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Abstract. The problem of approximating the infinite dimensional space
of all continuous maps from an algebraic variety X to an algebraic variety Y
by finite dimensional spaces of algebraic maps arises in several areas of ge-
ometry and mathematical physics. An often considered formulation of the
problem (sometimes called the Atiyah–Jones problem after [1]) is to deter-
mine a (preferably optimal) integer nD such that the inclusion from this finite
dimensional algebraic space into the corresponding infinite dimensional one
induces isomorphisms of homology (or homotopy) groups through dimension
nD, where D denotes a tuple of integers called the “degree” of the algebraic
maps and nD → ∞ as D → ∞. In this paper we investigate this problem in
the case when X is a real projective space and Y is a smooth compact toric
variety.

0. Introduction.

Let X and Y be manifolds with some additional structure S, e.g. holomorphic,
symplectic, real algebraic etc. Let S(X, Y ) denote the space of base-point preserving
continuous maps f : X → Y preserving the structure S and let Map∗(X, Y ) be the
space of corresponding continuous maps. The relation between the topology of the
spaces S(X, Y ) and Map∗(X, Y ) has long been an object of study in several areas of
topology and geometry (e.g. [3], [5], [9], [10], [12], [13], [14], [15], [17], [18], [21]).
In particular, in [17] and [18] J. Mostovoy considered the case where the structure
S is that of a complex manifold, and determined an integer nD such that the inclu-
sion map jD : Hol∗D(X, Y ) → Map∗D(X, Y ) induces isomorphisms of homology groups
through dimension nD for complex projective spaces X and Y , where Hol∗D(X, Y ) (resp.
Map∗D(X, Y )) denotes the space of base-point preserving holomorphic (resp. continuous)
maps from X to Y of degree D.

In [2] and [14] the case where the structure S is that of a real algebraic variety
was considered, and integers nD were found, such that the natural projection map iD :
AD(X, Y ) → Map∗D(X, Y ) induces isomorphisms of homology groups through dimension
nD for real projective spaces X and Y , where AD(X, Y ) is a space of tuples of polynomials
representing the elements of Alg∗D(X, Y )—the space of base-point preserving algebraic
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(regular) maps from X to Y of degree D (we will refer to AD(X, Y ) as an “algebraic
approximation” to the mapping space Map∗D(X, Y )).

Recently Mostovoy and Munguia-Villanueva generalized Mostovoy’s earlier result
[18] to the case of holomorphic maps from a complex projective space CPm to a compact
smooth toric variety XΣ in [19], where XΣ denotes the toric variety associated to a fan
Σ.

In this paper, we study a real analogue of this result [19] (a different kind of analogue
will be studied in the subsequent paper [16]). More precisely, our original aim was to
generalize the results of [15] to the spaces of algebraic maps from a real projective space
RPm to a compact smooth toric variety XΣ.1 Although our approach is based on the
original ideas of Mostovoy ([17], [18]), the real case presents special difficulties. For
example, what we call here an algebraic map from RPm to XΣ is defined on some open
dense subset of CPm, and it cannot be extended to the entire complexification CPm in
general. Moreover, there is another difference between the complex case and the real
one, which is the source of a greater difficulty. Namely, in the complex case, base-point
preserving algebraic (equivalently holomorphic) maps from CPm to XΣ are determined
by r-tuples of homogenous polynomials taking values outside a certain subvariety of Cr,
where r is the number of the Cox’s homogenous coordinates of XΣ.

On the other hand, in the real case, such r-tuples of polynomials determine algebraic
maps only up to multiplication by certain positive valued homogenous polynomial func-
tions. This means that base-point preserving algebraic maps from RPm to XΣ cannot
be uniquely represented (in homogeneous coordinates) by r-tuples of polynomials with
a fixed “degree” since we can multiply any r-tuple by a positive valued homogeneous
polynomial to obtain another tuple representing the same algebraic map. While an al-
gebraic map from RPm to XΣ has a uniquely defined “minimal degree” and the space
of algebraic maps with a fixed minimal degree can be described in terms of r-tuples of
homogenous polynomials of the same degree, the topology of the space of algebraic maps
with a fixed minimal degree is very complicated to analyze and we shall not make here
any use of this concept (besides defining it).2

Now, let iD : AD(m,XΣ) → Map∗(RPm, XΣ) denote the natural map given by
sending r-tuple of polynomials to its representing algebraic map, and consider the natural
surjective projection ΨD : AD(m,XΣ) → Alg∗D(RPm, XΣ) = iD(AD(m,XΣ)) on its
image. Because any fibre of ΨD is contractible, if we could prove that this map is a
quasi-fibration, it would imply that it is a homotopy equivalence and we could then just
imitate the method of [19]. Unfortunately, it seems difficult to prove that this map is a
quasi-fibration or satisfies some other condition that leads to the conclusion that it is a
homotopy equivalence.

To get around this problem we adopt the approach used in [2]. Namely, we restrict
ourselves to considering only the spaces of r-tuples of polynomials which represent al-
gebraic maps rather than the spaces of algebraic maps themselves. These will be our
finite dimensional approximations to the space of all continuous maps. (We conjecture

1Note that an algebraic map from a real variety V to a complex variety W is a morphism defined on

an open dense subset of the complexification VC of V which contains all the R-valued points of V .
2See Proposition 1.3 and Definition 8.2.
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that both kinds of algebraic approximations, by tuples of polynomials and by algebraic
maps which they determine, are homotopy equivalent). Because we cannot work with
spaces of algebraic maps we cannot make use of the real analogue of [19, Proposition 3]
(although such an analogue can be proved by a similar method).

Instead, we prove a similar theorem (Theorem 4.6), where in place of the stabilized
space of algebraic maps we use the stabilized space of tuples of polynomials representing
them and obtain a homology equivalence instead of a homotopy one with the space of
all continuous maps. Our method of proof is more complicated since we have to rely on
the spectral sequence constructed by Vassiliev [22] for computing the homology of the
space of continuous maps from a q-dimensional CW complex to a q-connected one (see
Section 7 for more details).

More precisely, our proof makes use of three spectral sequences corresponding to
three kinds of simplicial resolutions of discriminants; the first one defined by Vassiliev,
the other two, its variants due to Mostovoy.

The first resolution, called by Vassiliev “the simplicial resolution” (and in this paper
the “non-degenerate simplicial resolution” to distinguish it from the other two), has a
(k−1)-simplex as its fibre whenever the inverse image consists of k points. Vassiliev used
this resolution to construct a spectral sequence for computing cohomology of spaces of
continuous mappings. The same kind of resolution and a corresponding spectral sequence
can be defined for the space of algebraic maps and clearly there is a natural map between
the resolutions which induces a homomorphism between the spectral sequences. However,
this is not enough to prove our result as the spectral sequence has too many non-vanishing
terms, due to the fact that the values of an algebraic map of fixed degree at different
points are not necessarily independent. Mostovoy’s idea in [17] was to use a degenerate
simplicial resolution (which we have decided to name the Veronese resolution because
it based on the use of a Veronese-like embedding). This resolution collapses some of
the fibres of the non-degenerate resolution and makes the corresponding terms 0. The
problem with the Veronese resolution is that it does not map into the Vassiliev’s non-
degenerate simplicial resolution of the space of continuous maps. However, by combining
the two resolutions we can prove Theorem 4.6.

It may be worth noting that by using only these two resolutions we can prove
Theorem 6.2, which differs from our main Theorem 1.5 only in giving a worse stabilization
dimension. To obtain a stronger result we turn to another idea of Mostovoy: that of the
(non-degenerate) simplicial resolution truncated after some term.

The basic idea behind the proofs is as follows. We want to compare the topology
of two successive algebraic approximations. We make use of the fact that these spaces
are complements of discriminants in affine spaces and their topology can be related to
that of discriminants by Alexander duality. To compare the homology we resolve the
singularities of both spaces using the non-degenerate simplicial resolution. The non-
degenerate resolution has a natural filtration, the k-th term of which is the union of the
(k − 1)-th skeleta of the simplices in the fibres of the non-degenerate resolution. The
first few terms of the filtration are easy to describe but after a certain dimension they
become intractable. To deal with this problem we truncate the resolution after this
dimension, by taking only skeleta of lower dimensions and collapsing non-contractible
fibres (thus obtaining again a space homotopy equivalent to the discriminant). This
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truncated resolution inherits a filtration, which turns out to be much more manageable.
A comparison of these truncated resolutions and their spectral sequences gives our main
result.

This paper is organized as follows. In Section 1, we define the basic notions of toric
varieties and state our main results. In Section 2, we recall the definitions of the various
simplicial resolutions used in this paper. In Section 3 we study the spectral sequence
induced from the non-degenerate simplicial resolution of discriminants, and in Section 4
we prove our key stability result (Theorem 4.8). In Section 5 we recall the elementary
results of polyhedral products and investigate the connectivity of the complement Cr\ZΣ.
In Section 6, we give the proofs of Theorem 4.6 and the main result (Theorem 1.5) by
using Theorem 6.2. In Section 7 we prove Theorem 6.2 by using the Vassiliev spectral
sequence [22] and that induced from the Veronese (degenerate) resolution. In Section
8 we describe some non-trivial facts, define the minimal degree of algebraic maps, and
consider the problem concerning the relationship between spaces of polynomial tuples
and the spaces of algebraic maps induced by them.

1. Toric varieties and the main results.

1.1. Toric varieties and polynomials representing algebraic maps.
Toric varieties.
An irreducible normal algebraic variety X (over C) is called a toric variety if it has

an algebraic action of algebraic torus Tr = (C∗)r, such that the orbit Tr · ∗ of some point
∗ ∈ X is dense in X and isomorphic to Tr. A strong convex rational polyhedral cone σ

in Rn is a subset of Rn of the form σ = Cone({nk}s
k=1) = {∑s

k=1 aknk|ak ≥ 0}, where
{nk}s

k=1 ⊂ Zn, which does not contain any line. A finite collection Σ of strongly convex
rational polyhedral cones in Rn is called a fan if every face of an element of Σ belongs
to Σ and the intersection of any two elements of Σ is a face of each.

It is known that a toric variety X is completely characterized up to isomorphism by
its fan Σ. We denote by XΣ the toric variety associated to Σ.

The dimension of a cone σ is the minimal dimension of subspaces W ⊂ Rn such that
σ ⊂ W . A cone σ in Rn is called smooth (resp. simplicial) if it is generated by a subset
of a basis of Zn (resp. a subset of a basis of Rn).

A fan Σ is called smooth (resp. simplicial) if every cone in Σ is smooth (resp.
simplicial). A fan is called complete if

⋃
σ∈Σ σ = Rn. Note that XΣ is compact if

and only if Σ is complete [7, Theorem 3.4.1], and that XΣ is a smooth toric variety if
and only if Σ is smooth [7, Theorem 1.3.12]. It is also known that π1(XΣ) is isomorphic
to the quotient of Zn by the subgroup generated by

⋃
σ∈Σ σ ∩ Zn [7, Theorem 12.1.10].

In particular, if XΣ is compact, XΣ is simply connected.

Homogenous coordinates on toric varieties.
We shall use the symbols {zk}r

k=1 to denote variables of polynomials. For f1, . . . , fs ∈
C[z1, . . . , zr], let V (f1, . . . , fs) denote the affine variety V (f1, . . . , fs) = {x ∈ Cr | fk(x) =
0 for each 1 ≤ k ≤ s} given by the polynomial equations f1 = · · · = fs = 0.

Let Σ(1) = {ρ1, . . . , ρr} denote the set of all one-dimensional cones (rays) in a fan Σ,
and for each 1 ≤ k ≤ r let nk ∈ Zn denote the generator of ρk ∩Zn (called the primitive
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element of ρk) such that ρk ∩ Zn = Z≥0 · nk. Let ZΣ ⊂ Cr denote the affine variety
defined by

ZΣ = V (zσ̂|σ ∈ Σ), (1.1)

where zσ̂ denotes the monomial

zσ̂ =
∏

1≤k≤r,nk 6∈σ

zk ∈ Z[z1, . . . , zr] (σ ∈ Σ). (1.2)

Let GΣ ⊂ Tr denote the subgroup defined by

GΣ =
{

(µ1, . . . , µr) ∈ Tr

∣∣∣∣
r∏

k=1

µ
〈m,nk〉
k = 1 for all m ∈ Zn

}
, (1.3)

where we set 〈x,y〉 =
∑n

k=1 xkyk for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.
We say that a set of primitive elements {ni1 , . . . ,nis

} is primitive if they do not lie
in any cone in Σ but every proper subset has this property. It is known ([7, Proposition
5.1.6]) that

ZΣ =
⋃

{ni1 ,...,nis}: primitive

V (zi1 , . . . , zis
). (1.4)

Note that ZΣ is a closed variety of real dimension 2(r − rmin), where we set

rmin = min
{
s ∈ Z≥1 | {ni1 , . . . ,nis} is primitive

}
. (1.5)

It is known that if the set {n1, . . . ,nr} spans Rn and XΣ is smooth, there is an isomor-
phism ([7, Theorem 5.1.11], [20, Proposition 6.7])

XΣ
∼= (Cr \ ZΣ)/GΣ, (1.6)

where the group GΣ acts freely on the complement Cr \ZΣ by coordinate-wise multipli-
cation.

Example 1.1. For each k ∈ Z, let H(k) denote the Hirzebruch surface given by
H(k) = {([x0 : x1 : x2], [y1 : y2]) ∈ CP2 × CP1 | x1y

k
1 = x2y

k
2} ⊂ CP2 × CP1. Note that

there are isomorphisms H(0) ∼= CP1 ×CP1 and H(k) ∼= H(−k) for k ≥ 1. Let Σ denote
the fan in R2 given by

{
Cone(n1,n2),Cone(n2,n3),Cone(n3,n4),Cone(n4,n1),R≥0 · nj (1 ≤ j ≤ 4), 0

}
,

where n1 = (1, 0), n2 = (0, 1), n3 = (−1, k) and n4 = (0,−1). Then we can easily
see that H(k) = XΣ [7, Example 3.1.16]. Since {n1,n3} and {n2,n4} are primitive,
rmin = 2. Moreover, by using (1.3), (1.4) and (1.6) we also obtain the isomorphism
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H(k) ∼= {(y1, y2, y3, y4) ∈ C4 | (y1, y3) 6= (0, 0), (y2, y4) 6= (0, 0)}/GΣ, (1.7)

where GΣ = {(µ1, µ2, µ1, µ
k
1µ2) | µ1, µ2 ∈ C∗} ∼= T2.

Spaces of mappings.
For connected spaces X and Y , let Map(X, Y ) be the space of all continuous

maps f : X → Y and Map∗(X, Y ) the corresponding subspace of all based continu-
ous maps. If m ≥ 2 and g ∈ Map∗(RPm−1, X), let F (RPm, X; g) denote the subspace of
Map∗(RPm, X) given by

F (RPm, X; g) = {f ∈ Map∗(RPm, X) | f |RPm−1 = g},

where we identify RPm−1 ⊂ RPm by putting xm = 0. It is known that there is a
homotopy equivalence F (RPm, X; g) ' ΩmX if it is not an empty set (see Lemma 8.1).

Assumptions.
From now on, we adopt the following notational conventions and two assumptions:

(1.7.1) Let Σ be a complete smooth fan in Rn, Σ(1) = {ρ1, . . . , ρr} the set of all one-
dimensional cones in Σ, and suppose that the primitive elements {n1, . . . ,nr}
span Rn, where nk ∈ Zn denotes the primitive element of ρk for 1 ≤ k ≤ r.

(1.7.2) Let D = (d1, . . . , dr) be an r-tuple of integers such that
∑r

k=1 dknk = 0.

Then, by (1.7.1) we can make the identification XΣ = (Cr \ZΣ)/GΣ as in (1.6). For
each (a1, . . . , ar) ∈ Cr \ ZΣ, we denote by [a1, . . . , ar] the corresponding element of XΣ.

Spaces of polynomials.
Let Hd,m ⊂ C[z0, . . . , zm] denote the space of global sections H0(CPm,OCPm(d)) of

the line bundle OCPm(d) of degree d. Note that the space Hd,m ⊂ C[z0, . . . , zm] coincides
with the subspace consisting of all homogeneous polynomials of degree d if d ≥ 0 and
that Hd,m = 0 if d < 0.3 For each r-tuple D = (d1, . . . , dr) ∈ Zr, let AD(m) denote the
space

AD(m) = Hd1,m ×Hd2,m × · · · × Hdr,m (1.8)

and let AD,Σ(m) ⊂ AD(m) denote the subspace defined by

AD,Σ(m) =
{
(f1, . . . , fr) ∈ AD(m) | F (x) /∈ ZΣ for any x ∈ Rm+1 \ {0}}, (1.9)

where we write F (x) = (f1(x), . . . , fr(x)) for x ∈ Rm+1 \ {0}.
Next, we define a map j′D : AD,Σ(m) → Map(RPm, XΣ) by the formula

j′D(f1, . . . , fr)([x]) = [f1(x), . . . , fr(x)] for x ∈ Rm+1 \ {0}. (1.10)

Remark 1.2. Note that the map j′D is well defined because
∑r

k=1 dknk = 0. In

3This is because H0(CPm,OCPm (d)) = 0 if d < 0.
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fact, if λ ∈ R∗, then since
∏r

k=1(λ
dk)〈m,nk〉 = λ〈m,

Pr
k=1 dknk〉 = 1 for any m ∈ Rn,

(λd1 , . . . , λdr ) ∈ GΣ. So for (f1, . . . , fr) ∈ AD,Σ(m), (f1(λx), . . . , fr(λx)) = (λd1f1(x),
. . . , λdrfr(x)). Hence [f1(λx), . . . , fr(λx)] = [f1(x), . . . , fr(x)] in XΣ for any (λ, x) ∈
R∗ × (Rm+1 \ {0}) and the map j′D is well-defined.

Since the space AD,Σ(m) is connected, the image of j′D lies in a connected component
of Map(RPm, XΣ), which will be denoted by MapD(RPm, XΣ). This gives a natural map

j′D : AD,Σ(m) → MapD(RPm, XΣ). (1.11)

Algebraic maps from a real algebraic variety to a complex algebraic
variety.

Let X be an algebraic variety over R, and Y an algebraic variety over C. We set
XC = X ×R C, and denote by X(R) the set of R-valued points of X. Let Φ : XC− → Y

be a rational map4 defined over C and let U be the largest Zariski dense open subset of
XC such that (U,ϕ) represents Φ, where ϕ : U → Y is a regular map defined over C. If
X(R) ∩ (X \ U) = ∅, then we have a map ϕ|X(R) : X(R) → Y .

An algebraic map f : X → Y is defined to be a map X(R) → Y , which is also
denoted by f by abuse of notation, such that f = ϕ|X(R), where ϕ : U → Y is a regular
map defined over C on a Zariski open subset U of XC and U contains X(R).

Note that an algebraic map f : X → Y is not a morphism of schemes, although the
algebraic varieties X and Y are (or can be regarded as) schemes and we use the adjective
“algebraic”: in fact, there does not exist a morphism from a variety defined over R with
some R-valued points to a variety defined over C. Note also that Φ : XC− → Y is not
only a meromorphic map but also a rational map. In particular, the map ϕ is not only
a holomorphic map but also a regular map. In this sense, an algebraic map f : X → Y

defined above is indeed “algebraic” .
Now let us consider the case (X, Y ) = (RPm, XΣ). Let CD(m) denote the incidence

correspondence

CD(m) = {(F, x) ∈ AD,Σ(m)× Cm+1 | F (x) ∈ ZΣ} (1.12)

and pr1 : CD(m) → AD,Σ(m) the first projection. Because the map CD(m) → Z given
by (F, x) 7→ dimC pr−1

1 (F ) is upper semicontinuous, the subspace AD,Σ(m)◦ is a Zariski
open subspace of AD,Σ(m), where

AD,Σ(m)◦ = {F ∈ AD,Σ(m) | dimC pr−1
1 (F ) < m}. (1.13)

Note that we can see that every algebraic map f : RPm → XΣ can be represented as
f = j′D(f1, . . . , fr) for some D = (d1, . . . , dr) and (f1, . . . , fr) ∈ AD,Σ(m) such that∑r

k=1 dknk = 0. If (f1, . . . , fr) /∈ AD,Σ(m)◦, the representation of f the degree D are
not unique.5 However, the following holds.6

4The notation Φ : XC− → Y is used to stress the fact that Φ is not a map, namely is not necessarily
defined at every point of XC but is defined only on some Zariski dense open subset of XC.

5See Remark 8.3 (ii) (cf. Example 8.4) for the details.
6The proof of Proposition 1.3 is given in Section 8.
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Proposition 1.3. Let XΣ be a smooth compact complex toric variety and let
f : RPm → XΣ be an algebraic map. Then there exists a unique r-tuple D =
(d1, . . . , dr) ∈ Zr such that

∑r
k=1 dknk = 0 and that f = j′D(f1, . . . , fr) = [f1, . . . , fr] for

some (f1, . . . , fr) ∈ AD,Σ(m)◦, where fk ∈ H0(CPm,O(dk)) = Hdk,m for each 1 ≤ k ≤ r.
Moreover, the element (f1, . . . , fr) ∈ AD,Σ(m)◦ is uniquely determined by the map f up
to GΣ-action; i.e. if f = j′D(h1, . . . , hr) for another (h1, . . . , hr) ∈ AD,Σ(m)◦, then there
exists an element (µ1, . . . , µr) ∈ GΣ such that (h1, . . . , hr) = (µ1f1, . . . , µrfr).

Remark 1.4. The above result is the analogue of [6, Theorem 3.1] in the case of
algebraic maps, and by using it we can define a unique “minimal degree” of an algebraic
map (as in Definition 8.2). However, because the topology of the space of algebraic maps
of fixed minimal degree is difficult to analyze, we do not use the concept of minimal
degree beyond this point in this paper.

Because e = (1, 1, . . . , 1) ∈ Cr \ ZΣ, we can choose x0 = [1, 1, . . . , 1] ∈ XΣ as the
base-point of XΣ. Let AD(m,XΣ) ⊂ AD,Σ(m) be defined by

AD(m,XΣ) = {(f1, . . . , fr) ∈ AD,Σ(m) | (f1(e1), . . . , fr(e1)) = e}, (1.14)

where e1 = (1, 0, . . . , 0) ∈ Rm+1. We choose [e1] = [1 : 0 : · · · : 0] as the base-point of
RPm. Note that j′D(f1, . . . , fr) ∈ Map∗(RPm, XΣ) if (f1, . . . , fr) ∈ AD(m,XΣ). Hence,
setting Map∗D(RPm, XΣ) = Map∗(RPm, XΣ) ∩MapD(RPm, XΣ), we have a map

iD = j′D|AD(m,XΣ) : AD(m,XΣ) → Map∗D(RPm, XΣ). (1.15)

Suppose that m ≥ 2 and let us choose a fixed element (g1, . . . , gr) ∈ AD(m−1, XΣ).
For each 1 ≤ k ≤ r, let Bk = {gk +zmh : h ∈ Hdk−1,m}. Let AD(m,XΣ; g) ⊂ AD(m,XΣ)
be the subspace

AD(m,XΣ; g) = AD(m,XΣ) ∩ (B1 ×B2 × · · · ×Br). (1.16)

It is easy to see that iD(f1, . . . , fr)|RPm−1 = g if (f1, . . . , fr) ∈ AD(m,XΣ; g), where
g denotes the element of Map∗D(RPm−1, XΣ) given by g([x]) = [g1(x), . . . , gr(x)] for
x ∈ Rm \ {0}. Let i′D : AD(m,XΣ; g) → F (RPm, XΣ; g) ' ΩmXΣ be the map defined by

i′D = iD|AD(m,XΣ; g) : AD(m,XΣ; g) → F (RPm, XΣ; g) ' ΩmXΣ. (1.17)

The action of GΣ on the space AD,Σ(m) and its orbit space.
The group GΣ acts on the space AD,Σ(m) by coordinate-wise multiplication. Let

ÃD(m,XΣ) denote the orbit space

ÃD(m,XΣ) = AD,Σ(m)/GΣ. (1.18)

Clearly, j′D also induces the map jD : ÃD(m,XΣ) → MapD(RPm, XΣ) given by

jD([f1, . . . , fr])([x]) = [f1(x), . . . , fr(x)] (1.19)
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for x = (x0, . . . , xm) ∈ Rm+1 \ {0}.

Spaces of algebraic maps.
Let Alg(RPm, XΣ) denote the space of all algebraic maps from RPm to XΣ and let

Γ′D : AD,Σ(m) → Alg(RPm, XΣ) denote the natural projection given by

Γ′D(f1, . . . , fr) = j′D(f1, . . . , fr) = [f1, . . . , fr] for (f1, . . . , fr) ∈ AD,Σ(m).

Let AlgD(RPm, XΣ) denote its image

AlgD(RPm, XΣ) = Γ′D(AD,Σ(m)) ⊂ MapD(RPm, XΣ). (1.20)

We can identify Γ′D with the projection map

Γ′D : AD,Σ(m) → AlgD(RPm, XΣ). (1.21)

Since the action of GΣ is compatible with Γ′D, it induces the natural projection map

ΓD : ÃD(m,XΣ) → AlgD(RPm, XΣ). (1.22)

It is easy to see that

jD = jCD ◦ ΓD : ÃD(m,XΣ) → MapD(RPm, XΣ), (1.23)

where jCD : AlgD(RPm, XΣ) ⊂→ MapD(RPm, XΣ) denotes the inclusion map.
Let Alg∗D(RPm, XΣ) denote the subspace of AlgD(RPm, XΣ) given by

Alg∗D(RPm, XΣ) = AlgD(RPm, XΣ) ∩Map∗(RPm, XΣ).
If m ≥ 2 and g ∈ Alg∗D(RPm−1, XΣ), we denote by Alg∗D(RPm, XΣ; g) the subspace

of AlgD(RPm, XΣ) defined by Alg∗D(RPm, XΣ; g) = AlgD(RPm, XΣ) ∩ F (RPm, XΣ; g).
By the restriction, the map Γ′D induces maps

{
ΨD : AD(m,XΣ) → Alg∗D(RPm, XΣ),

Ψ′D : AD(m,XΣ; g) → Alg∗D(RPm, XΣ; g).
(1.24)

Let




iCD : Alg∗D(RPm, XΣ) ⊂→ Map∗D(RPm, XΣ),

îCD : Alg∗D(RPm, XΣ; g) ⊂→ F (RPm, XΣ; g) ' ΩmXΣ

(1.25)

denote the inclusions. It is easy to see that

{
iD = iCD ◦ΨD : AD(m,XΣ) → Map∗D(RPm, XΣ),

i′D = îCD ◦Ψ′D : AD(m,XΣ; g) → F (RPm, XΣ; g) ' ΩmXΣ.
(1.26)
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The contents of the above definitions are be summarized in the following diagram.

MapD(RPm, XΣ) Map∗D(RPm, XΣ)? _oo F (RPm, XΣ; g)? _oo

AlgD(RPm, XΣ)
?�

jCD

OO

Alg∗D(RPm, XΣ)
?�

iCD

OO

? _oo Alg∗D(RPm, XΣ; g)
?�

îCD

OO

? _oo

ÃD(m,XΣ)

ΓD

OOOO

jD

77

AD(m,XΣ)

ΨD

OOOO

iD

77

AD(m,XΣ; g)

Ψ′D

OOOO

i′D

77

1.2. The main results.
For dk ∈ Z≥1 (1 ≤ k ≤ r), let dmin and D(d1, . . . , dr;m) be the positive integers

defined by

dmin = min{d1, d2, . . . , dr}, D(d1, . . . , dr;m) = (2rmin −m− 1)dmin − 2. (1.27)

Let g ∈ Alg∗D(RPm−1, XΣ) be any fixed based algebraic map and we choose an element
(g1, . . . , gr) ∈ AD(m− 1, XΣ) such that g = iD(g1, . . . , gr) = [g1, . . . , gr].

The main result of this paper is the following theorem.

Theorem 1.5. Let Σ be a complete fan in Rn satisfying the conditions (1.7.1),
(1.7.2), and XΣ be a smooth compact toric variety associated to the fan Σ. If 2 ≤
m ≤ 2(rmin − 1) and D = (d1, . . . , dr) ∈ (Z≥1)r, the map i′D : AD(m,XΣ; g) →
F (RPm, XΣ; g) ' ΩmXΣ is a homology equivalence through dimension D(d1, . . . , dr;m).

Remark 1.6. A map f : X → Y is called a homology equivalence through dimen-
sion N if f∗ : Hk(X,Z) → Hk(Y,Z) is an isomorphism for any k ≤ N .

By the same method as in [2, Theorem 3.5] (cf. [8]), we also obtain the following:

Corollary 1.7. Under the same assumptions as in Theorem 1.5, if 2 ≤ m ≤
2(rmin − 1) and D = (d1, . . . , dr) ∈ (Z≥1)r, the maps

{
jD : ÃD(m,XΣ) → MapD(RPm, XΣ),

iD : AD(m,XΣ) → Map∗D(RPm, XΣ)

are homology equivalences through dimension D(d1, . . . , dr;m).

Remark 1.8. It is known that the assertion of Corollary 1.7 does not hold for
m = 1. For example, we can easily see this for XΣ = CPn (cf. [10, Theorem 3.5]).

Finally we consider an example illustrating these results. If XΣ = CPn, it is easy
to see that (r, rmin) = (n + 1, n + 1) ( this case was already treated in [15]). Now
consider the case XΣ = H(k) (the Hirzebruch surface). Since there is an isomorphism
H(k) ∼= H(−k), we may assume that k ≥ 0. Let {nj ∈ Z2 | 1 ≤ j ≤ 4} be the
set of the primitive elements of the fan Σ given in Example 1.1. It is easily see that
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(r, rmin) = (4, 2). Since
∑4

j=1 djnj = 0 if and only if (d3, d4) = (d1, d2 + kd1), we obtain
the following result.

Example 1.9 (The case (XΣ,m) = (H(k), 2)). If k ≥ 0, dj ≥ 1 (j = 1, 2) are
integers and D = (d1, d2, d1, d2 + kd1), the maps





jD : ÃD(2,H(k)) → MapD(RP2,H(k)),

iD : AD(2,H(k)) → Map∗D(RP2,H(k)),

i′D : AD(2,H(k); g) → Ω2
DH(k)

are homology equivalences through dimension min{d1, d2} − 2.

2. Simplicial resolutions.

In this section, we summarize the definitions of the non-degenerate simplicial reso-
lution and the associated truncated resolutions ([2], [14], [17], [18], [22]).

Definition 2.1. (i) For a finite set v ⊂ RN , let σ(v) denote the convex hull
spanned by v. Let h : X → Y be a surjective map such that h−1(y) is a finite set for any
y ∈ Y , and let i : X → RN be an embedding. Let X∆ and h∆ : X∆ → Y denote the
space and the map defined by

X∆ =
{
(y, u) ∈ Y × RN : u ∈ σ(i(h−1(y)))

} ⊂ Y × RN , h∆(y, u) = y.

The pair (X∆, h∆) is called a simplicial resolution of (h, i). In particular, (X∆, h∆) is
called a non-degenerate simplicial resolution if for each y ∈ Y any k points of i(h−1(y))
span (k − 1)-dimensional simplex of RN .

(ii) For each k ≥ 0, let X∆
k ⊂ X∆ be the subspace given by

X∆
k =

{
(y, u) ∈ X∆ : u ∈ σ(v),v = {v1, . . . , vl} ⊂ i(h−1(y)), l ≤ k

}
.

We make identification X = X∆
1 by identifying x ∈ X with the pair (h(x), i(x)) ∈ X∆

1 ,
and we note that there is an increasing filtration

∅ = X∆
0 ⊂ X = X∆

1 ⊂ X∆
2 ⊂ · · · ⊂ X∆

k ⊂ X∆
k+1 ⊂ · · · ⊂

∞⋃

k=0

X∆
k = X∆.

Remark 2.2. Even for a surjective map h : X → Y which is not finite to one,
it is still possible to construct an associated non-degenerate simplicial resolution. In
fact, a non-degenerate simplicial resolution may be constructed by choosing a sequence
of embeddings {̃ik : X → RNk}k≥1 satisfying the following two conditions for each k ≥ 1
(cf. [22]).

(2.1)k (i) For any y ∈ Y , any t points of the set ĩk(h−1(y)) span (t − 1)-dimensional
affine subspace of RNk if t ≤ 2k.
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(ii) Nk ≤ Nk+1 and if we identify RNk with a subspace of RNk+1 , then ĩk+1 = î◦ĩk,
where î : RNk

⊂→ RNk+1 denotes the inclusion.

Let X∆
k =

{
(y, u) ∈ Y × RNk : u ∈ σ(v), v = {v1, . . . , vl} ⊂ ĩk(h−1(y)), l ≤ k

}
. Then

by identifying X∆
k with a subspace of X∆

k+1, we define the non-degenerate simplicial
resolution X∆ of h as the union X∆ =

⋃
k≥1 X∆

k .

Definition 2.3. Let h : X → Y be a surjective semi-algebraic map between semi-
algebraic spaces, j : X → RN be a semi-algebraic embedding, and let (X∆, h∆ : X∆ →
Y ) denote the associated non-degenerate simplicial resolution of h.

Let k be a fixed positive integer and let hk : X∆ → Y be the map defined by the
restriction hk := h∆|X∆. The fibres of the map hk are (k− 1)-skeleta of the fibres of h∆

and, in general, fail to be simplices over the subspace

Yk = {y ∈ Y : h−1(y) consists of more than k points}.

Let Y (k) denote the closure of the subspace Yk. We modify the subspace X∆
k so as to

make the all the fibres of hk contractible by adding to each fibre of Y (k) a cone whose
base is this fibre. We denote by X∆(k) this resulting space and by h∆

k : X∆(k) → Y the
natural extension of hk. Following [18], we call the map h∆

k : X∆(k) → Y the truncated
(after the k-th term) simplicial resolution of Y . Note that there is a natural filtration

∅ = X∆
0 ⊂ X∆

1 ⊂ · · · ⊂ X∆
l ⊂ X∆

l+1 ⊂ · · · ⊂ X∆
k ⊂ X∆

k+1 = X∆
k+2 = · · · = X∆(k),

where X∆
l = X∆

l if l ≤ k and X∆
l = X∆(k) if l > k.

3. Non-degenerate simplicial resolutions.

Definition 3.1. Fix a based algebraic map g ∈ Alg∗D(RPm−1, XΣ) of degree D

together with a representation (g1, . . . , gr) ∈ AD(m − 1, XΣ) such that g = [g1, . . . , gr].
Note that AD(m,XΣ; g) is an open subspace of the affine space BD = B1 × · · · ×Br.

( i ) Let ND = dimCBD =
∑r

k=1

(
m+dk−1

m

)
, and let ΣD ⊂ BD denote the discriminant

of AD(m,XΣ; g) in BD, that is, the complement

ΣD = BD \AD(m,XΣ; g)

= {(f1, . . . , fr) ∈ BD | (f1(x), . . . , fr(x)) ∈ ZΣ for some x ∈ Rm+1 \ {0}}.

( ii ) Let ZD ⊂ ΣD × Rm denote the tautological normalization of ΣD consist-
ing of all pairs (F, x) = ((f1, . . . , fr), (x0, . . . , xm−1)) ∈ ΣD × Rm such that
(f1(x), . . . , fr(x)) ∈ ZΣ, where we set x = (x0, . . . , xm−1, 1). Projection on the
first factor gives a surjective map πD : ZD → ΣD.

Our goal in this section is to construct, by means of the non-degenerate simplicial
resolution of the discriminant, a spectral sequence converging to the homology of the
space AD(m,XΣ; g).



Spaces of algebraic maps from real projective spaces to toric varieties 757

Definition 3.2. Let (XD, π∆
D : XD → ΣD) be the non-degenerate simplicial

resolution of the surjective map πD : ZD → ΣD with the following natural increasing
filtration as in Definition 2.1, XD

0 = ∅ ⊂ XD
1 ⊂ XD

2 ⊂ · · · ⊂ XD =
⋃∞

k=0 XD
k .

By [14, Lemma 2.2], the map π∆
D : XD '→ ΣD is a homotopy equivalence, which

extends to a homotopy equivalence π∆
d+ : XD

+
'→ ΣD+, where X+ denotes the one-point

compactification of a locally compact space X. Since XD
k +/XD

k−1+
∼= (XD

k \ XD
k−1)+, we

have a spectral sequence

{
Ek,s

t;D, dt : Ek,s
t;D → Ek+t,s+1−t

t;D

} ⇒ Hk+s
c (ΣD,Z), (3.1)

where Ek,s
1;D = Hk+s

c (XD
k \ XD

k−1,Z) and Hk
c (X,Z) denotes the cohomology group with

compact supports given by Hk
c (X,Z) = Hk(X+,Z).

By Alexander duality there is a natural isomorphism

Hk(AD(m,XΣ; g),Z) ∼= H2ND−k−1
c (ΣD,Z) for 1 ≤ k ≤ 2ND − 2. (3.2)

By reindexing we obtain a spectral sequence

{
Ẽt;D

k,s , d̃t : Ẽt;D
k,s → Ẽt;D

k+t,s+t−1

} ⇒ Hs−k(AD(m,XΣ; g),Z) (3.3)

if s− k ≤ 2ND − 2, where Ẽ1;D
k,s = H̃2ND+k−s−1

c (XD
k \ XD

k−1,Z).
For a connected space X, let F (X, k) denote the configuration space of distinct k

points in X. The symmetric group Sk of k letters acts on F (X, k) freely by permuting
coordinates. Let Ck(X) be the configuration space of unordered k-distinct points in X

given by the orbit space Ck(X) = F (X, k)/Sk. Similarly, let Lk ⊂ (Rm×ZΣ)k denote the
subspace defined by Lk = {((x1, s1), . . . , (xk, sk)) | xj ∈ Rm, sj ∈ ZΣ, xl 6= xj if l 6= j}.
The group Sk also acts on Lk by permuting coordinates, and let Ck denote the orbit
space

Ck = Lk/Sk. (3.4)

Note that Ck is a cell complex of dimension (m + 2r − 2rmin)k (cf. (1.4)).

Lemma 3.3. If 1 ≤ k ≤ dmin, XD
k \ XD

k−1 is homeomorphic to the total space of a
real affine bundle ξD,k over Ck with rank lD,k = 2ND − 2kr + k − 1.

Proof. The argument is exactly analogous to the one in the proof of [2, Lemma
4.4]. Namely, an element of XD

k \ XD
k−1 is represented by (F, u) = ((f1, . . . , fr), u),

where F = (f1, . . . , fr) is a r-tuple of polynomials in ΣD and u is an element of the
interior of the span of the images of k distinct points x1, . . . , xk ∈ Rm such that F (xj) =
(f1(xj), . . . , fr(xj)) ∈ ZΣ for each 1 ≤ j ≤ k, under a suitable embedding, where we set
xj = (xj , 1) ∈ Rm+1. Let πk : XD

k \XD
k−1 → Ck be the projection map ((f1, . . . , fr), u) 7→

{(x1, F (x1)), . . . , (xk, F (xk))}. (Note that the points xi are uniquely determined by u

by the construction of the non-degenerate simplicial resolution.)
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Next, let c = {(xj , sj)}k
j=1 ∈ Ck (xj ∈ Rm, sj ∈ ZΣ) be any fixed element and

consider the fibre π−1
k (c). For this purpose, for each 1 ≤ j ≤ k let us consider the

condition

F (xj) = (f1(xj), . . . , fr(xj)) = sj ⇔ ft(xj) = st,j for 1 ≤ t ≤ r, (3.5)

where we set sj = (s1,j , . . . , sr,j). In general, the condition ft(xj) = st,j gives one linear
condition on the coefficients of ft, which determines an affine hyperplane in Bt. Since
{xj}k

j=1 is mutually distinct, if 1 ≤ k ≤ dmin, by [2, Lemma 4.3] the condition (3.5)
produces exactly k independent conditions on the coefficients of ft. Thus the space of
polynomials ft in Bt which satisfies (3.5) is the intersection of k affine hyperplanes in
general position and it has codimension k in Bt. Hence, if 1 ≤ k ≤ dmin the fibre π−1

k (c)
is homeomorphic to the product of open (k − 1)-simplex with the real affine space of
dimension 2

∑r
t=1

((
dt+m−1

m

)− k
)

= 2ND − 2kr. Thus πk is a real affine bundle over Ck

of rank lD,k = 2ND − 2kr + k − 1. ¤

Lemma 3.4. If 1 ≤ k ≤ dmin, there is a natural isomorphism

Ẽ1;D
k,s

∼= H̃2rk−s
c (Ck,±Z).

Proof. Suppose that 1 ≤ k ≤ dmin. By Lemma 3.3, there is a homeomorphism
(XD

k \ XD
k−1)+ ∼= T (ξD,k), where T (ξD,k) denotes the Thom space of ξD,k. Since

(2ND + k − s− 1)− lD,k = (2ND + k − s− 1)− (2ND − 2kr + k − 1) = 2rk − s,

by using the Thom isomorphism theorem we obtain a natural isomorphism

Ẽ1;D
k,s

∼= H̃2ND+k−s−1(T (ξD,k),Z) ∼= H̃2rk−s
c (Ck,±Z),

where the twisted coefficient system ±Z appears in the computation of the cohomology
of the Thom space induced by the sign representation of the symmetric group as in [22,
pp. 37–38, p. 114 and p. 254]). This completes the proof. ¤

4. Truncated spectral sequences.

In this section, we prove a key result (Theorem 4.8) about the homology stability of
“stabilization maps” sD : AD(m,XΣ; g) → AD+a(m,XΣ; g).

Definition 4.1. Let X∆ denote the truncated (after dmin-th term) simplicial
resolution of ΣD with its natural filtration as in Definition 2.3,

∅ = X∆
0 ⊂ X∆

1 ⊂ · · · ⊂ X∆
dmin

⊂ X∆
dmin+1 = X∆

dmin+2 = · · · = X∆,

where X∆
k = XD

k if k ≤ dmin and X∆
k = X∆ if k ≥ dmin + 1.

Remark 4.2. Note that our notation X∆ conflicts with that of [18] and Definition
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2.3, where X∆ denotes the non-degenerate simplicial resolution.

By [14, Lemma 2.5], there is a homotopy equivalence π∆ : X∆ '→ ΣD. Hence, by
using the filtration on X∆ given in Definition 4.1, we have a spectral sequence

{
Êk,s

t;D, dt : Êk,s
t;D → Êk+t,s+1−t

t;D

} ⇒ Hk+s
c (ΣD,Z), (4.1)

where Êk,s
1;D = H̃k+s

c (X∆
k \ X∆

k−1,Z). Then by reindexing and using Alexander duality
(3.2), we obtain the truncated spectral sequence (cf. [14, (4.1)], [18])

{
Et

k,s, d
t : Et

k,s → Et
k+t,s+t−1

} ⇒ Hs−k(AD(m,XΣ; g),Z) (4.2)

if s− k ≤ 2ND − 2, where E1
k,s = H̃2ND+k−s−1

c (X∆
k \X∆

k−1,Z).

Lemma 4.3. ( i ) If 1 ≤ k ≤ dmin, there is a natural isomorphism

E1
k,s
∼= H̃2rk−s

c (Ck,±Z).

( ii ) E1
k,s = 0 if k < 0, or if k ≥ dmin + 2, or if k = 0 and s 6= 2ND − 1.

(iii) If 1 ≤ k ≤ dmin, E1
k,s = 0 for any s ≤ (2rmin −m)k − 1.

(iv) If k = dmin + 1, E1
dmin+2,s = 0 for any s ≤ (2rmin −m)dmin − 1.

Proof. Since X∆
k \X∆

k−1 = XD
k \ XD

k−1 for 1 ≤ k ≤ dmin, the assertion (i) follows
from Lemma 3.4. Next, because X∆

0 = ∅ and X∆ = X∆
k for k ≥ dmin + 2, the assertion

(ii) easily follows. Now we assume that 1 ≤ k ≤ dmin and try to prove (iii). Since
dimCk = (m + 2r − 2rmin)k, 2rk − s > dimCk if and only if s ≤ (2rmin −m)k − 1 and
(iii) follows from (i). It remains to show (iv). An easy computation shows that

dim(XD
k \ XD

k−1) = (2ND − 2kr + k − 1) + dimCk

= (2ND − 2kr + k − 1) + (m + 2r − 2rmin)k

= 2ND − (2rmin −m− 1)k − 1.

Since dim(X∆
dmin+1 \X∆

dmin
) = dim(XD

dmin
\ XD

dmin−1) + 1 by [14, Lemma 2.6],

dim(X∆
dmin+1 \X∆

dmin
) = 2ND − (2rmin −m− 1)dmin.

Since E1
dmin+1,s = H̃2ND+dmin−s

c (X∆
dmin+1 \X∆

dmin
,Z) and

2ND + dmin − s > dim(X∆
dmin+2 \X∆

dmin+1) ⇔ s ≤ (2rmin −m)dmin − 1,

we see that E1
dmin+1,s = 0 for s ≤ (2rmin −m)dmin − 1. ¤

Let a = (a1, . . . , ar) ∈ (Z≥1)r be fixed r-tuple of positive integers such that
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r∑

k=1

aknk = 0. (4.3)

We set D + a = (d1 + a1, . . . , dr + ar). Similarly, let Y ∆ denote the truncated (after
dmin-th term) simplicial resolution of ΣD+a with its natural filtration

∅ = Y ∆
0 ⊂ Y ∆

1 ⊂ · · · ⊂ Y ∆
dmin

⊂ Y ∆
dmin+1 = Y ∆

dmin+2 = · · · = Y ∆,

where Y ∆
k = XD+a

k if k ≤ dmin and Y ∆
k = Y ∆ if k ≥ dmin + 1.

By [14, Lemma 2.5], there is a homotopy equivalence ′π∆ : Y ∆ '→ ΣD+a. Hence,
by using the same method as above, we obtain a spectral sequence

{′Et
k,s,

′dt : Et
k,s → ′Et

k+t,s+t−1

} ⇒ Hs−k(AD+a(m,XΣ; g),Z) (4.4)

if s− k ≤ 2ND+a − 2, where ′E1
k,s = H̃

2ND+a+k−s−1
c (Y ∆

k \ Y ∆
k−1,Z).

Applying again the same argument we obtain the following result.

Lemma 4.4. ( i ) If 1 ≤ k ≤ dmin, there is a natural isomorphism

′E1
k,s
∼= H̃2rk−s

c (Ck,±Z).

( ii ) ′E1
k,s = 0 if k < 0, or if k ≥ dmin + 2, or if k = 0 and s 6= 2ND+a − 1.

(iii) If 1 ≤ k ≤ dmin, ′E1
k,s = 0 for any s ≤ (2rmin −m)k − 1.

(iv) If k = dmin + 1, ′E1
dmin+2,s = 0 for any s ≤ (2rmin −m)dmin − 1.

Definition 4.5. Let g ∈ Alg∗D(RPm−1, XΣ) be a fixed algebraic map, and let
(g1, . . . , gr) ∈ AD(m − 1, XΣ) be its fixed representative. Let a = (a1, . . . , ar) ∈ (Z≥1)r

be a fixed r-tuple of positive integers satisfying the condition (4.3). If we set g̃ =∑m
k=0 z2

k, we see that the tuple ((g̃|zm=0)a1g1, . . . , (g̃|zm=0)argr) can also be chosen as a
representative of the map g ∈ Alg∗D+a(RPm−1, XΣ). So one can define a stabilization
map sD : AD(m,XΣ; g) → AD+a(m,XΣ; g) by

sD(f1, . . . , fr) = (g̃a1f1, . . . , g̃
arfr) for (f1, . . . , fr) ∈ AD(m,XΣ; g). (4.5)

Because there is a commutative diagram

AD(m,XΣ; g)
sD //

i′D
²²

AD+a(m,XΣ; g)

i′D+a

²²
F (RPm, XΣ; g) = // F (RPm, XΣ; g)

(4.6)

it induces a map

sD,∞ = lim
k→∞

sD+ka : AD,∞(m,XΣ; g) → F (RPm, XΣ; g) ' Ωm
0 XΣ, (4.7)
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where AD,∞(m,XΣ; g) denotes the colimit limk→∞AD+ka(m,XΣ; g) induced from the
stabilization maps sD+ka’s (k ≥ 0).

Theorem 4.6. If 2 ≤ m ≤ 2(rmin− 1), the map sD,∞ : AD,∞(m,XΣ; g) '→ Ωm
0 XΣ

is a homology equivalence.

We postpone the proof of Theorem 4.6 to Section 6. We first prove another key result
(Theorem 4.8). Recall the definition of the map sD, and consider the map s̃D : ΣD →
ΣD+a given by the multiplication, s̃D(f1, . . . , fr) = (g̃a1f1, . . . , g̃

arfr). One can show
that it extends to the embedding s̃d : R2(ND+a−ND) × ΣD → ΣD+a and that it induces
the filtration preserving open embedding ŝD : R2(ND+a−ND) × XD → XD+a by using
[19, Proposition 7] or [22, pp. 103–106]. Hence, it also induces the filtration preserving
open embedding ŝD : R2(ND+a−ND) × X∆ → Y ∆. Since one-point compactification is
contravariant for open embeddings, it induces a homomorphism of spectral sequences

{θt
k,s : Et

k,s → ′Et
k,s}. (4.8)

Lemma 4.7. If 1 ≤ k ≤ dmin, θ1
k,s : E1

k,s → ′E1
k,s is an isomorphism for any s.

Proof. Suppose that 1 ≤ r ≤ dmin. Then it follows from the proof of Lemma 3.3
that there is a homotopy commutative diagram of open affine bundles

XD
k \ XD

k−1

πk //

ŝD

²²

Ck

XD+a
k \ XD+a

k−1

πk // Ck

Since X∆
k \ X∆

k−1 = XD
k \ XD

k−1 and Y ∆
k \ Y ∆

k−1 = XD+a
k \ XD+a

k−1 , by Lemma 4.3 and
Lemma 4.4, we have a commutative diagram

E1
k,s

T
∼=

//

θ1
k,s

²²

H̃2rk−s
c (Ck,±Z)

′E1
k,s

T
∼=

// H̃2rk−s
c (Ck,±Z)

where T denotes the Thom isomorphism. Hence, θ1
k,s is an isomorphism. ¤

Theorem 4.8. sD : AD(m,XΣ; g) → AD+a(m,XΣ; g) is a homology equivalence
through dimension D(d1, . . . , dr;m).

Proof. We set D0 = D(d1, . . . , dr;m) = (2rmin −m − 1)dmin − 2, and consider
two spectral sequences
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{{
Et

k,s, d
t : Et

k,s → Et
k+t,s+t−1

} ⇒ Hs−k(AD(m,XΣ; g),Z),
{′Et

k,s,
′dt : ′Et

k,s → ′Et
k+t,s+t−1

} ⇒ Hs−k(AD+a(m,XΣ; g),Z),

with a homomorphism {θt
k,s : Et

k,s → ′Et
k,s} of spectral sequences.

Next, we shall try to estimate the maximal positive integer Dmax such that

Dmax = max{N ∈ Z : θ∞k,s is an isomorphism for all (k, s) if s− k ≤ N}.

By Lemma 4.3 and 4.4, we see that E1
k,s = ′E1

k,s = 0 if k < 0, or if k > dmin + 1, or if
k = dmin +1 with s ≤ (2rmin−m)dmin− 1. Since (2rmin−m)dmin− (dmin +1) = D0 +1,
we deduce that:

(∗)1 if k < 0 or k ≥ dmin + 1, θ∞k,s is an isomorphism for all (k, s) if s− k ≤ D0.

Next, we assume that 0 ≤ k ≤ dmin, and again investigate the condition for θ∞k,s to be an
isomorphism. Note that the group E1

k1,s1
is not known for (k1, s1) ∈ S1 = {(dmin+1, s) ∈

Z2 : s ≥ (2rmin − m)dmin}. By considering the differentials d1 : E1
k,s → E1

k+1,s and
′d1 : ′E1

k,s → ′E1
k+1,s and applying Lemma 4.7, we see that θ2

k,s is an isomorphism if
(k, s) /∈ S1 ∪ S2, where

S2 =: {(k1, s1) ∈ Z2 : (k1 + 1, s1) ∈ S1} = {(dmin, s1) ∈ Z2 : s1 ≥ (2rmin −m)dmin}.

A similar argument for the differentials d2 and ′d2 shows that θ3
k,s is an isomorphism if

(k, s) /∈ ⋃3
u=1 Su, where S3 = {(k1, s1) ∈ Z2 : (k1 + 2, s1 + 1) ∈ S1 ∪ S2}. Continuing in

the same fashion, considering the differentials dt : Et
k,s → Et

k+t,s+t−1 and ′dt : ′Et
k,s →

′Et
k+t,s+t−1, and applying Lemma 4.7, we easily see that θ∞k,s is an isomorphism if (k, s) /∈

S :=
⋃

t≥1 St =
⋃

t≥1 At, where At denotes the set given by

At :=





There are positive integers l1, l2, . . . , lt such that,

(k1, s1) ∈ Z2 1 ≤ l1 < l2 < · · · < lt, k1 +
∑t

j=1 lj = dmin + 1,

s1 +
∑t

j=1(lj − 1) ≥ (2rmin −m)dmin





.

If At 6= ∅, it is easy to see that

a(t) = min{s− k : (k, s) ∈ At} = (2rmin −m)dmin − (dmin + 1) + t = D0 + t + 1.

Hence, min{a(t) : t ≥ 1, At 6= ∅} = D0 + 2, and we have the following:

(∗)2 If 0 ≤ k ≤ dmin, θ∞k,s is an isomorphism for any (k, s) if s− k ≤ D0 + 1.

Then, by (∗)1 and (∗)2, we see that θ∞k,s : E∞
k,s

∼=→ ′E∞
k,s is an isomorphism for any (k, s) if

s−k ≤ D0. Hence, we can now see that sD is a homology equivalence through dimension
D0. ¤
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5. The complement Cr \ ZΣ.

In this section, we recall the basic results on polyhedral products and investigate
the connectivity of the complement Cr \ ZΣ.

Definition 5.1. Let [r] = {1, 2, . . . , r} be a set of indices and let K be a simplicial
complex on the vertex set [r].

(i) For each σ = {i1, . . . , ik} ⊂ [r], let Lσ ⊂ Cr denote the coordinate subspace in Cr

given by Lσ = {x = (x1, . . . , xr) ∈ Cr : xi1 = · · · = xik
= 0}, and U(K) the complement

of the arrangement of coordinate subspaces in Cr

U(K) = Cr

∖ ⋃

σ/∈K

Lσ. (5.1)

(ii) Let (X,A) be a collection of spaces of pairs {(Xk, Ak)}r
k=1. The polyhedral

product ZK(X,A) of the collection (X,A) with respect to K by

ZK(X,A) =
⋃

σ∈K

(X,A)σ, (5.2)

where we set (X,A)σ = {(x1, . . . , xr) ∈ X1 × · · · ×Xr | xj ∈ Aj if j /∈ σ} for σ ∈ K.
In particular, when (Xj , Aj) = (X, A) for each 1 ≤ j ≤ r, we set ZK(X,A) =

ZK(X, A). For (X, A) = (D2, S1), ZK = ZK(D2, S1) is called the moment-angle complex
of type K, while DJ(K) = ZK(CP∞, ∗) is called the Davis–Januszkiwicz space of type
K.

(iii) Let KΣ denote the simplicial complex on the vertex set [r] defined by

KΣ =
{{i1, . . . , ik} ⊂ [r] | ni1 , . . . ,nik

span a cone ∈ Σ
}
, (5.3)

and let qΣ denote the positive integer given by

qΣ = max{s ∈ Z≥1 | Any s vectors ni1 ,ni2 , . . . ,nis
span a cone in Σ}. (5.4)

Lemma 5.2. U(KΣ) = Cr \ ZΣ, and rmin = qΣ + 1.

Proof. From (1.1), (1.2), (5.1) and (5.3), it is clear that U(KΣ) = Cr \ ZΣ.
Recalling the definitions (1.5) and (5.4), we easy see that rmin = qΣ + 1. ¤

Lemma 5.3 ([4]). If K is a simplicial complex on the vertex set [r], there is a
homotopy equivalence ZK ' U(K) and the space ZK is a homotopy fibre of the inclusion
map DJ(K) ⊂→ (CP∞)r.

Proof. This follows from [4, Corollary 6.30, Theorem 8.9]. ¤

Lemma 5.4. The space U(KΣ) = Cr \ ZΣ is 2(rmin − 1)-connected.

Proof. Because qΣ = rmin − 1, it suffices to show that U(KΣ) is 2qΣ-connected.
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Note that the 2s-skeleton of (CP∞)r is
⋃

i1+i2+···+ir=s CPi1×· · ·×CPir . Since 1 ≤ qΣ < r,
by (5.3) and (5.4) we see that

⋃
(i1,...,ir)∈I CPi1 × · · · × CPir ⊂ DJ(KΣ), where

I = {(i1, . . . , ir) | ij ∈ {0,∞}, card({ij | 1 ≤ j ≤ r, ij = ∞}) = qΣ}. Hence, DJ(KΣ)
contains the 2qΣ-skeleton of (CP∞)r. Since (CP∞)r has no odd dimensional cells,
DJ(KΣ) contains the (2qΣ + 1)-skeleton of (CP∞)r. Thus the pair ((CP∞)r, DJ(KΣ)) is
(2qΣ + 1)-connected. Hence, by Lemma 5.3, ZKΣ is 2qΣ-connected and so is U(KΣ). ¤

Remark 5.5. The assertion of Lemma 5.4 holds even if Σ in not complete.

6. The proof of the main result.

In this section, we give the proofs of Theorem 4.6 and the main result (Theorem
1.5) by using Lemma 5.4.

Definition 6.1. Define a map ιD : AD(m,XΣ; g) → Ωm(Cr \ ZΣ) by

ιD(f1, . . . , fr)(x) = (f1(x), . . . , fr(x)) for x ∈ Sm. (6.1)

Consider the natural toric morphism pΣ : Cr \ ZΣ → XΣ. By [4, (8.6)] and [20,
Proposition 6.7], we see that there is an isomorphism GΣ

∼= Tr−n and that the group GΣ

acts on U(KΣ) freely. Hence, we have a fibration sequence

Tr−n −→ U(KΣ) = Cr \ ZΣ
pΣ−→ XΣ. (6.2)

Let γm : Sm → RPm be the double covering and γ#
m : Map∗(RPm, XΣ) → ΩmXΣ the

map γ#
m(f) = f ◦ γm. Assume that m ≥ 2, and consider the commutative diagram:

AD(m,XΣ; g)
i′D //

ιD

²²

F (RPm, XΣ; g) i′

⊂
// Map∗(RPm, XΣ)

ΩmU(KΣ)
ΩmpΣ

'
// ΩmXΣ Map∗(RPm, XΣ)

γ#
moo

(6.3)

Let D∗(d1, . . . , dr;m) denote the positive integer defined by

D∗(d1, . . . , dr;m) = (2rmin −m− 1)
(⌊

dmin + 1
2

⌋
+ 1

)
− 1 (6.4)

where bxc denotes the integer part of a real number x.

Theorem 6.2. If 1 ≤ m ≤ 2(rmin − 1), the map ιD : AD(m,XΣ; g) → ΩmU(KΣ)
is a homology equivalence through dimension D∗(d1, . . . , dr;m).

Remark 6.3. The assertion of Theorem 6.2 holds even if the condition (1.7.2) is
not satisfied.

We postpone the proof of Theorem 6.2 to Section 7, and complete the proofs of
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Theorem 4.6 and Theorem 1.5 by assuming it.

Proof of Theorem 4.6. We set D∗ = D∗(d1, . . . , dr;m) and let F denote the
field Z/p (p: prime) or Q. Since m ≥ 2, by (6.2) the map ΩmpΣ is a homotopy equiv-
alence. Then, from the diagram (6.3) and Theorem 6.2, we see that the map γ#

m ◦ i′

induces an epimorphism on homology groups Hk( ,F) for any k ≤ D∗. However, since
there is a homotopy equivalence F (RPm, XΣ; g) ' ΩmXΣ, dimFHk(F (RPm, XΣ; g),F) =
dimFHk(ΩmXΣ,F) < ∞ for any k. Therefore, the map γ#

m ◦ i′ induces an isomor-
phism on Hk( ,F) for any k ≤ D∗. Thus, from the diagram (6.3), we see that
so does the map i′D. It then follows from the universal coefficient theorem that the
map i′D is a homology equivalence through dimension D∗ = D∗(d1, . . . , dr;m). Because
limk→∞D∗(d1 + ka1, . . . , dr + kar;m) = ∞, the diagram (4.6), implies that the map
sD,∞ is a homology equivalence. ¤

Proof of Theorem 1.5. The assertion easily follows from (4.6), Theorem 4.6
and Theorem 4.8. ¤

7. The Vassiliev spectral sequence.

Spectral sequences induced from the Veronese simplicial resolution.
Let ZD be the tautological normalization of ΣD, and let πD : ZD → ΣD denote

the first projection as in (ii) of Definition 3.1. Let (ZD, πD : ZD → ΣD) denote the
(degenerate) simplicial resolution of the surjective map πD : ZD → ΣD defined from
the (generalized) Veronese embedding as in [2, p. 782]. We have the following natural
filtration

φ = ZD
0 ⊂ ZD

1 = ΣD ⊂ ZD
2 ⊂ ZD

3 ⊂ · · · ⊂
⋃

k≥1

ZD
k = ZD.

By the same method as in (3.2) and (3.3), we obtain a spectral sequence

{
Êt

k,s, d̂t : Êt
k,s → Êt

k+t,s+t−1

} ⇒ Hs−k(AD(m,XΣ; g),Z) (7.1)

such that Ê1
k,s = H̃2ND+k−s−1

c (ZD
k \ ZD

k−1,Z).

Lemma 7.1. ( i ) If 1 ≤ k ≤ b(dmin + 1)/2c, there is a natural isomorphism

Ê1
k,s
∼= H̃2rk−s

c (Ck,±Z).

( ii ) If r < 0 or s < 0 or s ≤ (2rmin −m)k − 1, then Ê1
k,s = 0.

Proof. (i) By using the same argument as in the proof of Lemma 3.4 and [2,
Lemma 4.4 and Lemma 4.6], we can show that ZD

k \ZD
k−1 is an open disk bundle over Ck

with rank lD,k if 1 ≤ k ≤ b(dmin +1)/2c. (Note that the projection πk : ZD
k \ZD

k−1 → Ck

is well-defined only if k ≤ b(dmin+1)/2c, because the condition (i) of (2.1)k is not satisfied
for k > b(dmin + 1)/2c.) We can now prove the assertion (i) in exactly the same way as
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Lemma 3.3.
(ii) It suffices to show that Ê1

k,s = 0 if s ≤ (2rmin − m)k − 1 when k, s ≥ 0. In
general,

dim(ZD
k \ ZD

k−1) ≤ (2ND − 2rk) + dimCk + (k − 1)

= (2ND − 2rk) + (dimZΣ + m)k + (k − 1)

= 2ND − (2rmin −m)k + k − 1.

Since 2ND + k − 1 − s > 2ND − (2rmin − m)k + k − 1 ⇔ s ≤ (2rmin − m)k − 1 and
Ê1

k,s = H̃2ND+k−s−1
c (ZD

k \ ZD
k−1,Z), Ê1

k,s = 0 if s ≤ (2rmin −m)k− 1 and (ii) follows. ¤

The Vassiliev spectral sequence.
We now recall the spectral sequence constructed by V. Vassiliev [22, pp. 109–115].
From now on, we will assume that m ≤ N and that X is a finite dimensional N -

connected simplicial complex C∞-imbedded in RL. We regard Sm and X as subspaces
Sn ⊂ Rm+1, X ⊂ RL, respectively. We also choose and fix a map ϕ : Sm → X.
Observe that Map(Sm,RL) is a linear space and consider the complements Am(X) =
Map(Sm,RL) \ Map(Sm, X) and Ãm(X) = Map∗(Sm,RL) \ Map∗(Sm, X). Note that
Am(X) consists of all continuous maps f : Sm → RL intersecting RL \X. We will denote
by Θd

ϕ(X) ⊂ Map(Sm,RL) the subspace consisting of all maps f of the forms f = ϕ + p,
where p is the restriction to X of a polynomial map Sm → RL of total degree ≤ d. Let
Θd

X ⊂ Θd
ϕ(X) denote the subspace consisting of all f ∈ Θd

ϕ(X) intersecting RL \X. In
[22, pp. 111–112] Vassiliev uses the space Θd(X) as a finite dimensional approximation
of Am(X).7

Let Θ̃d
X denote the subspace of Θd

X consisting of all maps f ∈ Θd
X which preserve

the base points. By a variation of the preceding argument, Vassiliev also shows that Θ̃d
X

can be used as a finite dimensional approximation of Ãm(X) [22, p. 112].
Let Xd ⊂ Θ̃d

X × RL denote the subspace consisting of all pairs (f, α) ∈ Θ̃d
X × RL

such that f(α) ∈ RL \ X, and let pd : Xd → Θ̃d
X be the projection onto the first

factor. Then, by making use of (non-degenerate) simplicial resolutions of the surjective
maps {pd : d ≥ 1}, one can construct a simplicial resolution {Ãm(X)} of Ãm, whose
cohomology is naturally isomorphic to the homology of Map∗(Sm, X) = ΩmX. From the
natural filtration F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ ⋃∞

d=1 Fd = {Ãm(X)}, we obtain the associated
spectral sequence (for m ≤ N)

{
Et

k,s, d
t : Et

k,s → Et
k+t,s+t−1

} ⇒ Hs−k(ΩmX,Z). (7.2)

Since U(KΣ) is 2(rmin−1)-connected (by Lemma 5.4), we may assume that m ≤ N =
2(rmin−1) and consider the spectral sequence (7.2) for X = U(KΣ) = Cr \ZΣ. Note that
the construction of this simplicial resolution is almost identical to that of the resolution
ZD. The only difference between the two concerns the following two points. First,

7Note that the proof of this fact given by Vassiliev makes use of the Stone–Weierstrass theorem, so,
although we are now not using the stable result of [2, Theorem 2.1], something like it is also implicitly

involved here.



Spaces of algebraic maps from real projective spaces to toric varieties 767

we use all polynomials passing through ZΣ of total degree ≤ d instead of homogenous
polynomials passing through ZΣ satisfying the condition (1.7.2), for d some fixed large
integer. Secondly we use a family of embeddings satisfying the condition (2.1)k instead
of a fixed embedding. However, since Ê1

k,s is determined independently of the choice of
embeddings if d is sufficiently large, one can prove the following result by using the same
method as in the case of the Veronese resolution.

Lemma 7.2 ([22]). If 1 ≤ m ≤ 2(rmin − 1), there is a spectral sequence

{
Et

k,s, d
t : Et

k,s → Et
k+t,s+t−1

} ⇒ Hs−k(ΩmU(KΣ),Z) (7.3)

satisfying the following two conditions:

( i ) If k ≥ 1, E1
k,s = H̃2rk−s

c (Ck,±Z).
( ii ) If k < 0 or s < 0 or s ≤ (2rmin −m)k − 1, then E1

k,s = 0.

Now we can give the proof of Theorem 6.2.

Proof of Theorem 6.2. Consider the spectral sequences (7.1) and (7.3). Note
that the image of the map ιD lies in a space of mappings that arise from restrictions
of polynomial mappings Rm+1 → Cr = R2r. Since XD is a non-degenerate simplicial
resolution, the map ιD naturally extends to a filtration preserving map π̃ : XD →
{Ãm(U(KΣ))} between resolutions. By [14, Lemma 2.2] there is a filtration preserving

homotopy equivalence q∆ : XD '→ ZD. The filtration preserving maps ZD q∆

←−−
'
XD π̃−→

{Ãm(U(KΣ))} induce a homomorphism of spectral sequences {θt
k,s : Êt

k,s → Et
k,s}, where

{Êt
k,s, d̂

t} ⇒ Hs−k(AD(m,XΣ; g),Z) and {Et
k,s, d

t} ⇒ Hs−k(ΩmU(KΣ),Z).

Then by the naturality of the Thom isomorphism and the argument used in the proof of
Lemma 4.7, we can show that θ1

k,s : Ê1
k,s

∼=→ E1
k,s is an isomorphism for any s as long as

k ≤ b(dmin + 1)/2c. By Lemmas 7.1 and 7.2, we see that θ∞k,s : Ê∞
k,s

∼=→ E∞
k,s is always an

isomorphism for any s if k ≤ b(dmin + 1)/2c. Now, consider the positive integer Dmin:

Dmin = min
{

N ∈ Z≥1 | N ≥ s− k, s ≥ (2rmin −m)k, 1 ≤ k <

⌊
dmin + 1

2

⌋
+ 1

}
.

Clearly Dmin is the largest integer N which satisfies the inequality (2rmin−m)k > k +N

for k = b(dmin + 1)/2c + 1. Hence, Dmin = (2rmin −m − 1)(b(dmin + 1)/2c + 1) − 1 =
D∗(d1, . . . , dr;m). We note that, for dimensional reasons, θ∞k,s : Ê∞

k,s

∼=→ E∞
k,s is always an

isomorphism when k ≤ b(dmin + 1)/2c and s− k ≤ D∗(d1, . . . , dr;m). Note also that by
Lemma 7.1 and Lemma 7.2, Ê1

k,s = E1
k,s = 0 when s − k ≤ D∗(d1, . . . , dr;m) and k >

b(dmin +1)/2c. Hence, we see that θ∞k,s : Ê∞
k,s

∼=→ E∞
k,s is always an isomorphism if s ≤ k+

D∗(d1, . . . , dr;m). Thus, it follows from the Comparison Theorem of spectral sequences
that the map ιD is a homology equivalence through dimension D∗(d1, . . . , dr;m). ¤
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8. Some facts and conjectures.

A basic lemma.
The aim of the first part of this section is to provide a simple basic lemma used in

this paper for which we do not know any convenient reference.

Lemma 8.1. Let K be a CW complex and X = K ∪f em with dimK < m. For g ∈
Map∗(K, Y ), let F (X, Y ; g) denote the space given by F (X, Y ; g) = {h ∈ Map∗(X, Y ) :
h|K = g}. If F (X, Y ; g) 6= ∅, there is a homotopy equivalence F (X, Y ; g) ' ΩmY .

Proof. By using the characteristic map of the top cell in X, F (X, Y ; g) can be
identified with the space of all based maps h : Dm → Y which restrict to the same
fixed map on the boundary Sm−1, and it can be regarded as the fiber of the map
r : Map∗(Dm, Y ) → Map∗(Sm−1, Y ) = Ωm−1Y given by r(h) = h|Sm−1. Since r is
a fibration with fiber ΩmY and Map∗(Dm, Y ) is contractible, there is a homotopy equiv-
alence F (X, Y ; g) ' ΩmY. ¤

Minimal degree of algebraic maps.
In the second part of this section we define the minimal degree of an algebraic

map RPm to XΣ. It plays no role in the current paper but we think it is of sufficient
independent interest and hope to make use of it in the future. First, we give the proof
of Proposition 1.3 stated in Section 1.

Proof of Proposition 1.3. Since f : RPm → XΣ is an algebraic map, there
is a Zariski open subset U of CPm such that U contains the set of R-valued points of
RPm, which we also denote by RPm by abuse of notation, and there is a regular map
ϕ : U → XΣ such that f = ϕ|RP m . Without loss of generality we may assume that U is
the largest open subset of CPm where f is defined. Then CPm\U has codimension at least
two in CPm, since XΣ is proper and CPm is normal. The following proof is almost the
same as that of [6, Theorem 3.1], but in our case, the map ϕ is defined only on the Zariski
open subset U of CPm, which requires some modifications. Let π : Cm+1 \ {0} → CPm

be the Hopf fibering, and set Ũ = π−1(U). We also denote by π its restriction Ũ → U ,
and let pΣ : Cr \ZΣ → XΣ be the natural toric morphism as in (6.2). We shall show the
existence of D and (f1, . . . , fr).

Let (OXΣ(Dρ), ιρ, cχm)ρ∈Σ(1),m∈Zn denote the universal Σ-collection defined in [6,
p. 252] and let (Lρ, uρ, cm)ρ∈Σ(1),m∈Zn be its pull back by ϕ. Since ϕ is a regu-
lar map, Lρ is an algebraic line bundle on U . Moreover, since CPm \ U has codi-
mension at least two in CPm, Lρ can be extended to a line bundle on CPm which
is isomorphic to OCPm(dρ) for some integer dρ. This isomorphism induces an iso-
morphism H0(U,Lρ) ∼= H0(CPm,OCPm(dρ)). Let f ′ρ ∈ H0(CPm,OCPm(dρ)) denote
the element corresponding to uρ ∈ H0(U,Lρ) by the above isomorphism. The iso-
morphisms cm on U can be extended to those on CPm which induce isomorphisms
c′m :

⊗
ρOCPm(dρ)〈m,nρ〉 ∼= OCPm on CPm. In terms of (1.7.1), this implies that∑r

k=1 dknk = 0. A collection (OCPm(dρ), f ′ρ, c
′
m) is not necessarily a Σ-collection

on CPm because sections f ′ρ do not satisfy the non-degeneracy condition outside U .
However its restriction (OCPm(dρ), f ′ρ, c

′
m)|U to U is a Σ-collection on U . For each
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m ∈ Zn, we have a canonical isomorphism ccan
m :

⊗
ρOCPm(dρ)〈m,nρ〉 ∼=→ OCPm as

in the proof of [6, Theorem 3.1]. Then, as in the final paragraph of the proof of [6,
Theorem 3.1], by taking λp ∈ C suitably and setting fρ = λρf

′
ρ, we have an equiva-

lence (OCPm(dρ), f ′ρ, c
′
m)|U ∼ (OCPm(dρ), fρ, c

can
m )|U of Σ-collection on U . Now define a

morphism F : Ũ → Cr \ ZΣ by F (x) = (fρ(x))ρ∈Σ(1) for x ∈ Ũ . Note that the non-
degeneracy of fρ on U ensures that (fρ(x))ρ∈Σ(1) /∈ ZΣ for all x ∈ Ũ . Since the pull back
of (OCPm(dρ), fρ, c

can
m )|U to Ũ is (OŨ , fρ, 1), we see that ϕ ◦ π = pΣ ◦ F . By reindexing

(fρ)ρ∈Σ(1) as (f1, . . . , fr) in accordance with (1.7.1) and setting D = (d1, . . . , dr), we
obtain an element (f1, . . . , fr) ∈ AD,Σ(m). Since CPm \ U has codimension at least two
in CPm, we see that dimC pr−1

1 (F ) < m, where F = (f1, . . . , fr) and pr1 is the projection
as in Section 1. Therefore, we have (f1, . . . , fr) ∈ AD,Σ(m)◦.

Suppose that (h1, . . . , hr) ∈ AD′,Σ(m)◦ also represents the same algebraic map
f for some r-tuple D′ = (d′1, . . . , d

′
r) ∈ Zr such that

∑r
k=1 d′knk = 0. Set H =

(h1, . . . , hr) and V = CPm \ π(pr−1
1 (H)). Then V ⊂ U and (OCPm(dρ), fρ, c

can
m )|V ∼

(OCPm(d′ρ), hρ, c
can
m )|V . Since CPm \ V has codimension at least two in CPm, the iso-

morphism OCPm(dρ)|V ∼= OCPm(d′ρ)|V is given by a nonzero constant µρ ∈ C. Therefore
dρ = d′ρ for all ρ ∈ Σ(1) and we have D = D′. Moreover, as in the proof of [6, Theorem
3.1], this implies that (µ1, . . . , µr) ∈ GΣ and (h1, . . . , hr) = (µ1f1, . . . , µrfr). ¤

By Proposition 1.3, we can define the minimal degree of an algebraic map as follows.

Definition 8.2. Let D = (d1, . . . , dr) ∈ Zr and let f : RPm → XΣ be an algebraic
map. Then the map f is called an algebraic map of minimal degree D if it can be
represented as f = j′D(f1, . . . , fr) = [f1, . . . , fr] for some (f1, . . . , fr) ∈ AD,Σ(m)◦.

Note that the minimal degree depends only on the map itself and not on its repre-
sentative.

Remark 8.3. (i) We denote by AlgD,min(RPm, XΣ) ⊂ AlgD(RPm, XΣ) the sub-
space consisting of all algebraic maps f : RPm → XΣ of minimal degree D. Since
AD,Σ(m)◦ is a GΣ-invariant subspace of AD,Σ(m), let ÃD(m,XΣ)◦ denote the orbit space
ÃD(m,XΣ)◦ = AD,Σ(m)◦/GΣ. Then we can easily see that there is a homeomorphism

ÃD(m,XΣ)◦
∼=→ AlgD,min(RPm, XΣ). (8.1)

(ii) Let a = (a1, . . . , ar) ∈ (Z≥1)r and suppose that
∑r

k=1 aknk = 0. Then if we
set g̃ =

∑r
k=1 z2

k and f = [f1, . . . , fr] ∈ AlgD(RPm, XΣ), then we can easily see that
f = [g̃a1f1, . . . , g̃

arfr] ∈ AlgD+a(RPm, XΣ). Hence, the space AlgD(RPm, XΣ) can be
identified with the subspace of AlgD+a(RPm, XΣ) by

AlgD(RPm, XΣ) ⊂→ AlgD+a(RPm, XΣ); [f1, . . . , fr] 7→ [f1g̃
a1 , . . . , fr g̃

ar ].

Note that MapD(RPm, XΣ) = MapD′(RPm, XΣ) may happen even if D 6= D′. However,
AlgD,min(RPm, XΣ) ∩AlgD′,min(RPm, XΣ) = ∅ if D 6= D′.

(iii) It may happen that dk < 0 for some k; the section fk ∈ H0(CPm,O(dk)) will
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be zero if dk < 0 (see Example 8.4).

Example 8.4. Let H(k) and {nk}4k=1 be the Hirzebruch surface and its primitive
generators as in Example 1.1. Suppose that (d1, d2, d3, d4) = (1,−k, 1, 0). Then we have∑4

j=1 djnj = n1 − kn2 + n3 = 0. Let k ≥ 0 and we may regard H(k) as the orbit space

H(k) = {(y1, y2, y3, y4) ∈ C4 | (y1, y3) 6= (0, 0), (y2, y4) 6= (0, 0)}/GΣ,

where GΣ = {(µ1, µ2, µ1, µ
k
1µ2) | µ1, µ2 ∈ C∗} as in (1.7). Now consider the algebraic

map f : RP1 → H(k) defined by f([x0 : x1]) = [(x2
0 + x2

1)x0, 0, (x2
0 + x2

1)x1, 1]. Then
clearly f ∈ Alg(3,−3k,3,0)(RP1,H(k)). However, by the GΣ-action, we have f([x0 : x1]) =
[x0, 0, x1, 1]. Hence f ∈ Alg(1,−k,1,0),min(RP1,H(k)). The map f is also the limit of the
family of algebraic maps of minimal degree (3,−3k, 3, 0). Indeed it is the limit of a family
ft([x0 : x1]) = [(x2

0 + x2
1)x0, 0, (x2

0 + tx2
1)x1, 1] for t > 1.

Conjectures concerning spaces of algebraic maps.
The purpose of the third part of this section is to formally state the analogues of

Theorem 1.5 and Corollary 1.7 concerning approximation of spaces of continuous maps
by algebraic maps. As explained in the introduction, the analogous results are true in
the complex case.

Conjecture 8.5 (cf. [2, Conjecture 3.8]). Under the same assumptions as The-
orem 1.5, the natural projection maps





Ψ′D : AD(m,XΣ; g) → Alg∗D(RPm, XΣ; g),

ΨD : AD(m,XΣ) → Alg∗D(RPm, XΣ),

ΓD : ÃD(m,XΣ) → AlgD(RPm, XΣ)

are homotopy equivalences.

We strongly believe that Conjecture 8.5 is true. As we have mentioned before, the
natural projection ΨD has contractible fibers. If ΨD is a quasi-fibration or satisfies the
condition of the Vietoris-Begle theorem or has some other property of this kind, then it
must be a homotopy (or at least homology) equivalence. We proved this for the simplest
case in [15], but the general case seems difficult as the topology of the quotient space
Alg∗D(RPm, XΣ) is complicated.
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