intersection of Σm,k and M near the origin consists of
the germs of two curves intersecting transversely at m (saddle contact).

When k = k1 or k = k2, the local intersection of Σm,k and M near the origin is the
germ of a curve singular at m; the singularity is in generically of cuspidal type.
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Figure 2. Possible contacts of a sphere and a surface.

The points of Λ4 corresponding to osculating spheres associated to k1 form a surface
O1. We complete the surface with the osculating spheres at umbilics of M . In the same
way we get a second surface O2 which intersects O1 only at the osculating spheres at
umbilics.

When k ∈]k1, k2[ tends to k1, the two tangents at the common point to the inter-
section Σk ∩ M tend to the principal direction associated to k1. This shows that the
principal directions are conformally defined.

Let us denote by F0 the foliation by lines of curvature associated to k1. It is also a
conformal object.

We will use the direction tangent to the leaves of the foliation F0 as reference for
angles in the set of lines in the planes tangent to M .

We can now define a one-parameter family of foliations Fα, α ∈ [−π/2, π/2] (or
α ∈ P1). Fα is the foliation the leaves of which make a constant angle α with the leaves
of F0. In particular, the foliation associated to k2 is Fπ/2 = F−π/2. We will study all
these foliations in another article [GLW2].

Definition 4. The 3-manifold V (M) ⊂ Λ4 is the set of spheres having a saddle
contact with the surface M ⊂ S3.

It is a submanifold of Λ4 with boundary which is the union of the two surfaces O1

and O2. Away from the umbilical points of M , it fibers over M with fibers being intervals
of the light-rays of spheres tangent to M bounded by the two osculating spheres o1(m)
and o2(m), m ∈ M . When M has umbilical points, the two folds O1 and O2 meet at
osculating spheres at umbilical points of M .

The points σα of a fiber Im can be expressed as linear combinations of the two
osculating spheres o1(m) and o2(m): σα = (cos2 α) o1(m) + (sin2 α) o2(m).

Euler’s computation of the normal curvatures kn = kn(m, `) of sections of a surface
by normal planes intersecting the tangent plane TmM along a line ` making angle α with
the first principal direction F0 implies

Proposition 5. Let kn = k1 cos2 α+k2 sin2 α. Then the angle of the two directions
`±α tangent at m to Σm,k ∩M with the principal direction corresponding to k1 is ±α.
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When the reference to the angle α is useful, we will also use the notation kn =
kn(m,α) = k1 cos2 α + k2 sin2 α for the normal curvature and Σm,α instead of Σm,k for
the sphere of curvature kn(m,α) tangent to M at the point m.

The interval bundle V (M) is closely related with the projective tangent bundle
PT1(M). Indeed, let us chose as origin on a fiber of PT1(M) the direction of the first
principal direction. The “antipodal” direction of the first principal direction on the fiber
Pm of PT1(M) above m is the second principal direction. Sending the direction making
an angle α with the first principal direction and the one making an angle −α to the point
σα ∈ Im “folds” the circle Pm on the interval Im.

It is proved in [La-Oh] that the points of Λ4 corresponding to the osculating spheres
associated to k1 along a line of curvature associated to k1, that is along a leaf of F0,
form a light-like curve. Therefore F0 lifts to a foliation F̃0 of the surface O1 by light-like
curves.

Notice that a one-parameter family of spheres tangent to a curve can never be time-
like, as a time-like curve gives locally nested spheres which cannot be tangent to a curve.
Therefore a curve in O1 formed of osculating spheres to M along a curve C have a space-
like tangent vector, except when the curve C is tangent to F0. This implies that, at a
regular point of O1, the restriction to TO1 of the Lorentz metric is degenerated. The
kernel at a point σ ∈ O1, a sphere tangent to M at m, is the light direction Span(m).

Definition 6. A point m ∈ M is a ridge point for k1 if m is a critical point for
the restriction of k1 to the line of curvature for k1 through m.

A classical reference about ridge points is [Po].
The lift of a ridge point to O1 is in general a cusp of a leaf L of F̃0. To see that,

let us parameterize a leaf L of F0 near a ridge point using a regular parameter on the
corresponding line of curvature; as, at a ridge point, k′1 = 0, we get at the lift of the ridge
point, σ′ = 0.

In general, ridge points form curves in M that we call just ridges. The lift to O1 of
a ridge for k1 is in general a cuspidal edge of the surface O1.

Figure 3. A leaf of the foliation F̃0 and a light segment
of V (M) between two osculating spheres.



Darboux curves on surfaces I 7

The equations of the two families of ridges are θ1 = 0 and θ2 = 0; let us define
ζ1 = ξ1(θ1)(p0) and ζ2 = ξ2(θ2)(p0).

Theorem 7. Let p0 be a point of a ridge of M corresponding to the principal
foliation F0 such that ζ1(p0) 6= 0. Then the ridge R containing p0 is locally a regular
curve transverse to F0; the boundary component of V (M) corresponding to α = 0 has
a cuspidal edge along π−1(R). The same is true for ridges associated to the principal
foliation Fπ/2.

Remark. The generic singularities of ∂V (M) ⊂ Λ4 need not a priori to be the
same as the generic singularities of the focal set Focal(M) ⊂ S3 or Focal(M) ⊂ R3. The
projection ∂V (M) → Focal(M) may a priori “unfold” some singularities.

Proof. As θ1(p0) = 0 and ζ1(p0) 6= 0, it follows from the implicit function theorem
that the ridge is transverse to the corresponding principal foliation. The ridge can be pa-
rameterized, in a local principal chart (u, v) of M , by R1(v) = (U(v), v) defined implicitly
by θ1(u, v) = 0.

Let ϕ(u, v, α), 0 ≤ α ≤ π/2 ∈ V (m) be the point of Λ4 corresponding to the
sphere to M at m(u, v) and of curvature kn = k1(u, v) cos2 α + k2(u, v) sin2 α. The
boundary of V (M) is parameterized by ϕ1(u, v) = ϕ(u, v, 0) = k1(u, v)m(u, v) + ~n(u, v)
and ϕ2(u, v) = ϕ(u, v, π/2) = k2(u, v)m(u, v)+~n(u, v). The maps ϕ1 and ϕ2 have rank 1
at the corresponding ridge points. Therefore we recognize cuspidal edges on the boundary
of V (M) since (ϕ1)u(R1(v)) = 0, (ϕ1)v(R1(v)) = ((k1 − k2)mv + (k1)vm)(R1(v)) 6= 0
and (ϕ1)uu(R1(v)) = (k1)uu(R1(v))m(R1(v)) 6= 0. ¤

Remark. For an open and dense set of compact surfaces with the Cr-topology of
Whitney, r ≥ 4, the set of ridge points is the union of regular curves outside the umbilical
points. See [Br-Gi-Ta].

From the proof above it follows that ridges are conformally defined. The correspon-
dence between singular points of Oi and ridges can be seen directly observing that the
osculating spheres along their line of principal curvature are stationary at a ridge point.

Proposition 8. At regular points, V (M) inherits from Λ4 a semi-Riemannian
metric. In other words its tangent 3-space at any regular point is light-like.

Proof. Let us prove that, at each point σ ∈ V (M), TσV (M) is contained in
TmLight = (Rm)⊥. For that, consider two curves in V (M) of origin σ which project on
two lines of curvature on M orthogonal at m. Suppose that their respective arc-lengths
are u and v. Then, differentiating σ = km + n respectively with respect to u and v, we
get

σu = (km + n)u = kum + kX1 − k1X1

σv = (km + n)v = kvm + kX2 − k2X2

The vectors X1 and X2 are tangent to M ⊂ S3 ⊂ Light, they are therefore contained
in TmLight = (Rm)⊥. The restriction of L to TmLight is degenerated. The restriction of
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L to any subspace of TmLight containing the light direction Rm, as TσV (M), is therefore
also degenerated.

Then the direction Rm,m = π(σ), of the light ray through the point σ is the kernel
direction of the restriction of the Lorentz metric to TσV (M). The direction normal to
the tangent space TσV (M) is also (Rm). ¤

3.3. Spheres tangent to a surface along a curve.
Let us consider now an arbitrary curve C ⊂ M .
The restriction of V (M) to C forms a two-dimensional surface in Λ4 which is a light-

ray interval bundle V (C) over C out of the umbilical points of M which may belong to
C. From V (M), we get on V (C) the induced semi-Riemannian metric.

In this text we will use the symbol ′ for derivatives with respect to parameterizations
of curves contained in R3 or S3, (often the parameter is the arc length), and • for
derivatives with respect to a parameterization of a curve in Λ4 (often the parameter is
an arc length, but now for the metric induced by the Lorentz form).

Definition 9. We denote by Σm,` the sphere tangent to the surface M at the
point m such than one branch of the intersection Σm,` ∩M is tangent to the direction
` (canonical sphere associated to the direction `). We will also use the notation Σm,v

when the direction ` is generated by a non-zero vector v.

Remark. We can rephrase Proposition 5, saying that, if `α is the line of TmM

making at m the angle α with F0, then Σm,k = Σm,`α
when k = k1 cos2 α + k2 sin2 α.

Given a curve C ⊂ M such that the tangent vector to C at c(t) is contained in `,
Σc(t),c′(t) is, among the spheres tangent to M at m, the one which have the best contact
at m with the curve C.

At each point m ∈ C such that the tangent to C is not a principal direction, there is a
unique sphere ΣC(m) such that one branch of the local intersection ΣC(m)∩M is tangent
to C at m. If the tangent to C at m is a principal direction, we take ΣC(m) = oi(m),
the osculating sphere of the surface corresponding to the principal direction. We call the
family of spheres ΣC(m) the canonical family along C, and denote it by CanSec(C); the
envelope CanCan(C) of the spheres ΣC(m) ∈ CanSec(C) is called the canonical canal
corresponding to C ⊂ M .

The point CanSec(C)(m) ∈ V (C) of the canonical section of V (C) corresponds to
the sphere ΣC(m).

Proposition 10. The canonical section CanSec(C) of V (C) satisfies the following
properties.

i) The geodesic curvature vector of the curve CanSec(C) ⊂ V (M) satisfies
−→
kg ∈

TmV (M), and therefore is (space-or-light)-like.
ii) The section CanSec(C) is a geodesic in V (C).
iii) CanSec(C)(m) = kn · m + n, where kn is the normal curvature of M at m ∈ M

in the direction of the vector c′(m); n is as usual the unit vector normal at m to
M ⊂ S3, and tangent to S3 ⊂ Light ⊂ R5

1.
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In the proof, we will need a lemma from [La-So].

Lemma 11. A curve Γ = {γ(t)} ⊂ S3 has contact of order ≥ k with a sphere Σ
corresponding to σ if and only if

σ⊥ span(γ(t), γ′(t), . . . , γ(k)(t))

Proof. The sphere Σ is the zero level of the restriction to S3 of the function
f(x) = L(x, σ). Then the contact of Γ(t) and Σ has the same order as the zero of
(f ◦ γ)(t) = L(γ(t), σ). ¤

Proof of Proposition 10. The condition defining the sphere ΣC(m) implies
that the order of contact of C and ΣC(m) is at least 2, one more that the order of
contact of ΣC(m)∩M and C, which is at least one. To verify this property, notice that,
in terms of the arc-length of a branch of ΣC(m)∩M , or equivalently of the arc-length s

on C, the angle of Σ(m) with M along ΣC(m) ∩M is of the order of s, if not smaller.
The distance to C is of the order of s2, if not smaller. Therefore the order of the distance
of a point of C to ΣC(m) is of order s3 if not smaller. This means that C and the sphere
ΣC(m) have contact of order at least 2 at m.

As the sphere ΣC has contact order at least 2 with the curve C, CanSec(C)(m) is
orthogonal to m,

•
m and

••
m.

We will now denote by σ the section CanSec(C) parameterized by arc-length in Λ4.
Differentiating the relation L(σ(m),

•
m) = 0 and using the relation L(σ(m),

••
m) = 0

we get L(
•
σ(m),

•
m) = 0. Differentiating the relation L(

•
σ(m),m) = 0, and using the

relation L(
•
σ(m),

•
m) = 0, we get L(

••
σ(m),m) = 0.

Recall that (see Subsection 2.2) the geodesic curvature vector ~kg(m) is the orthogonal
projection of

••
σ(m) on Tσ(m)Λ4. One has ~kg(m) =

••
σ(m)+σ(m). It is therefore orthogonal

to the line Rm, and therefore belongs to (Rm)⊥ = Tσ(m)V (M), proving item i) of
the proposition. As the tangent space to V (M) is everywhere light-like, any direction
different from the light-direction is space-like.

The geodesic curvature vector ~kg is orthogonal to Rm and to
•
σ(m), it is therefore

orthogonal to Tσ(m)V (C) = Rm ⊕ R •
σ(m), proving that CanSec(C) is a geodesic in

V (C), proving item ii).
Item iii) is just Formula (1) of Proposition 1, as the sphere such that one branch of

the local intersection with M at m is tangent to C at m has curvature kn. ¤

In order to compute explicitly the vector ~kg and to prove Proposition 12 below, we
will use the Darboux frame T,N1, n, m of the curve C ⊂ M ⊂ S3 ⊂ Light, where T is
the unit tangent vector to C, N1 is the unit vector tangent to M normal to C compatible
with the orientation of M and n the unit vector normal to M and tangent to S3.

Proposition 12. The section CanSec(C) is the shortest of the sections of V (C).

Proof. Using again the formula σ = kn m + n, where kn is the normal curvature
of M in the direction tangent to C at m, we see that, when σ is the section CanSec(C)
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|σ′| = |k′n m + kn m′ + n′| = |k′n m− τgN1| = |τg|, (5)

where the geodesic torsion τg is defined by the following formula

τg = −〈∇T n | N1〉. (6)

Observe that our formula (5) gives an interpretation of the geodesic torsion of a curve
C ⊂ M as the rotation speed of the canonical family of spheres tangent to M along C.

In order to compute the geodesic curvature vector of the canonical section
CanSec(C), we need to use its parameterization by arc-length in Λ4. Then

•
σ =

σ′(1/τg) = (1/τg)(k′n m− τgN1).
Differentiating once more, we get

••
σ = −

•
τg

τ3
g

(k′n m− τgN1) +
1
τ2
g

[k′′nm + k′nT − τ ′gN1 − τg(−kgT + τgn)].

Recall that kg is the geodesic curvature of C ⊂ M , while ~kg is the geodesic curvature
vector of the curve CanSec(C) ⊂ Λ4.

Simplifying, we get, as ~kg =
••
σ + σ,

••
σ = φm +

1
τ2
g

[(k′n + τgkg)T − τ2
g n]

and

~kg = ψm +
1
τ2
g

(k′n + τgkg)T (7)

where φ and ψ are some real functions.
As the formula shows that the vector ~kg is orthogonal to m and to

•
σ = (1/τg)(k′n m−

τgN1), we verify again that the curve CanSec(C) is a geodesic on V (C).
For another family of spheres tangent to M along C, in particular for another section

of V (C), where σ = k m+n, we see that spheres tangent to a surface along a curve form
a space-like curve in Λ4; explicitly we get

| •σ| =
∣∣∣∣
1
τg

[(k − kn)′m + (k − kn)T + τgN1]
∣∣∣∣. (8)

Since m, T and N1 are mutually orthogonal in R5
1, this proves the fact that the section

CanSec(C) has minimal length among sections. Formula (8) shows also that no other
section of V (C) is of critical length. ¤

Remark. τgds is the differential of the rotation of the sphere Σ
c(t),

•
c(t)

(see Defi-
nition 9) along the curve C.

In fact, the sphere Σ
c(t),

•
c(t)

has a tangent movement which is a rotation of “axis”
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Figure 4. Pitch and roll (left). A canal with (locally) two cuspidal edges which is the envelope
associated to a space-like curve with space-like geodesic curvature (right).

the characteristic circle of the family, which is tangent to C. We see that changing the
sphere tangent to the surface along C changes the “pitch” term but not the “roll” term
(see Figure 4). The characteristic circles of the canal corresponding to a non-canonical
section are not in general tangent to C.

The characteristic circle of the envelope of the family Σc(t),c′(t) is the intersection of
span(σ,

•
σ)⊥ and the sphere S3 ⊂ R4; as the vector T is orthogonal to m, n and N1, and

therefore to σ and σ′ (and also
•
σ), the characteristic circle is tangent at m to C. Other

families of spheres will have their characteristic circles transverse to C; in particular if
the spheres are the planes tangent to M along C the characteristic lines of the family of
planes are transverse to C when C is never tangent to an asymptotic direction. When C

is tangent to a principal direction, the characteristic line of the family of tangent planes
is orthogonal to C.

Proposition 13. Let C be a curve contained in the surface M ⊂ S3. Suppose
that it is nowhere tangent to a principal direction. Then the curve C is one fold of the
singular locus of the canal surface CanCan(C) defined by CanSec(C).

Proof. We already proved (Proposition 10) that the curve CanSec(C) is space-
like with a space-like geodesic acceleration at every point. The envelope CanCan(C) is
therefore a singular canal with (locally) two cuspidal edges (see Figure 4). The condition
defining the canonical sphere Σc(t),c′(t) and Remark 3.3 guarantees that the characteristic
circle of the family Σc(t),c′(t) is tangent to C, which is therefore a singular curve of the
canal. ¤

4. Darboux curves: characterization in V (M) and equations.

All the spheres containing the osculating circle to the curve C at m ∈ C form a pencil.
They all have contact order at least 2 (generically 2) with the curve. The osculating
sphere of C belongs to this pencil and has contact of order at least 3 (generically 3) with
the curve. Analytically, this means that if C : J 3 t 7→ c(t) ∈ R3 is a parameterization
of our curve, an t0 ∈ J and a ∈ R3, then the sphere of center a and radius r = ‖a −
c(t0) osculates C at m = c(t0) whenever the function fa : t 7→ ‖c(t) − a‖2 satisfies
fa(t0) = f ′a(t0) = f ′′(t0) = f ′′′(t0) = 0. The above shows that the osculating sphere is a
conformally defined object and makes the following definition more natural.
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Definition 14. Darboux curves on a surface M ⊂ R3 or M ⊂ S3 are curves such
that everywhere the osculating sphere is tangent to the surface. Darboux curves in V (M)
are families of osculating spheres to Darboux curves in M .

Observe that the definition of Darboux curves involves only spheres and contact
order, so this notion belongs to conformal geometry.

We will now show that the osculating spheres along a Darboux curve form a geodesic
in V (M).

Recall that a drill (see Subsection 2.2) is a curve in the space of spheres the geodesic
curvature of which is light-like at each point. Generically, points of a drill are osculating
spheres to the curve C ∈ S3 defined by the geodesic acceleration vectors ~kg of the drill.

We see that if we can find drills in V (M) we find geodesics. In fact we find that way
all geodesics which are not fibers of V (M).

4.1. A geometric relation satisfied by Darboux curves.
Theorem 15. A curve C ⊂ M is a Darboux curve if and only if the section

CanSec(C) ⊂ V (M) is a geodesic. This happens if and only if the curve C ⊂ M satisfies
the equation

k′n + τgkg = 0. (9)

where we differentiate with respect to the arc-length of C.

We will prove the theorem after two remarks.

Remark. The light rays of V (M) are also geodesics. Segments of geodesics of
V (M) which are not tangent to light rays define an arc of curve C ⊂ M , and therefore,
when ~kg is light-like, C is a piece of Darboux curve on M .

Remark. The Darboux curve in V (M) associated to C is a particular case of
CanCan(C)-curve when C is a Darboux curve of M ; in that case, the only singular curve
of the envelope of the spheres corresponding to CanCan(C) is C (see [Tho], [Ba-Wh]
and the proof below).

Proof of Theorem 15. Let Σ be a sphere tangent to M at m (with saddle
contact), and σ be the corresponding point of Λ4. We have seen that the direction normal
to TσV (M) is Rm. Thomsen ([Tho], see also [La-So]) proved that the osculating spheres
to a curve form a curve γ ⊂ Λ4 with light-like geodesic acceleration vectors. Moreover,
the geodesic acceleration at a point (a sphere osculating the curve at m) is on the light-
ray Rm. Conversely, a curve γ in Λ4 with geodesic acceleration light-like everywhere
provides a curve C ⊂ S3 or C ⊂ R3 such that the osculating spheres correspond to the
points of γ.

Therefore Darboux curves in V (M) have light-like geodesic acceleration ~kg. At each
m ∈ C, ~kg is proportional to the light-like vector m ∈ S3 ⊂ Light. As the normal to
V (M) at a sphere σ tangent to M at m is the line σ +Rm, these curves are geodesics of
V (M). Reciprocally, a geodesic σ(t) of V (M) should have its geodesic acceleration (as
curve of Λ4) orthogonal to TσV (M) everywhere.
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This means that when σ is tangent to M at m, this geodesic acceleration is propor-
tional to m.

As a Darboux curve in V (M) is a particular case of the canonical section of spheres
tangent to M along a curve, it satisfies the equation ~kg = ψm + (1/τ2

g )(k′n + τgkg)T
(compare with (7)). The T -component of ~kg should be zero, therefore Darboux curves
satisfy (9). ¤

A Darboux curve D : t 7→ d(t) have a better contact with the intersections
Σd(t),d′(t) ∩ M of the spheres Σd(t),d′(t) with M than “ordinary” curves C : t 7→ c(t)
with the intersection Σc(t),c′(t) ∩M . In fact we have the following

Proposition 16. A curve C : t 7→ c(t) is a Darboux curve if and only if one branch
of the intersection Σ

c(t),
•
c(t)

∩ M has, at the point c(t), the same geodesic curvature as
the curve C.

Proof. When the direction ` defined by c′(t) is not a principal direction, there
is a unique sphere tangent to M which has contact with C of best order, the others
having contact of order one with C: it is the sphere Σt = Σc(t),c′(t) (see Subsection 3.2,
Proposition 5 and Definition 9).

When C is a Darboux curve, the sphere Σt osculates C and the contact order of Σt

with C should be at least 3. This implies that C and one branch of Σt ∩M should have
the same geodesic curvature.

Otherwise, suppose that the curve is parameterized by arc-length. Let us show that
the distance of the point c(t + h) ∈ C and the sphere Σt, as a function of h defined in
the neighborhood of 0, has a principal term equivalent |h3|. Let C̄ = {c̄(t + h)} be the
branch of Σt ∩ M ; the point c̄(t + h) is the (local) orthogonal projection of the point
c(t + h) on C̄. As C̄ has a contact of order 1 with C, the distance d(c(t + h)), c̄(t + h)
has a principal term equivalent |h2|.

As the tangent plane to M turns with speed τg along the intersection Σt ∩M , the
vertical distance between c(t) ∈ C and Σt, estimated starting from a point c̄(t) of Σt∩M

close to c(t), is of order h · (d(c̄(t + h), c(t + h))), therefore has a principal term of the
order of |h3|. As the sphere Σt is osculating the curve C when it is a Darboux curve,
this principal term should be of the order of |h4| (or negligible compared to |h4|). ¤

4.2. Differential Equation of Darboux curves in a principal chart.
We have seen that, in V (M), the Darboux curves are geodesics and form almost

a flow: exactly two Darboux curves pass through every point of the interior of V (M).
To get a flow, we should “unfold” the intervals of light-ray fibering V (M) into circles,
obtaining a flow on P(TM). We keep, through the point (m,α), α ∈ P1, the inverse
image of the two Darboux curves in V (M) starting at the point σα which projects on
the Darboux curve making the angle α (defined mod π) with the first principal direction
of curvature, that is with F0 (see Subsection 3.3). In fact we will consider, in order to
compute using an angle α ∈ S1, the unit tangent bundle of M , T 1M , double cover of
P(TM); it covers four times the regular points of V (M).

Consider a local principal chart (u, v) in a surface M ⊂ R3, that is a chart obtained
taking two lines of curvature intersecting at m0 ∈ M , as v = 0 and u = 0 axes, and
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imposing that the leaves of F0 are given by v = const. while those of Fπ/2 by u = const. .
In this chart, the first and second fundamental forms read, respectively, as

I = Edu2 + Fdv2 and II = edu2 + gdv2.

With these notation, the principal curvatures are given by k1 = e/E and k2 = g/G

(see [St]).
We denote by s the arc-length of a curve C and by sc, mean-sphere length, the arc-

length of the curve inM corresponding to C, that is the set of points of Λ4 corresponding
to mean spheres tangent to M along C (see Subsection 3.2, in particular Figure 3).
Length elements dsc and ds are related by dsc/ds = µ = (k1 − k2)/2.

Theorem 17. Let (u, v) be a principal chart and C : s 7→ c(s) a Darboux curve
parameterized by Euclidean arc length s or conformal arc length sc. Let α be the angle be-
tween C and the principal direction ∂/∂u. The angle α satisfies the following differential
equation

6 sin α cos α
dα

dsc
= θ1 cos3 α + θ2 sin3 α. (10)

Proof. Recall that the functions θi are the conformal principal curvatures defined
in Subsection 3.1. In our principal chart, the conformal principal curvatures and the
conformal arc-length are given by

θ1 =
ξ1(k1)

µ
=

X1(k1)
µ2

=
4√
E

∂k1/∂u

(k1 − k2)2
,

θ2 =
ξ2(k2)

µ
=

X1(k1)
µ2

=
4√
G

∂k2/∂v

(k1 − k2)2
,

dsc = µds.

Let C : s 7→ c(s) = (u(s), v(s)). Then

c′(s) = (u′, v′) =
(

cos α√
E

,
sinα√

G

)

as the tangent to the curve C makes the angle α with the principal foliation F0.
Recall classical relations (see [St] and [Sp]), where kg,1 and kg,2 are the geodesic

curvatures of the coordinate curves, which are lines of principal curvature

kn(α) = k1 cos2 α + k2 sin2 α, (Euler) (11)

τg = (k2 − k1) cos α sinα, (12)

and

kg =
dα

ds
+ kg,1 cos α + kg,2 sinα. (Liouville) (13)
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Figure 5. Geodesic curvature of the image of an arc by a principal chart projected on TmM .

To obtain (12), recall that

τg(m,w) = −〈dN(m)w, w̄〉 = II(w, w̄)

where w ∈ TmM is a unit tangent vector and w⊥ ∈ TmM is unit and orthogonal to w

and {w, w⊥} is a positive basis of TmM . In order to obtain (13), one needs to compare
the curvature dα/ds of the arc at the origin of the (u, v) principal chart and the curvature
kg of its image by the diffeomorphism Φ. It is enough to perform the computation for
the diffeomorphism Φ̃ = PTmM ◦Φ obtained composing Φ with the orthogonal projection
PTmM of M on TmM . Notice that Φ̃ is tangent to the identity at the origin.

Consider now the orthogonal, unit and positively oriented vector fields X1 and X2

tangent to the coordinate curves and denote the arc length of these curves by s1 and s2

respectively. Let N = X1 ∧ X2 be the unit normal. Then t := c′ = cos αX1 + sin αX2

and N ∧ t = − sinαX1 + cos αX2.
It follows that

t′ = [− sinαX1 + cos αX2]α′ + cos αX ′
1 + sinαX ′

2

= α′N ∧ t + cos α

[
dX1

ds1
cos α +

dX1

ds2
sinα

]
+ sinα

[
dX2

ds1
cos α +

dX2

ds2
sinα

]

The geodesic curvatures of the coordinate curves are given by kg,1 = 〈dX1/ds1, X2〉
and kg,2 = 〈dX2/ds2,−X1〉.

Differentiating the equations 〈X1, X2〉 = 0, 〈X1, X1〉 = 1 and 〈X2, X2〉 = 1 we
obtain that

kg,1 = −
〈

dX2

ds1
, X1

〉
, kg,2 =

〈
dX1

ds2
, X2

〉
,

〈
dX1

ds2
, X1

〉
= 0 and

〈
dX2

ds1
, X2

〉
= 0.

Therefore,

〈
dX1

ds1
, N ∧ t

〉
= kg,1 cos α,

〈
dX1

ds2
, N ∧ t

〉
= kg,2 cos α

〈
dX2

ds1
, N ∧ t

〉
= −kg,1 sinα,

〈
dX2

ds2
, N ∧ t

〉
= kg,2 sinα
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Then, after simplification, we obtain the equality

kg = 〈t′, N ∧ t〉 = α′ + kg,1 cos α + kg,2 sinα.

Therefore,

dkn

ds
=

1√
E

∂k1

∂u
cos3 α +

1√
G

∂k1

∂v
cos2 α sinα +

1√
E

∂k2

∂u
cos α sin2 α

+
1√
G

∂k2

∂v
sin3 α + 2(k2 − k1) cos α sinα

dα

ds

We have seen in Subsection 4.1 that the differential equation of Darboux curves is
given by k′n + kgτg = 0, therefore we get

k′n + kgτg

=
[
kg,1(k2 − k1) +

1√
G

∂k1

∂v

]
cos2 α sinα +

[
kg,2(k2 − k1) +

1√
E

∂k2

∂u

]
cos α sin2 α

+ 3(k2 − k1) cos α sinα
dα

ds
+

1√
E

∂k1

∂u
cos3 α +

1√
G

∂k2

∂v
sin3 α = 0 (14)

Given any orthogonal chart (F = 0), the infinitesimal rate of contraction of one foliation
by coordinate lines is equal to the geodesic curvature of the leaves of the orthogonal
foliation (see Figure 6 and [Poin]), that is

Gu = 2G
√

Ekg,2 and Ev = −2E
√

Gkg,1, (15)

see [St, p. 113]. When the leaves of the two orthogonal foliations are the lines of curvature,
a first geometrical interpretation of these equations is that geodesic curvatures provide the
infinitesimal holonomy of the principal foliations, more precisely the geodesic curvature
kg,2 is the infinitesimal holonomy of F0 and kg,1 is the infinitesimal holonomy of Fπ/2,
see [So]. Notice that the Codazzi equations in a principal chart are given by

∂k1

∂v
=

Ev

2E
(k2 − k1),

∂k2

∂u
=

Gu

2G
(k1 − k2), (16)

Figure 6. Infinitesimal rates of contraction and geodesic curvatures.



Darboux curves on surfaces I 17

Equivalently,

∂k1/∂v

k2 − k1
=

Ev

2E
= kg,1

√
G,

∂k2/∂u

k1 − k2
=

Gu

2G
= kg,2

√
E.

Therefore,

kg,1(k2 − k1) +
1√
G

∂k1

∂v
= − Ev

2E
√

G
(k2 − k1) +

1√
G

Ev

2E
(k2 − k1) = 0

kg,2(k2 − k1) +
1√
E

∂k2

∂u
=

Gu

2G
√

E
(k2 − k1) +

1√
E

Gu

2G
(k1 − k2) = 0.

We can now see that, in (14), the coefficient at cos2 α sinα and cos α sin2 α are equal to
0; therefore

3(k1 − k2) sin α cos α
dα

ds
=

1√
E

∂k1

∂u
cos3 α +

1√
G

∂k2

∂v
sin3 α. (17)

Recall that (∂k1/∂u)/
√

E = X1(k1) and (∂k2/∂v)/
√

G = X2(k2); then Equation
(10) is obtained expressing the above in terms of the conformal curvatures θ1 and θ2 (see
Subsection 3.1), where

θ1 =
ξ1(k1)

µ
=

X1(k1)
µ2

=
4√
E

∂k1/∂u

(k1 − k2)2
,

θ2 =
ξ2(k2)

µ
=

X2(k2)
µ2

=
4√
G

∂k2/∂v

(k1 − k2)2
,

and of the arc length sc of the image of the curve in M which is related to the Euclidean
length s by dsc = µds. ¤

Remark.

( i ) In a principal chart the Codazzi equations can be written as

kg,1 = −ξ2(k1)
2

, kg,2 =
ξ1(k2)

2
.

( ii ) A curve C = {c(s)} has contact of third order with the associated osculating
sphere, tangent to the surface, when

〈c′, c′〉[2〈N ′, c′′〉+ 〈N ′′, c′〉]− 3〈c′, N ′〉〈c′, c′′〉 = 0. (18)

This equation can be used to obtain the differential equation of Darboux curves
in any chart (u, v), see [Sa1].

(iii) Let θ(s) be the angle between the unit normal N of the surface M and the principal
normal n of a curve C : s 7→ c(s) parameterized by arc length s. Then C is a
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Darboux curve on M if and only if k′ cos θ + kτ sin θ = 0, where k and τ are the
curvature and torsion of C. Indeed, observe just that kn = k cos θ, kg = k sin θ

and τg = τ + θ′. Direct substitution in (9) k′n + kgτg = 0 leads to the result, see
also [Ve].

5. A plane-field on V (M).

In this section, we consider a natural plane-field associated to the Darboux curves
and its integrability in terms of conformal invariants. Then we provide a relation of that
with isothermicity of surfaces.

Two tangent vectors D1 and D2 to the two Darboux curves through the point
(m,α) ∈ V (M) define a plane in Tm,αV (M). These planes define a plane-field D. It
will be called Darboux plane-field. As a branch of the intersection of a sphere σm,α and
M , and the Darboux curve tangent at m to this branch have the same osculating circle,
the vector, say D1, is also tangent to the pencils of spheres through this osculating circle.
The plane D is therefore tangent at (m,α) ∈ V (M) to the two curves corresponding to
pencils through the osculating circles to the two branches.

The next proposition gives an explicit parameterization of V (M) that we will use
to give an analytic expression for the Darboux plane-field D.

Proposition 18. Consider a principal chart (u, v) and let m(u, v) be the corre-
sponding parameterization of M ⊂ S3; we denote by n = n(u, v) ∈ TmS3 ⊂ R5

1 the normal
vector at m to M . The set of spheres V (M) ⊂ Λ4 is parameterized by

ϕ(u, v, α) = kn(α)m(u, v) + n(u, v) (19)

with kn(α) = k1(u, v) cos2 α + k2(u, v) sin2 α.

Remark. Notice that the sum kn(α)m(u, v) + n(u, v) is performed in R5
1, even

when we use the paraboloid model of the Euclidean space R3, section of the light cone
Light by a hyperplane parallel to a light direction instead of S3 ⊂ Light ⊂ R5

1. The
vector n(u, v) is therefore not contained in the paraboloid.

Proof. Just, apply (1) of Proposition 1 and Proposition 5 to the spheres Σm,α

and observe that the transformation ϕ sends the osculating sphere with radius 1/kn(α),
tangent to M at the point m(u, v) to a point in Λ4, therefore L(m,m) = 0,L(m,N) = 0,

and nu = −k1mu, nv = −k2mv. and

ϕu =
[
∂k1

∂u
cos2 α +

∂k2

∂u
sin2 α

]
m + (kn − k1)mu

ϕv =
[
∂k1

∂v
cos2 α +

∂k2

∂v
sin2 α

]
m + (kn − k2)mv (20)

ϕα = [(k2 − k1) cos α sinα]m.

Consequently, Dϕ has rank 3 at any α ∈ (0, π/2). ¤
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Proposition 19. Consider again a principal chart (u, v). The Darboux plane-field
D is defined locally by the vector fields

Dc
1 = ξ1 +

1
6
θ1

cos α

sinα

∂

∂α

Dc
2 = ξ2 +

1
6
θ2

sinα

cos α

∂

∂α
.

(21)

Therefore D coincides with the kernel of the differential 1-form

Ω = cos2 α θ1ω1 + sin2 α θ2ω2 − 6 sin α cos αdα, (22)

where ω1 and ω2 are 1-forms dual to the conformal vector fields ξ1 and ξ2.

Proof. We shall derive (21) from the differential equation (17) of Darboux curves
in a principal chart (u, v).

A unit vector (u′, v′) ∈ TpM making an angle α with the principal direction ∂/∂u

is given by (cos α/
√

E)(∂/∂u) + (sinα/
√

G)(∂/∂v).
Therefore the differential equation given by equation (17) is equivalent to

u′ =
du

ds
=

cos α√
E

, v′ =
dv

ds
=

sinα√
G

,

α′ =
dα

ds
= − 1

3(k1 − k2) sin α cos α

[
1√
E

∂k1

∂u
cos3 α +

1√
G

∂k2

∂v
sin3 α

]
.

So, the lift of the Darboux curves to the unitary tangent bundle is given by the
vector field

D1 =
cos α√

E

∂

∂u
+

sinα√
G

∂

∂v
+

[
∂k1/∂u

3
√

E(k1 − k2)
cos2 α

sinα
+

∂k2/∂v

3
√

G(k1 − k2)
sin2 α

cos α

]
∂

∂α
. (23)

Consider the involution ι(u, v, α) = (u, v,−α) and the induced vector field D2 =
ι∗(D1). So,

D2 =
cos α√

E

∂

∂u
− sinα√

G

∂

∂v
−

[
− ∂k1/∂u

3
√

E(k1 − k2)
cos2 α

sinα
+

∂k2/∂v

3
√

G(k1 − k2)
sin2 α

cos α

]
∂

∂α
.

Our Darboux plane-field D is spanned by {D1,D2}. and we may define a new pair
of vector fields generating D: D̄1 = (1/cos α)(D1 + D2) and D̄2 = (1/sinα)(D1 − D2).
Then,

D̄1 =
2√
E
· ∂

∂u
+

2∂k1/∂u

3
√

E(k1 − k2)
· cos α

sinα
· ∂

∂α

and
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D̄2 =
2√
G
· ∂

∂v
+

2∂k2/∂v

3
√

G(k1 − k2)
· sinα

cos α
· ∂

∂α
.

Using the conformal vector fields ξ1 = 2((∂/∂u)/
√

E(k1 − k2)), ξ2 = 2((∂/∂v)/√
G(k1 − k2)) and the conformal principal curvatures θi = (2/(k1 − k2))ξi(ki), we obtain

a new base given by

Dc
1 =

D̄1

k1 − k2
= ξ1 +

1
6
θ1

cos α

sinα

∂

∂α

Dc
2 =

D̄1

k1 − k2
= ξ2 +

1
6
θ2

sinα

cos α

∂

∂α
.

This ends the proof of the first part.
Evaluating the form Ω on the two vectors Dc

1 and Dc
2 we obtain the second part of

the statement. ¤

Next, let us observe that

Ω ∧ dΩ = sin α cos α[− 5θ1θ2 + 3ξ2(θ1)− 3ξ1(θ2)

+ 3 cos 2α(ξ2(θ1) + ξ1(θ2))]ω1 ∧ ω2 ∧ dα. (24)

Indeed, since dθ1 = ξ1(θ1)ω1 + ξ2(θ1)ω2 and dθ2 = ξ1(θ2)ω1 + ξ2(θ2)ω2, Equation
(4) yields that

dθ1 ∧ ω1 + θ1dω1 =
(

θ1θ2

2
− ξ2(θ1)

)
ω1 ∧ ω2,

dθ2 ∧ ω2 + θ2dω2 =
(

θ1θ2

2
+ ξ1(θ2)

)
ω1 ∧ ω2.

Therefore,

dΩ =
(

θ1θ2

2
− ξ2(θ1) cos2 α + ξ1(θ2) sin2 α

)
ω1 ∧ ω2

+ 2 sin α cos α(θ2dα ∧ ω2 − θ1dα ∧ ω1)

A straightforward calculation leads to Proposition 24.

Theorem 20. The Darboux plane-field D is integrable if and only if

ξ1(θ2) = −5
6
θ1θ2, ξ2(θ1) =

5
6
θ1θ2. (25)

Proof. The theorem is a direct consequence of (24). The Darboux plane-field D
is integrable if and only if Ω ∧ dΩ = 0 (Frobenius theorem). The equality
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[−5θ1θ2 + 3ξ2(θ1)− 3ξ1(θ2) + 3 cos 2α(ξ2(θ1) + ξ1(θ2))] = 0,

holds for all α if and only if −5θ1θ2 + 3ξ2(θ1) − 3ξ1(θ2) = 0 and ξ2(θ1) + ξ1(θ2) = 0.
Direct calculations lead to the condition stated in (25). ¤

Corollary 21. Consider a principal chart (u, v) and principal curvatures k1 > k2.
Then the criterium of integrability of the Darboux plane-field D is given by :

∂2k1

∂u∂v
=

1
3
· 1
k1 − k2

∂k1

∂u

(
3
∂k1

∂v
− ∂k2

∂v

)

∂2k2

∂u∂v
=

1
3
· 1
k1 − k2

∂k2

∂v

(
∂k1

∂u
− 3

∂k2

∂u

) (26)

Proof. The result follows from (25), the formulae defining θi’s and ξi’s and the
Codazzi equations (16). ¤

5.1. Integrability of Darboux plane-field on isothermic surfaces.
Now, we shall establish a relation between the integrability of the Darboux plane-

field with the property of being isothermic. In the case of canal surfaces we get a complete
equivalence.

The class of isothermic surfaces was considered by Darboux [Da3] and Calapso
[Ca] among the others. For more recent works see, for example, [H-J] and the references
therein.

Definition 22. A surface M is called isothermic if there is a locally conformal
parameterization of the surface by curvature lines.

Proposition 23. Consider a surface M such that the Darboux plane field D is
integrable. Then M is isothermic.

Proof. Let ξ1 and ξ2 be the conformal principal vector fields and the dual one-
forms ω1 and ω2 defined by ωi(ξj) = δij . As the definition of isothermicity is local, we
can suppose that all the forms are defined in a simply connected domain.

Since |ξ1| = |ξ2| 6= 0, M has a locally conformal parameterization by curvature lines
if and only if there exists a function h(u, v) such that [hξ1, hξ2] = 0.

Since [ξ1, ξ2] = −(1/2)θ2ξ1 − (1/2)θ1ξ2, direct calculation shows that

[hξ1, hξ2] = −h

[
1
2
hθ2 + ξ2(h)

]
ξ1 + h

[
− 1

2
hθ1 + ξ1(h)

]
ξ2.

So the surface is isothermic when there exists a function h > 0 such that

ξ1(h) =
1
2
hθ1 and ξ2(h) = −1

2
hθ2. (27)

Putting h = eH we reduce (27) to
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ξ1(H) =
1
2
θ1 and ξ2(H) = −1

2
θ2.

Consider the one form ω = (θ1ω1 − θ2ω2)/2 and write dθi = ξ1(θi)ω1 + ξ2(θi)ω2.
Then, dω = −(1/2)[ξ2(θ1) + ξ1(θ2)]ω1 ∧ ω2. So ω = dH if and only if ω is a closed form
and this is guaranteed by the condition ξ1(θ2) + ξ2(θ1) = 0, direct consequence of the
integrability condition of the plane-field D. So, solutions h = eH of (27) exist and the
surface is isothermic. ¤

Theorem 24. Let M be a canal surface. Then M is isothermic if and only if the
Darboux plane-field D is integrable.

Proof. In a canal surface one of the conformal principal curvatures, say θ2 van-
ishes identically. Therefore if M is isothermic, then ξ2(θ1) = 0. The conditions of
integrability of D are given by: −5θ1θ2 + 3ξ2(θ1)− 3ξ1(θ2) = 0 and ξ2(θ1) + ξ1(θ2) = 0.
Therefore, when θ2 = 0 these two conditions are equivalent to ξ2(θ1) = 0 and the result
follows. The converse is given by Proposition 23. ¤

Remark. The authors of [Ba-La-Wa] call canals satisfying θ2 = 0 and ξ2(θ1) = 0
special. Musso and Nicoldi [M-N] proved that any Willmore canal is isothermic, and
therefore special in this sense.

In [GLW1] the authors will prove that the Darboux plane-field is integrable when
M is a quadric.

The integrability of the Darboux plane field can be proved also on the helicoid. It
would be interesting to characterize geometrically all the surfaces such thatD is integrable
(see Proposition 23).
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