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Abstract. For a compact simple Lie group G, we show that the element
[G,L] ∈ πS∗ (S0) represented by the pair (G,L) is zero, where L denotes the left
invariant framing of G. The proof relies on the method of E. Ossa [Topology,
21 (1982), 315–323].

1. Introduction.

A compact connected Lie group G of dimension d, together with its left invariant
framing L, defines an element [G,L] in πS

d via the Thom–Pontrjagin construction. In [7]
E. Ossa proved that if G is semi-simple, then there holds

72[G,L] = 0 or 24[G,L] = 0 (1)

according as G is or is not locally isomorphic to a product of E6, E7, E8. In this note
we show that when G is restricted to a simple Lie group, the method of [7] allows us to
obtain a more conclusive result by altering the expression of a certain specific element.
The result is the following:

Theorem 1.

( i ) [SU(n),L] = [Spin(n),L] = [SO(n),L] = 0 (n ≥ 8); [Sp(n),L] = 0 (n ≥ 4),
( ii ) [F4,L] = [E6,L] = [E7,L] = [E8,L] = 0.

This gives an affirmative partial answer to the conjecture due to J. C. Becker and
R. E. Schultz [3] that [G,L] = 0 for all compact Lie groups with rank ≥ r0 where r0

is a constant smaller than 10 or so. We provide here a proof of the theorem only for
the 2- and 3-component cases since (1) tells us that [G,L](p) = 0 for any prime p ≥ 5.
Here −(p) denotes the localization at p. However, before proceeding to the proof of the
theorem, we want to gather together some of the results obtained in other studies [3],
[4], [5], [6], [10] and [12] relevant to the present work, since Theorem 1 lacks partially
the description of simple Lie groups of low rank. We list them in referring to Table 1 of
[7] with [11].

[SU(2),L] = ν ∈ πS
3
∼= Z24 · ν,

[SU(3),L] = ν̄ ∈ πS
8
∼= Z2 ⊕ Z2,
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[SU(4),L] = κη ∈ πS
15
∼= Z480 ⊕ Z2 · κη,

[Sp(2),L] = β1 ∈ πS
10
∼= Z6,

[Sp(3),L] = σ3 + κ̄η ∈ πS
21
∼= Z2 ⊕ Z2,

[SO(3),L] = 2ν,

[SO(5),L] = −β1,

[SO(4),L] = [SO(6),L] = [SO(7),L] = 0,

[G2,L] = κ ∈ πS
14
∼= Z2 ⊕ Z2 · κ.

There are isomorphisms

Spin(3) ∼= SU(2) ∼= Sp(1), Spin(4) ∼= Sp(1)× Sp(1),

Spin(5) ∼= Sp(2), Spin(6) ∼= SU(4),

so that from the above list we find that simple Lie groups which remain to be discussed
are SU(5), SU(6), SU(7) and perhaps SO(5). Regarding these groups we have

[SU(5),L] = [SU(6),L] = [SU(7),L] = 0, [SO(5),L](2) = 0

in a manner similar to Theorem 1 and the proofs are given in Appendix. The first equality
[SU(5),L] = 0 is consistent with the previously known result due to H. U. Schön [9].
If the last equality holds then, since β1 is of order 3, we have [SO(5),L] = −β1 by
combining this with β1 = [Sp(2),L] mentioned above and 4[Sp(2),L] = 2[SO(5),L] of
[8].

We now turn to the proof of Theorem 1. We begin with a brief review of the method
used to prove (1). Let S be a circle subgroup of G with isomorphism t : S ∼= S1. Define
a complex line bundle L over G/S as the quotient space of G×C obtained. To simplify
notations, using the same symbol as above we write t = [L] for the isomorphism class of L.
Let J̃(µt) ∈ π0

S(S1 ∧G/S+) = π−1
S (G/S+) be the image of µt ∈ K̃−1(S1 ∧G/S+) by the

(complex) J-homomorphism where µ denotes the Bott element. Let [G/S] ∈ πS
d−1(G/S+)

be the framed bordism fundamental class of G/S with the framing induced by L. Then
[7] establishes the following formula:

[G,L] = −〈J̃(µt), [G/S]〉 (2)

where 〈−,−〉 denotes the Kronecker product in the stable homotopy theory. This shows
that the order of [G,L] is subordinate to that of J̃(µt). In fact, (1) is obtained by
evaluating J̃(µt) for a well chosen S ⊂ G using the solution of the Adams conjecture
for elements J̃(µt`) (` ∈ Z). Since ψk(µt`) = kµtk` we find that the solution of this
conjecture is given by

kJ̃(µtk`)(p) = J̃(µt`)(p) (3)
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for a prime p such that (p, k) = 1. In particular, J̃(µt−i)(p) = −J̃(µti)(p) holds for i ≥ 0;
hence 2J̃(µ)(p) = 0, which are used here freely.

In the next section we introduce an alternative formulation of µt and by showing
that there is a difference between the actions of ψk on this formulation and µt itself we
attempt to fill the gap between (1) and Theorem 1. In Sections 3 and 4 we discuss the
classical case and the exceptional case is discussed in Section 5.

2. The alternative formulation of µt.

But first we give a formula for computing the action of the Adams operations ψk

(k = 3, 4, 5) on the new formulation of µt explicitly.
Given a continuous map f : X → U(n) on a compact pointed space X, we can

associate to it an element of K̃−1(X) in the following way. Let SX denote the suspension
of X. Viewing it as the union of two reduced cones CX+ and CX− over X, we have
a bundle Ef over SX obtained by gluing together two trivial bundles CX+ × Cn and
CX− ×Cn along X = CX+ ∩CX− by f . Here if f is a constant map, then this bundle
becomes homotopic to the trivial bundle of dimension n, for which we write n. We set
β(f) = [Ef ] − [n] in K̃(SX) = K̃−1(X) where [F ] denotes the isomorphism class of a
vector bundle F .

For all i ≥ 1 we define the i-th exterior power λif of f by (λif)(x) = λi(f(x)) for
x ∈ X, then we have the following formula for k = 3, 4, 5:

ψkβ(f) = k(Σk
j=1(−1)j−1

(
n + k − j − 1

k − j

)
β(λjf)). (4)

This follows directly from the equalties

m3 = e3
1 − 3e1e2 + 3e3, m4 = e4

1 − 4e2
1e2 + 4e1e2 + 2e2

2,

m5 = e5
1 − 5e3

1e2 + 5e1e
2
2 + 5e2

1e3 − 5e2e3 − 5e1e4 + 5e5

where mk and ek denote the kth power sum tk1 + · · ·+ tkn and kth elementary symmetric
function respectively. If we write mk = Qk(e1, . . . , ek) for these equalities, then ψk[Ef ] =
Qk([Ef ], . . . , [Eλkf ]) according to the definition. Substituting [Eλif ] = β(λif)+[

(
n
i

)
] into

this formula and using the relations β(fg) = mβ(f) + nβ(g) and β(f)β(g) = 0, we see
that it can be transformed into the desired form. Here g is another continuous map from
X to U(m) and fg denotes the product of f and g, which arises from the tensor product
of matrices. (Note that in fact (4) holds true for all k ≥ 2, which can be verified using
formulas (1) and (2) on page 178 of [2].)

We now give an alternative formulation of µt of the above. Let G, S and t be as in
the previous section and let % : G → U(n) be a complex n-dimensional representation of
G. We construct an element K̃−1(S1 ∧G/S+) associated with this %. The restriction of
% to S can be written as a direct sum

%|S = td1 ⊕ · · · ⊕ tdn
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for some di ∈ Z. We know that the image group %(S) is conjugate in U(n) to a subgroup
of the standard maximal torus S1 × · · · × S1 of U(n). So we assume here that the above
expression on the right-hand side indicates that the value of % itself at every s ∈ S is a
diagonal matrix with td1(s), . . . , tdn(s) on the diagonal in that order.

For each 1 ≤ i ≤ n we define a map %(di) : S1 ∧G/S+ → U(n) by setting

%(di)(z ∧ gS) = %(g)diag(1, . . . , 1,
i∨
z, 1, . . . , 1)%(g)−1 (5)

with z ∈ S1 and g ∈ G where diag(z1, . . . , zn) denotes the diagonal matrix with diagonal
entries z1, . . . , zn in that order. If ι denotes the identity map on S1 = U(1), then β(ι) is
just the Bott element µ ∈ K̃(S2) = K̃−1(S1). Looking at the definition of each element,
it can be seen that β(%(di)) = µ[Ldi ] in K̃−1(S1 ∧G/S+), hence we have

J̃(β(%(di))) = J̃(µtdi) in π−1
S (G/S+).

This provides two different ways of applying the solution of the Adams conjecture to
J̃(µtdi). In the following, together with (3), we use the equation

J̃(ψkβ(%(di)))(p) = J̃(β(%(di)))(p) (6)

with respect to tdi

(p) where k = 3, 4, 5 such that (p, k) = 1.
In order to prove Theorem 1 we need one further simple lemma.

Lemma 2. For i = 1, 2, let Si be a circle subgroup of a Lie group Gi as specified
above and Li the complex line bundle over Gi/Si associated with the principal Si-bundle
Gi → Gi/Si. Suppose there is given a homomorphism f : G1 → G2 such that the image
of S1 by f coincides with S2. Then J̃(µt2)(p) = 0 implies that J̃(µt1)(p) = 0, so we have
[G1,L](p) = 0, where ti = [Li].

Proof. This is immediate from the assumption given and formula (2), since there
holds f̃∗L2

∼= L1, where f̃ indicates a map G1/S1 → G2/S2 induced by f . ¤

Finally we note that in the following for simplicity we use the abbreviations

ti(p) = J̃(µti)(p) and cj(%(d`))(p) = J̃(β(λj(%(d`))))(p) (i ∈ Z, j, ` ≥ 1)

and sometimes use tG instead of t in order to avoid confusion.

3. Proof for classical 3-components.

The proof of Theorem 1 breaks up into two parts, the classical and exceptional cases,
and that of each of them is also subdivided into the 2- and 3-component cases. We begin
with the classical 3-component case, particularly [SU(n),L](3) from which the results for
the other classical groups follow easily. The proof of the other three cases proceeds along
lines similar to this case.
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Put G = SU(n) and choose as S ⊂ G, mentioned above, the circle subgroup con-
sisting of elements of the form

diag(z, z̄, z, z̄, z2, z̄2, z3, z̄3, 1, . . . , 1)

with z ∈ S1 and then take for t : S ∼= S1 the isomorphism sending each such element to
z. As above, let L denote the line bundle over G/S associated with the principal bundle
G → G/S via t and use also t to denote the isomorphism class of L.

We now proceed in three steps. First we give an estimation of the order of t(3) =
J̃(µt)(3) based on the original method. Let ρ : G ↪→ U(n) be the identity representation
of G. Then

ρ|S = 2t⊕ 2t−1 ⊕ t2 ⊕ t−2 ⊕ t3 ⊕ t−3 ⊕ (n− 8).

This induces an isomorphism 2L⊕ 2L̄⊕L2⊕ L̄2⊕L3⊕ L̄3⊕n− 8 ∼= n of vector bundles
over G/S, so we have 2µt + 2µt−1 + µt2 + µt−2 + µt3 + µt−3 = 8µ · 1 in K̃−1(S(G/S+)).
Multiplying this from the right by t, t2 and t6 and operating J̃(−)(3) on the equalities
thereby obtained we have

2µt2(3) + 2µ · 1(3) + µt3(3) + µt−1
(3) + µt4(3) + µt−2

(3) = 8µt(3),

2µt3(3) + 2µt(3) + µt4(3) + µ · 1(3) + µt5(3) + µt−1
(3) = 8µt2(3),

2µt7(3) + 2µt5(3) + µt8(3) + µt4(3) + µt9(3) + µt3(3) = 8µt6(3)

in π−1
S (G/S+). On the other hand, we have 2t2(3) = 4t4(3) = 5t5(3) = 7t7(3) = t(3) from

formula (3). Applying these to the above two equalities we get

9t(3) = 0, t3(3) = 6t(3), t9(3) = 0.

Next, choose % = 5ρ ⊕ 2 and assume that n = 3s (s ≥ 2). Then the use of these
relations allows us to solve the equation J̃(ψ4β(%(1)))(3) = J̃(β(%(1)))(3) considered in
(6). However for simplicity of calculation we perform this with reduction mod (3t(3)).
Using the relations obtained above we deduce from formula (3) that

t3i+2
(3) ≡ 2t(3), t3i+1

(3) ≡ t(3), t3i
(3) ≡ 0 mod (3t(3)) (0 ≤ i ≤ 3).

Taking account of these relations, a glance at definition (5) shows that every ci(%(2))(3),
1 ≤ i ≤ 4, has the form nit(3) where ni ∈ Z and hence from formula (4) it follows that
the above reduction can be written in the form

c1(%(1))(3) ≡ 4(c1(%(1))(3) + 2c3(%(1))(3) − c4(%(1))(3))) mod (3t(3)).

By performing the calculation of its terms in more detail we have
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c1(%(1))(3) = t(3), c3(%(1))(3) ≡ 0, c4(%(1))(3) ≡ 2t(3) mod (3t(3))

where the first equality is already verified in the formula preceding (6). Substitution of
these into the above equality yields t(3) ≡ 0 mod (3t(3)) immediately. But since 9t(3) = 0,
this means that t(3) = 0. Thus we have

Proposition 3. Let N = 3s (s ≥ 3). Then J̃(µt)(3) = 0 in π−1
S (SU(N)/S+)(3).

Finally we must show that the equality J̃(µtSU(n))(3) = 0 holds for any SU(n) with
n ≥ 8. However this follows immediately from Lemma 2 and Proposition 3, because
such a group SU(n) has a circle subgroup S such that its image under the standard
inclusion i : SU(n) ↪→ SU(N) coincides with S in SU(N) above for large s. That is,
we have J̃(µtSU(n))(3) = ĩ∗J̃(µtSU(N))(3) = 0 and hence by (2) we can conclude that
[SU(n),L](3) = 0 for n ≥ 8.

For the other two types of classical groups, we can proceed quite similarly as in the
case of SU(n). In the case of Sp(n), let n ≥ 4 and take as S the circle subgroup consisting
of elements of the form diag(z, z, z2, z3, 1, . . . , 1) with z ∈ S1. Then it is clear that the
complexification c : Sp(n) → SU(2n) sends this S identically to S in SU(2n). From the
fact that J̃(µtSU(2n))(3) = 0, we have J̃(µtSp(n))(3) = 0, that is, [Sp(n),L](3) = 0 for
n ≥ 4.

In the case of real groups, let n ≥ 8 and first we consider about SO(n). Let S be the
circle subgroup consisting of elements of the form diag(D(z), D(z), D(z2), D(z3), 1, . . . , 1)
with z ∈ S1, where D(z) denotes the realification of the one-dimensional matrix (z). Let
c : SO(n) → SU(n) be the complexification of SO(n). We know that this c can be
transformed by conjugation by an element of SU(n) so that the image of S coincides
with S in SU(n), which proves that [SO(n),L](3) = 0 for n ≥ 8.

In order to complete the proof in the present case we need to prove that this holds
true for the double covering group Spin(n) of SO(n). For this we choose as the circle
subgroup S̃ of Spin(n) the double covering Spin(2) of the standard rotation subgroup
S = SO(2) ⊂ SO(n), this S being used as that itself for SO(n). Let L̃ be the complex
line bundle over Spin(n)/S̃ associated to the principal S̃-bundle Spin(n) → Spin(n)/S̃.
Then the complex line bundle L over SO(n)/S can be identified with L̃⊗2 through the
homeomorphism SO(n)/S ≈ Spin(n)/S̃, that is, it holds that tSO(n) = t2Spin(n). Hence
by the solution of the Adams conjecture we have 2J̃(µtSO(n))(3) = J̃(µtSpin(n))(3), so
2[SO(n),L](3) = [Spin(n),L](3). Thus we get [Spin(n),L](3) = 0 for n ≥ 8. This
completes the proof of (i) for 3-components.

4. Proof for classical 2-components.

Similarly to the above we first consider the case G = SU(n). Let ρ : SU(n) ↪→ U(n)
be the identity representation of SU(n) and S denote the same circle subgroup of SU(n)
as above. Then from the restriction formula

ρ|S = 2t⊕ 2t−1 ⊕ t2 ⊕ t−2 ⊕ t3 ⊕ t−3 ⊕ (n− 8),
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arguing in a similar way we get

16t(2) = 0, t2(2) = 10t(2) + 1(2), t4(2) = 4t(2) + 1(2), t8(2) = 1(2).

In this case we choose % = 3ρ⊕ 2 and assume n = 2s (s ≥ 3), and attempt to calculate
the equation J̃(ψ5β(%(3)))(2) = J̃(β(%(3)))(2) under the relations above, though in fact
we consider its reduction mod (2t(2)) for the same reason as above. Then as in the case
above we see that we can write

J̃(ψ5β(%(3)))(2) ≡ t3(2) + c3(%(3))(2) + c5(%(3))(2) mod (2t(2))

and we have

c3(%(3))(2) ≡ 0, c5(%(3))(2) ≡ t(2) mod (2t(2)).

These results show immediately that the above reduction J̃(ψ5β(%(3)))(2) ≡ J̃(β(%(3)))(2)
mod (2t(2)) has a unique solution t(2) ≡ 0 mod (2t(2)) as desired, hence we have t(2) = 0
due to the relation 16t(2) = 0. Consequently we get

Proposition 4. Let N = 2s where s ≥ 4. Then J̃(µt)(2) = 0 in
π−1

S (SU(N)/S+)(2).

By applying the same reasoning as the previous case used, we see that this completes
the proof of (i) for 2-components except proving the case of Spin(n).

This case needs to be considered separately. Let π : Spin(n) → SO(n) be the
covering homomorphism where n = 2s for a fixed s ≥ 4 and let S̃ be the two-fold covering
group of S ⊂ SO(n) consisting of elements of the form diag(D(z2), D(z2), D(z4), D(z6),
1, . . . , 1) with z ∈ S1. Then tSO(n) represents the isomorphism S ∼= S1 sending each
such element to z and when putting t = tSpin(n) : S̃ ∼= S1, it satisfies the identity
t2 = tSO(n) ◦ (π|S̃). With the identification Spin(n)/S̃ ≈ SO(n)/S induced by π we
prove

Proposition 5. For n as above there holds J̃(µt)(2) = 0 in π−1
S (Spin(n)/S̃+)(2).

This means that [Spin(n),L](2) = 0 holds for n ≥ 8.

Proof of Proposition 5. Let ρ̃ be the composite of π with the identity repre-
sentation ρ : SO(n) ↪→ SU(n). Then we have

ρ̃|S̃ = 2t2 ⊕ 2t−2 ⊕ t4 ⊕ t−4 ⊕ t6 ⊕ t−6 ⊕ (n− 8).

From this formula and the result for SO(n) above it follows that

8t(2) = 0, t2(2) = 0, t4(2) = t8(2) = 1(2).

If we set % = ∆ ⊕ 3ρ̃ ⊕ 1, where ∆ denotes the spin representation of Spin(n), then
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we see that we can define %(1), which we owe to the choice of S. Analogously to tSO(n),
using the relations above, we find that

ci(%(1))(2) ≡ t(2) (i = 2, 4, 5), c3(%(1))(2) ≡ 0 mod (2t(2)).

Inserting these into the equation J̃(ψ5β(%(1)))(2) ≡ J̃(β(%(1)))(2) mod (2t(2)) we obtain
t(2) ≡ 0 mod (2t(2)). Since 8t(2) = 0 it follows that t(2) = 0, which proves the proposition.

¤

5. Proof for exceptional groups.

For the proof of the exceptional case we employ the following well-known chain of
inclusions:

Spin(9) ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8

and choose a circle subgroup S of Spin(9), together with isomorphism t : S ∼= S1,
which is viewed as a common circle subgroup of these four exceptinal groups through
the inclusions. We use the letter t to denote the isomorphism class of the complex line
bundle L over E8/S associated with the principal S-bundle E8 → E8/S, as before.

Proposition 6. If S is nicely chosen, then J̃(µt)(p) ∈ π−1
S (E8/S+)(p) becomes

zero for p = 3, 2.

Combining this proposition and Lemma 2, we have

[F4,L](p) = [E6,L](p) = [E7,L](p) = [E8,L](p) = 0.

Proof of Proposition 6. Let e1, . . . , e9 be the standard basis of the Clifford
algebra Cl0,9(R) and put ωr,s(θ) = cos θ + eres sin θ for simplicity. We consider the
homomorphism α : Spin(2) → Spin(9) given by

α(ω1,2(θ)) = ω1,2(θ)ω1,3(θ)ω1,4(θ),

which is clearly injective. Set S = Im α ⊂ E8 and choose ρ = AdE8 , the (comlexified)
adjoint representation of E8 whose dimension is 248. Then t : S ∼= S1 can be given by
t(α(ω1,2(θ))) = e2iθ. From the formula on page 52 of [1] we see that the restriction of ρ

to Spin(10) ⊂ E8 satisfies

ρ|Spin(10) = λ2
10 ⊕ 6λ1

10 ⊕ 4∆⊕ 15

where λ2
10 denotes the 2nd exterior of λ1

10, λ1
10 being the composite Spin(10) → SO(10) ⊂

U(10) of the covering homomorphism with the inclusion homomorphism and ∆ the spin
representation of Spin(10). Consider the restriction of this to S ⊂ Spin(9) ⊂ Spin(10),
then we can write as
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ρ|S = 48t⊕ 48t−1 ⊕ 30t2 ⊕ 30t−2 ⊕ 16t3 ⊕ 16t−3 ⊕ 3t4 ⊕ 3t−4 ⊕ 54.

The argument here is based on the relations obtained from this restriction formula in a
similar manner as the previous cases. We proceed with these relations.

In the case p = 3, we have the relations

9t(3) = 3t3(3) = 0.

Using these relations we solve J̃(ψ5β(%(1)))(3) = J̃(β(%(1)))(3) for % = ρ⊕ 4. But for easy
of calculation we consider its reduction mod (3t(3)) as before. In a similar way to the
above cases we have from (4) and (5) that

J̃(ψ5β(%(1)))(3) ≡ 2c5(%(1))(3) and c5(%(1))(3) ≡ 0 mod (3t(3)).

Hence we see that the above reduction equation has a unique solution t(3) ≡ 0 mod (3t(3)).
This means that t(3) = 0 since 9t(3) = 0.

Finally we consider the case p = 2. Then we have the relations

16t(2) = 16t2(2) = 0, 2t4(2) = −4t2(2), t8(2) = −4t2(2) + 1(2), t16(2) = 8t2(2) + 1(2).

However the calculation for obtaining these relations is somewhat lengthy than in the
previous case. In order to proceed to the next step we need one more relation. We take
% = ρ and consider the equation J̃(ψ3β(%(2)))(2) = J̃(β(%(2)))(2). Similarly as above we
then have

c1(%(2))(2) = t(2), c2(%(2))(2) = −3t4(2) + 4t2(2), c3(%(2))(2) = −3t2(2).

Substituting these into the above equation it follows that 2t2(2) = 0. This yields a refine-
ment of the above relations such that

16t(2) = 0, 2t2(2) = 2t4(2) = 0, t8(2) = t16(2) = 1(2),

which allow us to calculate J̃(ψ5β(%(3)))(2) ≡ J̃(β(%(3)))(2) mod (2t(2)). In fact, we
find that J̃(ψ5β(%(3)))(2) ≡ c5(%(3))(2) mod (2t(2)) and also its term c5(%(3))(2) is zero
mod (2t(2)). Consequently we have that t3(2) ≡ 0 mod (2t(2)) which is equivalent to
t(2) ≡ 0 mod (2t(2)). Since 16t(2) = 0, this means that t(2) = 0, which proves the
proposition and so completes the proof of Theorem 1. ¤

Appendix.

Here we prove [SU(5),L] = [SU(6),L] = [SU(7),L] = 0 and [SO(5),L](2) = 0,
announced in Introduction, following the same procedure as given in the proof of Theorem
1. Then we use the same notations S, t, t(p) and % as those used in the above.

First we consider the case of G = SU(7). Let ρ : G ↪→ U(7) be the identity
representation of G and choose as S ⊂ G the circle subgroup consisting of elements of
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the form diag(z, z, z, z, z−4, 1, 1) with z ∈ S1. Then ρ|S = 4t⊕ t−4 ⊕ 2. This yields

3t(3) = 0, t3(3) = 0

and

8t(2) = 0, 2t2(2) = 4t(2), t4(2) = 4t(2) + 1(2), t8(2) = 1(2).

Set % = ρ⊕ λ2ρ⊕ (p− 1) for the cases of p = 3, 2, respectively. Then the relations above
allow us to solve the equation J̃(ψ5β(%(1)))(p) = J̃(β(%(1)))(p) mod (pt(p)) for p = 3, 2
and gain t(3) = 0 and t(2) = 0. Thus we have [SU(7),L] = 0.

There is obtained a chain of inclusions S ⊂ SU(5) ⊂ SU(6) ⊂ SU(7) by viewing the
S above as a subgroup of SU(5). By applying Lemma 2 to this chain, we find that the
results for SU(5) and SU(6) follow immediately from that for SU(7).

Finally we consider the 2-component case of SO(5). Let Spin(5) = Sp(2) and S̃ be
the circle subgroup of Spin(5) which covers the circle subgroup S ⊂ SO(5) consisting
of elements of the form diag(D(z), 1, 1, 1) with z ∈ S1. Let ρ : SO(5) ↪→ U(5) be the
identity representation of SO(5) and ∆ : Spin(5) → U(4) be the spin representations of
Spin(5). Then ρ̃|S̃ = t2 ⊕ t−2 ⊕ 3 and ∆|S̃ = 2t ⊕ 2t−1 where ρ̃ is the composition of ρ

and the covering homomorphism Spin(5) → SO(5). From these two restriction formulas
we obtain the same relations 8t(2) = 0, 2t2(2) = 4t(2), t4(2) = 4t(2) + 1(2), t8(2) = 1(2) as
above. Let % = ρ̃⊗∆⊕∆⊕ 2 and calculate J̃(ψ3β(%(2)))(2) ≡ J̃(β(%(2)))(2) mod (2t(2))
using the relations above, then it follows that t2(2) ≡ 0 mod (2t(2)). On the other hand,
in a similar manner from J̃(ψ3β(%(1)))(2) ≡ J̃(β(%(1)))(2) mod (2t(2)) we get t(2) ≡ 0
mod (2t(2)), which implies t(2) = 0 since 8t(2) = 0, so we have t2(2) = 0 which concludes
that [SO(5),L](2) = 0.
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