On framed simple Lie groups

By Haruo Minami

(Received June 14, 2014)
(Revised Nov. 25, 2014)

Abstract

For a compact simple Lie group G, we show that the element $[G, \mathcal{L}] \in \pi_{*}^{S}\left(S^{0}\right)$ represented by the pair (G, \mathcal{L}) is zero, where \mathcal{L} denotes the left invariant framing of G. The proof relies on the method of E. Ossa [Topology, 21 (1982), 315-323].

1. Introduction.

A compact connected Lie group G of dimension d, together with its left invariant framing \mathcal{L}, defines an element $[G, \mathcal{L}]$ in π_{d}^{S} via the Thom-Pontrjagin construction. In $[\mathbf{7}]$ E. Ossa proved that if G is semi-simple, then there holds

$$
\begin{equation*}
72[G, \mathcal{L}]=0 \quad \text { or } \quad 24[G, \mathcal{L}]=0 \tag{1}
\end{equation*}
$$

according as G is or is not locally isomorphic to a product of E_{6}, E_{7}, E_{8}. In this note we show that when G is restricted to a simple Lie group, the method of [7] allows us to obtain a more conclusive result by altering the expression of a certain specific element. The result is the following:

Theorem 1.

(i) $[S U(n), \mathcal{L}]=[\operatorname{Spin}(n), \mathcal{L}]=[S O(n), \mathcal{L}]=0 \quad(n \geq 8) ; \quad[\operatorname{Sp}(n), \mathcal{L}]=0 \quad(n \geq 4)$,
(ii) $\left[F_{4}, \mathcal{L}\right]=\left[E_{6}, \mathcal{L}\right]=\left[E_{7}, \mathcal{L}\right]=\left[E_{8}, \mathcal{L}\right]=0$.

This gives an affirmative partial answer to the conjecture due to J. C. Becker and R. E. Schultz [3] that $[G, \mathcal{L}]=0$ for all compact Lie groups with rank $\geq r_{0}$ where r_{0} is a constant smaller than 10 or so. We provide here a proof of the theorem only for the 2 - and 3 -component cases since (1) tells us that $[G, \mathcal{L}]_{(p)}=0$ for any prime $p \geq 5$. Here $-_{(p)}$ denotes the localization at p. However, before proceeding to the proof of the theorem, we want to gather together some of the results obtained in other studies [3], $[\mathbf{4}],[\mathbf{5}],[\mathbf{6}],[\mathbf{1 0}]$ and $[\mathbf{1 2}]$ relevant to the present work, since Theorem 1 lacks partially the description of simple Lie groups of low rank. We list them in referring to Table 1 of [7] with [11].

$$
\begin{aligned}
& {[S U(2), \mathcal{L}]=\nu \in \pi_{3}^{S} \cong \mathbb{Z}_{24} \cdot \nu,} \\
& {[S U(3), \mathcal{L}]=\bar{\nu} \in \pi_{8}^{S} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2},}
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
{[S U(4), \mathcal{L}] } & =\kappa \eta \in \pi_{15}^{S} \cong \mathbb{Z}_{480} \oplus \mathbb{Z}_{2} \cdot \kappa \eta \\
{[S p(2), \mathcal{L}] } & =\beta_{1} \in \pi_{10}^{S} \cong \mathbb{Z}_{6} \\
{[S p(3), \mathcal{L}] } & =\sigma^{3}+\bar{\kappa} \eta \in \pi_{21}^{S} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
{[S O(3), \mathcal{L}] } & =2 \nu \\
{[S O(5), \mathcal{L}] } & =-\beta_{1} \\
{[S O(4), \mathcal{L}] } & =[S O(6), \mathcal{L}]=[S O(7), \mathcal{L}]=0 \\
{\left[G_{2}, \mathcal{L}\right] } & =\kappa \in \pi_{14}^{S} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \cdot \kappa
\end{aligned}
$$
\]

There are isomorphisms

$$
\begin{array}{ll}
S \operatorname{pin}(3) \cong S U(2) \cong S p(1), & S \operatorname{pin}(4) \cong S p(1) \times S p(1), \\
S \operatorname{pin}(5) \cong S p(2), & S \operatorname{pin}(6) \cong S U(4),
\end{array}
$$

so that from the above list we find that simple Lie groups which remain to be discussed are $S U(5), S U(6), S U(7)$ and perhaps $S O(5)$. Regarding these groups we have

$$
[S U(5), \mathcal{L}]=[S U(6), \mathcal{L}]=[S U(7), \mathcal{L}]=0, \quad[S O(5), \mathcal{L}]_{(2)}=0
$$

in a manner similar to Theorem 1 and the proofs are given in Appendix. The first equality $[S U(5), \mathcal{L}]=0$ is consistent with the previously known result due to H. U. Schön [9]. If the last equality holds then, since β_{1} is of order 3 , we have $[S O(5), \mathcal{L}]=-\beta_{1}$ by combining this with $\beta_{1}=[S p(2), \mathcal{L}]$ mentioned above and $4[S p(2), \mathcal{L}]=2[S O(5), \mathcal{L}]$ of [8].

We now turn to the proof of Theorem 1. We begin with a brief review of the method used to prove (1). Let S be a circle subgroup of G with isomorphism $t: S \cong S^{1}$. Define a complex line bundle L over G / S as the quotient space of $G \times \mathbb{C}$ obtained. To simplify notations, using the same symbol as above we write $t=[L]$ for the isomorphism class of L. Let $\tilde{J}(\mu t) \in \pi_{S}^{0}\left(S^{1} \wedge G / S^{+}\right)=\pi_{S}^{-1}\left(G / S^{+}\right)$be the image of $\mu t \in \tilde{K}^{-1}\left(S^{1} \wedge G / S^{+}\right)$by the (complex) J-homomorphism where μ denotes the Bott element. Let $[G / S] \in \pi_{d-1}^{S}\left(G / S^{+}\right)$ be the framed bordism fundamental class of G / S with the framing induced by \mathcal{L}. Then $[7]$ establishes the following formula:

$$
\begin{equation*}
[G, \mathcal{L}]=-\langle\tilde{J}(\mu t),[G / S]\rangle \tag{2}
\end{equation*}
$$

where $\langle-,-\rangle$ denotes the Kronecker product in the stable homotopy theory. This shows that the order of $[G, \mathcal{L}]$ is subordinate to that of $\tilde{J}(\mu t)$. In fact, (1) is obtained by evaluating $\tilde{J}(\mu t)$ for a well chosen $S \subset G$ using the solution of the Adams conjecture for elements $\tilde{J}\left(\mu t^{\ell}\right)(\ell \in \mathbb{Z})$. Since $\psi^{k}\left(\mu t^{\ell}\right)=k \mu t^{k \ell}$ we find that the solution of this conjecture is given by

$$
\begin{equation*}
k \tilde{J}\left(\mu t^{k \ell}\right)_{(p)}=\tilde{J}\left(\mu t^{\ell}\right)_{(p)} \tag{3}
\end{equation*}
$$

for a prime p such that $(p, k)=1$. In particular, $\tilde{J}\left(\mu t^{-i}\right)_{(p)}=-\tilde{J}\left(\mu t^{i}\right)_{(p)}$ holds for $i \geq 0$; hence $2 \tilde{J}(\mu)_{(p)}=0$, which are used here freely.

In the next section we introduce an alternative formulation of μt and by showing that there is a difference between the actions of ψ^{k} on this formulation and μt itself we attempt to fill the gap between (1) and Theorem 1. In Sections 3 and 4 we discuss the classical case and the exceptional case is discussed in Section 5.

2. The alternative formulation of μt.

But first we give a formula for computing the action of the Adams operations ψ^{k} $(k=3,4,5)$ on the new formulation of μt explicitly.

Given a continuous map $f: X \rightarrow U(n)$ on a compact pointed space X, we can associate to it an element of $\tilde{K}^{-1}(X)$ in the following way. Let $S X$ denote the suspension of X. Viewing it as the union of two reduced cones $C X_{+}$and $C X_{-}$over X, we have a bundle E_{f} over $S X$ obtained by gluing together two trivial bundles $C X_{+} \times \mathbb{C}^{n}$ and $C X_{-} \times \mathbb{C}^{n}$ along $X=C X_{+} \cap C X_{-}$by f. Here if f is a constant map, then this bundle becomes homotopic to the trivial bundle of dimension n, for which we write \underline{n}. We set $\beta(f)=\left[E_{f}\right]-[\underline{n}]$ in $\tilde{K}(S X)=\tilde{K}^{-1}(X)$ where $[F]$ denotes the isomorphism class of a vector bundle F.

For all $i \geq 1$ we define the i-th exterior power $\lambda^{i} f$ of f by $\left(\lambda^{i} f\right)(x)=\lambda^{i}(f(x))$ for $x \in X$, then we have the following formula for $k=3,4,5$:

$$
\begin{equation*}
\psi^{k} \beta(f)=k\left(\Sigma_{j=1}^{k}(-1)^{j-1}\binom{n+k-j-1}{k-j} \beta\left(\lambda^{j} f\right)\right) . \tag{4}
\end{equation*}
$$

This follows directly from the equalties

$$
\begin{aligned}
& m_{3}=e_{1}^{3}-3 e_{1} e_{2}+3 e_{3}, \quad m_{4}=e_{1}^{4}-4 e_{1}^{2} e_{2}+4 e_{1} e_{2}+2 e_{2}^{2}, \\
& m_{5}=e_{1}^{5}-5 e_{1}^{3} e_{2}+5 e_{1} e_{2}^{2}+5 e_{1}^{2} e_{3}-5 e_{2} e_{3}-5 e_{1} e_{4}+5 e_{5}
\end{aligned}
$$

where m_{k} and e_{k} denote the k th power sum $t_{1}^{k}+\cdots+t_{n}^{k}$ and k th elementary symmetric function respectively. If we write $m_{k}=Q_{k}\left(e_{1}, \ldots, e_{k}\right)$ for these equalities, then $\psi^{k}\left[E_{f}\right]=$ $Q_{k}\left(\left[E_{f}\right], \ldots,\left[E_{\lambda^{k} f}\right]\right)$ according to the definition. Substituting $\left[E_{\lambda^{i} f}\right]=\beta\left(\lambda^{i} f\right)+\left[\binom{n}{i}\right]$ into this formula and using the relations $\beta(f g)=m \beta(f)+n \beta(g)$ and $\beta(f) \beta(g)=0$, we see that it can be transformed into the desired form. Here g is another continuous map from X to $U(m)$ and $f g$ denotes the product of f and g, which arises from the tensor product of matrices. (Note that in fact (4) holds true for all $k \geq 2$, which can be verified using formulas (1) and (2) on page 178 of [2].)

We now give an alternative formulation of μt of the above. Let G, S and t be as in the previous section and let $\varrho: G \rightarrow U(n)$ be a complex n-dimensional representation of G. We construct an element $\tilde{K}^{-1}\left(S^{1} \wedge G / S^{+}\right)$associated with this ϱ. The restriction of ϱ to S can be written as a direct sum

$$
\left.\varrho\right|_{S}=t^{d_{1}} \oplus \cdots \oplus t^{d_{n}}
$$

for some $d_{i} \in \mathbb{Z}$. We know that the image group $\varrho(S)$ is conjugate in $U(n)$ to a subgroup of the standard maximal torus $S^{1} \times \cdots \times S^{1}$ of $U(n)$. So we assume here that the above expression on the right-hand side indicates that the value of ϱ itself at every $s \in S$ is a diagonal matrix with $t^{d_{1}}(s), \ldots, t^{d_{n}}(s)$ on the diagonal in that order.

For each $1 \leq i \leq n$ we define a map $\varrho^{\left(d_{i}\right)}: S^{1} \wedge G / S^{+} \rightarrow U(n)$ by setting

$$
\begin{equation*}
\varrho^{\left(d_{i}\right)}(z \wedge g S)=\varrho(g) \operatorname{diag}(1, \ldots, 1, \stackrel{\stackrel{i}{v}}{z}, 1, \ldots, 1) \varrho(g)^{-1} \tag{5}
\end{equation*}
$$

with $z \in S^{1}$ and $g \in G$ where $\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$ denotes the diagonal matrix with diagonal entries z_{1}, \ldots, z_{n} in that order. If ι denotes the identity map on $S^{1}=U(1)$, then $\beta(\iota)$ is just the Bott element $\mu \in \tilde{K}\left(S^{2}\right)=\tilde{K}^{-1}\left(S^{1}\right)$. Looking at the definition of each element, it can be seen that $\beta\left(\varrho^{\left(d_{i}\right)}\right)=\mu\left[L^{d_{i}}\right]$ in $\tilde{K}^{-1}\left(S^{1} \wedge G / S^{+}\right)$, hence we have

$$
\tilde{J}\left(\beta\left(\varrho^{\left(d_{i}\right)}\right)\right)=\tilde{J}\left(\mu t^{d_{i}}\right) \quad \text { in } \pi_{S}^{-1}\left(G / S^{+}\right) .
$$

This provides two different ways of applying the solution of the Adams conjecture to $\tilde{J}\left(\mu t^{d_{i}}\right)$. In the following, together with (3), we use the equation

$$
\begin{equation*}
\tilde{J}\left(\psi^{k} \beta\left(\varrho^{\left(d_{i}\right)}\right)\right)_{(p)}=\tilde{J}\left(\beta\left(\varrho^{\left(d_{i}\right)}\right)\right)_{(p)} \tag{6}
\end{equation*}
$$

with respect to $t_{(p)}^{d_{i}}$ where $k=3,4,5$ such that $(p, k)=1$.
In order to prove Theorem 1 we need one further simple lemma.
Lemma 2. For $i=1,2$, let S_{i} be a circle subgroup of a Lie group G_{i} as specified above and L_{i} the complex line bundle over G_{i} / S_{i} associated with the principal S_{i}-bundle $G_{i} \rightarrow G_{i} / S_{i}$. Suppose there is given a homomorphism $f: G_{1} \rightarrow G_{2}$ such that the image of S_{1} by f coincides with S_{2}. Then $\tilde{J}\left(\mu t_{2}\right)_{(p)}=0$ implies that $\tilde{J}\left(\mu t_{1}\right)_{(p)}=0$, so we have $\left[G_{1}, \mathcal{L}\right]_{(p)}=0$, where $t_{i}=\left[L_{i}\right]$.

Proof. This is immediate from the assumption given and formula (2), since there holds $\tilde{f}^{*} L_{2} \cong L_{1}$, where \tilde{f} indicates a map $G_{1} / S_{1} \rightarrow G_{2} / S_{2}$ induced by f.

Finally we note that in the following for simplicity we use the abbreviations

$$
t_{(p)}^{i}=\tilde{J}\left(\mu t^{i}\right)_{(p)} \text { and } c_{j}\left(\varrho^{\left(d_{\ell}\right)}\right)_{(p)}=\tilde{J}\left(\beta\left(\lambda^{j}\left(\varrho^{\left(d_{\ell}\right)}\right)\right)\right)_{(p)} \quad(i \in \mathbb{Z}, j, \ell \geq 1)
$$

and sometimes use t_{G} instead of t in order to avoid confusion.

3. Proof for classical 3-components.

The proof of Theorem 1 breaks up into two parts, the classical and exceptional cases, and that of each of them is also subdivided into the 2 - and 3 -component cases. We begin with the classical 3 -component case, particularly $[S U(n), \mathcal{L}]_{(3)}$ from which the results for the other classical groups follow easily. The proof of the other three cases proceeds along lines similar to this case.

Put $G=S U(n)$ and choose as $S \subset G$, mentioned above, the circle subgroup consisting of elements of the form

$$
\operatorname{diag}\left(z, \bar{z}, z, \bar{z}, z^{2}, \bar{z}^{2}, z^{3}, \bar{z}^{3}, 1, \ldots, 1\right)
$$

with $z \in S^{1}$ and then take for $t: S \cong S^{1}$ the isomorphism sending each such element to z. As above, let L denote the line bundle over G / S associated with the principal bundle $G \rightarrow G / S$ via t and use also t to denote the isomorphism class of L.

We now proceed in three steps. First we give an estimation of the order of $t_{(3)}=$ $\tilde{J}(\mu t)_{(3)}$ based on the original method. Let $\rho: G \hookrightarrow U(n)$ be the identity representation of G. Then

$$
\left.\rho\right|_{S}=2 t \oplus 2 t^{-1} \oplus t^{2} \oplus t^{-2} \oplus t^{3} \oplus t^{-3} \oplus(n-8) .
$$

This induces an isomorphism $2 L \oplus 2 \bar{L} \oplus L^{2} \oplus \bar{L}^{2} \oplus L^{3} \oplus \bar{L}^{3} \oplus \underline{n-8} \cong \underline{n}$ of vector bundles over G / S, so we have $2 \mu t+2 \mu t^{-1}+\mu t^{2}+\mu t^{-2}+\mu t^{3}+\mu t^{-3}=8 \mu \cdot 1$ in $\tilde{K}^{-1}\left(S\left(G / S^{+}\right)\right.$). Multiplying this from the right by t, t^{2} and t^{6} and operating $\tilde{J}(-)_{(3)}$ on the equalities thereby obtained we have

$$
\begin{gathered}
2 \mu t_{(3)}^{2}+2 \mu \cdot 1_{(3)}+\mu t_{(3)}^{3}+\mu t_{(3)}^{-1}+\mu t_{(3)}^{4}+\mu t_{(3)}^{-2}=8 \mu t_{(3)}, \\
2 \mu t_{(3)}^{3}+2 \mu t_{(3)}+\mu t_{(3)}^{4}+\mu \cdot 1_{(3)}+\mu t_{(3)}^{5}+\mu t_{(3)}^{-1}=8 \mu t_{(3)}^{2}, \\
2 \mu t_{(3)}^{7}+2 \mu t_{(3)}^{5}+\mu t_{(3)}^{8}+\mu t_{(3)}^{4}+\mu t_{(3)}^{9}+\mu t_{(3)}^{3}=8 \mu t_{(3)}^{6}
\end{gathered}
$$

in $\pi_{S}^{-1}\left(G / S^{+}\right)$. On the other hand, we have $2 t_{(3)}^{2}=4 t_{(3)}^{4}=5 t_{(3)}^{5}=7 t_{(3)}^{7}=t_{(3)}$ from formula (3). Applying these to the above two equalities we get

$$
9 t_{(3)}=0, \quad t_{(3)}^{3}=6 t_{(3)}, \quad t_{(3)}^{9}=0
$$

Next, choose $\varrho=5 \rho \oplus 2$ and assume that $n=3^{s}(s \geq 2)$. Then the use of these relations allows us to solve the equation $\tilde{J}\left(\psi^{4} \beta\left(\varrho^{(1)}\right)\right)_{(3)}=\tilde{J}\left(\beta\left(\varrho^{(1)}\right)\right)_{(3)}$ considered in (6). However for simplicity of calculation we perform this with reduction $\bmod \left(3 t_{(3)}\right)$. Using the relations obtained above we deduce from formula (3) that

$$
t_{(3)}^{3 i+2} \equiv 2 t_{(3)}, \quad t_{(3)}^{3 i+1} \equiv t_{(3)}, \quad t_{(3)}^{3 i} \equiv 0 \quad \bmod \left(3 t_{(3)}\right) \quad(0 \leq i \leq 3) .
$$

Taking account of these relations, a glance at definition (5) shows that every $c_{i}\left(\varrho^{(2)}\right)_{(3)}$, $1 \leq i \leq 4$, has the form $n_{i} t_{(3)}$ where $n_{i} \in \mathbb{Z}$ and hence from formula (4) it follows that the above reduction can be written in the form

$$
\left.c_{1}\left(\varrho^{(1)}\right)_{(3)} \equiv 4\left(c_{1}\left(\varrho^{(1)}\right)_{(3)}+2 c_{3}\left(\varrho^{(1)}\right)_{(3)}-c_{4}\left(\varrho^{(1)}\right)_{(3)}\right)\right) \quad \bmod \left(3 t_{(3)}\right) .
$$

By performing the calculation of its terms in more detail we have

$$
c_{1}\left(\varrho^{(1)}\right)_{(3)}=t_{(3)}, \quad c_{3}\left(\varrho^{(1)}\right)_{(3)} \equiv 0, \quad c_{4}\left(\varrho^{(1)}\right)_{(3)} \equiv 2 t_{(3)} \quad \bmod \left(3 t_{(3)}\right)
$$

where the first equality is already verified in the formula preceding (6). Substitution of these into the above equality yields $t_{(3)} \equiv 0 \bmod \left(3 t_{(3)}\right)$ immediately. But since $9 t_{(3)}=0$, this means that $t_{(3)}=0$. Thus we have

Proposition 3. Let $N=3^{s}(s \geq 3)$. Then $\tilde{J}(\mu t)_{(3)}=0$ in $\pi_{S}^{-1}\left(S U(N) / S^{+}\right)_{(3)}$.
Finally we must show that the equality $\tilde{J}\left(\mu t_{S U(n)}\right)_{(3)}=0$ holds for any $S U(n)$ with $n \geq 8$. However this follows immediately from Lemma 2 and Proposition 3, because such a group $S U(n)$ has a circle subgroup S such that its image under the standard inclusion $i: S U(n) \hookrightarrow S U(N)$ coincides with S in $S U(N)$ above for large s. That is, we have $\tilde{J}\left(\mu t_{S U(n)}\right)_{(3)}=\tilde{i}^{*} \tilde{J}\left(\mu t_{S U(N)}\right)_{(3)}=0$ and hence by (2) we can conclude that $[S U(n), \mathcal{L}]_{(3)}=0$ for $n \geq 8$.

For the other two types of classical groups, we can proceed quite similarly as in the case of $S U(n)$. In the case of $S p(n)$, let $n \geq 4$ and take as S the circle subgroup consisting of elements of the form $\operatorname{diag}\left(z, z, z^{2}, z^{3}, 1, \ldots, 1\right)$ with $z \in S^{1}$. Then it is clear that the complexification $c: S p(n) \rightarrow S U(2 n)$ sends this S identically to S in $S U(2 n)$. From the fact that $\tilde{J}\left(\mu t_{S U(2 n)}\right)_{(3)}=0$, we have $\tilde{J}\left(\mu t_{S p(n)}\right)_{(3)}=0$, that is, $[S p(n), \mathcal{L}]_{(3)}=0$ for $n \geq 4$.

In the case of real groups, let $n \geq 8$ and first we consider about $S O(n)$. Let S be the circle subgroup consisting of elements of the form $\operatorname{diag}\left(D(z), D(z), D\left(z^{2}\right), D\left(z^{3}\right), 1, \ldots, 1\right)$ with $z \in S^{1}$, where $D(z)$ denotes the realification of the one-dimensional matrix (z). Let $c: S O(n) \rightarrow S U(n)$ be the complexification of $S O(n)$. We know that this c can be transformed by conjugation by an element of $S U(n)$ so that the image of S coincides with S in $S U(n)$, which proves that $[S O(n), \mathcal{L}]_{(3)}=0$ for $n \geq 8$.

In order to complete the proof in the present case we need to prove that this holds true for the double covering group $\operatorname{Spin}(n)$ of $S O(n)$. For this we choose as the circle subgroup \tilde{S} of $\operatorname{Spin}(n)$ the double covering $\operatorname{Spin}(2)$ of the standard rotation subgroup $S=S O(2) \subset S O(n)$, this S being used as that itself for $S O(n)$. Let \tilde{L} be the complex line bundle over $\operatorname{Spin}(n) / \tilde{S}$ associated to the principal \tilde{S}-bundle $\operatorname{Spin}(n) \rightarrow \operatorname{Spin}(n) / \tilde{S}$. Then the complex line bundle L over $S O(n) / S$ can be identified with $\tilde{L}^{\otimes 2}$ through the homeomorphism $S O(n) / S \approx \operatorname{Spin}(n) / \tilde{S}$, that is, it holds that $t_{S O(n)}=t_{S p i n(n)}^{2}$. Hence by the solution of the Adams conjecture we have $2 \tilde{J}\left(\mu t_{S O(n)}\right)_{(3)}=\tilde{J}\left(\mu t_{\text {Spin(n) }}\right)_{(3)}$, so $2[\operatorname{SO}(n), \mathcal{L}]_{(3)}=[\operatorname{Spin}(n), \mathcal{L}]_{(3)}$. Thus we get $[\operatorname{Spin}(n), \mathcal{L}]_{(3)}=0$ for $n \geq 8$. This completes the proof of (i) for 3-components.

4. Proof for classical 2-components.

Similarly to the above we first consider the case $G=S U(n)$. Let $\rho: S U(n) \hookrightarrow U(n)$ be the identity representation of $S U(n)$ and S denote the same circle subgroup of $S U(n)$ as above. Then from the restriction formula

$$
\left.\rho\right|_{S}=2 t \oplus 2 t^{-1} \oplus t^{2} \oplus t^{-2} \oplus t^{3} \oplus t^{-3} \oplus(n-8),
$$

arguing in a similar way we get

$$
16 t_{(2)}=0, \quad t_{(2)}^{2}=10 t_{(2)}+1_{(2)}, \quad t_{(2)}^{4}=4 t_{(2)}+1_{(2)}, \quad t_{(2)}^{8}=1_{(2)}
$$

In this case we choose $\varrho=3 \rho \oplus 2$ and assume $n=2^{s}(s \geq 3)$, and attempt to calculate the equation $\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(3)}\right)\right)_{(2)}=\tilde{J}\left(\beta\left(\varrho^{(3)}\right)\right)_{(2)}$ under the relations above, though in fact we consider its reduction $\bmod \left(2 t_{(2)}\right)$ for the same reason as above. Then as in the case above we see that we can write

$$
\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(3)}\right)\right)_{(2)} \equiv t_{(2)}^{3}+c_{3}\left(\varrho^{(3)}\right)_{(2)}+c_{5}\left(\varrho^{(3)}\right)_{(2)} \quad \bmod \left(2 t_{(2)}\right)
$$

and we have

$$
c_{3}\left(\varrho^{(3)}\right)_{(2)} \equiv 0, \quad c_{5}\left(\varrho^{(3)}\right)_{(2)} \equiv t_{(2)} \quad \bmod \left(2 t_{(2)}\right) .
$$

These results show immediately that the above reduction $\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(3)}\right)\right)_{(2)} \equiv \tilde{J}\left(\beta\left(\varrho^{(3)}\right)\right)_{(2)}$ $\bmod \left(2 t_{(2)}\right)$ has a unique solution $t_{(2)} \equiv 0 \bmod \left(2 t_{(2)}\right)$ as desired, hence we have $t_{(2)}=0$ due to the relation $16 t_{(2)}=0$. Consequently we get

Proposition 4. Let $N=2^{s}$ where $s \geq 4$. Then $\tilde{J}(\mu t)_{(2)}=0$ in $\pi_{S}^{-1}\left(S U(N) / S^{+}\right)_{(2)}$.

By applying the same reasoning as the previous case used, we see that this completes the proof of (i) for 2 -components except proving the case of $\operatorname{Spin}(n)$.

This case needs to be considered separately. Let $\pi: \operatorname{Spin}(n) \rightarrow S O(n)$ be the covering homomorphism where $n=2^{s}$ for a fixed $s \geq 4$ and let \tilde{S} be the two-fold covering group of $S \subset S O(n)$ consisting of elements of the form $\operatorname{diag}\left(D\left(z^{2}\right), D\left(z^{2}\right), D\left(z^{4}\right), D\left(z^{6}\right)\right.$, $1, \ldots, 1)$ with $z \in S^{1}$. Then $t_{S O(n)}$ represents the isomorphism $S \cong S^{1}$ sending each such element to z and when putting $t=t_{\operatorname{Spin}(n)}: \tilde{S} \cong S^{1}$, it satisfies the identity $t^{2}=t_{S O(n)} \circ(\pi \mid \tilde{S})$. With the identification $\operatorname{Spin}(n) / \tilde{S} \approx S O(n) / S$ induced by π we prove

Proposition 5. For n as above there holds $\tilde{J}(\mu t)_{(2)}=0$ in $\pi_{S}^{-1}\left(\operatorname{Spin}(n) / \tilde{S}^{+}\right)_{(2)}$.
This means that $[\operatorname{Spin}(n), \mathcal{L}]_{(2)}=0$ holds for $n \geq 8$.
Proof of Proposition 5. Let $\tilde{\rho}$ be the composite of π with the identity representation $\rho: S O(n) \hookrightarrow S U(n)$. Then we have

$$
\left.\tilde{\rho}\right|_{\tilde{S}}=2 t^{2} \oplus 2 t^{-2} \oplus t^{4} \oplus t^{-4} \oplus t^{6} \oplus t^{-6} \oplus(n-8) .
$$

From this formula and the result for $S O(n)$ above it follows that

$$
8 t_{(2)}=0, \quad t_{(2)}^{2}=0, \quad t_{(2)}^{4}=t_{(2)}^{8}=1_{(2)} .
$$

If we set $\varrho=\Delta \oplus 3 \tilde{\rho} \oplus 1$, where Δ denotes the spin representation of $\operatorname{Spin}(n)$, then
we see that we can define $\varrho^{(1)}$, which we owe to the choice of S. Analogously to $t_{S O(n)}$, using the relations above, we find that

$$
c_{i}\left(\varrho^{(1)}\right)_{(2)} \equiv t_{(2)} \quad(i=2,4,5), \quad c_{3}\left(\varrho^{(1)}\right)_{(2)} \equiv 0 \quad \bmod \left(2 t_{(2)}\right) .
$$

Inserting these into the equation $\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(1)}\right)\right)_{(2)} \equiv \tilde{J}\left(\beta\left(\varrho^{(1)}\right)\right)_{(2)} \bmod \left(2 t_{(2)}\right)$ we obtain $t_{(2)} \equiv 0 \bmod \left(2 t_{(2)}\right)$. Since $8 t_{(2)}=0$ it follows that $t_{(2)}=0$, which proves the proposition.

5. Proof for exceptional groups.

For the proof of the exceptional case we employ the following well-known chain of inclusions:

$$
\operatorname{Spin}(9) \subset F_{4} \subset E_{6} \subset E_{7} \subset E_{8}
$$

and choose a circle subgroup S of $\operatorname{Spin}(9)$, together with isomorphism $t: S \cong S^{1}$, which is viewed as a common circle subgroup of these four exceptinal groups through the inclusions. We use the letter t to denote the isomorphism class of the complex line bundle L over E_{8} / S associated with the principal S-bundle $E_{8} \rightarrow E_{8} / S$, as before.

Proposition 6. If S is nicely chosen, then $\tilde{J}(\mu t)_{(p)} \in \pi_{S}^{-1}\left(E_{8} / S^{+}\right)_{(p)}$ becomes zero for $p=3,2$.

Combining this proposition and Lemma 2, we have

$$
\left[F_{4}, \mathcal{L}\right]_{(p)}=\left[E_{6}, \mathcal{L}\right]_{(p)}=\left[E_{7}, \mathcal{L}\right]_{(p)}=\left[E_{8}, \mathcal{L}\right]_{(p)}=0
$$

Proof of Proposition 6. Let e_{1}, \ldots, e_{9} be the standard basis of the Clifford algebra $C l_{0,9}(\mathbb{R})$ and put $\omega_{r, s}(\theta)=\cos \theta+e_{r} e_{s} \sin \theta$ for simplicity. We consider the homomorphism $\alpha: \operatorname{Spin}(2) \rightarrow \operatorname{Spin}(9)$ given by

$$
\alpha\left(\omega_{1,2}(\theta)\right)=\omega_{1,2}(\theta) \omega_{1,3}(\theta) \omega_{1,4}(\theta)
$$

which is clearly injective. Set $S=\operatorname{Im} \alpha \subset E_{8}$ and choose $\rho=\operatorname{Ad}_{E_{8}}$, the (comlexified) adjoint representation of E_{8} whose dimension is 248. Then $t: S \cong S^{1}$ can be given by $t\left(\alpha\left(\omega_{1,2}(\theta)\right)\right)=e^{2 i \theta}$. From the formula on page 52 of [1] we see that the restriction of ρ to $\operatorname{Spin}(10) \subset E_{8}$ satisfies

$$
\left.\rho\right|_{\operatorname{Spin}(10)}=\lambda_{10}^{2} \oplus 6 \lambda_{10}^{1} \oplus 4 \Delta \oplus 15
$$

where λ_{10}^{2} denotes the 2nd exterior of $\lambda_{10}^{1}, \lambda_{10}^{1}$ being the composite $\operatorname{Spin}(10) \rightarrow S O(10) \subset$ $U(10)$ of the covering homomorphism with the inclusion homomorphism and Δ the spin representation of $\operatorname{Spin}(10)$. Consider the restriction of this to $S \subset \operatorname{Spin}(9) \subset \operatorname{Spin}(10)$, then we can write as

$$
\left.\rho\right|_{S}=48 t \oplus 48 t^{-1} \oplus 30 t^{2} \oplus 30 t^{-2} \oplus 16 t^{3} \oplus 16 t^{-3} \oplus 3 t^{4} \oplus 3 t^{-4} \oplus 54
$$

The argument here is based on the relations obtained from this restriction formula in a similar manner as the previous cases. We proceed with these relations.

In the case $p=3$, we have the relations

$$
9 t_{(3)}=3 t_{(3)}^{3}=0
$$

Using these relations we solve $\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(1)}\right)\right)_{(3)}=\tilde{J}\left(\beta\left(\varrho^{(1)}\right)\right)_{(3)}$ for $\varrho=\rho \oplus 4$. But for easy of calculation we consider its reduction $\bmod \left(3 t_{(3)}\right)$ as before. In a similar way to the above cases we have from (4) and (5) that

$$
\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(1)}\right)\right)_{(3)} \equiv 2 c_{5}\left(\varrho^{(1)}\right)_{(3)} \quad \text { and } \quad c_{5}\left(\varrho^{(1)}\right)_{(3)} \equiv 0 \quad \bmod \left(3 t_{(3)}\right) .
$$

Hence we see that the above reduction equation has a unique solution $t_{(3)} \equiv 0 \bmod \left(3 t_{(3)}\right)$. This means that $t_{(3)}=0$ since $9 t_{(3)}=0$.

Finally we consider the case $p=2$. Then we have the relations

$$
16 t_{(2)}=16 t_{(2)}^{2}=0, \quad 2 t_{(2)}^{4}=-4 t_{(2)}^{2}, \quad t_{(2)}^{8}=-4 t_{(2)}^{2}+1_{(2)}, \quad t_{(2)}^{16}=8 t_{(2)}^{2}+1_{(2)}
$$

However the calculation for obtaining these relations is somewhat lengthy than in the previous case. In order to proceed to the next step we need one more relation. We take $\varrho=\rho$ and consider the equation $\tilde{J}\left(\psi^{3} \beta\left(\varrho^{(2)}\right)\right)_{(2)}=\tilde{J}\left(\beta\left(\varrho^{(2)}\right)\right)_{(2)}$. Similarly as above we then have

$$
c_{1}\left(\varrho^{(2)}\right)_{(2)}=t_{(2)}, \quad c_{2}\left(\varrho^{(2)}\right)_{(2)}=-3 t_{(2)}^{4}+4 t_{(2)}^{2}, \quad c_{3}\left(\varrho^{(2)}\right)_{(2)}=-3 t_{(2)}^{2} .
$$

Substituting these into the above equation it follows that $2 t_{(2)}^{2}=0$. This yields a refinement of the above relations such that

$$
16 t_{(2)}=0, \quad 2 t_{(2)}^{2}=2 t_{(2)}^{4}=0, \quad t_{(2)}^{8}=t_{(2)}^{16}=1_{(2)},
$$

which allow us to calculate $\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(3)}\right)\right)_{(2)} \equiv \tilde{J}\left(\beta\left(\varrho^{(3)}\right)\right)_{(2)} \bmod \left(2 t_{(2)}\right)$. In fact, we find that $\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(3)}\right)\right)_{(2)} \equiv c_{5}\left(\varrho^{(3)}\right)_{(2)} \bmod \left(2 t_{(2)}\right)$ and also its term $c_{5}\left(\varrho^{(3)}\right)_{(2)}$ is zero $\bmod \left(2 t_{(2)}\right)$. Consequently we have that $t_{(2)}^{3} \equiv 0 \bmod \left(2 t_{(2)}\right)$ which is equivalent to $t_{(2)} \equiv 0 \bmod \left(2 t_{(2)}\right)$. Since $16 t_{(2)}=0$, this means that $t_{(2)}=0$, which proves the proposition and so completes the proof of Theorem 1.

Appendix.

Here we prove $[S U(5), \mathcal{L}]=[S U(6), \mathcal{L}]=[S U(7), \mathcal{L}]=0$ and $[S O(5), \mathcal{L}]_{(2)}=0$, announced in Introduction, following the same procedure as given in the proof of Theorem 1. Then we use the same notations $S, t_{,} t_{(p)}$ and ϱ as those used in the above.

First we consider the case of $G=S U(7)$. Let $\rho: G \hookrightarrow U(7)$ be the identity representation of G and choose as $S \subset G$ the circle subgroup consisting of elements of
the form $\operatorname{diag}\left(z, z, z, z, z^{-4}, 1,1\right)$ with $z \in S^{1}$. Then $\left.\rho\right|_{S}=4 t \oplus t^{-4} \oplus 2$. This yields

$$
3 t_{(3)}=0, \quad t_{(3)}^{3}=0
$$

and

$$
8 t_{(2)}=0, \quad 2 t_{(2)}^{2}=4 t_{(2)}, \quad t_{(2)}^{4}=4 t_{(2)}+1_{(2)}, \quad t_{(2)}^{8}=1_{(2)} .
$$

Set $\varrho=\rho \oplus \lambda^{2} \rho \oplus(p-1)$ for the cases of $p=3,2$, respectively. Then the relations above allow us to solve the equation $\tilde{J}\left(\psi^{5} \beta\left(\varrho^{(1)}\right)\right)_{(p)}=\tilde{J}\left(\beta\left(\varrho^{(1)}\right)\right)_{(p)} \bmod \left(p t_{(p)}\right)$ for $p=3,2$ and gain $t_{(3)}=0$ and $t_{(2)}=0$. Thus we have $[S U(7), \mathcal{L}]=0$.

There is obtained a chain of inclusions $S \subset S U(5) \subset S U(6) \subset S U(7)$ by viewing the S above as a subgroup of $S U(5)$. By applying Lemma 2 to this chain, we find that the results for $S U(5)$ and $S U(6)$ follow immediately from that for $S U(7)$.

Finally we consider the 2-component case of $S O(5)$. Let $S p i n(5)=S p(2)$ and \tilde{S} be the circle subgroup of $\operatorname{Spin}(5)$ which covers the circle subgroup $S \subset S O(5)$ consisting of elements of the form $\operatorname{diag}(D(z), 1,1,1)$ with $z \in S^{1}$. Let $\rho: S O(5) \hookrightarrow U(5)$ be the identity representation of $S O(5)$ and $\Delta: S \operatorname{pin}(5) \rightarrow U(4)$ be the spin representations of $\operatorname{Spin}(5)$. Then $\left.\tilde{\rho}\right|_{\tilde{S}}=t^{2} \oplus t^{-2} \oplus 3$ and $\left.\Delta\right|_{\tilde{S}}=2 t \oplus 2 t^{-1}$ where $\tilde{\rho}$ is the composition of ρ and the covering homomorphism $\operatorname{Spin}(5) \rightarrow S O(5)$. From these two restriction formulas we obtain the same relations $8 t_{(2)}=0,2 t_{(2)}^{2}=4 t_{(2)}, t_{(2)}^{4}=4 t_{(2)}+1_{(2)}, t_{(2)}^{8}=1_{(2)}$ as above. Let $\varrho=\tilde{\rho} \otimes \Delta \oplus \Delta \oplus 2$ and calculate $\tilde{J}\left(\psi^{3} \beta\left(\varrho^{(2)}\right)\right)_{(2)} \equiv \tilde{J}\left(\beta\left(\varrho^{(2)}\right)\right)_{(2)} \bmod \left(2 t_{(2)}\right)$ using the relations above, then it follows that $t_{(2)}^{2} \equiv 0 \bmod \left(2 t_{(2)}\right)$. On the other hand, in a similar manner from $\tilde{J}\left(\psi^{3} \beta\left(\varrho^{(1)}\right)\right)_{(2)} \equiv \tilde{J}\left(\beta\left(\varrho^{(1)}\right)\right)_{(2)} \bmod \left(2 t_{(2)}\right)$ we get $t_{(2)} \equiv 0$ $\bmod \left(2 t_{(2)}\right)$, which implies $t_{(2)}=0$ since $8 t_{(2)}=0$, so we have $t_{(2)}^{2}=0$ which concludes that $[S O(5), \mathcal{L}]_{(2)}=0$.

Acknowledgements. I would like to thank the referee for his valuable comments and suggestions to improve the quality of the paper. Specifically, I wish to express my appreciation for his advice which has led to the settlement of the four cases of $S U(5), S U(6), S U(7)$ and $S O(5)_{(2)}$ having been left open.

References

[1] J. F. Adams, Lectures on Exceptional Lie Groups, Chicago Lectures in Math., University of Chicago Press, Chicago, 1996.
[2] M. F. Atiyah, Power operations in K-theory, Quart. J. Math. Oxford Ser. (2), 17 (1966), 165-193.
[3] M. F. Atiyah and L. Smith, Compact Lie groups and the stable homotopy of spheres, Topology, 13 (1974), 135-142.
[4] J. C. Becker and R. E. Schultz, Fixed point indices and left invariant framings, In Geometric Applications of Homotopy Theory I, Proc. Evanston, 1977, Springer Lecture Notes, 657, 1-31.
[5] H. H. Gershenson, A problem in compact Lie groups and cobordism, Pac. J. of Math., 51 (1974), 121-129.
[6] K. Knapp, Rank and Adams filtration of a Lie group, Topology, 17 (1978), 41-52.
[7] E. Ossa, Lie groups as framed manifolds, Topology, 21 (1982), 315-323.
[8] H. Sati, M-Theory with Framed Corners and Tertiary Index Invariants, SIGMA, 10 (2014), 024 arXiv:1203.4179 [hep-th].
[9] H. U. Schön, Lie-Gruppen in der Novikov-Spektralsequenz, Ph. D. Dissertation, Univ. Wuppertal, 1983.
[10] B. Steer, Orbits and the homotopy class of a compactification of a classical map, Topology, 15 (1976), 383-393.
[11] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, 49, Princeton University Press, 1962.
[12] R. M. W. Wood, Framing the exceptional Lie group G_{2}, Topology, 15 (1976), 303-320.
Haruo Minami
Professor Emeritus
Nara University of Education
E-mail: hminami@camel.plala.or.jp

[^0]: 2010 Mathematics Subject Classification. Primary 57R15; Secondary 22E46, 19L20.
 Key Words and Phrases. framed manifolds, Lie groups, Adams conjecture.

