A class of almost $C_{0}(\mathcal{K})$-C*-algebras

By Junko Inoue, Ying-Fen Lin and Jean Ludwig

(Received Jan. 7, 2014)

Abstract

We consider in this paper the family of exponential Lie groups $G_{n, \mu}$, whose Lie algebra is an extension of the Heisenberg Lie algebra by the reals and whose quotient group by the centre of the Heisenberg group is an $a x+b$-like group. The C*-algebras of the groups $G_{n, \mu}$ give new examples of almost $C_{0}(\mathcal{K})$-C*-algebras.

1. Introduction and notations.

Let \mathcal{A} be a C^{*}-algebra and $\widehat{\mathcal{A}}$ be its unitary spectrum. The C^{*}-algebra $l^{\infty}(\widehat{\mathcal{A}})$ of all bounded operator fields defined over $\widehat{\mathcal{A}}$ is given by

$$
l^{\infty}(\widehat{\mathcal{A}}):=\left\{A=\left(A(\pi) \in \mathcal{B}\left(\mathcal{H}_{\pi}\right)\right)_{\pi \in \widehat{\mathcal{A}}} ;\|A\|_{\infty}:=\sup _{\pi}\|A(\pi)\|_{\mathrm{op}}<\infty\right\},
$$

where \mathcal{H}_{π} is the Hilbert space on which π acts. Let \mathcal{F} be the Fourier transform of \mathcal{A}, i.e.,

$$
\mathcal{F}(a):=\hat{a}:=(\pi(a))_{\pi \in \widehat{\mathcal{A}}} \quad \text { for } \quad a \in \mathcal{A} .
$$

It is an injective, hence isometric, homomorphism from \mathcal{A} into $l^{\infty}(\widehat{\mathcal{A}})$. Hence one can analyze the C^{*}-algebra \mathcal{A} by recognizing the elements of $\mathcal{F}(\mathcal{A})$ inside the (big) C^{*}-algebra $l^{\infty}(\widehat{\mathcal{A}})$.

We know that the unitary spectrum $\widehat{C^{*}(G)}$ of the C^{*}-algebra $C^{*}(G)$ of a locally compact group G can be identified with the unitary dual \widehat{G} of G. If G is an exponential Lie group, i.e., if the exponential mapping $\exp : \mathfrak{g} \rightarrow G$ from the Lie algebra \mathfrak{g} to its Lie group G is a diffeomorphism, then the Kirillov-Bernat-Vergne-Pukanszky-Ludwig-Leptin theory shows that there is a canonical homeomorphism $K: \mathfrak{g}^{*} / G \rightarrow \widehat{G}$ from the space of coadjoint orbits of G in the linear dual space \mathfrak{g}^{*} onto the unitary dual space \widehat{G} of G (see [LepLud] for details and references). In this case, one can therefore identify the unitary spectrum $\widehat{C^{*}(G)}$ of the C^{*}-algebra of an exponential Lie group with the space \mathfrak{g}^{*} / G of coadjoint orbits of the group G.

The C^{*}-algebra of an $a x+b$-like group was characterised in [LinLud] and the C^{*} algebras of the Heisenberg group and of the threadlike groups were described in $[\mathbf{L u T u}]$ as algebras of operator fields defined on the dual spaces of the groups. The method of

[^0]describing group C^{*}-algebras as algebras of operator fields defined on the dual spaces was first used in [Fell] and [Lee].

In this paper, we consider the exponential solvable Lie group $G_{n, \mu}$, whose Lie algebra is an extension of the Heisenberg Lie algebra \mathfrak{h}_{n} by the reals, which means that \mathbb{R} acts on \mathfrak{h}_{n} by a diagonal matrix with real eigenvalues. The quotient group of $G_{n, \mu}$ by the centre of the Heisenberg group is then an $a x+b$-like group, whose C*-algebra has been determined in [LinLud]. Since the orbit structure of exponential groups is well understood (see for instance $[\mathbf{A r L u S c}]$), we can write down the spectrum of the group $G_{n, \mu}$ explicitly and determine its topology.

In [ILL] the example of the group $N_{6,28}$ motivated the introduction of a special class of C^{*}-algebras which we called almost $C_{0}(\mathcal{K})$ - C^{*}-algebra, where \mathcal{K} is the algebra of all compact operators on some Hilbert space. In Section 2, we recall the definition and the properties of almost $C_{0}(\mathcal{K})$-C ${ }^{*}$-algebras. In Section 3 we introduce the family of the $G_{n, \mu}$ groups and describe the space of coadjoint orbits $\mathfrak{g}_{n, \mu}^{*} / G_{n, \mu}$. We show that the spectrum $\widehat{G_{n, \mu}}$ of $G_{n, \mu}$ is a disjoint union of the sets $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, where Γ_{0} is the set of the characters of $G_{n, \mu}, \Gamma_{1}$ and Γ_{2} are the sets of the representations corresponding to the two-dimensional coadjoint orbits of $G_{n, \mu}$, and Γ_{3} is the union of the two generic irreducible representations π_{+}, π_{-}which correspond to the two open orbits. Note that each of the sets Γ_{i} needs a special treatment. The sets Γ_{1} and Γ_{2} have been treated in the paper [LinLud]. In Subsection 4.2, we discover the almost $C_{0}(\mathcal{K})$ conditions for Γ_{3}. This is the most intricate part of the paper and the treatment is inspired by the study of the boundary condition for a class of 4 -dimensional orbits in [ILL, Subsection 6.3]. At the end (Subsection 4.4), we describe the actual C ${ }^{*}$-algebra of $G_{n, \mu}$ as an algebra of operator fields and we see that this C^{*}-algebra has the structure of an almost $C_{0}(\mathcal{K})$ - C^{*}-algebra.

2. Almost $C_{0}(\mathcal{K})-\mathrm{C}^{*}$-algebras.

The following definitions were given in [ILL]; for completeness, we recall them here.
Definition 2.1. Let A be a C^{*}-algebra and \widehat{A} be the spectrum of A.
(1) Suppose there exists a finite increasing family $S_{0} \subset S_{1} \subset \cdots \subset S_{d}=\widehat{A}$ of subsets of \widehat{A} such that for $i=1, \ldots, d$, the subsets $\Gamma_{0}=S_{0}$ and $\Gamma_{i}:=S_{i} \backslash S_{i-1}$ are Hausdorff in their relative topologies. Furthermore we assume that for every $i \in\{0, \ldots, d\}$ there exists a Hilbert space \mathcal{H}_{i} and a concrete realization $\left(\pi_{\gamma}, \mathcal{H}_{i}\right)$ of γ on the Hilbert space \mathcal{H}_{i} for every $\gamma \in \Gamma_{i}$. Note that the set S_{0} is the collection \mathfrak{X} of all characters of A.
(2) For a subset $S \subset \widehat{A}$, denote by $C B(S)$ the *-algebra of all uniformly bounded operator fields $\left(\psi(\gamma) \in \mathcal{B}\left(\mathcal{H}_{i}\right)\right)_{\gamma \in S \cap \Gamma_{i}, i=1, \ldots, d}$, which are operator norm continuous on the subsets $\Gamma_{i} \cap S$ for every $i \in\{1, \ldots, d\}$ for which $\Gamma_{i} \cap S \neq \emptyset$. We provide the *-algebra $C B(S)$ with the infinity-norm:

$$
\|\psi\|_{S}:=\sup _{\gamma \in S}\|\psi(\gamma)\|_{\mathrm{op}}
$$

Definition 2.2. Let \mathcal{H} be a Hilbert space and $\mathcal{K}:=\mathcal{K}(\mathcal{H})$ be the algebra of all compact operators defined on \mathcal{H}. A C ${ }^{*}$-algebra A is said to be almost $C_{0}(\mathcal{K})$ if for every
$a \in A$:
(1) The mappings $\gamma \mapsto \mathcal{F}(a)(\gamma)$ are norm continuous on the different sets Γ_{i}, where $\mathcal{F}: A \rightarrow l^{\infty}(\widehat{A})$ is the Fourier transform given by

$$
\mathcal{F}(a)(\gamma)=\widehat{a}(\gamma):=\pi_{\gamma}(a) \quad \text { for } \quad \gamma \in \widehat{A} \text { and } a \in A
$$

(2) For each $i=1, \ldots, d$, we have a sequence $\left(\sigma_{i, k}: C B\left(S_{i-1}\right) \rightarrow C B\left(S_{i}\right)\right)_{k}$ of linear mappings which are uniformly bounded in k (and independent of a) such that

$$
\lim _{k \rightarrow \infty} \operatorname{dis}\left(\left(\sigma_{i, k}\left(\mathcal{F}(a)_{\mid S_{i-1}}\right)-\mathcal{F}(a)_{\mid \Gamma_{i}}\right), C_{0}\left(\Gamma_{i}, \mathcal{K}\left(\mathcal{H}_{i}\right)\right)\right)=0
$$

and

$$
\lim _{k \rightarrow \infty} \operatorname{dis}\left(\left(\sigma_{i, k}\left(\mathcal{F}(a)_{\mid S_{i-1}}^{*}\right)-\mathcal{F}\left(a^{*}\right)_{\mid \Gamma_{i}}\right), C_{0}\left(\Gamma_{i}, \mathcal{K}\left(\mathcal{H}_{i}\right)\right)\right)=0
$$

where $C_{0}\left(\Gamma_{i}, \mathcal{K}\left(\mathcal{H}_{i}\right)\right)$ is the space of all continuous mappings $\varphi: \Gamma_{i} \rightarrow \mathcal{K}\left(\mathcal{H}_{i}\right)$ vanishing at infinity.

Definition 2.3. Let $D^{*}(A)$ be the set of all operator fields φ defined over \widehat{A} such that
(1) The field φ is uniformly bounded, i.e., we have that $\|\varphi\|:=\sup _{\gamma \in \widehat{A}}\|\varphi(\gamma)\|_{\mathrm{op}}<\infty$.
(2) $\varphi_{\mid \Gamma_{i}} \in C B\left(\Gamma_{i}\right)$ for every $i=0,1, \ldots, d$.
(3) For every sequence $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ going to infinity in \widehat{A}, we have that $\lim _{k \rightarrow \infty}\left\|\varphi\left(\gamma_{k}\right)\right\|_{\mathrm{op}}=$ 0.
(4) For each $i=1,2, \ldots, d$,

$$
\lim _{k \rightarrow \infty} \operatorname{dis}\left(\left(\sigma_{i, k}\left(\varphi_{\mid S_{i-1}}\right)-\varphi_{\mid \Gamma_{i}}\right), C_{0}\left(\Gamma_{i}, \mathcal{K}\left(\mathcal{H}_{i}\right)\right)\right)=0
$$

and

$$
\lim _{k \rightarrow \infty} \operatorname{dis}\left(\left(\sigma_{i, k}\left(\varphi_{\mid S_{i-1}}^{*}\right)-\left(\varphi_{\mid \Gamma_{i}}\right)^{*}\right), C_{0}\left(\Gamma_{i}, \mathcal{K}\left(\mathcal{H}_{i}\right)\right)\right)=0
$$

We see immediately that if A is almost $C_{0}(\mathcal{K})$, then for every $a \in A$, the operator field $\mathcal{F}(a)$ is contained in the set $D^{*}(A)$. In fact it turns out that $D^{*}(A)$ is a C^{*}-subalgebra of $l^{\infty}(\widehat{A})$ and that A is isomorphic to $D^{*}(A)$.

Theorem 2.4 ([ILL, Theorem 2.6]). Let A be a separable C^{*}-algebra which is almost $C_{0}(\mathcal{K})$. Then the subset $D^{*}(A)$ of the C^{*}-algebra $l^{\infty}(\widehat{A})$ is a C^{*}-subalgebra which is isomorphic to A under the Fourier transform.

3. The groups $G_{n, \mu}$.

Let $n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}, V_{n}=\mathbb{R}^{2 n}$ and denote by ω_{n} the canonical non-degenerate skew-symmetric bilinear form on V_{n}. Let

$$
\mathfrak{h}_{n}:=V_{n} \oplus \mathbb{R} .
$$

Choose a symplectic basis $\mathcal{B}:=\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}$ of V_{n}. Let

$$
\mathfrak{g}_{n, \mu}:=\mathbb{R} \times \mathfrak{h}_{n} \text { and } A=\left(1,0_{V_{n}}, 0\right), Z=\left(0,0_{V_{n}}, 1\right) \in \mathfrak{g}_{n, \mu} .
$$

Then $\left\{A, X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z\right\}$ is a basis of $\mathfrak{g}_{n, \mu}$. For

$$
\mu:=\left\{\lambda_{1}, \lambda_{1}^{\prime}, \ldots, \lambda_{n}, \lambda_{n}^{\prime}\right\} \subset \mathbb{R}
$$

with $\lambda_{i}+\lambda_{i}^{\prime}=2$ for all $i=1, \ldots, n$, we define the brackets

$$
\left[A, X_{i}\right]=\lambda_{i} X_{i},\left[A, Y_{i}\right]=\lambda_{i}^{\prime} Y_{i},[A, Z]=2 Z \text { for all } i=1, \ldots, n
$$

and

$$
\left[X_{i}, Y_{j}\right]=\delta_{i, j} Z \quad \text { for } \quad i, j=1, \ldots, n
$$

Eventually by exchanging X_{j} and Y_{j} and replacing X_{j} by $-X_{j}$ we can assume that $\lambda_{j}^{\prime} \geq 0$ for all j. We then obtain a structure of an exponential solvable Lie algebra on $\mathfrak{g}_{n, \mu}$, and its subalgebra \mathfrak{h}_{n} is the Heisenberg Lie algebra.

Define the diagonal operator $l_{\mu}: V_{n} \rightarrow V_{n}$ by

$$
l_{\mu}(v):=\sum_{i} \lambda_{i} v_{i} X_{i}+\lambda_{i}^{\prime} v_{i}^{\prime} Y_{i} \quad \text { for } \quad v=\sum_{i=1}^{n} v_{i} X_{i}+\sum_{i=1}^{n} v_{i}^{\prime} Y_{i} \in V_{n}
$$

For $v=\sum_{i=1}^{n} v_{i} X_{i}+v_{i}^{\prime} Y_{i} \in V_{n}$ and $a \in \mathbb{R}$, we write

$$
a \cdot v:=\sum_{i=1}^{n} e^{a \lambda_{i}} v_{i} X_{i}+e^{a \lambda_{i}^{\prime}} v_{i}^{\prime} Y_{i}
$$

The corresponding simply connected Lie group $G_{n, \mu}$, which is exponential solvable, can be identified with the space $\mathbb{R} \times V_{n} \times \mathbb{R}$ equipped with the multiplication

$$
\begin{equation*}
(a, v, c) \cdot\left(a^{\prime}, v^{\prime}, c^{\prime}\right):=\left(a+a^{\prime},\left(-a^{\prime}\right) \cdot v+v^{\prime}, e^{-2 a^{\prime}} c+c^{\prime}+\frac{1}{2} \omega_{n}\left(\left(-a^{\prime}\right) \cdot v, v^{\prime}\right)\right) \tag{3.0.1}
\end{equation*}
$$

The inner automorphism $\operatorname{Ad}(a, u)$ on \mathfrak{h}_{n} is given by

$$
\begin{aligned}
\operatorname{Ad}(a, u)(0, v, z) & =(a, u, 0)(0, v, z)(-a,-(a \cdot u), 0) \\
& =(a, 0,0)(0, u, 0)(0, v, z)(0,-u, 0)(-a, 0,0) \\
& =(a, 0,0)\left(0, v, z+\omega_{n}(u, v)\right)(-a, 0,0) \\
& =\left(0, a \cdot v, e^{2 a} z+e^{2 a} \omega_{n}(u, v)\right) \quad \text { for } \quad(v, z) \in \mathfrak{h}_{n} .
\end{aligned}
$$

The centre \mathcal{Z} of the normal subgroup $H_{n}:=\{0\} \times V_{n} \times \mathbb{R}$ of $G_{n, \mu}$ is the subset $\mathcal{Z}=$ $\exp (\mathbb{R} Z)=\{0\} \times\left\{0_{V_{n}}\right\} \times \mathbb{R}$. Denote by $G_{V_{n}}$ the quotient group $G_{n, \mu} / \mathcal{Z}$ which can be identified with $\mathbb{R} \times V_{n}$ equipped with the multiplication

$$
(s, v) \cdot(t, w):=(s+t,(-t) \cdot v+w)
$$

We write $V_{n}=V_{0} \oplus V_{+} \oplus V_{-}=V_{0} \oplus V_{1}$, where

$$
\begin{aligned}
V_{+} & :=\operatorname{span}\left\{X_{j}, Y_{k} ; \lambda_{j}>0, \lambda_{k}^{\prime}>0\right\}, \\
V_{-} & :=\operatorname{span}\left\{X_{j} ; \lambda_{j}<0\right\}, \\
V_{0} & :=\operatorname{span}\left\{X_{j}, Y_{k} ; \lambda_{j}=0, \lambda_{k}^{\prime}=0\right\},
\end{aligned}
$$

and $V_{1}:=V_{+} \oplus V_{-}$. Let

$$
\mu_{+}:=\mu \cap \mathbb{R}_{+}^{*}, \mu_{-}:=\mu \cap \mathbb{R}_{-}^{*}, \mu_{0}:=\mu \cap\{0\},
$$

then we can write

$$
V_{+}=\sum_{\lambda \in \mu_{+}} V_{+, \lambda} \quad \text { and } \quad V_{-}=\sum_{\lambda \in \mu_{-}} V_{-, \lambda},
$$

where $V_{+, \lambda}$ and $V_{-, \lambda}$ are the respective eigenspaces of the operator l_{μ}.
We can also identify $\mathfrak{g}_{n, \mu}^{*}$ with $\mathbb{R} A^{*} \oplus V_{n}^{*} \oplus \mathbb{R} Z^{*} \simeq \mathbb{R} \times V_{n} \times \mathbb{R}$, and then

$$
\begin{aligned}
\left\langle\operatorname{Ad}^{*}(a, u)\left(a^{*}, v^{*}, \lambda^{*}\right),(0, v, z)\right\rangle & =\left\langle\left(a^{*}, v^{*}, \lambda^{*}\right), \operatorname{Ad}\left((a, u)^{-1}\right)(0, v, z)\right\rangle \\
& =\left\langle\left(a^{*}, v^{*}, \lambda^{*}\right),\left(0,(-a) \cdot v, e^{-2 a} z+e^{-2 a} \omega_{n}(-(a \cdot u), v)\right)\right\rangle \\
& =\left\langle 0, v^{*},(-a) \cdot v\right\rangle+\lambda^{*} e^{-2 a} z+\lambda^{*} e^{-2 a} \omega_{n}(-(a \cdot u), v) .
\end{aligned}
$$

Hence

$$
\operatorname{Ad}^{*}(a, u)\left(a^{*}, v^{*}, \lambda^{*}\right)_{\mid \mathfrak{h}_{n}}=\left(a^{*},(-a) \cdot v^{*}-\lambda^{*} e^{-2 a}(a \cdot u) \times \omega_{n}, \lambda^{*} e^{-2 a}\right) .
$$

Here we denote by $u \times \omega_{n}$ the linear functional on V_{n} as

$$
u \times \omega_{n}(v):=\omega_{n}(u, v) \quad \text { for all } \quad v \in V_{n} .
$$

The coadjoint orbit Ω_{ℓ} of an element $\ell=\left(a^{*}, v^{*}, \lambda^{*}\right) \in \mathfrak{g}_{n, \mu}^{*}$ is given by
$\Omega_{\ell}=\left\{\left(a^{*}+v^{*}([A, u])+2 z \lambda^{*},(-a) \cdot v^{*}-\lambda^{*} e^{-2 a}(a \cdot u) \times \omega_{n}, \lambda^{*} e^{-2 a}\right): a, z \in \mathbb{R}, u \in V_{n}\right\}$.
Hence if $\lambda^{*} \neq 0$ then the corresponding coadjoint orbit is the subset

$$
\Omega_{\lambda^{*}}=\mathbb{R} \times V_{n}^{*} \times \mathbb{R}_{+}^{*} \lambda^{*}
$$

where V_{n}^{*} is the linear dual space of V_{n}. Therefore we have two open coadjoint orbits

$$
\begin{equation*}
\Omega_{\varepsilon}:=\operatorname{Ad}^{*}\left(G_{n, \mu}\right) \ell_{\varepsilon}=\mathbb{R} \times V_{n}^{*} \times \mathbb{R}_{\varepsilon}^{*} \quad \text { for } \quad \varepsilon \in\{+,-\} \tag{3.0.2}
\end{equation*}
$$

where $\ell_{\varepsilon}=\varepsilon Z^{*}$. The other orbits are contained in Z^{\perp} with the form

$$
\Omega_{v^{*}}=\mathbb{R} A^{*}+\mathbb{R} \cdot v^{*} \text { for } v^{*} \in V_{n}^{*} \backslash V_{0}^{*}
$$

or the one point orbits

$$
\left\{a^{*} A^{*}+v^{*}\right\} \quad \text { for } \quad a^{*} \in \mathbb{R}, v^{*} \in V_{0}^{*}
$$

We can decompose the linear dual space V_{n}^{*} of V_{n} into

$$
\begin{aligned}
V_{+}^{*} & :=\left\{f \in V_{n}^{*}: f\left(V_{-} \cup V_{0}\right)=\{0\}\right\}, \\
V_{-}^{*} & :=\left\{f \in V_{n}^{*}: f\left(V_{+} \cup V_{0}\right)=\{0\}\right\}, \\
V_{0}^{*} & :=\left\{f \in V_{n}^{*}: f\left(V_{+} \cup V_{-}\right)=\{0\}\right\} .
\end{aligned}
$$

The following definition was given in [LinLud2].
Definition 3.1. Denote by $\|\cdot\|$ the norm on V_{n}^{*} coming from the scalar product defined by the basis $\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}$. For $f_{+}=\sum_{\lambda \in \mu_{+}} f_{\lambda} \in V_{+}^{*}$ and $f_{-}=$ $\sum_{\lambda \in \mu_{-}} f_{\lambda} \in V_{-}^{*}$, let

$$
\left|f_{+}\right|_{\mu}=\left|f_{+}\right|:=\max _{\lambda_{j} \in \mu_{+}}\left\|f_{\lambda_{j}}\right\|^{1 / \lambda_{j}} \text { and }\left|f_{-}\right|_{\mu}=\left|f_{-}\right|:=\max _{\lambda_{j} \in \mu_{-}}\left\|f_{\lambda_{j}}\right\|^{-1 / \lambda_{j}} .
$$

Then for $t \in \mathbb{R}$, we have the relation

$$
\begin{equation*}
\left|t \cdot f_{+}\right|=e^{t}\left|f_{+}\right| \text {and }\left|t \cdot f_{-}\right|=e^{-t}\left|f_{-}\right| \text {for } f_{+} \in V_{+}^{*}, f_{-} \in V_{-}^{*} \tag{3.0.3}
\end{equation*}
$$

On V_{0}^{*} we shall use the norm coming from the scalar product. This gives us a global gauge on V_{n}^{*} :

$$
\left|\left(f_{0}, f_{+}, f_{-}\right)\right|:=\max \left\{\left\|f_{0}\right\|,\left|f_{+}\right|,\left|f_{-}\right|\right\}
$$

We denote by $V_{\text {gen }}^{*}$ the open subset of V_{n}^{*} consisting of all the $f=\left(f_{0}, f_{+}, f_{-}\right) \in$ $V_{0}^{*} \times V_{+}^{*} \times V_{-}^{*}$ for which $f_{+} \neq 0$ and $f_{-} \neq 0$. The subset $V_{\text {sin }}^{*}$ consists of all the $f=\left(f_{0}, f_{+}, f_{-}\right)$for which either $f_{+} \neq 0, f_{-}=0$ or $f_{+}=0, f_{-} \neq 0$. We see that for every $f=\left(f_{0}, f_{+}, f_{-}\right) \in V_{\text {gen }}^{*}$ there exists exactly one element $f^{\prime}=\left(f_{0}, f_{+}^{\prime}, f_{-}^{\prime}\right)$ in its $G_{n, \mu}$-orbit such that $\left|f_{+}^{\prime}\right|=\left|f_{-}^{\prime}\right|$. In the same way, for $f=\left(f_{0}, f_{+}, 0\right)$ (resp. $\left.f=\left(f_{0}, 0, f_{-}\right)\right) \in V_{\text {sin }}^{*}$, there exists exactly one element $f^{\prime}=\left(f_{0}, f_{+}^{\prime}, 0\right)$ (resp. $f^{\prime}=\left(f_{0}, 0, f_{-}^{\prime}\right)$) in its $G_{n, \mu}$-orbit for which $\left|f_{+}^{\prime}\right|=1$ (resp. $\left|f_{-}^{\prime}\right|=1$).

For $f_{+} \in V_{+}^{*} \backslash\{0\}$, let us denote by $r\left(f_{+}\right)$the unique real number for which the vector $r\left(f_{+}\right) \cdot f_{+}$in V_{+}^{*} has gauge 1 . This means that

$$
r\left(f_{+}\right):=-\ln \left(\left|f_{+}\right|\right)
$$

Similarly, for $f_{-} \in V_{-}^{*} \backslash\{0\}$ we define the number $q\left(f_{-}\right)$by

$$
q\left(f_{-}\right):=\ln \left(\left|f_{-}\right|\right)
$$

such that $\left|q\left(f_{-}\right) \cdot f_{-}\right|=1$. Let

$$
\begin{gathered}
\mathcal{D}=\left\{\left(f_{0}, f_{+}, f_{-}\right):\left|f_{+}\right|=\left|f_{-}\right| \neq 0\right\} \\
\mathcal{S}_{+}=\left\{\left(f_{0}, f_{+}, 0\right):\left|f_{+}\right|=1\right\}, \quad \mathcal{S}_{-}=\left\{\left(f_{0}, 0, f_{-}\right):\left|f_{-}\right|=1\right\}, \text { and } \\
\mathcal{S}=\mathcal{S}_{+} \cup \mathcal{S}_{-}
\end{gathered}
$$

The orbit space $\mathfrak{g}_{n, \mu}^{*} / G_{n, \mu}$ can then be written as the disjoint union Γ of the sets

$$
\begin{aligned}
& \Gamma_{0}=\mathbb{R} \times V_{0}^{*}, \text { corresponding to the unitary characters of } G_{n, \mu} \\
& \Gamma_{1}=\mathcal{S} \simeq V_{\text {sin }}^{*} / G_{n, \mu} \\
& \Gamma_{2}=\mathcal{D} \simeq V_{\text {gen }}^{*} / G_{n, \mu} \\
& \Gamma_{3}=\{+,-\} \simeq\left\{\Omega_{+}, \Omega_{-}\right\} / G_{n, \mu}
\end{aligned}
$$

in the case where $V_{g e n}^{*} \neq \emptyset$, i.e., $\mu_{+} \neq \emptyset$ and $\mu_{-} \neq \emptyset$. In case $V_{g e n}^{*}=\emptyset$, we have Γ as the union of

$$
\begin{aligned}
& \Gamma_{0}=\mathbb{R} \times V_{0}^{*}, \text { corresponding to the unitary characters of } G_{n, \mu} \\
& \Gamma_{1}=\mathcal{S} \simeq V_{\sin }^{*} / G_{n, \mu} \\
& \Gamma_{2}=\{+,-\} \simeq\left\{\Omega_{+}, \Omega_{-}\right\} / G_{n, \mu}
\end{aligned}
$$

In order to simplify notations, we shall treat only the first case in the following, i.e., we shall assume that $V_{g e n}^{*}$ is nonempty. The other case is similar and easier.

The topology of the orbit space $\mathfrak{g}_{V_{n}}^{*} / G_{V_{n}}$ of the quotient group $G_{n, \mu} / \mathcal{Z}$ has been described in $[\mathbf{L i n L u d}]$. We recall that a sequence $y=\left(y_{k}\right)_{k}$ is called properly converging if y has limit points and if every cluster point of the sequence is a limit point, i.e., the set of limit points of any subsequence is always the same, indeed, it equals to the set of all limit points of the sequence y.

Theorem 3.2 ([LinLud, Theorem 2.3]).
(1) A properly converging sequence $\left(\Omega_{f_{k}}\right)_{k}$ with $f_{k}=\left(f_{k, 0}, f_{k_{+}}, f_{k_{-}}\right) \in \mathcal{D}$ has either a unique limit point Ω_{f} for some $f \in \mathcal{D}$ and then $f=\lim _{k} f_{k}$, or $\lim _{k}\left(f_{k_{+}}, f_{k_{-}}\right)=0$ and then the limit set L of the sequence is given by

$$
L=\left\{\Omega_{\left(f_{0}, f_{+}, 0\right)}, \Omega_{\left(f_{0}, 0, f_{-}\right)}, \mathbb{R}\right\}
$$

where $f_{0}=\lim _{k} f_{k, 0}, f_{+}=\lim _{k} r\left(f_{k_{+}}\right) \cdot f_{k_{+}} \in \mathcal{S}_{+}$and $f_{-}=\lim _{k} q\left(f_{k_{-}}\right) \cdot f_{k_{-}} \in \mathcal{S}_{-}$.
(2) A properly converging sequence $\left(\Omega_{f_{k}}\right)$ with $f_{k}=\left(f_{k, 0}, f_{k_{+}}, f_{k_{-}}\right) \in \mathcal{S}$ has the limit set

$$
L=\left\{\Omega_{f}, \mathbb{R}\right\}
$$

where $f=\lim _{k} f_{k} \in \mathcal{S}$.
Corollary 3.3. The orbit Ω_{f} for $f \in \mathcal{D}$ is closed in $\mathfrak{g}_{n, \mu}^{*}$. The closure of the orbit Ω_{f} for $f \in \mathcal{S}$ is the set $\left\{\Omega_{f}, \mathbb{R}\right\}$.

From the description (3.0.2) of the open orbits $\Omega_{\varepsilon}, \varepsilon= \pm$, we have the boundary of Ω_{ε} as the following.

Corollary 3.4. For $\varepsilon \in\{+,-\}$, the boundary of the open orbit Ω_{ε} is the subset $\mathbb{R} \times V_{n}^{*} \times\{0\}=Z^{\perp} \simeq \mathfrak{g}_{V_{n}}^{*}$.

On the other hand, for every coadjoint orbit we can write down a corresponding irreducible representation as an induced representation by using Kirillov's orbit theory.
(1) Let $P_{n}=\exp \left(\sum_{j=1}^{n} \mathbb{R} Y_{j}+\mathbb{R} Z\right)$. This is a closed connected normal abelian subgroup of $G_{n, \mu}$. Let also $\mathfrak{x}_{n}:=\sum_{j=1}^{n} \mathbb{R} X_{j}$ and $\mathfrak{y}_{n}:=\sum_{j=1}^{n} \mathbb{R} Y_{j} \subset V_{n}$ (an abelian subalgebra of $\left.\mathfrak{g}_{n, \mu}\right)$, then $\mathcal{X}_{n}:=\exp \left(\mathfrak{x}_{n}\right)$ and $\mathcal{Y}_{n}=\exp \left(\mathfrak{y}_{n}\right)$ are closed connected abelian subgroups of $G_{n, \mu}$. We have

$$
G_{n, \mu}=\exp (\mathbb{R} A) \cdot \mathcal{X}_{n} \cdot P_{n}=S_{n} \cdot P_{n}
$$

where $S_{n}:=\exp (\mathbb{R} A) \cdot \mathcal{X}_{n}$ is a subgroup of $G_{n, \mu}$. The irreducible representations $\pi_{\varepsilon}, \varepsilon= \pm$, corresponding to the orbits Ω_{ε} are of the form

$$
\pi_{\varepsilon}:=\operatorname{ind}_{P_{n}}^{G_{n, \mu}} \chi_{\varepsilon Z^{*}}
$$

The Hilbert space of π_{ε} is the L^{2}-space $L^{2}\left(G_{n, \mu} / P_{n}, \chi_{\varepsilon}\right) \simeq L^{2}\left(S_{n}\right)$, where $\chi_{\varepsilon}(y, z):=$ $e^{-i 2 \pi \varepsilon z}$ for $(y, z) \in P_{n}$. The elements of this space are the measurable functions $\xi: G_{n, \mu} \rightarrow \mathbb{C}$ satisfying the relations

$$
\begin{gathered}
\xi(g p)=\chi_{\varepsilon}\left(p^{-1}\right) \xi(g) \text { for } g \in G_{n, \mu}, p \in P_{n}, \text { and } \\
\int_{G_{n, \mu} / P_{n}}|\xi(g)|^{2} d \dot{g}<\infty,
\end{gathered}
$$

where $d \dot{g}$ is the left invariant measure on $G_{n, \mu} / P_{n}$. For $F \in L^{1}\left(G_{n, \mu}\right)$ and $\xi \in$ $L^{2}\left(G_{n, \mu} / P_{n}\right)$, we have

$$
\begin{aligned}
\pi_{\varepsilon}(F) \xi\left(s^{\prime}\right) & =\int_{S_{n} P_{n}} F(s p) \xi\left(p^{-1} s^{-1} s^{\prime}\right) d s d p \\
& =\int_{S_{n} P_{n}} F\left(s^{\prime} s p\right) \xi\left(p^{-1} s^{-1}\right) d s d p
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{S_{n} P_{n}} F\left(s^{\prime} s^{-1} p\right) \Delta_{S_{n}}\left(s^{-1}\right) \xi\left(p^{-1} s\right) d s d p \\
& =\int_{S_{n} P_{n}} F\left(s^{\prime} s^{-1} p\right) \Delta_{S_{n}}\left(s^{-1}\right) \xi\left(s\left(s^{-1} p^{-1} s\right)\right) d s d p \\
& =\int_{S_{n} P_{n}} F\left(s^{\prime} s^{-1} p\right) \Delta_{S_{n}}\left(s^{-1}\right) \chi_{\varepsilon}\left(s^{-1} p s\right) \xi(s) d s d p \\
& =\int_{S_{n} P_{n}} F\left(s^{\prime} s^{-1} p\right) \Delta_{S_{n}}\left(s^{-1}\right) e^{-i 2 \pi \operatorname{Ad}^{*}(s) \ell_{\varepsilon}(\log (p))} \xi(s) d s d p \\
& =\int_{S_{n}} \widehat{F}^{\mathfrak{p}_{n}}\left(s^{\prime} s^{-1} ; \operatorname{Ad}^{*}(s) l_{\varepsilon}\right) \xi(s) \Delta_{S_{n}}\left(s^{-1}\right) d s
\end{aligned}
$$

Here $\widehat{F}^{\mathfrak{p}_{n}}$ is the partial Fourier transform of F in the direction P_{n} given by

$$
\widehat{F}^{\mathfrak{p}_{n}}(s ; \ell):=\int_{P_{n}} F(s p) e^{-i 2 \pi\langle\ell, \log (p)\rangle} d p \text { for } s \in S_{n}, \ell \in \mathfrak{p}_{n}^{*}
$$

Hence the operator $\pi_{\varepsilon}(F)$ is given by the kernel function

$$
F_{\varepsilon}\left(\left(a^{\prime}, x^{\prime}\right),(a, x)\right)=\widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right) ;\left(-\varepsilon e^{-2 a}(a \cdot x) \times \omega_{n}, \varepsilon e^{-2 a}\right)\right) e^{|\lambda| a}
$$

where $|\lambda|:=\sum_{j=1}^{n} \lambda_{j}$. In fact the linear functional $\varepsilon e^{-2 a}(a \cdot x) \times \omega_{n}$ is given by

$$
\varepsilon e^{-2 a}(a \cdot x) \times \omega_{n}=\varepsilon\left(\sum_{j=1}^{n} e^{\left(\lambda_{j}-2\right) a} x_{j} Y_{j}^{*}\right) \text { for } a \in \mathbb{R}, x \in \mathcal{X}_{n} .
$$

Therefore,

$$
F_{\varepsilon}\left(\left(a^{\prime}, x^{\prime}\right),(a, x)\right)=\widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right) ;\left(-\varepsilon\left(\sum_{j=1}^{n} e^{\left(\lambda_{j}-2\right) a} x_{j} Y_{j}^{*}\right), \varepsilon e^{-2 a}\right)\right) e^{|\lambda| a}
$$

(2) For $v^{*} \in V_{n}^{*}$, we have the irreducible representation $\pi_{v^{*}}$ on $L^{2}(\mathbb{R})$ defined by

$$
\pi_{v^{*}}:=\operatorname{ind}_{H_{n}}^{G_{n, \mu}} \chi_{v^{*}},
$$

where $H_{n}:=\exp \left(\mathfrak{h}_{n}\right)$. The kernel function $F_{v^{*}}$ of the operator $\pi_{v^{*}}(F), F \in L^{1}\left(G_{n, \mu}\right)$, is given by

$$
\begin{equation*}
F_{v^{*}}(a, b)=\widehat{F}^{\mathfrak{h}_{n}}\left(a-b, b \cdot v^{*}, 0\right) \quad \text { for } \quad a, b \in \mathbb{R} \tag{3.0.4}
\end{equation*}
$$

(3) Finally, for $\left(a^{*}, v_{0}^{*}\right) \in \mathbb{R} \times V_{0}^{*}$ we have the unitary characters

$$
\chi_{\left(a^{*}, v_{0}^{*}\right)\left(a, v_{0}, v, c\right)}:=e^{-2 \pi i\left(a^{*} a+v_{0}^{*}\left(v_{0}\right)\right)} \text { for } a, c \in \mathbb{R}, v_{0} \in V_{0}, v \in V_{1} .
$$

Definition 3.5. We denote by $l^{\infty}(\Gamma)$ the C^{*}-algebra

$$
l^{\infty}(\Gamma)=\left\{\left(\phi(\gamma) \in \mathcal{B}\left(\mathcal{H}_{\gamma}\right)\right)_{\gamma \in \Gamma} ;\|\phi\|:=\sup _{\gamma \in \Gamma}\|\phi(\gamma)\|_{\mathrm{op}}<\infty\right\} .
$$

The Fourier transform $\mathcal{F}_{n, \mu}: C^{*}\left(G_{n, \mu}\right) \rightarrow l^{\infty}(\Gamma)$ for $C^{*}\left(G_{n, \mu}\right)$ is given by

$$
\begin{aligned}
\mathcal{F}_{n, \mu}(a)(\varepsilon)=\widehat{a}(\varepsilon):= & \pi_{\varepsilon}(a) \text { for } \varepsilon \in\{+,-\}, \\
\mathcal{F}_{n, \mu}(a)(f)=\widehat{a}(f):= & \pi_{f}(a) \text { for } f \in \mathcal{D} \cup \mathcal{S}, \\
\mathcal{F}_{n, \mu}(a)\left(a^{*}, v_{0}^{*}\right):= & \chi_{\left(a^{*}, v_{0}^{*}\right)}(a) \text { for }\left(a^{*}, v_{0}^{*}\right) \in \mathbb{R} \times V_{0}^{*}, \\
& \left(=\int_{\mathbb{R} \times V_{0} \times V \times \mathbb{R}} F\left(s, v_{0}, v_{1}, z\right) e^{-i 2 \pi a^{*} s} e^{-i 2 \pi v_{0}^{*}\left(v_{0}\right)} d s d v_{0} d v_{1} d z\right. \\
& \left.\quad \text { for } F \in L^{1}\left(G_{n, \mu}\right)\right) .
\end{aligned}
$$

4. The C^{*}-conditions.

4.1. The continuity and infinity conditions.

Theorem 4.1. For every $a \in C^{*}\left(G_{n, \mu}\right)$, the mapping

$$
\mathcal{S} \cup \mathcal{D} \mapsto \mathcal{B}\left(L^{2}(\mathbb{R})\right): f \mapsto \widehat{a}(f),
$$

is norm continuous. We also have that

$$
\lim _{\substack{|f| \rightarrow \infty \\ f \in \mathcal{D}}}\left\|\pi_{f}(a)\right\|_{\mathrm{op}}=0
$$

Proof. See [LinLud, Proposition 4.2].

4.2. The condition for the open orbits Ω_{ε}.

To understand the case of open orbits, we have to take into account the boundary points of such an orbit. It is well known that for $a \in C^{*}(G)$ the operator $\pi_{\varepsilon}(a)$ is compact if and only if $\pi(a)=0$ for every π in the boundary of the representation π_{ε}, i.e., if $\pi_{\gamma}(a)=0$ for every $\gamma \in \Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$. In this subsection we shall give a description of the algebra of operators $\pi_{\varepsilon}\left(C^{*}\left(G_{n, \mu}\right)\right)$.

Definition 4.2. For $k \in \mathbb{Z}$ and $r \in \mathbb{R}$, let $I_{r, k}$ be the half-open interval:

$$
I_{r, k}:=[k r, k r+r[\subset \mathbb{R} .
$$

(1) Let $S_{\delta, 1}:=\left\{(a, x) \in \mathbb{R} \times \mathcal{X}_{n} ; e^{-a}>\delta^{3}\right\}$.
(2) Let $\delta \mapsto r_{\delta} \in \mathbb{R}_{+}$be such that $\lim _{\delta \rightarrow 0} r_{\delta}=+\infty$ and $\lim _{\delta \rightarrow 0} e^{m r_{\delta}} \delta^{1 / 2}=0$, where $1 \leq m:=\max _{j}\left(2-\lambda_{j}\right)$.
(3) For constants $D=\left(D_{1}, \ldots, D_{n}\right) \in\left(\mathbb{R}_{+}^{*}\right)^{n}$ and $\underline{k}=\left(k_{0}, k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n+1}$, let

$$
\begin{aligned}
& S_{\delta, D, \underline{k}, 2}:=\left\{\left(a, x_{1}, \ldots, x_{n}\right) \in \mathbb{R} \times \mathcal{X}_{n} ; e^{-a} \leq \delta^{3},\right. \\
& \\
& \left.\quad a \in I_{r_{\delta}, k_{0}}, x_{j} \in I_{D_{j} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right) k_{0}}, k_{j}}, j=1, \ldots, n\right\} .
\end{aligned}
$$

Proposition 4.3. For every compact subset $K \subseteq \mathbb{R} \times \mathcal{X}_{n}$ and $\delta>0$ small enough, we have that

$$
K S_{\delta, D, \underline{k}, 2} \subset \bigcup_{\substack{j_{0} \in \mathbb{Z} \\\left|j_{0}\right| \leq 1}} S_{\delta, D_{\delta, j_{0}}, \underline{k}, 2}=: R_{\delta, D, \underline{k}, 2}
$$

where $D_{\delta, j_{0}}=\left(D_{1} e^{-r_{\delta}\left(2-\lambda_{1}\right)\left(j_{0}\right)}, \ldots, D_{n} e^{-r_{\delta}\left(2-\lambda_{n}\right)\left(j_{0}\right)}\right) \in\left(\mathbb{R}_{+}^{*}\right)^{n}$.
Proof. Indeed, there is an $M>0$ such that $K \subset[-M, M]^{n+1} \subset \mathbb{R}^{n+1}$. Let $r_{\delta}>M$. For $(s, u) \in K$ and $(a, x) \in S_{\delta, D, \underline{k}, 2}$, it follows that

$$
\zeta:=(s, u) \cdot(a, x)=(s+a,(-a) \cdot u+x),
$$

and $\left(k_{0}+j_{0}\right) r_{\delta} \leq s+a<\left(k_{0}+j_{0}+1\right) r_{\delta}$ for some $k_{0} \in \mathbb{Z}$ and $j_{0} \in\{-1,0,1\}$. Furthermore

$$
\begin{aligned}
\left|e^{-a \lambda_{j}} u_{j}\right| & =\left|u_{j}\right| e^{-2 a} e^{\left(2-\lambda_{j}\right) a} \\
& \leq M e^{-2 a} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(k_{0}+1\right)} \\
& \leq D_{j} \delta^{2} e^{-r_{\delta}\left(2-\lambda_{j}\right) j_{0}} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(k_{0}+j_{0}\right)}
\end{aligned}
$$

since for δ small enough $M e^{-2 a} e^{r_{\delta}\left(2-\lambda_{j}\right)} \leq M \delta^{6} e^{r_{\delta}\left(2-\lambda_{j}\right)}<D_{j} \delta^{2}$ for every j. Hence

$$
\begin{aligned}
x_{j}+e^{-a \lambda_{j}} u_{j} & <\left(k_{j}+1\right) D_{j} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(-j_{0}\right)} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(k_{0}+j_{0}\right)}+e^{-a \lambda_{j}} u_{j} \\
& <\left(k_{j}+2\right) D_{j} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(-j_{0}\right)} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(k_{0}+j_{0}\right)},
\end{aligned}
$$

and also

$$
\begin{aligned}
x_{j}+e^{-a \lambda_{j}} u_{j} & \geq k_{j} D_{j} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(-j_{0}\right)} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(k_{0}+j_{0}\right)}-e^{-a \lambda_{j}}\left|u_{j}\right| \\
& \geq\left(k_{j}-1\right) D_{j} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(-j_{0}\right)} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right)\left(k_{0}+j_{0}\right)} .
\end{aligned}
$$

Therefore ζ is contained in the set $R_{\delta, D, \underline{k}, 2}$.

Remark 4.4.

(1) The family of sets $\left\{S_{\delta, 1}, S_{\delta, D, k, 2} ; \delta>0, \underline{k} \in \mathbb{Z}^{n+1}\right\}$ forms a partition of \mathbb{R}^{n+1}.
(2) Denote by $M_{\delta, 1}$ the multiplication operator in $L^{2}\left(\mathbb{R}^{n+1}\right) \simeq L^{2}\left(G_{n, \mu} / P_{n}, \chi_{\varepsilon}\right)$ with the characteristic function of the set $S_{\delta, 1}$. Similarly let $M_{\delta, D, k, 2}$ be the multiplication operator on $L^{2}\left(G_{n, \mu} / P_{n}, \chi_{\varepsilon}\right)$ with the characteristic function of the set $S_{\delta, D, \underline{k}, 2}$. These
multiplication operators are pairwise disjoint orthogonal projections and the sum of them is the identity operator.

Let $N_{\delta, D, \underline{k}, 2}$ be the multiplication operator with the characteristic function of the set $R_{\delta, D, \underline{k}, 2}$ for $\delta>0$ and $\underline{k} \in \mathbb{Z}^{n+1}$. We have the following property of the operator $N_{\delta, D, \underline{k}, 2}$.

Proposition 4.5. There exists a constant $C>0$ such that for any bounded linear operator L on the Hilbert space $L^{2}\left(G_{n, \mu} / P_{n}, \chi_{\varepsilon}\right)$, we have that

$$
\left\|\sum_{\underline{k} \in \mathbb{Z}^{n+1}} N_{\delta, D, \underline{k}, 2} \circ L \circ M_{\delta, D, \underline{k}, 2}\right\|_{\mathrm{op}} \leq C \sup _{\underline{k}}\left\|N_{\delta, D, \underline{k}, 2} \circ L \circ M_{\delta, D, \underline{k}, 2}\right\|_{\mathrm{op}} .
$$

Proof. See Propositions 6.2 and 6.18 in [ILL].
Definition 4.6. For $\underline{k} \in \mathbb{Z}^{n+1}$ and $\delta>0$, let

$$
\ell_{\underline{k}, \delta}=-\varepsilon \sum_{j=1}^{n} D_{j} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right) k_{0}} k_{j} Y_{j}^{*} \in \mathfrak{h}_{n}^{*} .
$$

Let $\sigma_{\underline{k}, \delta}:=\operatorname{ind}_{P_{n}}^{G_{n, \mu}} \chi_{\ell_{\underline{k}, \delta}}$. The Hilbert space of this representation is the space

$$
\mathcal{H}_{\underline{k}, \delta}=L^{2}\left(G_{n, \mu} / P_{n}, \chi_{\ell_{\underline{k}, \delta}}\right)
$$

and for $F \in L^{1}\left(G_{n, \mu}\right), \xi \in \mathcal{H}_{\underline{k}, \delta}$ we have that

$$
\sigma_{\underline{k}, \delta}(F) \xi\left(a^{\prime}, x^{\prime}\right)=\int_{S} \widehat{F}^{\mathfrak{p}_{n}}\left(s^{\prime} s^{-1} ; \operatorname{Ad}^{*}(s) \ell_{\underline{\underline{k}}, \delta}\right) \xi(s) \Delta_{S}\left(s^{-1}\right) d s
$$

Hence this operator has a kernel function given by

$$
F_{\underline{k}, \delta}\left(\left(a^{\prime}, x^{\prime}\right),(a, x)\right)=\widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right) ;\left((-a) \cdot \ell_{\underline{k}, \delta}, 0\right)\right) e^{|\lambda| a} .
$$

Moreover, the representation $\sigma_{\underline{k}, \delta}$ is equivalent to the representation

$$
\bar{\sigma}_{n, \ell_{\underline{k}, \delta}}:=\int_{\mathfrak{p}_{\frac{1}{n} \subset V_{n}^{*}}^{\oplus} \pi_{f+\ell_{\underline{k}, \delta}} d f, \quad, \quad, \quad \text {, }}^{\oplus}
$$

and an equivalence is given by

$$
\begin{align*}
& U_{n, \ell_{\underline{\ell_{k}}, \delta}}: L^{2}(\mathbb{R} \times \mathcal{X}) \equiv L^{2}\left(G_{n, \mu} / P_{n}, \chi_{\ell_{\underline{k}, \delta}}\right) \rightarrow \int_{\mathfrak{p}_{n}^{\perp}}^{\oplus} L^{2}\left(G_{n, \mu} / H_{n}, \chi_{f+\ell_{\underline{k}, \delta}}\right) d f \\
& U_{n, \ell_{\underline{k}, \delta}}(\xi)(f)(g):=\int_{H_{n} / P_{n}} \chi_{f+\ell_{\underline{k}, \delta}}\left(h_{n}\right) \xi\left(g h_{n}\right) d \dot{h}_{n} \text { for } g \in G, f \in \mathfrak{p}_{n}^{\perp} \tag{4.2.1}
\end{align*}
$$

Let $C_{\mathcal{S} \cup \mathcal{D}}$ be the C^{*}-algebra of all uniformly bounded continuous mappings from $\mathcal{S} \cup \mathcal{D}$ into $\mathcal{B}\left(L^{2}(\mathbb{R})\right)$. It follows from Theorem 4.1 that for every $a \in C^{*}\left(G_{n, \mu}\right)$ we have that $\widehat{a}_{\mid \mathcal{S} \cup \mathcal{D}}$ is contained in $C_{\mathcal{S} \cup \mathcal{D}}$.

For each $f=\left(f_{0}, f_{+}, f_{-}\right) \in V_{n}^{*}$, we denote by f_{1} the unique element in its coadjoint orbit Ω_{f} contained in $\mathcal{S} \cup \mathcal{D}$. Let $U_{n, \underline{k}, \delta}(f): L^{2}\left(G_{n, \mu} / H_{n}, \chi_{f+\ell_{k}, \delta}\right) \rightarrow$ $L^{2}\left(G_{n, \mu} / H_{n}, \chi_{\left(f+\ell_{\underline{k}, \delta}\right)_{1}}\right)$ be the canonical intertwining operator of $\pi_{f+\ell_{\underline{k}, \delta}}$ and $\pi_{\left(f+\ell_{\underline{k}, \delta}\right)_{1}}$. Formula (4.2.1) allows us to define a representation of the algebra $C_{\mathcal{S} \cup \mathcal{D}}$ on the space $L^{2}\left(G_{n, \mu} / P_{n}\right)$ by

$$
\tau_{n, \ell_{\underline{k}, \delta}}(\phi):=U_{n, \ell_{\underline{k}, \delta}}^{-1} \circ \int_{\mathfrak{p}_{\frac{1}{n}}} U_{n, \underline{k}, \delta}(f)^{*} \circ \phi\left(\left(f+\ell_{\underline{k}, \delta}\right)_{1}\right) \circ U_{n, \underline{k}, \delta}(f) d f \circ U_{n, \ell_{\underline{k}, \delta}} .
$$

We have that

$$
\begin{equation*}
\bar{\sigma}_{n, \ell_{\underline{k}, \delta}}(a)=\tau_{n, \ell_{\underline{k}, \delta}}\left(\widehat{a}_{\mid \mathcal{S}}\right) \text { for all } a \in C^{*}\left(G_{n, \mu}\right) \tag{4.2.2}
\end{equation*}
$$

Definition 4.7. For $\delta>0, \underline{k} \in \mathbb{Z}^{n+1}$ and $a \in C^{*}\left(G_{n, \mu}\right)$, let

$$
\begin{aligned}
\sigma_{n, \underline{k}, \delta}(a) & :=\bar{\sigma}_{n, \ell_{\underline{k}, \delta}}(a) \circ M_{\delta, D, \underline{k}, 2}, \\
\sigma_{n, \delta}(a) & :=\sum_{\underline{k} \in \mathbb{Z}^{n+1}} N_{\delta, D, \underline{k}, 2} \circ \sigma_{n, \underline{k}, \delta}(a) .
\end{aligned}
$$

Proposition 4.8. Let $a \in C^{*}\left(G_{n, \mu}\right)$ and $\varepsilon \in\{+,-\}$. Then

$$
\lim _{\delta \rightarrow 0} \operatorname{dis}\left(\left(\pi_{\varepsilon}(a)-\sigma_{n, \delta}(a)\right), \mathcal{K}\left(L^{2}(\mathbb{R} \times \mathcal{X})\right)\right)=0
$$

Proof. Let L_{c}^{1} be the space of all $F \in L^{1}\left(G_{n, \mu}\right)$ for which the partial Fourier transform $\widehat{F}^{\mathfrak{p}_{n}}\left((a, x),\left(v^{*}, s\right)\right)$ is a C^{∞}-function with compact support on $S_{n} \times \mathfrak{p}_{n}^{*}$. Take $F \in L_{c}^{1}$ and choose $C>0$ such that $\widehat{F}^{\mathfrak{p}_{n}}\left((a, x),\left(v^{*}, s\right)\right)=0$, whenever $|a|+\|x\|>C$ or $\left\|v^{*}\right\|+|s|>C$. By Proposition 4.3, for $\delta>0$ small enough, we have that

$$
\pi_{\varepsilon}(F) \circ M_{\delta, D, \underline{k}, 2}=N_{\delta, D, \underline{k}, 2} \circ \pi_{\varepsilon}(F) \circ M_{\delta, D, \underline{k}, 2}
$$

for every \underline{k} and hence

$$
\begin{aligned}
\pi_{\varepsilon}(F) \circ\left(\mathbb{I}-M_{\delta, 1}\right)-\sigma_{n, \delta}(F) & =\pi_{\varepsilon}(F) \circ\left(\sum_{\underline{k}} M_{\delta, \underline{k}, 2}\right)-\sigma_{n, \delta}(F) \\
& =\sum_{\underline{k} \in \mathbb{Z}^{n+1}} N_{\delta, D, \underline{k}, 2} \circ\left(\pi_{\varepsilon}(F)-\bar{\sigma}_{n, \ell_{\underline{k}, \delta}}(F)\right) \circ M_{\delta, D, \underline{k}, 2}
\end{aligned}
$$

and the kernel function $F_{\delta, \underline{k}}$ of the operator $a_{F, \delta, \underline{\underline{k}}}:=N_{\delta, D, \underline{k}, 2} \circ\left(\pi_{\varepsilon}(F)-\bar{\sigma}_{n, \ell_{\underline{k}, \delta}}(F)\right) \circ$ $M_{\delta, D, \underline{k}, 2}$ is therefore given by

$$
\begin{aligned}
F_{\delta, \underline{k}}\left(\left(a^{\prime}, x^{\prime}\right),(a, x)\right)= & \left(\widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right) ;\left(-\varepsilon\left(\sum_{j=1}^{n} e^{\left(\lambda_{j}-2\right) a} x_{j} Y_{j}^{*}\right), \varepsilon e^{-2 a}\right)\right)\right. \\
& \left.-\widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right) ;\left(-\varepsilon(-a) \cdot \ell_{\underline{k}, \delta}, 0\right)\right)\right) \\
& \times e^{|\lambda| a} 1_{S_{\delta, D, k, 2}}(a, x) 1_{R_{\delta, D, k, 2}}\left(a^{\prime}, x^{\prime}\right) \text { for } \quad a, a^{\prime} \in \mathbb{R}, x, x^{\prime} \in V_{n} .
\end{aligned}
$$

We see that

$$
e^{\left(\lambda_{j}-2\right) a} x_{j}-e^{-\lambda_{j}^{\prime} a} D_{j} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right) k_{0}} k_{j}=e^{-\lambda_{j}^{\prime} a}\left(x_{j}-D_{j} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right) k_{0}} k_{j}\right)
$$

Hence,

$$
\begin{align*}
& \left|e^{\left(\lambda_{j}-2\right) a} x_{j}-e^{-\lambda_{j}^{\prime} a} D_{j} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right) k_{0}} k_{j}\right| \\
& \quad \leq e^{-\lambda_{j}^{\prime} a} D_{j} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right) k_{0}} \\
& \quad=D_{j} \delta^{2} e^{\left(2-\lambda_{j}\right)\left(r_{\delta} k_{0}-a\right)} \\
& \quad \leq e^{r_{\delta}\left(2-\lambda_{j}\right)} D_{j} \delta^{2} \\
& \quad \leq e^{r_{\delta} m} D_{j} \delta^{2} \\
& \quad \leq \delta . \tag{4.2.3}
\end{align*}
$$

Since $F \in L_{c}^{1}$, there exists a continuous function $\varphi: S_{n} \rightarrow \mathbb{R}_{+}$with compact support such that

$$
\left|\widehat{F}^{\mathfrak{p}_{n}}(s ; \ell)-\widehat{F}^{\mathfrak{p}_{n}}\left(s ; \ell^{\prime}\right)\right| \leq \varphi(s)\left\|\ell-\ell^{\prime}\right\| \quad \text { for } \ell, \ell^{\prime} \in \mathfrak{p}_{n}^{*}, s \in S_{n} .
$$

Whence for any $(a, x),\left(a^{\prime}, x^{\prime}\right) \in S_{n}$ and any $\delta>0$ small enough,

$$
\begin{aligned}
& \left|F_{\delta, \underline{k}}\left(\left(a^{\prime}, x^{\prime}\right),(a, x)\right)\right| \\
& \quad=\mid \widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right) ;\left(-\varepsilon\left(\sum_{j=1}^{n} e^{\left(\lambda_{j}-2\right) a} x_{j} Y_{j}^{*}\right), \varepsilon e^{-2 a}\right)\right) \\
& \quad-\widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right) ;\left(-\varepsilon(-a) \cdot \ell_{\underline{k}, \delta}, 0\right)\right) \mid e^{|\lambda| a} 1_{S_{\delta, D, \underline{k}, 2}}(a, x) 1_{R_{\delta, D, \underline{k}, 2}}\left(a^{\prime}, x^{\prime}\right) \\
& \leq \\
& \leq \varphi\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right)\right)\left\|\left(-\varepsilon\left(\sum_{j=1}^{n} e^{\left(\lambda_{j}-2\right) a} x_{j} Y_{j}^{*}\right), \varepsilon e^{-2 a}\right)+\left(\varepsilon(-a) \cdot \ell_{\underline{k}, \delta}, 0\right)\right\| \\
& \quad \times e^{|\lambda| a} 1_{S_{\delta, D, \underline{k}, 2}}(a, x) 1_{R_{\delta, D, \underline{k}, 2}}\left(a^{\prime}, x^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \varphi\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right)\right)\left\|\left(\sum_{j=1}^{n}\left(e^{\left(\lambda_{j}-2\right) a} x_{j}-e^{-\lambda_{j}^{\prime} a} D_{j} \delta^{2} e^{r_{\delta}\left(2-\lambda_{j}\right) k_{0}} k_{j}\right) Y_{j}^{*}, \varepsilon e^{-2 a}\right)\right\| \\
& \times e^{|\lambda| a} 1_{S_{\delta, D, k, 2}}(a, x) 1_{R_{\delta, D, k, 2}}\left(a^{\prime}, x^{\prime}\right) \\
\leq & C \delta \varphi\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right)\right) e^{|\lambda| a}
\end{aligned}
$$

for some constant $C>0$ independent of δ by (4.2.3). Therefore by Young's inequality we have that

$$
\left\|a_{F, \delta, \underline{k}}\right\|_{\mathrm{op}} \leq C \delta \quad \text { for } \underline{k} \in \mathbb{Z}^{n+1}
$$

and finally

$$
\left\|\pi_{\varepsilon}(F) \circ\left(\mathbb{I}-M_{\delta, 1}\right)-\sigma_{n, \delta}(F)\right\|_{\mathrm{op}} \leq C^{\prime} \delta
$$

for a new constant C^{\prime}, by Proposition 4.5.
On the other hand, the operator $\pi_{\varepsilon}(F) \circ M_{\delta, 1}$ is compact since

$$
\begin{aligned}
&\left\|\pi_{\varepsilon}(F) \circ M_{\delta, 1}\right\|_{H-S}^{2} \\
&= \int_{\mathbb{R}} \int_{\left\{e^{-a}>\delta^{3}\right\}} \int_{\left(\mathcal{X}_{n} \times \mathcal{X}_{n}\right)}\left|\widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}-a, a \cdot\left(x^{\prime}-x\right) ;\left(-\varepsilon\left(\sum_{j=1}^{n} e^{\left(\lambda_{j}-2\right) a} x_{j} Y_{j}^{*}\right), \varepsilon e^{-2 a}\right)\right)\right|^{2} \\
& \times e^{2|\lambda| a} d a d a^{\prime} d x d x^{\prime} \\
&= \int_{\mathbb{R}} \int_{\left\{e^{-a}>\delta^{3}\right\}} \int_{\left(\mathcal{X}_{n} \times \mathcal{X}_{n}\right)}\left|\widehat{F}^{\mathfrak{p}_{n}}\left(a^{\prime}, x^{\prime} ;\left(-\varepsilon\left(\sum_{j=1}^{n} x_{j} Y_{j}^{*}\right), \varepsilon e^{-2 a}\right)\right)\right|^{2} e^{2 n a} d a d a^{\prime} d x d x^{\prime} \\
&< \infty .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \operatorname{dis}\left(\left(\pi_{\varepsilon}(F)-\sigma_{n, \delta}(F)\right), \mathcal{K}\left(L^{2}(\mathbb{R} \times \mathcal{X})\right)\right) \\
& \quad \leq\left\|\pi_{\varepsilon}(F) \circ\left(\mathbb{I}-M_{\delta, 1}\right)-\sigma_{n, \delta}(F)\right\|_{\mathrm{op}} \\
& \quad \rightarrow 0 \quad \text { as } \delta \rightarrow 0 .
\end{aligned}
$$

The Proposition follows, since L_{c}^{1} is dense in $C^{*}\left(G_{n, \mu}\right)$.

4.3. The two-dimensional orbits $\Omega_{v^{*}}$ and the characters.

The C^{*}-algebras of the groups $G_{V_{n}}=G_{n, \mu} / \mathcal{Z}$ have been determined as algebras of operator fields in [LinLud]. We adapt this result to our present setting of almost $C_{0}(\mathcal{K})$-C ${ }^{*}$-algebras.

Definition 4.9. For $a \in C^{*}\left(G_{n, \mu}\right)$, let $\Phi(a)$ be the element of $C^{*}\left(\mathbb{R} \times V_{0}\right)$ defined by $\widehat{\Phi(a)}(\theta):=\left\langle\chi_{\theta}, a\right\rangle$ for all $\theta \in \mathbb{R} \times V_{0}^{*}$. The mapping $\Phi: C^{*}\left(G_{n, \mu}\right) \rightarrow C^{*}\left(\mathbb{R} \times V_{0}\right)$ is a
surjective homomorphism. Let the kernel of Φ be denoted by $I_{\mathfrak{X}}$, then $C^{*}\left(G_{n, \mu}\right) / I_{\mathfrak{X}} \simeq$ $C^{*}\left(\mathbb{R} \times V_{0}\right)$. For $\eta \in C_{c}\left(G_{n, \mu}\right)$, the element $\Phi(\eta) \in C^{*}\left(\mathbb{R} \times V_{0}\right)$ is the continuous function with compact support given by

$$
\Phi(\eta)\left(t, v_{0}\right)=\int_{V_{1} \times \mathbb{R}} \eta\left(t, v_{0}, v, s\right) d v d s \quad \text { for } \quad t \in \mathbb{R}, v_{0} \in V_{0}
$$

Choose $\zeta \in C_{c}\left(V_{1} \times \mathbb{R}\right)$ with $\zeta \geq 0$ and $\int_{V_{1} \times \mathbb{R}} \zeta(v, s) d v d s=1$, define the mapping $\beta: C_{c}\left(\mathbb{R} \times V_{0}\right) \rightarrow C_{c}\left(G_{n, \mu}\right) \subset C^{*}\left(G_{n, \mu}\right)$ by

$$
\beta(\varphi)\left(a, v_{0}, v, s\right)=\varphi\left(a, v_{0}\right) \zeta(v, s) \quad \text { for } \quad \varphi \in C_{c}\left(\mathbb{R} \times V_{0}\right), s \in \mathbb{R} \text { and } v \in V_{1}
$$

It has been shown in $[\mathbf{L i n L u d}]$ that β can be extended to a linear mapping bounded by 1 from $C^{*}\left(\mathbb{R} \times V_{0}\right)$ into $C^{*}\left(G_{n, \mu}\right)$, such that for every $\varphi \in C^{*}\left(\mathbb{R} \times V_{0}\right)$ we have $\Phi(\beta(\varphi))=\varphi$.

Definition 4.10. Let $\left(\Omega_{f_{k}}\right)_{k}\left(f_{k}=\left(f_{k_{+}}, f_{k_{-}}\right) \in \mathcal{D}\right.$ for all $\left.k\right)$ be a properly converging sequence in $\widehat{G_{n, \mu}}$, whose limit set contains the orbits $\Omega_{\left(f_{+}, 0\right)}$ and $\Omega_{\left(0, f_{-}\right)}$. Let $r_{k}, q_{k} \in \mathbb{R}$ be such that $\left|r_{k} \cdot f_{k_{+}}\right|=1$ and $\left|q_{k} \cdot f_{k_{-}}\right|=1$ for $k \in \mathbb{N}$. Then $\lim _{k} r_{k}=-\infty$ and $\lim _{k} q_{k}=+\infty$. Choose two positive sequences $\left(\rho_{k}\right)_{k},\left(\kappa_{k}\right)_{k}$ such that $\kappa_{k}>q_{k},-r_{k}<\rho_{k}$ for all $k \in \mathbb{N}, \lim _{k \rightarrow \infty} \kappa_{k}-q_{k}=\infty, \lim _{k \rightarrow \infty} \rho_{k}+r_{k}=\infty$ and $\lim _{k \rightarrow \infty}\left(\left(\kappa_{k}-q_{k}\right) / r_{k}\right)=0, \lim _{k \rightarrow \infty}\left(\left(\rho_{k}+r_{k}\right) / q_{k}\right)=0$. We say that the sequences $\left(\rho_{k}, \kappa_{k}\right)_{k}$ are adapted to the sequence $\left(f_{k}\right)_{k}$.

For $r \in \mathbb{R}$, let $U(r)$ be the unitary operator on $L^{2}(\mathbb{R})$ defined by

$$
U(r) \xi(s):=\xi(s+r) \quad \text { for all } \xi \in L^{2}(\mathbb{R}) \text { and } s \in \mathbb{R}
$$

Definition 4.11. Let $A=(A(f) \in \mathcal{B}, f \in \Gamma)$ be a field of bounded operators. We say that A satisfies the generic condition if for every properly converging sequence $\left(\pi_{f_{k}}\right)_{k} \subset \widehat{G_{n, \mu}}$ with $f_{k} \in \mathcal{D}$ for every $k \in \mathbb{N}$, which admits limit points $\pi_{\left(f_{0}, 0, f_{-}\right)}, \pi_{\left(f_{0}, f_{+}, 0\right)}$ and for every pair of sequences $\left(\rho_{k}, \kappa_{k}\right)_{k}$ adapted to the sequence $\left(f_{k}\right)_{k}$ we have that

$$
\begin{align*}
& \lim _{k \rightarrow \infty}\left\|U\left(r_{k}\right) \circ A\left(f_{k}\right) \circ U\left(-r_{k}\right) \circ M_{\left(\rho_{k},+\infty\right)}-A\left(f_{0}, f_{+}, 0\right) \circ M_{\left(\rho_{k},+\infty\right)}\right\|_{\mathrm{op}}=0, \tag{1}\\
& \lim _{k \rightarrow \infty}\left\|U\left(q_{k}\right) \circ A\left(f_{k}\right) \circ U\left(-q_{k}\right) \circ M_{\left(-\infty, \kappa_{k}\right)}-A\left(f_{0}, 0, f_{-}\right) \circ M_{\left(-\infty, \kappa_{k}\right)}\right\|_{\mathrm{op}}=0 . \tag{2}
\end{align*}
$$

The following proposition had been proved in [LinLud, Proposition 5.2].
Proposition 4.12. For every $a \in C^{*}\left(G_{n, \mu}\right)$, the operator field $\mathcal{F}(a)$ satisfies the generic condition.

We must show that on \mathcal{D}, our C^{*}-algebra satisfies the almost $C_{0}(\mathcal{K})$ conditions given in Definition 2.2. For $a \in C^{*}\left(G_{n, \mu}\right)$ and $f=\left(f_{0}, f_{+}, f_{-}\right) \in V_{\text {gen }}^{*}$, we define the operator

$$
\begin{aligned}
\sigma_{f}(a):= & U(-r(f)) \circ \pi_{\left(f_{0}, f_{+}, 0\right)}(a) \circ U(r(f)) \circ M_{]-\infty, \kappa(f)+r(f)]} \\
& +U(-q(f)) \circ \pi_{\left(f_{0}, 0, f_{-}\right)}(a) \circ U(q(f)) \circ M_{[q(f)-\rho(f),+\infty[},
\end{aligned}
$$

where

$$
\begin{array}{ll}
r(f)=-\ln \left(\left|f_{+}\right|\right), & q(f)=\ln \left(\left|f_{-}\right|\right) \\
\rho(f)=q(f)^{1 / 3}-r(f), & \kappa(f)=q(f)-r(f)^{1 / 3}
\end{array}
$$

We have the following proposition.
Proposition 4.13. For all $f \in \mathcal{D}$, the operator field

$$
f \mapsto \sigma_{\mathcal{D}}(f)(a):=\pi_{f}(a)-\sigma_{f}(a) \quad\left(a \in C^{*}\left(G_{n, \mu}\right)\right)
$$

is contained in $C_{0}\left(\mathcal{D}, \mathcal{K}\left(L^{2}(\mathbb{R})\right)\right)$.
Proof. Let $a \in C^{*}\left(G_{n, \mu}\right)$. We know that $\pi_{f}(a)$ is a compact operator for any $f \in V_{\text {gen }}^{*}$, that the mapping $f \mapsto \pi_{f}(a)$ is norm continuous and that $\lim _{f \rightarrow \infty} \pi_{f}(a)=0$ by Corollary 3.2 and Proposition 4.2 in [LinLud]. If $F \in L_{c}^{1}$, then the kernel function $F_{f_{0}, f_{+}}$of the operator $\pi_{\left(f_{0}, f_{+}, 0\right)} \circ M_{[\rho(f), \infty[}$ is given by

$$
F_{f_{0}, f_{+}}(s, t)=\widehat{F}^{\mathfrak{h}_{n}}\left(s-t, t \cdot f_{+}\right) 1_{[\rho(f), \infty[}(t)
$$

The function $F_{f_{0}, f_{+}}$is of compact support and ρ is continuous. Hence the mapping $f \mapsto \pi_{\left(f_{0}, f_{+}, 0\right)} \circ M_{[\rho(f), \infty[}$ is norm continuous on \mathcal{D} and for every $f \in \mathcal{D}$, the operator $\pi_{\left(f_{0}, f_{+}, 0\right)} \circ M_{[\rho(f), \infty[}$ is compact. Since

$$
\begin{aligned}
\rho(f) & =\ln \left(\left|f_{-}\right|\right)^{1 / 3}+\ln \left(\left|f_{+}\right|\right) \\
& =\ln \left(\left|f_{+}\right|\right)^{1 / 3}+\ln \left(\left|f_{+}\right|\right)
\end{aligned}
$$

goes to infinity as $\|f\|$ goes to infinity, it follows that $\pi_{\left(f_{0}, f_{+}, 0\right)} \circ M_{[\rho(f), \infty[}=0$ if $\|f\|$ is big enough. Similar properties hold for the mapping $f \mapsto \pi_{\left(f_{0}, 0, f_{-}\right)} \circ M_{]-\infty, \kappa(f)]}$ on \mathcal{D}.

Since the boundary $\partial \mathcal{D}$ of \mathcal{D} is the set $\mathcal{S} \cup \mathbb{R}$, the generic condition tells us that $\lim _{f \rightarrow \partial \mathcal{D}}\left\|\sigma_{\mathcal{D}}(f)(a)\right\|=0$. Hence the mapping $f \mapsto \sigma_{\mathcal{D}}(f)(F)$ is contained in $C_{0}\left(\mathcal{D}, \mathcal{K}\left(L^{2}(\mathbb{R})\right)\right)$. The proposition follows from the density of L_{c}^{1} in $C^{*}\left(G_{n, \mu}\right)$.

4.4. The C^{*}-algebras of the groups $G_{n, \mu}$.

Let $\Gamma_{i} \subseteq \mathfrak{g}_{n, \mu}^{*} / G_{n, \mu}$ be given as in Section 3 and $\Gamma=\bigcup \Gamma_{i}$.
Definition 4.14. (1) For $f \in \mathcal{D}$ and $\phi \in l^{\infty}(\Gamma)$, let

$$
\begin{aligned}
\sigma_{f}(\phi):= & U(-r(f)) \circ \phi\left(f_{0}, f_{+}, 0\right) \circ U(r(f)) \circ M_{]-\infty, \kappa(f)+r(f)]} \\
& +U(-q(f)) \circ \phi\left(f_{0}, 0, f_{-}\right) \circ U(q(f)) \circ M_{[q(f)-\rho(f),+\infty[} .
\end{aligned}
$$

(2) Let $\varphi=(\varphi(f) \in \mathcal{B}, f \in \Gamma)$ be a field of bounded operators such that the restriction of the field φ to the set of characters Γ_{0} is contained in $C_{0}\left(\Gamma_{0}\right)$. We get the element $\varphi(0) \in C^{*}\left(\mathbb{R} \times V_{0}\right)$ determined as in Definition 4.9 by the condition $\gamma(\varphi(0))=\varphi(\gamma)$ for $\gamma \in \Gamma_{0}$. We can then define as in Definition 4.9 that

$$
\sigma_{f}(\varphi):=\beta(\varphi(0)) \in \mathcal{B}\left(L^{2}(\mathbb{R})\right) \text { for } f \in \mathcal{S}
$$

Definition 4.15. Let $D^{*}\left(G_{n, \mu}\right)$ be the subset of $l^{\infty}\left(\widehat{G_{n, \mu}}\right)$ defined as a set of all the operator fields ϕ defined over $\overline{G_{n, \mu}}$ such that the mappings $\gamma \mapsto \phi(\gamma)$ are norm continuous and vanish at infinity on the sets Γ_{0} and Γ_{2} and such that $\phi(f) \in \mathcal{K}\left(L^{2}(\mathbb{R})\right)$ for all $f \in \mathcal{D}$. Moreover, each ϕ must fulfills the following conditions:
(1) For $\varepsilon \in\{+,-\}$,

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \operatorname{dis}\left(\left(\phi(\varepsilon)-\sigma_{n, \delta}(\phi)\right), \mathcal{K}\left(L^{2}(\mathbb{R} \times \mathcal{X})\right)\right) & =0, \quad \text { and } \\
\lim _{\delta \rightarrow 0} \operatorname{dis}\left(\left(\phi^{*}(\varepsilon)-\sigma_{n, \delta}\left(\phi^{*}\right)\right), \mathcal{K}\left(L^{2}(\mathbb{R} \times \mathcal{X})\right)\right) & =0
\end{aligned}
$$

(2) The mappings

$$
\mathcal{D} \ni f \mapsto\left(\phi(f)-\sigma_{f}(\phi)\right) \quad \text { and } \quad \mathcal{D} \ni f \mapsto\left(\phi(f)^{*}-\sigma_{f}\left(\phi^{*}\right)\right)
$$

are contained in $C_{0}\left(\mathcal{D}, \mathcal{K}\left(L^{2}(\mathbb{R})\right)\right)$.
(3) The mappings

$$
\mathcal{S} \ni f \mapsto\left(\phi(f)-\sigma_{f}(\phi)\right) \quad \text { and } \quad \mathcal{S} \ni f \mapsto\left(\phi(f)^{*}-\sigma_{f}\left(\phi^{*}\right)\right)
$$

are contained in $C_{0}\left(\mathcal{S}, \mathcal{K}\left(L^{2}(\mathbb{R})\right)\right)$.
THEOREM 4.16. The C^{*}-algebra of $G_{n, \mu}$ is an almost $C_{0}(\mathcal{K})-C^{*}$-algebra. In particular, the Fourier transform maps $C^{*}\left(G_{n, \mu}\right)$ onto the subalgebra $D^{*}\left(G_{n, \mu}\right)$ of $l^{\infty}(\Gamma)$.

Proof. Propositions 4.8 and 4.13 show that the Fourier transform maps $C^{*}\left(G_{n, \mu}\right)$ into $D^{*}\left(G_{n, \mu}\right)$. The conditions on $D^{*}\left(G_{n, \mu}\right)$ imply that $D^{*}\left(G_{n, \mu}\right)$ is a closed involutive subspace of $l^{\infty}(\Gamma)$. It follows from $[\mathbf{I L L}]$ that $D^{*}\left(G_{n, \mu}\right)$ is a C^{*}-subalgebra of $l^{\infty}(\Gamma)$ and that $\mathcal{F}_{n, \mu}\left(C^{*}\left(G_{n, \mu}\right)\right)=D^{*}\left(G_{n, \mu}\right)$.

References

[ArLuSc] R. J. Archbold, J. Ludwig and G. Schlichting, Limit sets and strengths of convergence for sequences in the duals of thread-like Lie groups, Math. Z., 255 (2007), 245-282.
[Fell] J. M. G. Fell, The structure of algebras of operator fields, Acta Math., 106 (1961), 233-280.
[Lee] R.-Y. Lee, On the C* algebras of operator fields, Indiana Univ. Math. J., 26 (1977), 351372.
[LepLud] H. Leptin and J. Ludwig, Unitary representation theory of exponential Lie groups, De Gruyter Expositions in Math., 18, 1994.
[LinLud] Y.-F. Lin and J. Ludwig, The C*-algebras of $a x+b$-like groups, J. Funct. Anal., 259 (2010), 104-130.
[LinLud2] Y.-F. Lin and J. Ludwig, An isomorphism between group C*-algebras of $a x+b$-like groups, Bull. London Math. Soc., 45 (2013), 257-267.
[ILL] J. Inoue, Y.-F. Lin and J. Ludwig, The solvable Lie group $N_{6,28}$: an example of an almost $C_{0}(\mathcal{K})$-C*-algebra, Adv. Math., 272 (2015), 252-307.
[LuTu] J. Ludwig and L. Turowska, The C*-algebras of the Heisenberg group and of thread-like Lie groups, Math. Z., 268 (2011), 897-930.

Junko Inoue

Education Center
Organization for Supporting University Education Tottori University
Tottori 680-8550, Japan
E-mail: inoue@uec.tottori-u.ac.jp

Ying-Fen Lin

Pure Mathematics Research Centre
Queen's University Belfast BT7 1NN, U.K.
E-mail: y.lin@qub.ac.uk

Jean LUDWIG

Université de Lorraine Institut Elie Cartan de Lorraine UMR 7502, Metz F-57045, France
E-mail: jean.ludwig@univ-lorraine.fr

[^0]: 2010 Mathematics Subject Classification. Primary 22D25; Secondary 22E25, 22E27.
 Key Words and Phrases. C*-algebra, exponential Lie group, algebra of operator fields.
 This work was partially supported by JSPS KAKENHI Grant Numbers 21540180, 25400115.

