Multipliers of Hardy spaces associated with Laguerre expansions

By Yehao Shi and Zhongkai Li

(Received June 28, 2013)
(Revised Jan. 18, 2014)

Abstract

The purpose of the paper is to study coefficient multipliers of the Hardy spaces $H^{p}([0, \infty))(0<p<1)$ associated with Laguerre expansions. As a consequence, a Paley type inequality is obtained.

1. Introduction and results.

A function F analytic in the unit disk \mathbb{D} is said to be in the Hardy space $H^{p}(\mathbb{D}), 0<p<\infty$, if $\|F\|_{H^{p}}:=\sup _{0 \leq r<1} M_{p}(F ; r)<\infty$, where $M_{p}(F ; r)=$ $\left\{(1 / 2 \pi) \int_{-\pi}^{\pi}\left|F\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}$.

Denote by ℓ^{q} the sequence space $\ell^{q}=\left\{\left\{a_{k}\right\}:\left\|\left\{a_{k}\right\}\right\|_{q}=\left(\sum_{k=0}^{\infty}\left|a_{k}\right|^{q}\right)^{1 / q}<\infty\right\}$ for $0<q<\infty$, and ℓ^{∞} the set of bounded sequences. A sequence $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ is a multiplier of $H^{p}(\mathbb{D})$ into the sequence space ℓ^{q} if $\sum_{n=0}^{\infty}\left|\lambda_{n} c_{n}\right|^{q}<\infty$ whenever $f=\sum_{n=0}^{\infty} c_{n} z^{n} \in$ $H^{p}(\mathbb{D})$. For a summary of results on multipliers from $H^{p}(\mathbb{D})$ to ℓ^{q} for various p and q, see [8]. In particular Duren and Shields ([3, Theorem 2(i)]) proved the following theorem: The sequence $\left\{\lambda_{n}\right\}$ is a multiplier of $H^{p}(\mathbb{D})$ into $\ell^{q}(0<p<1, p \leq q<\infty)$ if and only if $\sum_{n=1}^{N} n^{q / p}\left|\lambda_{n}\right|^{q}=O\left(N^{q}\right)$.

Among coefficient multipliers of the Hardy spaces, the two important ones are the Hardy inequality and the Paley inequality, namely, for $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \in H^{1}(\mathbb{D})$,

$$
\sum_{n=1}^{\infty} n^{-1}\left|c_{n}\right| \leq c\|f\|_{H^{1}}, \quad \text { and } \quad \sum_{k=1}^{\infty}\left|c_{2^{k}}\right|^{2} \leq c\|f\|_{H^{1}}^{2}
$$

where the constant c is independent of f. In the last two decades, analogs of the Hardy inequality in the context of eigenfunction expansions were studied by several authors (cf. $[\mathbf{1}],[\mathbf{2}],[\mathbf{4}],[\mathbf{9}],[\mathbf{1 0}],[\mathbf{1 4}])$. Comparatively, less generalization of the Paley inequality to eigenfunction expansions is achieved, and a substantial work is the Paley inequality for the Jacobi expansion given in [6]. Recently, coefficient multipliers of Hardy spaces associated with generalized Hermite expansions are studied in [7]. In this paper, we shall study the coefficient multipliers associated with Laguerre expansions on the space

$$
H^{p}([0, \infty))=\left\{f \in H^{p}(\mathbb{R}): \operatorname{supp} f \subset[0, \infty)\right\}, \quad 0<p \leq 1
$$

[^0]If $\alpha>-1$, the Laguerre function $\mathcal{L}_{n}^{(\alpha)}(x)$ is defined by

$$
\mathcal{L}_{n}^{(\alpha)}(x)=\tau_{n}^{\alpha} L_{n}^{(\alpha)}(x) e^{-x / 2} x^{\alpha / 2}
$$

where $\tau_{n}^{\alpha}=(\Gamma(n+1) / \Gamma(n+\alpha+1))^{1 / 2}$ and $L_{n}^{(\alpha)}(x)$ is the Laguerre polynomial determined by the orthogonal relation (see [13, (5.1.1)])

$$
\int_{0}^{\infty} e^{-x} x^{\alpha} L_{n}^{(\alpha)}(x) L_{m}^{(\alpha)}(x) d x=\left(\tau_{n}^{\alpha}\right)^{-2} \delta_{m n}
$$

The system $\left\{\mathcal{L}_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ is a complete orthonormal system on the interval $[0,+\infty)$ with respect to the Lebesgue measure. For a function $f \in L^{p}([0, \infty)), 1 \leq p \leq \infty$, its Laguerre expansion is

$$
\begin{equation*}
f \sim \sum_{n=0}^{\infty} c_{n}^{(\alpha)}(f) \mathcal{L}_{n}^{(\alpha)}(x), \quad c_{n}^{(\alpha)}(f)=\int_{0}^{\infty} f(t) \mathcal{L}_{n}^{(\alpha)}(t) d t \tag{1}
\end{equation*}
$$

We shall give an appropriate definition of the coefficients $c_{n}^{(\alpha)}(f), n=0,1,2, \ldots$, for $f \in H^{p}([0, \infty)), 0<p<1$, in Section 2.

Our theorem is stated as follows.
Theorem 1.1. Let $\alpha \geq 0, \alpha^{*}=+\infty$ for nonnegative even α and $\alpha^{*}=\alpha / 2+1$ otherwise, and let $\left(\alpha^{*}\right)^{-1}<p<1 \leq q<\infty$. If a sequence $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{N} n^{q / p}\left|\lambda_{n}\right|^{q}=O\left(N^{q}\right) \tag{2}
\end{equation*}
$$

then for all $f \in H^{p}([0, \infty))$, the Fourier-Laguerre coefficients $c_{n}^{(\alpha)}(f)$ are well-defined and satisfy

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}\left|\lambda_{n} c_{n}^{(\alpha)}(f)\right|^{q}\right)^{1 / q} \leq c\|f\|_{H^{p}([0, \infty))} \tag{3}
\end{equation*}
$$

where c is a constant independent of f.
Theorem 1.1 shows that a sequence $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ is a multiplier of $H^{p}([0, \infty))$ into the sequence space ℓ^{q} associated with Laguerre expansions if (3) holds. It is noted that the condition (2) is equivalent to the condition $\sum_{k=n}^{2 n}\left|\lambda_{k}\right|^{q}=O\left(n^{q(1-1 / p)}\right)$. An interesting application of Theorem 1.1 is the Paley type inequality for Laguerre expansions, which is stated in the following corollary.

Corollary 1.2. Let $\alpha \geq 0, \alpha^{*}=\infty$ for nonnegative even α and $\alpha^{*}=\alpha / 2+1$ otherwise, and let $\left(\alpha^{*}\right)^{-1}<p<1$. If $\left\{n_{k}\right\}$ is a Hadamard sequence satisfying $n_{k+1} / n_{k} \geq$ $\rho>1(k=1,2, \ldots)$, then for all $f \in H^{p}([0, \infty))$, the coefficients $c_{n}^{(\alpha)}(f)$ of its Laguerre
expansion satisfy

$$
\sum_{k=1}^{\infty} n_{k}^{2\left(1-p^{-1}\right)}\left|c_{n_{k}}^{(\alpha)}(f)\right|^{2}<\infty
$$

Throughout the paper, $A=O(B)$ or $A \lesssim B$ means that $A \leq c B$ for some positive constant c independent of variables, functions, k, n, etc., but possibly dependent of some fixed parameters and fixed m.

2. Prelimineries.

We begin by recalling some estimates of the Laguerre functions. There are two lemmas on some sharp estimates of $\mathcal{L}_{n}^{(\alpha)}(x)$ from $[\mathbf{1 0}]$ as follows.

Lemma 2.1. Let $\alpha \geq 0$. If we set $M=[\alpha / 2]$, then for each non-negative integer $m \leq M$, the m-th derivative $\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(m)}(x)$ of $\mathcal{L}_{n}^{(\alpha)}(x)$ with respect to x satisfies,

$$
\left|\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(m)}(x)\right| \leq C_{\alpha, m} n^{m}, \quad x \in[0, \infty) .
$$

Futhermore, if $\alpha / 2=0,1,2, \ldots$, then for $m=0,1,2, \ldots$,

$$
\left|\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(m)}(x)\right| \leq C_{\alpha, m} n^{m}, \quad x \in[0, \infty) .
$$

Here $C_{\alpha, m}$ are positive constants independent of n.
Lemma 2.2. Let $\alpha \geq 0$ and let $\alpha / 2$ be not an integer. We put $\alpha / 2=M+\delta$, $0<\delta<1$. Then for the M-th derivative $\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(M)}(x)$ of $\mathcal{L}_{n}^{(\alpha)}(x)$ with respect to x, we have

$$
\left|\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(M)}(x+h)-\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(M)}(x)\right| \leq C_{\alpha} n^{\alpha / 2}|h|^{\delta}, \quad x, h \in[0, \infty)
$$

where C_{α} is a positive constant independent of n.
Since $H^{1}([0, \infty)) \subset L([0, \infty))$, the coefficients $c_{n}^{(\alpha)}(f)$ for $f \in H^{1}([0, \infty))$ are well defined by (1). But if $f \in H^{p}([0, \infty))$ for $0<p<1$, we need a new definition for the coefficients $c_{n}^{(\alpha)}(f)$, which is based on the duality relation of the Hardy space $H^{p}(\mathbb{R})$ and the Lipschitz space $\Lambda_{p^{-1}-1}(\mathbb{R})$.

There are several equivalent definitions for the Lipschitz space $\Lambda_{\delta}(\mathbb{R})$ (see [11], [12], [15]). Here is the usual one. For $m \geq 1$ and $m-1<\delta \leq m, \Lambda_{\delta}(\mathbb{R})$ is the set of ($m-1$)-times differentiable functions f satisfying $\|f\|_{\Lambda_{\delta}}:=\|f\|_{L^{\infty}}+\sup _{x, h} \mid f^{(m-1)}(x+h)$ $-f^{(m-1)}(x)\left|/|h|^{\delta+1-m}<\infty\right.$ for $\delta \neq m$, and $\left.\|f\|_{\Lambda_{\delta}}:=\|f\|_{L^{\infty}}+\sup _{x, h}\right| f^{(m-1)}(x+h)$ $-2 f^{(m-1)}(x)+f^{(m-1)}(x-h)\left|/|h|<\infty\right.$ for $\delta=m$. Here we use a unified notation $\Lambda_{\delta}(\mathbb{R})$ for all $\delta>0$, without use of Zygmund's notation $\Lambda_{\delta}^{*}(\mathbb{R})$ for $\delta=m$.

Lemma 2.3 ([12, p. 130] or [16]). If $0<p<1$ and $g \in \Lambda_{p^{-1}-1}(\mathbb{R})$, then $\mathcal{L}_{g}(f)=$ $\int_{\mathbb{R}} f(x) g(x) d x$, initially defined for $f \in L^{1}(\mathbb{R}) \bigcap H^{p}(\mathbb{R})$, has a bounded extension to
$H^{p}(\mathbb{R})$ satisfying $|\mathcal{L}(f)| \leq c\|g\|_{\Lambda_{p^{-1}-1}}\|f\|_{H^{p}}$, where c is a constant independent of g and f.

Now we extend $\mathcal{L}_{n}^{(\alpha)}(x)$ to the whole line \mathbb{R} in a suitable way. If $\alpha / 2>0$ is not an integer, then we define

$$
\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)= \begin{cases}\mathcal{L}_{n}^{(\alpha)}(x), & \text { for } x>0 \tag{4}\\ 0, & \text { for } x \leq 0\end{cases}
$$

If $\alpha / 2 \geq 0$ is an integer, we shall use the function

$$
\psi(x)= \begin{cases}1, & \text { for } x \geq 0 \\ \left(1-e^{1 / x}\right) \exp \left(-\frac{e^{1 / x}}{x+1}\right), & \text { for }-1<x<0 \\ 0, & \text { for } x \leq-1\end{cases}
$$

It is clear that $\psi(x) \in C(\mathbb{R})$. However, for $k \geq 1$, the $k-$ th derivative $\psi^{(k)}(x)$ of $\psi(x)$ satisfies $\lim _{x \rightarrow-1+0} \psi^{(k)}(x)=\lim _{x \rightarrow 0-0} \psi^{(k)}(x)=0$ by routine evaluations, which implies that $\psi(x) \in C^{\infty}(\mathbb{R})$ and $\left|\psi^{(k)}(x)\right| \leq c$, where c is a constant independent of x.

It follows from the formula (see [13, (5.1.6)])

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!} \tag{5}
\end{equation*}
$$

that for every positive integer m, there exists a constant $c_{m}>0$ such that for all $n \geq 1$ and $x<0, L_{n}^{(\alpha)}(x) \geq c_{m}\left(n^{\alpha}+n^{\alpha+m}|x|^{m}\right)=c_{m} n^{\alpha}\left(1+(n|x|)^{m}\right)$. This shows that for $x<0, L_{n}^{(\alpha)}(x)$ increases quite rapidly as $n|x|$ increases, which happens even for small $|x|$ and large n.

In view of the above remark, we define, for even integer $\alpha \geq 0$,

$$
\begin{equation*}
\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)=\psi(n x) \mathcal{L}_{n}^{(\alpha)}(x) \tag{6}
\end{equation*}
$$

The conclusions in Lemma 2.1 and Lemma 2.2 are valid for $\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)$ instead of $\mathcal{L}_{n}^{(\alpha)}(x)$ on the whole line \mathbb{R}.

Corollary 2.4. Let $\alpha \geq 0$ and $M=[\alpha / 2]$. Then for $x \in \mathbb{R}$,
(i) if $\alpha / 2$ is not an integer,

$$
\begin{equation*}
\left|\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(m)}(x)\right| \lesssim n^{m}, m \leq M \tag{7}
\end{equation*}
$$

(ii) if $\alpha / 2$ is not an integer,

$$
\begin{equation*}
\left|\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(M)}(x+h)-\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(M)}(x)\right| \lesssim n^{\alpha / 2}|h|^{\delta}, \alpha / 2=M+\delta, 0<\delta<1 \tag{8}
\end{equation*}
$$

(iii) if $\alpha / 2$ is an integer, (7) is true for all $m \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$.

Proof. Parts (i) and (ii) are easy consequences of (4) by Lemma 2.1 and Lemma 2.2.

For part (iii), it suffices to evaluate $\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(m)}(x)$ for $-n^{-1} \leq x \leq 0$ by (6). In this case, by Leibniz' rule,

$$
\begin{equation*}
\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(m)}(x)=\sum_{l=0}^{m}\binom{m}{l} \psi^{(m-l)}(n x) n^{m-l}\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(l)}(x) . \tag{9}
\end{equation*}
$$

Since $L_{n}^{(\alpha)}(x)^{\prime}=-L_{n-1}^{(\alpha+1)}(x)($ see $[\mathbf{1 3},(5.1 .14)])$,

$$
\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(l)}(x)=\tau_{n}^{\alpha} \sum_{\substack{i+j \leq l \\ j \leq \alpha / 2}} c_{l, i, j} e^{-x / 2} L_{n-i}^{(\alpha+i)}(x) x^{\alpha / 2-j},
$$

and from (5), for $-n^{-1} \leq x \leq 0$ we have

$$
0 \leq L_{n}^{(\alpha)}(x) \lesssim n^{\alpha} \sum_{k=0}^{n}\binom{n}{n-k} \frac{n^{-k}}{k!} \lesssim n^{\alpha}\left(1+n^{-1}\right)^{n} \lesssim n^{\alpha}
$$

Thus it follows that, for $-n^{-1} \leq x \leq 0$,

$$
\left|\left(\mathcal{L}_{n}^{(\alpha)}\right)^{(l)}(x)\right| \lesssim n^{-\alpha / 2} \sum_{\substack{i+j \leq i \\ j \leq \alpha / 2}} n^{\alpha+i}|x|^{\alpha / 2-j} \lesssim n^{l} .
$$

Substituting this into (9) yields, for $-n^{-1} \leq x \leq 0$,

$$
\left|\left(\tilde{\mathcal{L}}_{n}^{(\alpha)}\right)^{(m)}(x)\right| \lesssim \sum_{l=0}^{m} n^{m-l} n^{l} \lesssim n^{m}
$$

By Corollary 2.4, $\tilde{\mathcal{L}}_{n}^{(\alpha)}(x) \in \Lambda_{p^{-1}-1}(\mathbb{R})$ for $0<p<1$ in the case $\alpha=0,2,4 \ldots$ and $\tilde{\mathcal{L}}_{n}^{(\alpha)}(x) \in \Lambda_{p^{-1}-1}(\mathbb{R})$ for $p^{-1}-1<\alpha / 2$ in the case $\alpha \neq 0,2,4 \ldots$ For $0<p<1$, the coefficients $c_{n}^{(\alpha)}(f)$ of $f \in H^{p}([0, \infty))$ associated with Laguerre expansions are defined by

$$
c_{n}^{(\alpha)}(f)=\mathcal{L}_{\tilde{\mathcal{L}}_{n}^{(\alpha)}(x)}(f)
$$

We see that the coefficients $c_{n}^{(\alpha)}(f)$ are independent of the choice of an extension $\tilde{\mathcal{L}}_{n}^{(\alpha)}(x) \in \Lambda_{p^{-1}-1}(\mathbb{R})$. It is easy to see that the substitute definition of the coefficients $c_{n}^{(\alpha)}(f)$ is consistent with the previous definition for "good" functions. In fact, $c_{n}^{(\alpha)}(f)=$ $\int_{0}^{\infty} f(t) \mathcal{L}_{n}^{(\alpha)}(t) d t$ for all $f \in H^{p}([0, \infty)) \cap L^{1}(\mathbb{R})$. However it is not always meaningful in general for all $H^{p}([0, \infty)), 0<p<1$, since the functions $\mathcal{L}_{n}^{(\alpha)}(x)$ are not sufficiently
smooth for most of α. Indeed we have
Proposition 2.5. Let $\alpha \geq 0$. The Fourier-Laguerre coefficients $c_{n}^{(\alpha)}(f)$ of $f \in$ $H^{p}([0, \infty))$ are well defined for all $0<p \leq 1$ if α is a nonnegative even integer and for $(\alpha / 2+1)^{-1}<p \leq 1$ otherwise .

3. Proof of Theorem 1.1.

Now we shall prove Theorem 1.1. Our approach is based on the duality of $H^{p}(\mathbb{R})$ and $\Lambda_{p^{-1}-1}(\mathbb{R})$.

Proof. We fix a sequence $\left\{b_{n}\right\}_{n=0}^{\infty} \in \ell^{q^{\prime}}, q^{-1}+q^{\prime-1}=1$, and for $n=1,2, \ldots$, let

$$
\begin{equation*}
g_{n}(x)=\sum_{k=0}^{n} \lambda_{k} b_{k} \tilde{\mathcal{L}}_{k}^{(\alpha)}(x) . \tag{10}
\end{equation*}
$$

By Lemma 2.3, one has $\left|\mathcal{L}_{g_{n}}(f)\right| \leq c\left\|g_{n}\right\|_{\Lambda_{p^{-1}-1}}\|f\|_{H^{p}([0, \infty))}$, or equivalently,

$$
\left|\sum_{k=0}^{n} \lambda_{k} b_{k} c_{k}^{(\alpha)}(f)\right| \leq c\left\|g_{n}\right\|_{\Lambda_{p^{-1}-1}}\|f\|_{H^{p}([0, \infty))}
$$

In order to prove (3) it suffices to show that there is a constant c^{\prime} independent of n and $\left\{b_{k}\right\} \in \ell^{q^{\prime}}$ such that

$$
\begin{equation*}
\left\|g_{n}\right\|_{\Lambda_{p^{-1}-1}} \leq c^{\prime}\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}} . \tag{11}
\end{equation*}
$$

Once (11) is true, then it follows that

$$
\left(\sum_{k=0}^{n}\left|\lambda_{k} c_{k}^{(\alpha)}(f)\right|^{q}\right)^{1 / q} \leq c c^{\prime}\|f\|_{H^{p}([0, \infty))}
$$

which proves the theorem by letting $n \rightarrow \infty$.
First we consider the case when $m-1<p^{-1}-1<m$, $p^{-1}-1<\alpha / 2$. Suppose $x \neq y$ and put $h=y-x$.

From (10) we have

$$
\begin{equation*}
\left|g_{n}^{(m-1)}(x)-g_{n}^{(m-1)}(y)\right| \leq \sum_{k=0}^{n}\left|\lambda_{k} b_{k}\right|\left|\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(x)-\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(y)\right| \tag{12}
\end{equation*}
$$

If $n \leq|h|^{-1}$, we apply Corollary 2.4 (part (i) for $m<\alpha / 2$ and part (ii) for $\alpha / 2 \leq m<$ $\alpha / 2+1)$ to get an upper bound of $\left|g_{n}^{(m-1)}(x)-g_{n}^{(m-1)}(y)\right|$ as a multiple of

$$
\begin{equation*}
\sum_{k=0}^{n}\left|\lambda_{k} b_{k}\right| k^{m-1+\gamma}|h|^{\gamma} \leq|h|^{\gamma}\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}\left(\sum_{k=0}^{n}\left|\lambda_{k}\right|^{q} k^{q(m-1+\gamma)}\right)^{1 / q} \tag{13}
\end{equation*}
$$

where $\gamma=1$ if $m-1<p^{-1}-1<m<\alpha / 2$, and $\gamma=\alpha / 2+1-m$ if $m-1<p^{-1}-1<$ $\alpha / 2 \leq m$.

Under the condition (2) summing by parts gives $\sum_{k=0}^{n}\left|\lambda_{k}\right|^{q} k^{q(m-1+\gamma)}$ $=O\left(n^{q(m+\gamma-1 / p)}\right)$. Hence

$$
\left(\sum_{k=0}^{n}\left|\lambda_{k}\right|^{q} k^{q(m-1+\gamma)}\right)^{1 / q} \lesssim n^{\gamma+m-p^{-1}} \leq|h|^{p^{-1}-m-\gamma}
$$

for $n \leq|h|^{-1}$. Substituting this into (13) yields

$$
\begin{equation*}
\left|g_{n}^{(m-1)}(x)-g_{n}^{(m-1)}(y)\right| \lesssim\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}|h|^{p^{-1}-m} \tag{14}
\end{equation*}
$$

If $n>|h|^{-1}$, the summation of those terms in (12) for $k \leq|h|^{-1}$ has the same bound $c\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}|h|^{p^{-1}-m}$ as above, and the summation of the terms for $|h|^{-1}<k \leq n$, in virtue of Corollary 2.4 (parts (i) and (iii)), is dominated by

$$
\begin{align*}
& \sum_{|h|^{-1}<k \leq n}\left|\lambda_{k} b_{k}\right|\left(\left|\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(x)\right|+\left|\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(y)\right|\right) \\
& \lesssim \sum_{|h|^{-1}<k \leq n}\left|\lambda_{k} b_{k}\right| k^{m-1} \leq\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}\left(\sum_{|h|^{-1}<k \leq n}\left|\lambda_{k}\right|^{q} k^{q(m-1)}\right)^{1 / q} . \tag{15}
\end{align*}
$$

By the condition (2), summing by parts again gives $\sum_{k \geq N}\left|\lambda_{k}\right|^{q} k^{q(m-1)}=O\left(N^{q\left(m-p^{-1}\right)}\right)$. Thus we have

$$
\left(\sum_{|h|^{-1}<k \leq n}\left|\lambda_{k}\right|^{q} k^{q(m-1)}\right)^{1 / q} \lesssim\left(|h|^{-1}\right)^{m-p^{-1}}=|h|^{p^{-1}-m}
$$

for $n>|h|^{-1}$. Substituting this into (15) yields an upper bound of the summation of the terms in (12) for $|h|^{-1}<k \leq n$ as $c\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}|h|^{p^{-1}-m}$. Thus (14) is proved to be true for all n and h, so that (11) is shown whenever $m-1<p^{-1}-1<m, p^{-1}-1<\alpha / 2$.

Finally we prove (11) for $p^{-1}-1=m<\alpha / 2$. We shall need to evaluate the second order difference of $g_{n}^{(m-1)}$, that is sufficient by the definition about Λ_{δ} for $\delta=m$. From (10) it follows, for $h \neq 0$, that $\left|g_{n}^{(m-1)}(x+h)-2 g_{n}^{(m-1)}(x)+g_{n}^{(m-1)}(x-h)\right|$ is bounded by

$$
\begin{equation*}
\sum_{k=0}^{n}\left|\lambda_{k} b_{k}\right|\left|\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(x+h)-2\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(x)+\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(x-h)\right| . \tag{16}
\end{equation*}
$$

If $1 \leq p^{-1}-1=m<\alpha / 2-1$, this is dominated by $\sum_{k=0}^{n}\left|\lambda_{k} b_{k} \|\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m+1)}\left(x^{\prime}\right)\right||h|^{2}$ with some x^{\prime} between $x-h$ and $x+h$, and furthermore, in virtue of Corollary 2.4 (parts (i) and (iii)), by a multiple of

$$
\begin{equation*}
|h|^{2} \sum_{k=0}^{n}\left|\lambda_{k} b_{k}\right| k^{m+1} \leq|h|^{2}\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}\left(\sum_{k=0}^{n}\left|\lambda_{k}\right|^{q} k^{q(m+1)}\right)^{1 / q} \tag{17}
\end{equation*}
$$

Since $m+1=p^{-1}$, the condition (2) gives

$$
\sum_{k=0}^{n}\left|\lambda_{k}\right|^{q} k^{q(m+1)} \lesssim n^{q} \leq|h|^{-q}
$$

for $n \leq|h|^{-1}$. Substituting this into (17) yields, for $n \leq|h|^{-1}$,

$$
\begin{equation*}
\left|g_{n}^{(m-1)}(x+h)-2 g_{n}^{(m-1)}(x)+g_{n}^{(m-1)}(x-h)\right| \lesssim\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}|h| . \tag{18}
\end{equation*}
$$

If α is not nonnegative even and $\alpha / 2-1 \leq p^{-1}-1=m<\alpha / 2$, we note that

$$
\begin{aligned}
& \left|\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(x+h)-2\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(x)+\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m-1)}(x-h)\right| \\
& \quad=\left|\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m)}\left(x^{\prime}\right)-\left(\tilde{\mathcal{L}}_{k}^{(\alpha)}\right)^{(m)}\left(x^{\prime \prime}\right)\right||h|
\end{aligned}
$$

by the mean-value theorem, where x^{\prime} and $x^{\prime \prime}$ lay between $x-h$ and $x+h$, and furthermore, by Corollary 2.4 (ii) this is bounded by

$$
c k^{\alpha / 2}|h|^{\alpha / 2-m}|h|=c k^{\alpha / 2}|h|^{\alpha / 2+1-m} .
$$

Hence the expression in (16) is dominated by a multiple of $\sum_{k=0}^{n}\left|\lambda_{k} b_{k}\right| k^{\alpha / 2}|h|^{\alpha / 2-m+1}$, which has the same bound as in (13) with $\gamma=\alpha / 2+1-m$, and also the bound $c\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}|h|^{p^{-1}-m}=c\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}|h|$ for $n \leq|h|^{-1}$ as in (14) since $\alpha / 2+1-p^{-1}>0$. Thus (18) is shown to be true for $n \leq|h|^{-1}$.

If $n>|h|^{-1}$, the summation of the terms for $k \leq|h|^{-1}$ in (16) has the same bound as in (18), and the summation of those for $|h|^{-1}<k \leq n$ is dealt with by the same way as in (15) to obtain its bound $c\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}|h|^{p^{-1}-m}=c\left\|\left\{b_{k}\right\}\right\|_{q^{\prime}}|h|$. Therefore (18) is verified for all n and h, and hence (11) is proved for $p^{-1}-1=m<\alpha / 2$.

If α is a nonnegative even integer, the two cases discussed above, i.e. $m-1<$ $p^{-1}-1<m$ and $p^{-1}-1=m$, are true for all $m \in \mathbb{N}=\{1,2,3, \ldots\}$, without the restriction $p^{-1}-1<\alpha / 2$.

The proof of Theorem 1.1 is completed.
Acknowledgments. The authors would like to thank the anonymous referees for their helpful comments and suggestions which have improved the original manuscript.

References

[1] R. Balasubramanian and R. Radha, Hardy-type inequalities for Hermite expansions, J. Inequal. in Pure and Appl. Math., 6 (2005), 1-4.
[2] L. Colzani and G. Travaglini, Hardy-Lorentz spaces and expansions in eigenfunctions of the Laplace-Beltrami operator on compact manifolds, Colloq. Math., 58 (1990), 305-316.
[3] P. L. Duren and A. L. Shields, Coefficient multipliers of H^{p} and B^{p} spaces, Pacific. J. Math., 32 (1970), 69-78.
[4] Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions, Bull. London Math. Soc., 29 (1997), 331-337.
[5] Y. Kanjin and K. Sato, Hardy-type inequalities for the generalized Mehler transform, Bull. of Yamagata Univ. Nat Sci., 17 (2013), 1-16.
[6] Y. Kanjin and K. Sato, Paley's inequality for the Jacobi expansions, Bull. London Math. Soc., 33 (2001), 483-491.
[7] Zh.-K. Li and Y.-H. Shi, Multipliers of Hardy spaces associated with generalized Hermite expansions, Constr. Approx., 39 (2014), 517-540.
[8] B. Osikiewicz, Multipliers of Hardy spaces, Quaestiones Math., 27 (2004), 57-73.
[9] R. Radha and S. Thangavelu, Hardy's inequalities for Hermite and Laguerre expansions, Proc. Amer. Math. Soc., 132 (2004), 3525-3536.
[10] M. Satake, Hardy's inequalities for Laguerre expansions, J. Math. Soc. Japan, 52 (2000), 17-24.
[11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.
[12] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[13] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., 23, Providence, RI, 1975.
[14] S. Thangavelu, On regularity of twisted spherical means and special Hermite expansion, Proc. Indian. Acad. Sci. Math. Sci., 103 (1993), 303-320.
[15] A. Uchiyama, Hardy Spaces on the Euclidean Space, Springer-Verlag, 2001.
[16] T. Walsh, The dual of $H^{p}\left(\mathbb{R}_{+}^{n+1}\right)$ for $p<1$, Can. J. Math., 25 (1973), 567-577.

Yehao Shi

Elementary Education College
Capital Normal University
Beijing 100048, China
E-mail: cnusyh@163.com

Zhongkai Li

Department of Mathematics Shanghai Normal University Shanghai 200234, China
E-mail: lizk@shnu.edu.cn

[^0]: 2010 Mathematics Subject Classification. Primary 42C10; Secondary 42B30, 42A45.
 Key Words and Phrases. Hardy space, multipliers, Laguerre expansion.
 Supported by the National Natural Science Foundation of China (No. 11371258), the Beijing Natural Science Foundation (No. 1122011).

