An affirmative answer to a conjecture on the Metoki class

By Kentaro Mikami
To the memory of Professor Shoshichi Kobayashi at UC Berkeley

(Received July 15, 2013)
(Revised Mar. 1, 2014)

Abstract

In [6], Kotschick and Morita showed that the Gel'fand-Kalinin-Fuks class in $H_{G F}^{7}\left(\mathfrak{h a m} m_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{8}$ is decomposed as a product $\eta \wedge \omega$ of some leaf cohomology class η and a transverse symplectic class ω. We show that the same formula holds for the Metoki class, which is a non-trivial element in $\mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m} \mathfrak{m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}$. The result was conjectured in [6], where they studied characteristic classes of transversely symplectic foliations due to Kontsevich. Our proof depends on Gröbner Basis theory using computer calculations.

1. Introduction.

Let $\mathfrak{X}(M)$ be the Lie algebra of smooth vector fields of a smooth manifold M. $\mathrm{H}_{c}^{\bullet}(\mathfrak{X}(M))$ is the Lie algebra cohomology, where the subscript c means that each cochain is required to be continuous. The cohomology group $\mathrm{H}_{c}^{\bullet}(\mathfrak{X}(M))$ is often written as $\mathrm{H}_{\mathrm{GF}}^{\bullet}(M)$ and is called the Gel'fand-Fuks cohomology group of M. It is known that if M is of finite-type (i.e., M has a open cover such that each non-empty finite intersection of the member is diffeomorphic to n-dimensional open disk, where $n=\operatorname{dim} M$), then $\mathrm{H}_{\mathrm{GF}}^{\bullet}(M)$ is finite dimensional.

Let \mathfrak{a}_{n} denote the Lie algebra of formal vector fields on \mathbb{R}^{n}, expressed as $\mathbb{R}\left[\left[x_{1}, \ldots, x_{n}\right]\right]\left\langle\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right\rangle$ where x_{1}, \ldots, x_{n} are the natural coordinates of \mathbb{R}^{n}. Thus an element of \mathfrak{a}_{n} is a vector field with coefficients which are formal power series in the coordinate functions. Then $\mathrm{H}_{c}^{\bullet}\left(\mathfrak{a}_{n}\right) \cong \mathrm{H}_{\mathrm{GF}}^{\bullet}\left(\mathbb{R}^{n}\right)$ and so $\operatorname{dim} \mathrm{H}_{c}^{\bullet}\left(\mathfrak{a}_{n}\right)$ is finite.

Let \mathfrak{v}_{n} be the subalgebra of \mathfrak{a}_{n} consisting of the volume preserving formal vector fields on \mathbb{R}^{n}, and $\mathfrak{h a m}{ }_{2 n}$ the subalgebra of $\mathfrak{a}_{2 n}$ consisting of formal Hamiltonian vector fields on $\mathbb{R}^{2 n}$. Then, the next question is still open: Is $\operatorname{dim} H_{c}^{\bullet}\left(\mathfrak{v}_{n}\right)$ or $\operatorname{dim} H_{c}^{\bullet}\left(\mathfrak{h a m}_{2 n}\right)$ infinite?

There is a notion of weight for cochains of $\mathfrak{h a m}_{2 n}$. Since the weight is preserved by the coboundary operator, there is a cohomology subgroup corresponding to each weight (cf. Section 2.1(I-3)). In [4], for the weight $w \leq 0$, the structure of the relative cohomology $\mathrm{H}_{c}^{\bullet}\left(\mathfrak{h a m _ { 2 n }}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}$ is completely determined, and when $n=1$ and $w>0$, the following holds true:

[^0]\[

$$
\begin{aligned}
\mathrm{H}_{c}^{\bullet}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{w} & =0 \quad \text { for } \quad w=1,2, \ldots, 7 \\
\mathrm{H}_{c}^{m}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{8} & = \begin{cases}\mathbb{R} & \text { if } m=7 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$
\]

The generator of $\mathrm{H}_{c}^{7}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{8}$ is called the Gel'fand-Kalinin-Fuks class. Hereafter, we use the notation $\mathrm{H}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}$ instead of $\mathrm{H}_{c}^{\bullet}\left(\mathfrak{h a m}{ }_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}$.

There is a homomorphism from $\mathrm{H}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)$ into $\mathrm{H}^{\bullet}\left(B \Gamma_{2}^{\text {symp } p}\right)$, where $\Gamma_{2}^{\text {symp }}$ is the groupoid of germs of local diffeomorphisms of \mathbb{R}^{2} preserving the symplectic structure of \mathbb{R}^{2}. It is not yet known whether the image of the Gel'fand-Kalinin-Fuks class by the homomorphism is trivial in $\mathrm{H}^{7}\left(B \Gamma_{2}^{s y m p}\right)$ or not (cf. [2]).

The next non-trivial result in succession to the Gel'fand-Kalinin-Fuks class is $\mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m}{ }_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14} \cong \mathbb{R}$, which was shown by Metoki $([\mathbf{7}])$ in 1999. He was interested in the volume preserving formal vector fields; when $n=1$ both $\mathfrak{h a m}_{2}$ and \mathfrak{v}_{2} are the same.

Let \mathcal{F} be a foliation on a manifold M. We have the foliated cohomology defined by $\mathrm{H}_{\mathcal{F}}^{\bullet}(M, \mathbb{R}):=\mathrm{H}^{\bullet}\left(\Omega_{\mathcal{F}}\right)$ where $\Omega_{\mathcal{F}}=\Omega(M) / \mathrm{I}(\mathcal{F}), \Omega(M)$ is the exterior algebra of differential forms on M, and $\mathrm{I}(\mathcal{F})$ is the ideal generated by $\left\{\sigma \in \Omega^{1}(M) \mid\langle\sigma, \mathrm{T} \mathcal{F}\rangle=0\right\}$. Kontsevich ([5]) showed that if \mathcal{F} is a codimension $2 n$ foliation endowed with a symplectic form ω in the transverse direction, then there is a commutative diagram:

where $\mathfrak{h a m}_{2 n}^{0}$ is the Lie subalgebra of the Hamiltonian vector fields of the formal polynomial vanishing at the origin of $\mathbb{R}^{2 n}$.

Kotschick and Morita $([\mathbf{6}])$ determined the space $\mathrm{H}_{\mathbf{G F}}^{\bullet}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{w}$ for $w \leq 10$, and concerning Kontsevich homomorphism given in the bottom line of (1), they showed the following, as well as the non-triviality of Kontsevich homomorphism in the case $n=1$:

THEOREM $1.1([\mathbf{6}])$. There is a unique element $\eta \in \mathrm{H}_{\mathrm{GF}}^{5}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{10} \cong \mathbb{R}$ such that

$$
\text { Gel'fand-Kalinin-Fuks class }=\eta \wedge \omega \in \mathrm{H}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{8}
$$

where ω is the cochain associated with the linear symplectic form of \mathbb{R}^{2}.
Further they stated that it is highly likely that the same thing is true also for Metoki class $\in \mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}$. That is, there should exist an element $\eta^{\prime} \in$ $H_{G F}^{7}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$ such that

$$
\text { Metoki class }=\eta^{\prime} \wedge \omega \in \mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}
$$

In the same line of Kotschick and Morita $([\mathbf{6}])$, we determined $\mathrm{H}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{w}$ for $w \leq 20$ in [13]. In this paper, making use of information in [13], we will show the following theorem.

THEOREM 1.2. $\quad \mathrm{H}_{\mathrm{GF}}^{9}(\mathfrak{h a m} 2, \mathfrak{s p}(2, \mathbb{R}))_{14}$ and $\mathrm{H}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$ are both 1dimensional and the map of wedging symplectic cocycle, i.e., Kontsevich homomorphism for $n=1$

$$
\omega \wedge: \mathrm{H}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16} \longrightarrow \mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}
$$

is an isomorphism. Thus, there is a unique element $\eta^{\prime} \in \mathrm{H}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16} \cong \mathbb{R}$ such that

$$
\text { Metoki class }=\eta^{\prime} \wedge \omega \in \mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}
$$

where Metoki class is the generator of $\mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}$.

2. Preliminaries.

Generalities concerning the (relative) Gel'fand-Fuks cohomologies and symplectic formalism are found in Mikami-Nakae-Kodama's preprint ([13]). Here we review the concept of weight of cochain complex of our Lie algebras and the symplectic actions on relative complex and also the description of coboundary operators for further calculations. Although the space we are concerned with in this paper is \mathbb{R}^{2}, we review the notions on the general linear symplectic space $\mathbb{R}^{2 n}$, and fix notations we use hereafter.

2.1. Symplectic space $\mathbb{R}^{2 n}$.

We fix a linear symplectic manifold $\left(\mathbb{R}^{2 n}, \omega\right)$ with the standard variables $x_{1}, x_{2}, \ldots, x_{2 n}$. Let \mathcal{H}_{f} denote the Hamiltonian vector field of f. Recalling the formula $\left[\mathcal{H}_{f}, \mathcal{H}_{g}\right]=-\mathcal{H}_{\{f, g\}}$ for Hamiltonian vector fields, we identify each formal Hamiltonian vector field with its potential polynomial function up to the constant term and the Lie bracket of vector fields with the Poisson bracket on polynomial functions. We denote by \mathfrak{S}_{p} the dual space of homogeneous polynomials in $\left\{x_{i}\right\}$ of degree p. Then

$$
\mathfrak{h a m}_{2 n}=\left(\bigoplus_{p=1}^{\infty} \mathfrak{S}_{p}^{*}\right)^{\wedge} \quad \text { is a Lie algebra }
$$

and

$$
\mathfrak{h a m}_{2 n}^{0}=\left(\bigoplus_{p=2}^{\infty} \mathfrak{S}_{p}^{*}\right)^{\wedge} \quad \text { is a subalgebra of } \mathfrak{h a m}{ }_{2 n}
$$

where ()^ means the completion using the Krull topology.
Using the notation above, we have the following:
(I-1) m-th cochain complexes of $\mathfrak{h a m}_{2 n}$ and $\mathfrak{h a m}{ }_{2 n}^{0}$ are given by

$$
\mathrm{C}_{\mathrm{GF}}^{m}\left(\mathfrak{h a m}_{2 n}\right)=\bigoplus_{k_{1}+k_{2}+\cdots=m} \Lambda^{k_{1}} \mathfrak{S}_{1} \otimes \Lambda^{k_{2}} \mathfrak{S}_{2} \otimes \Lambda^{k_{3}} \mathfrak{S}_{3} \otimes \cdots
$$

and since \mathfrak{S}_{1} is the dual space of constant vector fields

$$
\mathrm{C}_{\mathrm{GF}}^{m}\left(\mathfrak{h a m}_{2 n}^{0}\right)=\bigoplus_{k_{2}+k_{3}+\cdots=m} \Lambda^{k_{2}} \mathfrak{S}_{2} \otimes \Lambda^{k_{3}} \mathfrak{S}_{3} \otimes \Lambda^{k_{4}} \mathfrak{S}_{4} \otimes \cdots
$$

(I-2) The coboundary operator d on $\mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2 n}\right)$ is defined by

$$
(d \sigma)\left(f_{0}, f_{1}, \ldots, f_{m}\right)=\sum_{k<\ell}(-1)^{k+\ell} \sigma\left(\left\{f_{k}, f_{\ell}\right\}, \ldots, \widehat{f}_{k}, \ldots, \widehat{f}_{\ell}, \ldots\right) \quad f_{i} \in \mathfrak{h a m}_{2 n}
$$

for each m-cochain $\sigma \in \mathrm{C}_{\mathrm{GF}}^{m}\left(\mathfrak{h a m}_{2 n}\right)$.
And the coboundary operator d_{0} on $\mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{0}\right)$ is defined by

$$
\left(d_{0} \sigma\right)\left(f_{0}, f_{1}, \ldots, f_{m}\right)=\sum_{k<\ell}(-1)^{k+\ell} \sigma\left(\left\{f_{k}, f_{\ell}\right\}, \ldots, \widehat{f_{k}}, \ldots, \widehat{f}_{\ell}, \ldots\right) \quad f_{i} \in \mathfrak{h a m}_{2 n}^{0}
$$

for each m-cochain $\sigma \in \mathrm{C}_{\mathrm{GF}}^{m}\left(\mathfrak{h a m}_{2 n}^{0}\right)$.
We will study the difference between two coboundary operators d and d_{0} in subsection Section 2.3.
(I-3) There is a notion of weight for cochains (cf. [6]). For each non-zero cochain

$$
\sigma \in \Lambda^{k_{1}} \mathfrak{S}_{1} \otimes \Lambda^{k_{2}} \mathfrak{S}_{2} \otimes \Lambda^{k_{3}} \mathfrak{S}_{3} \otimes \cdots \otimes \Lambda^{k_{\ell}} \mathfrak{S}_{\ell}
$$

its weight is given by

$$
(1-2) k_{1}+(2-2) k_{2}+(3-2) k_{3}+\cdots+(\ell-2) k_{\ell}=\sum_{i=1}^{\ell}(i-2) k_{i} .
$$

The weight of a cochain is preserved by the coboundary operator, and we can decompose each cochain complex by way of weights and get Gel'fand-Fuks cohomologies with a discrete parameter, namely with weight w like as

$$
\mathrm{C}_{\mathrm{GF}}^{m}\left(\mathfrak{h a m}_{2 n}^{j-1}\right)_{w} \quad \text { and } \quad \mathrm{H}_{\mathrm{GF}}^{m}\left(\mathfrak{h a m}_{2 n}^{j-1}\right)_{w} \quad \text { for } j=0,1
$$

where $\mathfrak{h a m}_{2 n}^{-1}$ means the space $\mathfrak{h a m}_{2 n}$.
In both cases, for given degree m and weight w, we consider the sequences $\left(k_{1}, k_{2}, k_{3}, \ldots\right)$ of nonnegative integers with

$$
\begin{equation*}
\sum_{j=1}^{\infty} k_{j}=m \quad \text { and } \quad \sum_{j=1}^{\infty}(j-2) k_{j}=w \tag{2}
\end{equation*}
$$

Readers may be anxious about the contribution of k_{2} or k_{1}. In fact, there is a dimensional restriction for each k_{j} with $0 \leq k_{j} \leq \operatorname{dim} \mathfrak{S}_{j}=(j+2 n-1)!/ j!(2 n-1)!$.

From those two relations in (2), we have

$$
\begin{equation*}
\sum_{j=1}^{\infty} k_{j}=m \quad \text { and } \quad \sum_{j=1}^{\infty} j k_{j}=w+2 m \tag{3}
\end{equation*}
$$

This means our sequences correspond to all partitions of $w+2 m$ of length m, or in other words, to the Young diagrams with $w+2 m$ cells of length m (cf. [13]). Furthermore, we require dimensional restrictions, and $k_{1}=0$ when $\mathfrak{h a m}_{2 n}^{0}$.

2.2. Symplectic action and the relative cohomologies.

We denote the natural action of the Lie group $K=S p(2 n, \mathbb{R})$ on $\mathbb{R}^{2 n}$ by φ_{a} for $a \in K$, i.e., $\varphi_{a}(\boldsymbol{x})=a \boldsymbol{x}$ as the multiplication of matrices. The action leaves ω invariant by definition, and we see that $\left(\varphi_{a}\right)_{*}\left(\mathcal{H}_{f}\right)=\mathcal{H}_{f \circ \varphi_{a-1}}$ for each function f on $\mathbb{R}^{2 n}$ and $a \in K$. Let $\mathfrak{k}=\mathfrak{s p}(2 n, \mathbb{R})$ be the Lie algebra of K. We denote the fundamental vector field on $\mathbb{R}^{2 n}$ of K by $\xi_{\mathbb{R}^{2 n}}$ for $\xi \in \mathfrak{k}$. The equivariant (co-)momentum mapping of symplectic action of K is given by

$$
\hat{J}(\xi) \boldsymbol{x}=-\frac{1}{2} t \boldsymbol{x}\left[\begin{array}{ccc}
\left\{x_{1}, x_{1}\right\} & \cdots & \left\{x_{1}, x_{2 n}\right\} \\
\vdots & \cdots & \vdots \\
\left\{x_{2 n}, x_{1}\right\} & \cdots & \left\{x_{2 n}, x_{2 n}\right\}
\end{array}\right] \xi \boldsymbol{x}
$$

where \boldsymbol{x} is the column vector of the natural coordinates of $\mathbb{R}^{2 n},{ }^{t} \boldsymbol{x}$ means the transposed row vector of $\boldsymbol{x},\left\{x_{i}, x_{j}\right\}$ is the Poisson bracket with respect to ω, of i-th and j-th components of \boldsymbol{x} and $\xi \in \mathfrak{k}$. \hat{J} is a Lie algebra monomorphism from the Lie algebra $\mathfrak{s p}(2 n, \mathbb{R})$ into the Lie algebra $C^{\infty}\left(\mathbb{R}^{2 n}\right)$ with the Poisson bracket. We stress that $\hat{J}(\xi)$ is a degree 2 homogeneous polynomial function on $\mathbb{R}^{2 n}$ for $\xi \neq 0$. The Hamilton potential of the bracket $\left[\xi_{\mathbb{R}^{2 n}}, \mathcal{H}_{f}\right]$ is given by $-\{\hat{J}(\xi), f\}$, because of $\left[\xi_{\mathbb{R}^{2 n}}, \mathcal{H}_{f}\right]=\left[\mathcal{H}_{\hat{J}(\xi)}, \mathcal{H}_{f}\right]=$ $-\mathcal{H}_{\{\hat{J}(\xi), f\}}$. This means that \mathfrak{k} is regarded as a subalgebra of $\mathfrak{g}=\mathfrak{h a m}_{2 n}$ or $\mathfrak{h a m}_{2 n}^{0}$ through the equivariant momentum mapping J.

Define the relative cochain group $\mathrm{C}^{m}(\mathfrak{g}, \mathfrak{k})$ by

$$
\mathrm{C}^{m}(\mathfrak{g}, \mathfrak{k})=\left\{\sigma \in \mathrm{C}^{m}(\mathfrak{g}) \mid i_{X} \sigma=0, i_{X} d \sigma=0 \quad(\forall X \in \mathfrak{k})\right\} \quad(m=0,1, \ldots) .
$$

Then $(C \cdot(\mathfrak{g}, \mathfrak{k}), d)$ becomes a cochain complex, and we get the relative cohomology group $\mathrm{H}^{m}(\mathfrak{g}, \mathfrak{k})$. Let K be a Lie group of \mathfrak{k}. We also define

$$
\mathrm{C}^{m}(\mathfrak{g}, K)=\left\{\sigma \in \mathrm{C}^{m}(\mathfrak{g}) \mid i_{X} \sigma=0(\forall X \in \mathfrak{k}), A d_{k}^{*} \sigma=\sigma(\forall k \in K)\right\}
$$

and we get the relative cohomology groups $\mathrm{H}^{m}(\mathfrak{g}, K)$. If K is connected, these two
cochain groups are identical. If K is a closed subgroup of G, then it can be seen $\mathrm{C}^{\bullet}(\mathfrak{g}, K)=\Lambda^{\bullet}(G / K)^{G}$ (the exterior algebra of G-invariant differential forms on $\left.G / K\right)$.

Since the space \mathfrak{S}_{2}^{*} of degree 2 homogeneous polynomials is spanned by the image of momentum mapping \hat{J} of $S p(2 n, \mathbb{R})$, we see that

Proposition $2.1([\mathbf{1 3}])$. For each cochain $\sigma, i_{\xi} \sigma=0(\forall \xi \in \mathfrak{s p}(2 n, \mathbb{R}))$ implies $k_{2}=0$, and the other condition $i_{\xi} d \sigma=0$ is equivalent to $L_{\xi} \sigma=0(\forall \xi \in \mathfrak{s p}(2 n, \mathbb{R}))$. Thus we see for $j=0,1$

$$
\mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{j-1}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}=\sum_{\text {Cond }_{j}}\left(\Lambda^{k_{1}} \mathfrak{S}_{1} \otimes \Lambda^{k_{2}} \mathfrak{S}_{2} \otimes \Lambda^{k_{3}} \mathfrak{S}_{3} \otimes \cdots\right)^{\text {triv }}
$$

where () ${ }^{\text {triv }}$ means the direct sum of the (underlying) subspaces of the trivial representations. Cond_{0} consists of the conditions (3) in the preceding subsection, $k_{2}=0$, and the dimensional restrictions. Cond $_{1}$ consists of Cond_{0} and $k_{1}=0$.

Remark 2.1. As explained in [6], if the weight w is odd, then $\mathrm{C}_{\mathfrak{G F}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{j-1}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}$ and $\mathrm{H}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{j-1}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}$ vanish for $j=0,1$. Thus, we have only to deal with even weights.

There is a notion of type N for cochains of $\mathfrak{h a m}{ }_{2}$ in $[\mathbf{7}]$. The weight w and type N are related by $w=2 N$ when $n=1$.

There is a general method to decompose $\Lambda^{p} \mathfrak{S}_{q}$ into the irreducible subspaces for a general $S p(2 n, \mathbb{R})$-representation space, namely, getting the maximal vectors which are invariant by the maximal unipotent subgroup of $S p(2 n, \mathbb{R})$.

Concerning the decomposition of the tensor product, we have the Clebsch-Gordan rule when $n=1$. (For $n=2$, Littlewood-Richardson rule is used in [12], and the crystal base theory is used in $[\mathbf{1 1}]$ when $n=3$.)

2.3. Coboundary operators.

By d, we will mean the coboundary operator which acts on $\mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}$ and by d_{0}, the one acts on $\mathrm{C}_{\mathfrak{G F}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}$.

Let ω be the 2 -cochain defined by the linear symplectic form of $\mathbb{R}^{2 n}$. We see that

$$
\omega \in \mathrm{C}_{\mathrm{GF}}^{2}\left(\mathfrak{h a m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{(-2)} \backslash \mathrm{C}_{\mathrm{GF}}^{2}\left(\mathfrak{h a m}_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{(-2)}
$$

and $\omega^{n} \in \mathrm{C}_{\mathbf{G F}}^{2 n}\left(\mathfrak{h a m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{(-2 n)}$.
Proposition 2.2. The linear map

$$
\omega^{n} \wedge: \mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w} \longrightarrow \mathrm{C}_{\mathrm{GF}}^{\bullet+2 n}\left(\mathfrak{h a m} \mathfrak{m a n}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w-2 n}
$$

satisfies

$$
d\left(\omega^{n} \wedge \sigma\right)=\omega^{n} \wedge d_{0} \sigma
$$

and the next diagram is commutative

$$
\begin{align*}
& \mathrm{C}_{\mathrm{GF}}^{\bullet-1+2 n}\left(\mathfrak{h a m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w-2 n} \xrightarrow{d} \mathrm{C}_{\mathrm{GF}}^{\bullet+2 n}\left(\mathfrak{h a m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w-2 n} \\
& \omega^{n} \wedge \uparrow \quad \uparrow \omega^{n} \wedge \tag{4}\\
& \mathrm{C}_{\mathrm{GF}}^{\bullet-1}\left(\mathfrak{h a m}_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w} \xrightarrow{d_{0}} \mathrm{C}_{\mathfrak{G F}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w} .
\end{align*}
$$

Thus we have a linear map

$$
\omega^{n} \wedge: \mathrm{H}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}{ }_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w} \longrightarrow \mathrm{H}_{\mathrm{GF}}^{\bullet+2 n}\left(\mathfrak{h a m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w-2 n}
$$

naturally. This induced map is trivial if and only if

$$
\begin{align*}
\omega^{n} \wedge \operatorname{ker}\left(d_{0}: \mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}\right. & \left.\rightarrow \mathrm{C}_{\mathrm{GF}}^{\bullet+1}\left(\mathfrak{h a m}_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w}\right) \\
& \subset d\left(\mathrm{C}_{\mathrm{GF}}^{\bullet-1+2 n}\left(\mathfrak{h a m} \mathfrak{m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w-2 n}\right) . \tag{5}
\end{align*}
$$

Proof. We have $d \omega=0$. This is a requirement for a symplectic form. For each $\left.\sigma \in \mathrm{C}_{\mathrm{GF}}^{\bullet}(\mathfrak{h a m})_{2}^{0}\right)$, we already know that $\omega^{n} \wedge\left(d \sigma-d_{0} \sigma\right)=0$ and we see that $\omega^{n} \wedge d \sigma=d\left(\omega^{n} \wedge \sigma\right)$ because of $d \omega=0$. This states that the diagram (4) is commutative. Then we have
(i) If $d_{0} \sigma=0$, then $d\left(\omega^{n} \wedge \sigma\right)=0$, namely, $\omega^{n} \wedge \operatorname{ker}\left(d_{0}\right) \subset \operatorname{ker}(d)$.
(ii) If $\sigma, \tau \in \mathrm{C}_{\mathfrak{G F}}^{\bullet}\left(\mathfrak{h a m}_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right)$ satisfy $d_{0} \sigma=0=d_{0} \tau$ and $\sigma-\tau=d_{0} \rho$, then $\omega^{n} \wedge \sigma-\omega^{n} \wedge \tau=\omega^{n} \wedge d_{0} \rho=d\left(\omega^{n} \wedge \rho\right)$. This means that the wedge product by ω^{n} induces a well-defined linear map

$$
\omega^{n}: \mathrm{H}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}{ }_{2 n}^{0}, \mathfrak{s p}(2 n, \mathbb{R})\right) \longrightarrow \mathrm{H}_{\mathrm{GF}}^{\bullet+2 n}\left(\mathfrak{h a m}{ }_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right) \quad \text { by } \quad \sigma \mapsto \omega^{n} \wedge \sigma .
$$

(iii) From (i), we see that the map is trivial if and only if $\omega^{n} \wedge \operatorname{ker}\left(d_{0}\right) \subset$ $d\left(\mathrm{C}_{\mathrm{GF}}^{\bullet+2 n-1}\left(\mathfrak{h a m}_{2 n}, \mathfrak{s p}(2 n, \mathbb{R})\right)_{w-2 n}\right)$.

3. Symplectic 2-plane.

In this section, we deal with the symplectic 2 -plane \mathbb{R}^{2}. We study the difference between the two coboundary operators d and d_{0}. Since $\operatorname{dim} \mathfrak{S}_{1}=2$, the domain of definition of d is given by

$$
\mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2}\right)=\mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}_{2}^{0}\right) \oplus\left(\mathfrak{S}_{1} \otimes \mathrm{C}_{\mathrm{GF}}^{\bullet-1}\left(\mathfrak{h a m}_{2}^{0}\right)\right) \oplus\left(\Lambda^{2} \mathfrak{S}_{1} \otimes \mathrm{C}_{\mathrm{GF}}^{\bullet-2}\left(\mathfrak{h a m}_{2}^{0}\right)\right)
$$

Let x, y be global Darboux coordinates, i.e., $\{x, y\}=1$. For each positive integer R, $\left\{\widehat{z}_{R}^{r}=\left(x^{r} / r!\right)\left(y^{R-r} /(R-r)!\right) \mid r=0,1, \ldots, R\right\}$ is a basis of the space of R-homogeneous polynomials of x, y. Let $\left\{z_{R}^{r} \mid R>0, r=0,1, \ldots, R\right\}$ be the dual basis of $\left\{\widehat{z}_{R}^{r} \mid R>\right.$ $0, r=0,1, \ldots, R\}$.

The two coboundary operators d, d_{0} in those bases, are

$$
d z_{R}^{r}=-\frac{1}{2} \sum_{A+B=2+R}\left\langle z_{R}^{r},\left\{\widehat{z}_{A}^{a}, \widehat{z}_{B}^{b}\right\}\right\rangle z_{A}^{a} \wedge z_{B}^{b}
$$

where $A>0, B>0, a \in\{0, \ldots, A\}$ and $b \in\{0, \ldots, B\}$, and

$$
d_{0} z_{R}^{r}=-\frac{1}{2} \sum_{A+B=2+R}\left\langle z_{R}^{r},\left\{\widehat{z}_{A}^{a}, \widehat{z}_{B}^{b}\right\}\right\rangle z_{A}^{a} \wedge z_{B}^{b}
$$

where $A>1, B>1, a \in\{0,1, \ldots, A\}$ and $b \in\{0,1, \ldots, B\}$. Thus, the difference between d and d_{0} for a 1-cochain can be written as follows.

$$
\begin{aligned}
d z_{R}^{r} & =d_{0} z_{R}^{r}-\sum_{a \in\{0,1\}, b \in\{0, \ldots, 1+R\}}\left\langle z_{R}^{r},\left\{\widehat{z}_{1}^{a}, \widehat{z}_{1+R}^{b}\right\}\right\rangle z_{1}^{a} \wedge z_{1+R}^{b} \\
& =d_{0} z_{R}^{r}+z_{1}^{0} \wedge z_{1+R}^{1+r}-z_{1}^{1} \wedge z_{1+R}^{r}
\end{aligned}
$$

We may assume that $d_{0} z_{1}^{r}=0(r=0,1)$. The 2 -cochain ω which comes from the symplectic structure, is written as $\omega=z_{1}^{0} \wedge z_{1}^{1}$ in our notation and we see directly that

$$
d \omega=d\left(z_{1}^{0} \wedge z_{1}^{1}\right)=\left(z_{1}^{0} \wedge z_{2}^{1}-z_{1}^{1} \wedge z_{2}^{0}\right) \wedge z_{1}^{1}-z_{1}^{0} \wedge\left(z_{1}^{0} \wedge z_{2}^{2}-z_{1}^{1} \wedge z_{2}^{1}\right)=0
$$

But, ω is not d-exact because $\left\{\widehat{z}_{1}^{a}, \widehat{z}_{1}^{b}\right\}=$ constant.

4. Proof of Theorem 1.2.

In this section, we give a proof for Theorem 1.2 which asserts that

$$
\omega \wedge: \mathrm{H}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m} \mathfrak{m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16} \rightarrow \mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m} \mathfrak{m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}
$$

is an isomorphism. Since we know that the source and the target spaces are both 1dimensional, it is enough to show the map $\omega \wedge$ is non-trivial. For that purpose, we make use of (5) of Proposition 2.2.

We have information about $\mathrm{C}_{\mathrm{GF}}^{\bullet}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{w}(w=12,14,16,18,20)$ (cf. [13]). We show the result of weight $=16$ in the table below. In the table, C^{k} is $\mathrm{C}_{\mathrm{GF}}^{k}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$ and rank is the rank of $d_{0}: C^{k} \longrightarrow C^{1+k}$.

| $\mathfrak{h a m}_{2}^{0}, \mathrm{w}=16$ | $\mathbf{0}$ | $\rightarrow C^{3}$ | \rightarrow | C^{4} | \rightarrow | C^{5} | \rightarrow | C^{6} | \rightarrow | C^{7} | \rightarrow | C^{8} | $\rightarrow \mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{dim} C^{k}$ | | 12 | | 61 | | 126 | | 147 | | 95 | | 24 | |
| rank | 0 | | 12 | | 49 | | 77 | | 70 | | 24 | | 0 |
| Betti num | | 0 | | 0 | | 0 | | 0 | | 1 | | 0 | |

The table above says that $\operatorname{dim} H_{G F}^{7}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}=1$.
Concerning $\mathrm{H}_{\mathrm{GF}}^{9}\left(\mathfrak{h a m} \mathfrak{m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}$, we refer to $[7]$, where we see the complete data. But, the notation there is different from ours, and it seems hard to find an applicable translation rule. So we need to get suitable bases for our notation and begin searching
bases without the $k_{1}=0$ condition at the beginning in order to get the complete bases. In the following discussion, we only need information about the bases of $\mathfrak{C}^{8}, \mathfrak{C}^{9}$ and the matrix representation \bar{M} of $d: \mathfrak{C}^{8} \rightarrow \mathfrak{C}^{9}$, where $\mathfrak{C}^{k}=\mathrm{C}_{\mathrm{GF}}^{k}\left(\mathfrak{h a m}{ }_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}$.

A similar table is obtained in the case of $\mathfrak{h a m}{ }_{2}$ and weight 14 , rank is the rank of $d: \mathfrak{C}^{k} \longrightarrow \mathfrak{C}^{1+k}$.

$\mathfrak{h a m}_{2}$, wt=14	$\rightarrow \mathfrak{C}^{8} \rightarrow \mathfrak{C}^{9} \rightarrow \mathfrak{C}^{10} \rightarrow \mathbf{0}$							
$\operatorname{dim} \mathfrak{C}^{k}$		232		113		25		
rank	145		87		25		0	
Betti num		0		1		0		

Our proof of Theorem 1.2 consists of the 3 steps as follows:

1. To find a vector $\boldsymbol{h} \in \operatorname{ker}\left(d_{0}: \mathrm{C}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16} \rightarrow \mathrm{C}_{\mathrm{GF}}^{8}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}\right)$ but $\boldsymbol{h} \notin d_{0}\left(\mathrm{C}_{\mathrm{GF}}^{6}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}\right)$.
2. To calculate $\omega \wedge \boldsymbol{h}$.
3. To check whether $\omega \wedge \boldsymbol{h} \in d\left(\mathrm{C}_{\mathfrak{G F}}^{8}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}\right)$ or not, by counting the dimension of the space generated by $\omega \wedge \boldsymbol{h}$ and $d\left(\mathrm{C}_{\mathrm{GF}}^{8}\left(\mathfrak{h a m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}\right)$.

4.1. Gröbner Basis theory for cohomology groups.

To complete the proof, we make use of the Gröbner Basis theory (cf. [3]) for linear homogeneous polynomials. Suppose we have μ indeterminate variables $\left\{y_{j}\right\}_{j=1}^{\mu}$ and fix a monomial order Ord_{y} of $\left\{y_{j}\right\}$ by $y_{1} \succ \cdots \succ y_{\mu}$. If $\left\{g_{i}\right\}_{i=1}^{\lambda}$ are linear homogeneous polynomials of $\left\{y_{j}\right\}$, then we may write $\left[g_{1}, \ldots, g_{\lambda}\right]=\left[y_{1}, \ldots, y_{\mu}\right] M$ for some matrix M. It is known that we can deform M into the unique column echelon matrix \widehat{M} by a sequence of the three kinds elementary column operations. Getting the row echelon matrix ${ }^{t} \widehat{M}$ from ${ }^{t} M$ by elementary row operations is well-known as the Gaussian elimination method. The monic Gröbner basis of $\left\{g_{i}\right\}$ with the monomial order, we denote as mBasis $\left(\left[g_{1}, \ldots, g_{\lambda}\right], \operatorname{Ord}_{y}\right)$, satisfies

$$
\left[\operatorname{mBasis}\left(\left[g_{1}, \ldots, g_{\lambda}\right], \operatorname{Ord}_{y}\right), 0, \ldots, 0\right]=\left[y_{1}, \ldots, y_{\mu}\right] \widehat{M}
$$

Thus, $\operatorname{rank} M=\operatorname{rank} \widehat{M}$ is equal to the cardinality of $\operatorname{mBasis}\left(\left[g_{1}, \ldots, g_{\lambda}\right], \operatorname{Ord}_{y}\right)$ and $\operatorname{mBasis}\left(\left[g_{1}, \ldots, g_{\lambda}\right], \operatorname{Ord}_{y}\right)$ gives a basis for the \mathbb{R}-vector space generated by $\left\{g_{i}\right\}$. Hereafter, we use a reduced Gröbner basis, we denote it by $\operatorname{Basis}\left(\left[g_{1}, \ldots, g_{\lambda}\right], \operatorname{Ord}_{y}\right)$, for which we allow that each leading coefficient should not be 1 . So, each j-th element of $\operatorname{Basis}\left(\left[g_{1}, \ldots, g_{\lambda}\right], \operatorname{Ord}_{y}\right)$ is a non-zero scalar multiple of j-th element of $\operatorname{mBasis}\left(\left[g_{1}, \ldots, g_{\lambda}\right], \operatorname{Ord}_{y}\right)$.

The normal form of a given polynomial h with respect to a Gröbner basis GB together with a fixed monomial order, for example $\mathrm{NF}\left(h, \mathrm{~GB}, \operatorname{Ord}_{y}\right)$, is the "smallest" remainder of h modulo by the Gröbner basis GB. Again, if we restrict our discussion to the linear homogeneous polynomials, then $\mathrm{NF}\left(h, \mathrm{~GB}, \operatorname{Ord}_{y}\right)=0$ is equivalent to $h \in$ the linear space spanned by GB.

We recall key techniques in cohomology theory involving the Gröbner Basis theory. Let X, Y and Z be finite dimensional vector spaces with bases $\left\{\boldsymbol{q}_{i}\right\}_{i=1}^{\lambda},\left\{\boldsymbol{w}_{j}\right\}_{j=1}^{\mu}$ and
$\left\{\boldsymbol{r}_{k}\right\}_{k=1}^{\nu}$ respectively. Assume that there are linear maps $g: X \rightarrow Y$ and $f: Y \rightarrow Z$ whose matrix representations are M and N respectively: i.e.,

$$
\begin{equation*}
\left[g\left(\boldsymbol{q}_{1}\right), g\left(\boldsymbol{q}_{2}\right), \ldots, g\left(\boldsymbol{q}_{\lambda}\right)\right]=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\mu}\right] M \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[f\left(\boldsymbol{w}_{1}\right), f\left(\boldsymbol{w}_{2}\right), \ldots, f\left(\boldsymbol{w}_{\mu}\right)\right]=\left[\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{\nu}\right] N . \tag{7}
\end{equation*}
$$

In the right-hand side of (6), we replace \boldsymbol{w}_{j} by indeterminate variable $y_{j}(j=$ $1,2, \ldots, \mu)$, and get a set of linear homogeneous polynomials $\left[y_{1}, y_{2}, \ldots, y_{\mu}\right] M$. Denote them by $\left[g_{1}(y), g_{2}(y), \ldots, g_{\lambda}(y)\right]$, i.e., $\left[g_{1}(y), g_{2}(y), \ldots, g_{\lambda}(y)\right]=\left[y_{1}, y_{2}, \ldots, y_{\mu}\right] M$.

Proposition $4.1([\mathbf{1}]) . \quad G B_{e}=\operatorname{Basis}\left(\left[g_{1}, g_{2}, \ldots, g_{\lambda}\right],\left[y_{1}, y_{2}, \ldots, y_{\mu}\right], \operatorname{Ord}_{y}\right)$ gives a basis of $g(X)$ in the sense that $\left\{\varphi\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{\mu}\right) \mid \varphi \in G B_{e}\right\}$ forms a basis of $g(X)$ and $\operatorname{rank}(g)=\#\left(G B_{e}\right)$.

We study $f^{-1}(0)=\operatorname{ker}(f: Y \rightarrow Z)$. Since $\langle f(\boldsymbol{u}), \sigma\rangle=\left\langle\boldsymbol{u}, f^{*}(\sigma)\right\rangle$ for $\boldsymbol{u} \in Y, \sigma \in$ $Z^{*}(=$ the dual space of $Z), f^{-1}(0)=\operatorname{Im}\left(f^{*}\right)^{0}$, the annihilator subspace of $\operatorname{Im}\left(f^{*}\right)$. By Proposition 4.1, we know well about $\operatorname{Im}\left(f^{*}\right)$ by the Gröbner Basis theory as follows: Since N is the matrix representation of $f,{ }^{t} N$ is a matrix representation of f^{*}. We put $\left[c_{1}, c_{2}, \ldots, c_{\mu}\right]\left({ }^{t} N\right)$ by $\left[f_{1}, f_{2}, \ldots, f_{\nu}\right]$. Fix the monomial order Ord_{c} of $\left\{c_{j}\right\}_{j=1}^{\mu}$ by $c_{1} \succ \cdots \succ c_{\mu}$. We get the Gröbner basis $G B_{\operatorname{tr}(f)}=\operatorname{Basis}\left(\left[f_{1}, f_{2}, \ldots, f_{\nu}\right], \operatorname{Ord}_{c}\right)$, which gives a basis of $\operatorname{Im}\left(f^{*}\right)$.

Consider the polynomial $h=\sum_{j=1}^{\mu} c_{j} y_{j}$, where $\left\{y_{j}\right\}_{j=1}^{\mu}$ are the other auxiliary variables (which appear for the linear map g).

Proposition $4.2([\mathbf{1}])$. The normal form $\operatorname{NF}\left(h, G B_{t r(f)}, \operatorname{Ord}_{c}\right)$ of h is written as $\sum_{\ell=1}^{\mu} c_{\ell} \tilde{f}_{\ell}(y)$ where $\tilde{f}_{\ell}(y)$ is linear in $\left\{y_{j}\right\}$.

Let $G B_{k}=\operatorname{Basis}\left(\left[\tilde{f}_{1}(y), \tilde{f}_{2}(y), \ldots, \tilde{f}_{\mu}(y)\right], \operatorname{Ord}_{y}\right)$. Then $G B_{k}$ gives a basis of the kernel space $f^{-1}(0)=\operatorname{ker}(f)$, and the cardinality of $G B_{k}$ is $\operatorname{dim} \operatorname{ker}(f)$.

Now assume that $f \circ g=0$. We use the Gröbner bases $G B_{e}$ of g, and $G B_{k}$ of $\operatorname{ker}(f)$ above, then we have the following.

Proposition 4.3 ([1]). The quotient space $\operatorname{ker}(f: Y \rightarrow Z) / \operatorname{Im}(g: X \rightarrow Y)$ is equipped with the basis

$$
G B_{k / e}=\operatorname{Basis}\left(\left[\operatorname{NF}\left(\varphi, G B_{e}, \operatorname{Ord}_{y}\right) \mid \varphi \in G B_{k}\right], \operatorname{Ord}_{y}\right)
$$

In particular, $\operatorname{dim}(\operatorname{ker}(f: Y \rightarrow Z) / \operatorname{Im}(g: X \rightarrow Y))=\#\left(G B_{k / e}\right)$.
Remark 4.1. If we follow the way consisting of the 3 steps described just before this subsection, there is some ambiguity in choosing an element \boldsymbol{h}, in general. But, if we use the Gröbner Basis theory, we can avoid this ambiguity. This is a main reason why we use the Gröbner Basis theory here. It is hard to handle big matrices, but it is easy to deal with polynomials. This is the second small reason. The last reason why we use the

Gröbner Basis theory is that it is pre-packaged in the symbolic calculus softwares such as Maple, Mathematica, Risa/Asir (this is freeware) and so on. And such softwares are becoming more and more reliable and faster.

Our calculation of Gröbner Bases or normal forms is assisted by symbolic calculus software Maple. There is a proof by the Gröbner Basis theory of Theorem 1.1 with the assistance of Maple in [10]. Also, the draft of it is available on URL [8] www.math.akita-u.ac.jp/~mikami/Conj4MetokiClass/ with the title "A proof to Kotschick-Morita theorem for G-K-F class".

Risa/Asir is popular among Japanese mathematicians because it is bundled in the Math Libre Disk which is distributed at annual meetings of the Mathematical Society of Japan. We put the source code and output of our computer argument for Risa/Asir on $[\mathbf{8}]$ and in appendices in $[\mathbf{1 0}]$. Here, you can find a proof of the Kotschick-Morita theorem by Risa/Asir. You can also compare the two kinds of results calculated by Maple and Risa/Asir, and see that the final normal forms are the same, up to non-zero scalar multiples.

Even in the classical linear algebra argument or the Gröbner Basis argument, our discussion is based on matrix representations of the two coboundary operators. We stress that everything starts from the concrete bases of cochain complexes.

4.2. Selecting a generator h of $H_{G F}^{7}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$.

As mentioned in Remark 4.1, the existence of concrete bases of our cochain complexes is important. Actually, we got them and can handle them, but as shown in the first table above, the dimensions are large; for example $\operatorname{dim} C^{6}=147, \operatorname{dim} C^{7}=95$ and $\operatorname{dim} C^{8}=24$, where $C^{k}=\mathrm{C}_{\mathrm{GF}}^{k}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$, It is difficult to show them all in this paper. The entire data of our concrete bases of $C^{k}(k=6,7,8)$ are found either on $[\mathbf{8}]$ or in Appendix 1, 2 and 3 in [9].

Here we only show several elements, whose number of terms of summation is smaller. The smallest element of our basis of C^{6} is next, and consists of 28 terms:

$$
\begin{aligned}
\boldsymbol{q}_{142}= & -\frac{8}{3} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{5}^{2} z_{7}^{6}-z_{4}^{0} z_{4}^{1} z_{4}^{3} z_{4}^{4} z_{5}^{1} z_{7}^{5}+\frac{1}{6} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{4} z_{5}^{1} z_{7}^{6}-\frac{1}{6} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{4} z_{5}^{0} z_{7}^{7} \\
& +\frac{2}{3} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{4} z_{7}^{0}-\frac{1}{2} z_{4}^{0} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{0} z_{7}^{5}-\frac{8}{3} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{1} z_{7}^{3}+z_{4}^{0} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{3} z_{7}^{2} \\
& -\frac{7}{3} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{4} z_{5}^{3} z_{7}^{4}+\frac{1}{6} z_{4}^{0} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{4} z_{7}^{1}+\frac{1}{3} z_{4}^{0} z_{4}^{1} z_{4}^{3} z_{4}^{4} z_{5}^{0} z_{7}^{6}+\frac{2}{3} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{5}^{1} z_{7}^{7} \\
& +\frac{2}{3} z_{4}^{0} z_{4}^{1} z_{4}^{3} z_{4}^{4} z_{5}^{3} z_{7}^{3}-\frac{8}{3} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{5}^{4} z_{7}^{4}-\frac{8}{3} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{3} z_{7}^{1}-\frac{7}{3} z_{4}^{0} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{2} z_{7}^{3} \\
& +\frac{11}{6} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{4} z_{5}^{4} z_{7}^{3}+\frac{2}{3} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{5}^{5} z_{7}^{3}+z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{4} z_{5}^{2} z_{7}^{5}+\frac{1}{3} z_{4}^{0} z_{4}^{1} z_{4}^{3} z_{4}^{4} z_{5}^{5} z_{7}^{1} \\
& +\frac{11}{6} z_{4}^{0} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{1} z_{7}^{4}-\frac{1}{2} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{4} z_{5}^{5} z_{7}^{2}+\frac{2}{3} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{0} z_{7}^{4}+4 z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{2} z_{7}^{2} \\
& -\frac{1}{6} z_{4}^{0} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{5} z_{7}^{0}+4 z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{5}^{3} z_{7}^{5}-z_{4}^{0} z_{4}^{1} z_{4}^{3} z_{4}^{4} z_{5}^{4} z_{7}^{2}+\frac{2}{3} z_{4}^{0} z_{4}^{1} z_{4}^{3} z_{4}^{4} z_{5}^{2} z_{7}^{4}
\end{aligned}
$$

where we omit the symbol \wedge of wedge product. The two small-size elements of our basis of C^{7} are the following:

$$
\begin{aligned}
\boldsymbol{w}_{6}= & z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{6}^{0} z_{6}^{3} z_{6}^{6}-3 z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{6}^{0} z_{6}^{4} z_{6}^{5}-3 z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{6}^{1} z_{6}^{2} z_{6}^{6} \\
& +6 z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{6}^{1} z_{6}^{3} z_{6}^{5}-15 z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{6}^{2} z_{6}^{3} z_{6}^{4}
\end{aligned}
$$

and

$$
\boldsymbol{w}_{95}=z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{0} z_{5}^{5}-5 z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{1} z_{5}^{4}+10 z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{2} z_{5}^{3}
$$

We pick up the smallest element of our basis of C^{8} :

$$
\boldsymbol{r}_{7}=z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{5}^{0} z_{5}^{1} z_{5}^{4} z_{5}^{5}-2 z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{5}^{0} z_{5}^{2} z_{5}^{3} z_{5}^{5}+10 z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{5}^{1} z_{5}^{2} z_{5}^{3} z_{5}^{4}
$$

We only need a generator of $\mathrm{H}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$ by the Gröbner Basis theory and we write down our linear functions $\left\{g_{i}\right\}_{i=1}^{147}$ corresponding to $d_{0}: C^{6} \rightarrow C^{7}$ and linear functions $\left\{f_{j}\right\}_{j=1}^{24}$, giving the kernel condition for $d_{0}: C^{7} \rightarrow C^{8}$ as follows.

$$
\left[g_{1}, \ldots, g_{147}\right]=\left[y_{1}, \ldots, y_{95}\right] M, \quad\left[f_{1}, \ldots, f_{24}\right]=\left[c_{1}, \ldots, c_{95}\right]^{t} N
$$

where M and N are matrices of $d_{0}: C^{6} \rightarrow C^{7}$ and $d_{0}: C^{7} \rightarrow C^{8}$ with respect to the bases above. Since the size of matrix M is $(95,147)$ and that of N is $(24,95)$, we will not show them here, but the precise complete data are found either on [8] or in Appendix 4 and 5 in $[\mathbf{9}]$. Here, we show a few terms as examples:

$$
\begin{aligned}
& g_{1}= 176 y_{1}-\frac{1036}{3} y_{8}+\frac{632}{3} y_{9}+\frac{544}{3} y_{10}-60 y_{11}-22 y_{12}+152 y_{13}-802 y_{21} \\
&+531 y_{22}+590 y_{23}-\frac{1625}{3} y_{24}+\frac{292}{3} y_{25}+60 y_{26}-\frac{1595}{3} y_{27}+805 y_{28} \\
&-90 y_{29}+48 y_{30}-108 y_{31}-144 y_{32}-306 y_{33}+144 y_{34}+450 y_{35} \\
&+36 y_{36}+168 y_{37} \\
& \vdots \\
& g_{147}= \frac{5}{2} y_{60}-\frac{7}{2} y_{61}+\frac{11}{10} y_{62}+\frac{11}{6} y_{63}-\frac{21}{2} y_{65}+\frac{33}{10} y_{66}+\frac{15}{2} y_{67}-\frac{1}{10} y_{68} \\
&+\frac{11}{2} y_{69}-3 y_{79}-\frac{1}{2} y_{80}+\frac{3}{2} y_{86}+\frac{95}{12} y_{87}-\frac{17}{6} y_{88}+2 y_{89}-\frac{209}{30} y_{90} \\
&+\frac{23}{10} y_{91}+\frac{6}{25} y_{92}+\frac{5}{2} y_{93}-\frac{35}{2} y_{94}-\frac{133}{30} y_{95}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{1}= & -\frac{55}{4} c_{1}+25 c_{3}+8 c_{5}-\frac{475}{54} c_{8}+\frac{145}{9} c_{9}-\frac{995}{54} c_{10}+\frac{70}{3} c_{11}+\frac{1700}{81} c_{12} \\
& -\frac{10}{81} c_{13}-\frac{41}{9} c_{14}-\frac{215}{18} c_{15}-\frac{425}{18} c_{16}+\frac{425}{36} c_{17}+\frac{35}{9} c_{18}-\frac{59}{9} c_{19}+\frac{92}{9} c_{20} \\
& +\frac{75}{32} c_{21}+\frac{85}{48} c_{22}+\frac{33}{16} c_{23}+\frac{139}{64} c_{24}+\frac{65}{64} c_{25}+\frac{75}{32} c_{26}-\frac{221}{64} c_{27}+\frac{1}{24} c_{28} \\
& -\frac{65}{12} c_{42}+\frac{35}{4} c_{43}+\frac{95}{6} c_{44}+\frac{53}{4} c_{45}+\frac{10}{3} c_{46}+\frac{13}{4} c_{47}+2 c_{48}-\frac{9}{2} c_{49}-\frac{3}{2} c_{50} \\
\vdots & \\
f_{24}= & -15 c_{41}-10 c_{42}+30 c_{43}+35 c_{44}+3 c_{45}+40 c_{46}+18 c_{47}-3 c_{48} \\
& -\frac{301839}{740} c_{59}+\frac{256839}{740} c_{60}+\frac{1094769}{740} c_{61}+\frac{73128}{37} c_{62}+\frac{174258}{185} c_{63} \\
& +\frac{848394}{185} c_{64}-\frac{435089}{740} c_{65}-\frac{105235}{111} c_{66}-\frac{9623}{148} c_{67}-\frac{28657}{37} c_{68} \\
& -\frac{70569}{185} c_{69}-\frac{150326}{111} c_{70}+\frac{35965}{111} c_{71}+\frac{4484}{185} c_{72}-\frac{3827}{37} c_{73}-\frac{52105}{74} c_{74} \\
& +\frac{68225}{148} c_{75}-\frac{2556}{185} c_{76}+\frac{31601}{370} c_{77}+\frac{37535}{148} c_{78}-\frac{7439}{185} c_{79}+\frac{15139}{37} c_{80} \\
& +\frac{10657}{148} c_{81}+\frac{56}{3} c_{86}+\frac{53}{3} c_{87}+\frac{193}{3} c_{88}+\frac{76}{3} c_{89}+7 c_{90}+4 c_{91}+\frac{85}{6} c_{92} \\
& -\frac{71}{6} c_{93}-3 c_{94}+15 c_{95} .
\end{aligned}
$$

The Gröbner basis $G B_{e}$ of $\left\{g_{i}\right\}_{i=1}^{147}$ consists of 70 elements as expected. The whole Gröbner basis $G B_{e}$ is stored on [8] and in Appendix 9 in [9]. The first element of sorted $G B_{e}$ is

$$
\begin{aligned}
& 446227638468 y_{75}-258371100400 y_{76}+2677414594200 y_{77} \\
& \quad-2808720072600 y_{78}+483892450500 y_{79}+838357655220 y_{80} \\
& \quad-871685530860 y_{81}+1892343009627 y_{82}-2525687071848 y_{83} \\
& \quad-861370434243 y_{84}-625187443152 y_{85}-6093198421500 y_{86} \\
& \quad-4546246681400 y_{87}+2813196475270 y_{88}-2152132471560 y_{89} \\
& \quad+15133158761840 y_{90}-9561265966665 y_{91}-2198954966322 y_{92} \\
& \quad+9680559087150 y_{93}+3770983597200 y_{94}+11367701561860 y_{95},
\end{aligned}
$$

and the last element of sorted $G B_{e}$ is

$$
\begin{aligned}
& 7228887743181600 y_{1}+26505921724999200 y_{47}-8835307241666400 y_{50} \\
& \quad-40863295992707100 y_{51}-23594575360435200 y_{76}+141145959892004100 y_{77} \\
& -152234378969531760 y_{78}+12641923750905900 y_{79}+103786265245653540 y_{80}
\end{aligned}
$$

$$
\begin{aligned}
& -230406289763969880 y_{81}+55341457461003915 y_{82}-182139922299308040 y_{83} \\
& -331644059730112995 y_{84}-37012865309023290 y_{85}-467330302598009400 y_{86} \\
& -327107341696261500 y_{87}+182002246883284410 y_{88}-27682638636383280 y_{89} \\
& +811513254542111160 y_{90}-530692255768745745 y_{91}-216500557914020694 y_{92} \\
& +752677963524690150 y_{93}-117774780478277550 y_{94}+796136446567690060 y_{95} .
\end{aligned}
$$

The Gröbner basis $G B_{k}$ corresponding to the kernel space defined by $\left\{f_{j}\right\}_{j=1}^{24}$ consists of 71 elements. The whole Gröbner basis $G B_{k}$ is stored on [8] and in Appendix 10 in [9]. The first element of sorted $G B_{k}$ is:

$$
\begin{aligned}
& 2027141067600 y_{76}+6871115344500 y_{77}-8293793595120 y_{78}+1593871052400 y_{79} \\
& \quad+3342315930030 y_{80}+2188718191440 y_{81}+6047944018587 y_{82} \\
& \quad-7911486513648 y_{83}+1366183084077 y_{84}-1206881491512 y_{85} \\
& \quad-10895090886900 y_{86}-9572836551300 y_{87}+1269138903120 y_{88} \\
& \quad+3867959161440 y_{89}+28054435525860 y_{90}-23511502274085 y_{91} \\
& \quad-7468180349703 y_{92}+2799062316375 y_{93}+17517045194250 y_{94} \\
& \quad+24368226519980 y_{95},
\end{aligned}
$$

and the last element of sorted $G B_{k}$ is:

$$
\begin{aligned}
& 368571103200 y_{1}+1351427378400 y_{47}-450475792800 y_{50}-2083450541700 y_{51} \\
& \quad+11274054788700 y_{77}-12683683914000 y_{78}+1590428838900 y_{79} \\
& \quad+7275101984700 y_{80}-10448587809000 y_{81}+6410733790653 y_{82} \\
& \quad-13981567014072 y_{83}-16098409761957 y_{84}-2603346695478 y_{85} \\
& -30292840571400 y_{86}-22358770705700 y_{87}+10032702042550 y_{88} \\
& \quad+883984609200 y_{89}+58024375642760 y_{90}-41010508144455 y_{91} \\
& -15470397459450 y_{92}+40037017987050 y_{93}+4390494333150 y_{94} \\
& +55052825955540 y_{95} .
\end{aligned}
$$

The Gröbner basis corresponding to $\mathrm{H}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}{ }_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$ is

$$
\begin{aligned}
h= & 2027141067600 y_{76}+6871115344500 y_{77}-8293793595120 y_{78} \\
& +1593871052400 y_{79}+3342315930030 y_{80}+2188718191440 y_{81} \\
& +6047944018587 y_{82}-7911486513648 y_{83}+1366183084077 y_{84} \\
& -1206881491512 y_{85}-10895090886900 y_{86}-9572836551300 y_{87} \\
& +1269138903120 y_{88}+3867959161440 y_{89}+28054435525860 y_{90}
\end{aligned}
$$

$$
\begin{align*}
& -23511502274085 y_{91}-7468180349703 y_{92}+2799062316375 y_{93} \\
& +17517045194250 y_{94}+24368226519980 y_{95} \tag{8}
\end{align*}
$$

REmARK 4.2. So far, all the results above, using Maple software, are also calculated by Risa/Asir; the outputs are found either on [8] by the title "Results by Risa/Asir for wt $=16$ type $1 \mathrm{C}^{\wedge}\{6\}->\mathrm{C}^{\wedge}\{7\}->\mathrm{C}^{\wedge}\{8\}$ " or in Appendix 12 and 13 in [9].

We have the generator of $\mathrm{H}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$ by two methods. One is h above by Maple. The generator derived by Risa/Asir is $-h$; namely, the negative sign is the only difference.

4.3. Gröbner basis of $d\left(\mathrm{C}_{\mathfrak{G F}}^{8}\left(\mathfrak{h a m} \mathrm{~m}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}\right)$.

Next, we only need information about the bases of $\mathfrak{C}^{8}, \mathfrak{C}^{9}$ and the matrix representation \bar{M} of $d: \mathfrak{C}^{8} \rightarrow \mathfrak{C}^{9}$, where $\mathfrak{C}^{k}=\mathrm{C}_{\mathrm{GF}}^{k}\left(\mathfrak{h a m} \mathrm{ha}_{2}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}$. These are found either on [8] or in Appendix 6, 7 and 8 in [9]. Below we only show one of them: One of the 232 elements of our basis of \mathfrak{C}^{8} is:

$$
\begin{aligned}
\overline{\boldsymbol{q}}_{231}= & -\frac{1}{2} z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{6}^{6}+z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{0} z_{4}^{1} z_{4}^{3} z_{6}^{5}-\frac{1}{2} z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{0} z_{4}^{1} z_{4}^{4} z_{6}^{4} \\
& -\frac{3}{2} z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{0} z_{4}^{2} z_{4}^{3} z_{6}^{4}+z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{0} z_{4}^{2} z_{4}^{4} z_{6}^{3}-\frac{1}{2} z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{0} z_{4}^{3} z_{4}^{4} z_{6}^{2} \\
& +2 z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{6}^{3}-\frac{3}{2} z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{1} z_{4}^{2} z_{4}^{4} z_{6}^{2}+z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{1} z_{4}^{3} z_{4}^{4} z_{6}^{1} \\
& -\frac{1}{2} z_{3}^{0} z_{3}^{1} z_{3}^{2} z_{3}^{3} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{6}^{0}
\end{aligned}
$$

and, one of the 113 elements of our basis of \mathfrak{C}^{9} is:

$$
\overline{\boldsymbol{w}}_{95}=-\frac{1}{5} z_{1}^{0} z_{1}^{1} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{0} z_{5}^{5}+z_{1}^{0} z_{1}^{1} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{1} z_{5}^{4}-2 z_{1}^{0} z_{1}^{1} z_{4}^{0} z_{4}^{1} z_{4}^{2} z_{4}^{3} z_{4}^{4} z_{5}^{2} z_{5}^{3}
$$

The matrix \bar{M} of $d: \mathfrak{C}^{8} \rightarrow \mathfrak{C}^{9}$ is of size $(113,232)$ and the linear functions $\left\{\bar{g}_{i}\right\}$ corresponding to $d: \mathfrak{C}^{8} \rightarrow \mathfrak{C}^{9}$ are given by

$$
\left[\bar{g}_{1}, \ldots \bar{g}_{232}\right]=\left[y_{1}, \ldots, y_{113}\right] \bar{M}
$$

We will continue the same discussion as in subsection Section 4.2. We see that $\operatorname{rank} \bar{M}=$ 87 and the Gröbner basis $\overline{G B}_{e}$ of $\left\{\bar{g}_{i}\right\}$, which corresponds to $d\left(\mathfrak{C}^{8}\right)$, consists of 87 elements as expected. The complete data of $\left\{\bar{g}_{i}\right\}$, in other words, that of \bar{M}, and the detail of $\overline{G B}_{e}$ are found either on [8] or in Appendix 8 and 11 in [9].

4.4. $\omega \wedge h$ is not in $d\left(\mathrm{C}_{\mathrm{GF}}^{8}\left(\mathfrak{h a \mathfrak { m } _ { 2 }}, \mathfrak{s p}(2, \mathbb{R})\right)_{14}\right.$.

We have the linear function h of $\left\{y_{j}\right\}_{j=1}^{95}$ in (8); we know that the cochain $\boldsymbol{h}(\boldsymbol{w})$ is a non-exact kernel element in $\mathrm{C}_{\mathrm{GF}}^{7}\left(\mathfrak{h a m}_{2}^{0}, \mathfrak{s p}(2, \mathbb{R})\right)_{16}$. We analyze the next element

$$
\omega \wedge h(\boldsymbol{w})=z_{1}^{0} \wedge z_{1}^{1} \wedge h(\boldsymbol{w})
$$

by the basis of \mathfrak{C}^{9}, and we have a linear function \bar{h} of $\left\{y_{i}\right\}_{i=1}^{113}$ satisfying

$$
\bar{h}(\overline{\boldsymbol{w}})=\omega \wedge h(\boldsymbol{w})=z_{1}^{0} \wedge z_{1}^{1} \wedge h(\boldsymbol{w})
$$

which is given by the following:

$$
\begin{aligned}
\bar{h}= & -6996191251500 y_{74}-1557312364575 y_{76}+2027141067600 y_{77} \\
& +6871115344500 y_{78}-8293793595120 y_{79}+1593871052400 y_{80} \\
& +3342315930030 y_{81}+3576568317699 y_{82}-1206881491512 y_{83} \\
& -3952406350359 y_{84}-21353158325775 y_{85}-21096249215580 y_{86} \\
& -9572836551300 y_{87}+3867959161440 y_{88}+10699190322480 y_{89} \\
& -23511502274085 y_{90}+2799062316375 y_{91}+17460883387175 y_{92} \\
& +17517045194250 y_{93}-43245161055925 y_{94}-121841132599900 y_{95} .
\end{aligned}
$$

The normal form of \bar{h} with respect to $\overline{G B}_{e}$ is

$$
\begin{aligned}
-\frac{1}{1191}(& 7443523237284708 y_{82}+10932577142466 y_{83}-2773751000717088 y_{84} \\
& -8746061713972800 y_{85}-93098703351771180 y_{90} \\
& +40450535427124200 y_{91}-30933987324063320 y_{92} \\
& +24871612999110150 y_{93}+54636855766752700 y_{94} \\
& +201445748822724700 y_{95}+1180249792365936600 y_{112} \\
& \left.+3540749377097809800 y_{113}\right)
\end{aligned}
$$

and is not zero, namely $\bar{h}(\overline{\boldsymbol{w}})=\omega \wedge h(\boldsymbol{w})=z_{1}^{0} \wedge z_{1}^{1} \wedge h(\boldsymbol{w})$ is not exact, and our proof is complete.

REmark 4.3. Throughout this paper, the Gröbner basis and the normal form are computed by Maple. On the other hand, the results by Risa/Asir are found either on [8] or in Appendix 12 and 13 in [9].

We denote by $B_{\text {maple }}$ the normal form of \bar{h} with respect to $\overline{G B}_{e}$ and by $A_{\text {asir }}$, the normal form calculated by Risa/Asir. The two are related as

$$
B_{\text {maple }}=-\frac{1}{1191} \cdot \frac{7443523237284708}{5337006161133135636} A_{\text {asir }}
$$

Acknowledgments. The author appreciates the referees' kind advice and comments. The author expresses his sincere thanks to Professor Tadayoshi Mizutani and Professor Alan Weinstein for their encouragements and discussions between themselves and the author.

References

[1] M. Aghashi, B. M.-Alizadeh, J. Merker and M. Sabzevari, A Gröbner-Bases algorithm for the computation of the cohomology of Lie (super) algebras, arXiv:1104.5300v1, April 2011.
[2] R. Bott and A. Haefliger. On characteristic classes of Γ-foliations, Bull. Amer. Math. Soc., 78 (1972), 1039-1044.
[3] D. A. Cox, J. Little and D. O'Shea, Using algebraic geometry, Graduate Texts in Mathematics, 185, Springer, New York, second edition, 2005.
[4] I. M. Gel'fand, D. I. Kalinin and D. B. Fuks, The cohomology of the Lie algebra of Hamiltonian formal vector fields, Funkcional. Anal. i Priložen., 6 (1972), 25-29.
[5] M. Kontsevich, Rozansky-Witten invariants via formal geometry, Compositio Math., 115 (1999), 115-127.
[6] D. Kotschick and S. Morita, The Gel'fand-Kalinin-Fuks class and characteristic classes of transversely symplectic foliations, arXiv:0910.3414, October 2009.
[7] S. Metoki, Non-trivial cohomology classes of Lie algebras of volume preserving formal vector fields, PhD thesis, Univ. of Tokyo, 2000.
[8] K. Mikami, URL www.math.akita-u.ac.jp/ ${ }^{\sim}$ mikami/Conj4MetokiClass/, July 2013.
[9] K. Mikami, An affirmative answer to a conjecture for Metoki class, arXiv:1407.4646, July 2014.
[10] K. Mikami, Another proof to Kotschick-Morita's Theorem of Kontsevich homomorphism, arXiv:1407.1249, July 2014.
[11] K. Mikami, Lower weight Gel'fand-Kalinin-Fuks cohomology groups of formal Hamiltonian vector fields on 6-dimensional plane, arXiv:1402.6834, February 2014.
[12] K. Mikami and Y. Nakae, Lower weight Gel'fand-Kalinin-Fuks cohomology groups of the formal Hamiltonian vector fields on \mathbb{R}^{4}, J. Math. Sci. Univ. Tokyo, 19 (2012), 1-18.
[13] K. Mikami, Y. Nakae and H. Kodama, Higher weight Gel'fand-Kalinin-Fuks classes of formal Hamiltonian vector fields of symplectic \mathbb{R}^{2}, arXiv:1210.1662v2, February 2014.

Kentaro Mikami
Akita University
1-1 Tegata
Akita City 010-0851, Japan
E-mail: mikami@math.akita-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 57R32; Secondary 57R17, 17B66.
 Key Words and Phrases. Gel'fand-Kalinin-Fuks cohomology, Metoki class.
 This research was partially supported by Grant-in-Aid for Scientific Research (C) of JSPS, No. 26400063,23540067 and 20540059.

