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Abstract. We consider in this paper the family of exponential Lie
groups Gn,µ, whose Lie algebra is an extension of the Heisenberg Lie alge-
bra by the reals and whose quotient group by the centre of the Heisenberg
group is an ax + b-like group. The C*-algebras of the groups Gn,µ give new
examples of almost C0(K)-C*-algebras.

1. Introduction and notations.

Let A be a C*-algebra and Â be its unitary spectrum. The C*-algebra l∞(Â) of all
bounded operator fields defined over Â is given by

l∞(Â) :=
{

A = (A(π) ∈ B(Hπ))π∈ bA; ‖A‖∞ := sup
π
‖A(π)‖op < ∞

}
,

where Hπ is the Hilbert space on which π acts. Let F be the Fourier transform of A,
i.e.,

F(a) := â := (π(a))π∈ bA for a ∈ A.

It is an injective, hence isometric, homomorphism from A into l∞(Â). Hence one can
analyze the C*-algebra A by recognizing the elements of F(A) inside the (big) C*-algebra
l∞(Â).

We know that the unitary spectrum Ĉ∗(G) of the C*-algebra C∗(G) of a locally
compact group G can be identified with the unitary dual Ĝ of G. If G is an exponential
Lie group, i.e., if the exponential mapping exp : g → G from the Lie algebra g to its Lie
group G is a diffeomorphism, then the Kirillov-Bernat-Vergne-Pukanszky-Ludwig-Leptin
theory shows that there is a canonical homeomorphism K : g∗/G → Ĝ from the space of
coadjoint orbits of G in the linear dual space g∗ onto the unitary dual space Ĝ of G (see
[LepLud] for details and references). In this case, one can therefore identify the unitary
spectrum Ĉ∗(G) of the C*-algebra of an exponential Lie group with the space g∗/G of
coadjoint orbits of the group G.

The C*-algebra of an ax + b-like group was characterised in [LinLud] and the C*-
algebras of the Heisenberg group and of the threadlike groups were described in [LuTu]
as algebras of operator fields defined on the dual spaces of the groups. The method of
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describing group C*-algebras as algebras of operator fields defined on the dual spaces
was first used in [Fell] and [Lee].

In this paper, we consider the exponential solvable Lie group Gn,µ, whose Lie algebra
is an extension of the Heisenberg Lie algebra hn by the reals, which means that R acts on
hn by a diagonal matrix with real eigenvalues. The quotient group of Gn,µ by the centre of
the Heisenberg group is then an ax+b-like group, whose C*-algebra has been determined
in [LinLud]. Since the orbit structure of exponential groups is well understood (see for
instance [ArLuSc]), we can write down the spectrum of the group Gn,µ explicitly and
determine its topology.

In [ILL] the example of the group N6,28 motivated the introduction of a special
class of C*-algebras which we called almost C0(K)-C*-algebra, where K is the algebra
of all compact operators on some Hilbert space. In Section 2, we recall the definition
and the properties of almost C0(K)-C*-algebras. In Section 3 we introduce the family
of the Gn,µ groups and describe the space of coadjoint orbits g∗n,µ/Gn,µ. We show that

the spectrum Ĝn,µ of Gn,µ is a disjoint union of the sets Γ0,Γ1,Γ2,Γ3, where Γ0 is the
set of the characters of Gn,µ, Γ1 and Γ2 are the sets of the representations corresponding
to the two-dimensional coadjoint orbits of Gn,µ, and Γ3 is the union of the two generic
irreducible representations π+, π− which correspond to the two open orbits. Note that
each of the sets Γi needs a special treatment. The sets Γ1 and Γ2 have been treated in the
paper [LinLud]. In Subsection 4.2, we discover the almost C0(K) conditions for Γ3. This
is the most intricate part of the paper and the treatment is inspired by the study of the
boundary condition for a class of 4-dimensional orbits in [ILL, Subsection 6.3]. At the
end (Subsection 4.4), we describe the actual C*-algebra of Gn,µ as an algebra of operator
fields and we see that this C*-algebra has the structure of an almost C0(K)-C*-algebra.

2. Almost C0(K)-C*-algebras.

The following definitions were given in [ILL]; for completeness, we recall them here.

Definition 2.1. Let A be a C*-algebra and Â be the spectrum of A.

(1) Suppose there exists a finite increasing family S0 ⊂ S1 ⊂ · · · ⊂ Sd = Â of subsets of
Â such that for i = 1, . . . , d, the subsets Γ0 = S0 and Γi := Si \Si−1 are Hausdorff in
their relative topologies. Furthermore we assume that for every i ∈ {0, . . . , d} there
exists a Hilbert space Hi and a concrete realization (πγ ,Hi) of γ on the Hilbert space
Hi for every γ ∈ Γi. Note that the set S0 is the collection X of all characters of A.

(2) For a subset S ⊂ Â, denote by CB(S) the *-algebra of all uniformly bounded operator
fields (ψ(γ) ∈ B(Hi))γ∈S∩Γi,i=1,...,d, which are operator norm continuous on the
subsets Γi∩S for every i ∈ {1, . . . , d} for which Γi∩S 6= ∅. We provide the *-algebra
CB(S) with the infinity-norm:

‖ψ‖S := sup
γ∈S

‖ψ(γ)‖op.

Definition 2.2. Let H be a Hilbert space and K := K(H) be the algebra of all
compact operators defined on H. A C*-algebra A is said to be almost C0(K) if for every
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a ∈ A:

(1) The mappings γ 7→ F(a)(γ) are norm continuous on the different sets Γi, where
F : A → l∞(Â) is the Fourier transform given by

F(a)(γ) = â(γ) := πγ(a) for γ ∈ Â and a ∈ A.

(2) For each i = 1, . . . , d, we have a sequence (σi,k : CB(Si−1) → CB(Si))k of linear
mappings which are uniformly bounded in k (and independent of a) such that

lim
k→∞

dis
(
(σi,k(F(a)|Si−1)−F(a)|Γi

), C0(Γi,K(Hi))
)

= 0,

and

lim
k→∞

dis
(
(σi,k(F(a)∗|Si−1

)−F(a∗)|Γi
), C0(Γi,K(Hi))

)
= 0,

where C0(Γi,K(Hi)) is the space of all continuous mappings ϕ : Γi → K(Hi) vanish-
ing at infinity.

Definition 2.3. Let D∗(A) be the set of all operator fields ϕ defined over Â such
that

(1) The field ϕ is uniformly bounded, i.e., we have that ‖ϕ‖ := supγ∈ bA ‖ϕ(γ)‖op < ∞.
(2) ϕ|Γi

∈ CB(Γi) for every i = 0, 1, . . . , d.
(3) For every sequence (γk)k∈N going to infinity in Â, we have that limk→∞ ‖ϕ(γk)‖op =

0.
(4) For each i = 1, 2, . . . , d,

lim
k→∞

dis
(
(σi,k(ϕ|Si−1)− ϕ|Γi

), C0(Γi,K(Hi))
)

= 0

and

lim
k→∞

dis
(
(σi,k(ϕ∗|Si−1

)− (ϕ|Γi
)∗), C0(Γi,K(Hi))

)
= 0.

We see immediately that if A is almost C0(K), then for every a ∈ A, the operator field
F(a) is contained in the set D∗(A). In fact it turns out that D∗(A) is a C*-subalgebra
of l∞(Â) and that A is isomorphic to D∗(A).

Theorem 2.4 ([ILL, Theorem 2.6]). Let A be a separable C*-algebra which is
almost C0(K). Then the subset D∗(A) of the C*-algebra l∞(Â) is a C*-subalgebra which
is isomorphic to A under the Fourier transform.

3. The groups Gn,µ.

Let n ∈ N∗ = N \ {0}, Vn = R2n and denote by ωn the canonical non-degenerate
skew-symmetric bilinear form on Vn. Let
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hn := Vn ⊕ R.

Choose a symplectic basis B := {X1, . . . , Xn, Y1, . . . , Yn} of Vn. Let

gn,µ := R× hn and A = (1, 0Vn
, 0), Z = (0, 0Vn

, 1) ∈ gn,µ.

Then {A,X1, . . . , Xn, Y1, . . . , Yn, Z} is a basis of gn,µ. For

µ := {λ1, λ
′
1, . . . , λn, λ′n} ⊂ R

with λi + λ′i = 2 for all i = 1, . . . , n, we define the brackets

[A,Xi] = λiXi, [A, Yi] = λ′iYi, [A,Z] = 2Z for all i = 1, . . . , n,

and

[Xi, Yj ] = δi,jZ for i, j = 1, . . . , n.

Eventually by exchanging Xj and Yj and replacing Xj by −Xj we can assume that
λ′j ≥ 0 for all j. We then obtain a structure of an exponential solvable Lie algebra on
gn,µ, and its subalgebra hn is the Heisenberg Lie algebra.

Define the diagonal operator lµ : Vn → Vn by

lµ(v) :=
∑

i

λiviXi + λ′iv
′
iYi for v =

n∑

i=1

viXi +
n∑

i=1

v′iYi ∈ Vn.

For v =
∑n

i=1 viXi + v′iYi ∈ Vn and a ∈ R, we write

a · v :=
n∑

i=1

eaλiviXi + eaλ′iv′iYi.

The corresponding simply connected Lie group Gn,µ, which is exponential solvable, can
be identified with the space R× Vn × R equipped with the multiplication

(a, v, c) · (a′, v′, c′) := (a + a′, (−a′) · v + v′, e−2a′c + c′ +
1
2
ωn((−a′) · v, v′)). (3.0.1)

The inner automorphism Ad(a, u) on hn is given by

Ad(a, u)(0, v, z) = (a, u, 0)(0, v, z)(−a,−(a · u), 0)

= (a, 0, 0)(0, u, 0)(0, v, z)(0,−u, 0)(−a, 0, 0)

= (a, 0, 0)(0, v, z + ωn(u, v))(−a, 0, 0)

= (0, a · v, e2az + e2aωn(u, v)) for (v, z) ∈ hn.



A class of almost C0(K)-C*-algebras 75

The centre Z of the normal subgroup Hn := {0} × Vn × R of Gn,µ is the subset Z =
exp (RZ) = {0} × {0Vn

} × R. Denote by GVn
the quotient group Gn,µ/Z which can be

identified with R× Vn equipped with the multiplication

(s, v) · (t, w) := (s + t, (−t) · v + w).

We write Vn = V0 ⊕ V+ ⊕ V− = V0 ⊕ V1, where

V+ := span{Xj , Yk;λj > 0, λ′k > 0},
V− := span{Xj ;λj < 0},
V0 := span{Xj , Yk;λj = 0, λ′k = 0},

and V1 := V+ ⊕ V−. Let

µ+ := µ ∩ R∗+, µ− := µ ∩ R∗−, µ0 := µ ∩ {0},

then we can write

V+ =
∑

λ∈µ+

V+,λ and V− =
∑

λ∈µ−

V−,λ,

where V+,λ and V−,λ are the respective eigenspaces of the operator lµ.
We can also identify g∗n,µ with RA∗ ⊕ V ∗

n ⊕ RZ∗ ' R× Vn × R, and then

〈Ad∗(a, u)(a∗, v∗, λ∗), (0, v, z)〉 = 〈(a∗, v∗, λ∗),Ad((a, u)−1)(0, v, z)〉
= 〈(a∗, v∗, λ∗), (0, (−a) · v, e−2az + e−2aωn(−(a · u), v))〉
= 〈0, v∗, (−a) · v〉+ λ∗e−2az + λ∗e−2aωn(−(a · u), v).

Hence

Ad∗(a, u)(a∗, v∗, λ∗)|hn
= (a∗, (−a) · v∗ − λ∗e−2a(a · u)× ωn, λ∗e−2a).

Here we denote by u× ωn the linear functional on Vn as

u× ωn(v) := ωn(u, v) for all v ∈ Vn.

The coadjoint orbit Ω` of an element ` = (a∗, v∗, λ∗) ∈ g∗n,µ is given by

Ω` = {(a∗ + v∗([A, u]) + 2zλ∗, (−a) · v∗ − λ∗e−2a(a · u)× ωn, λ∗e−2a) : a, z ∈ R, u ∈ Vn}.

Hence if λ∗ 6= 0 then the corresponding coadjoint orbit is the subset

Ωλ∗ = R× V ∗
n × R∗+λ∗,
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where V ∗
n is the linear dual space of Vn. Therefore we have two open coadjoint orbits

Ωε := Ad∗(Gn,µ)`ε = R× V ∗
n × R∗ε for ε ∈ {+,−}, (3.0.2)

where `ε = εZ∗. The other orbits are contained in Z⊥ with the form

Ωv∗ = RA∗ + R · v∗ for v∗ ∈ V ∗
n \ V ∗

0 ,

or the one point orbits

{a∗A∗ + v∗} for a∗ ∈ R, v∗ ∈ V ∗
0 .

We can decompose the linear dual space V ∗
n of Vn into

V ∗
+ := {f ∈ V ∗

n : f(V− ∪ V0) = {0}},
V ∗
− := {f ∈ V ∗

n : f(V+ ∪ V0) = {0}},
V ∗

0 := {f ∈ V ∗
n : f(V+ ∪ V−) = {0}}.

The following definition was given in [LinLud2].

Definition 3.1. Denote by ‖ · ‖ the norm on V ∗
n coming from the scalar product

defined by the basis {X1, . . . , Xn, Y1, . . . , Yn}. For f+ =
∑

λ∈µ+
fλ ∈ V ∗

+ and f− =∑
λ∈µ− fλ ∈ V ∗

−, let

|f+|µ = |f+| := max
λj∈µ+

‖fλj
‖1/λj and |f−|µ = |f−| := max

λj∈µ−
‖fλj

‖−1/λj .

Then for t ∈ R, we have the relation

|t · f+| = et|f+| and |t · f−| = e−t|f−| for f+ ∈ V ∗
+, f− ∈ V ∗

−. (3.0.3)

On V ∗
0 we shall use the norm coming from the scalar product. This gives us a global

gauge on V ∗
n :

|(f0, f+, f−)| := max{‖f0‖, |f+|, |f−|}.

We denote by V ∗
gen the open subset of V ∗

n consisting of all the f = (f0, f+, f−) ∈
V ∗

0 × V ∗
+ × V ∗

− for which f+ 6= 0 and f− 6= 0. The subset V ∗
sin consists of all the

f = (f0, f+, f−) for which either f+ 6= 0, f− = 0 or f+ = 0, f− 6= 0. We see that for every
f = (f0, f+, f−) ∈ V ∗

gen there exists exactly one element f ′ = (f0, f
′
+, f ′−) in its Gn,µ-orbit

such that |f ′+| = |f ′−|. In the same way, for f = (f0, f+, 0) (resp. f = (f0, 0, f−)) ∈ V ∗
sin,

there exists exactly one element f ′ = (f0, f
′
+, 0) (resp. f ′ = (f0, 0, f ′−)) in its Gn,µ-orbit

for which |f ′+| = 1 (resp. |f ′−| = 1).
For f+ ∈ V ∗

+ \ {0}, let us denote by r(f+) the unique real number for which the
vector r(f+) · f+ in V ∗

+ has gauge 1. This means that
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r(f+) := − ln(|f+|).

Similarly, for f− ∈ V ∗
− \ {0} we define the number q(f−) by

q(f−) := ln(|f−|)

such that |q(f−) · f−| = 1. Let

D = {(f0, f+, f−) : |f+| = |f−| 6= 0},
S+ = {(f0, f+, 0) : |f+| = 1}, S− = {(f0, 0, f−) : |f−| = 1}, and

S = S+ ∪ S−.

The orbit space g∗n,µ/Gn,µ can then be written as the disjoint union Γ of the sets

Γ0 = R× V ∗
0 , corresponding to the unitary characters of Gn,µ,

Γ1 = S ' V ∗
sin/Gn,µ,

Γ2 = D ' V ∗
gen/Gn,µ,

Γ3 = {+,−} ' {Ω+,Ω−}/Gn,µ,

in the case where V ∗
gen 6= ∅, i.e., µ+ 6= ∅ and µ− 6= ∅. In case V ∗

gen = ∅, we have Γ as the
union of

Γ0 = R× V ∗
0 , corresponding to the unitary characters of Gn,µ,

Γ1 = S ' V ∗
sin/Gn,µ,

Γ2 = {+,−} ' {Ω+,Ω−}/Gn,µ.

In order to simplify notations, we shall treat only the first case in the following, i.e., we
shall assume that V ∗

gen is nonempty. The other case is similar and easier.
The topology of the orbit space g∗Vn

/GVn
of the quotient group Gn,µ/Z has been

described in [LinLud]. We recall that a sequence y = (yk)k is called properly converging
if y has limit points and if every cluster point of the sequence is a limit point, i.e., the
set of limit points of any subsequence is always the same, indeed, it equals to the set of
all limit points of the sequence y.

Theorem 3.2 ([LinLud, Theorem 2.3]).

(1) A properly converging sequence (Ωfk
)k with fk = (fk,0, fk+ , fk−) ∈ D has either a

unique limit point Ωf for some f ∈ D and then f = limk fk, or limk(fk+ , fk−) = 0
and then the limit set L of the sequence is given by

L = {Ω(f0,f+,0),Ω(f0,0,f−),R},

where f0 = limk fk,0, f+ = limk r(fk+) · fk+ ∈ S+ and f− = limk q(fk−) · fk− ∈ S−.
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(2) A properly converging sequence (Ωfk
) with fk = (fk,0, fk+ , fk−) ∈ S has the limit set

L = {Ωf ,R},

where f = limk fk ∈ S.

Corollary 3.3. The orbit Ωf for f ∈ D is closed in g∗n,µ. The closure of the
orbit Ωf for f ∈ S is the set {Ωf ,R}.

From the description (3.0.2) of the open orbits Ωε, ε = ±, we have the boundary of
Ωε as the following.

Corollary 3.4. For ε ∈ {+,−}, the boundary of the open orbit Ωε is the subset
R× V ∗

n × {0} = Z⊥ ' g∗Vn
.

On the other hand, for every coadjoint orbit we can write down a corresponding
irreducible representation as an induced representation by using Kirillov’s orbit theory.

(1) Let Pn = exp(
∑n

j=1 RYj +RZ). This is a closed connected normal abelian subgroup
of Gn,µ. Let also xn :=

∑n
j=1 RXj and yn :=

∑n
j=1 RYj ⊂ Vn (an abelian subalge-

bra of gn,µ), then Xn := exp (xn) and Yn = exp (yn) are closed connected abelian
subgroups of Gn,µ. We have

Gn,µ = exp(RA) · Xn · Pn = Sn · Pn,

where Sn := exp(RA) · Xn is a subgroup of Gn,µ. The irreducible representations
πε, ε = ±, corresponding to the orbits Ωε are of the form

πε := indGn,µ

Pn
χεZ∗ .

The Hilbert space of πε is the L2-space L2(Gn,µ/Pn, χε) ' L2(Sn), where χε(y, z) :=
e−i2πεz for (y, z) ∈ Pn. The elements of this space are the measurable functions
ξ : Gn,µ → C satisfying the relations

ξ(gp) = χε(p−1)ξ(g) for g ∈ Gn,µ, p ∈ Pn, and
∫

Gn,µ/Pn

|ξ(g)|2dġ < ∞,

where dġ is the left invariant measure on Gn,µ/Pn. For F ∈ L1(Gn,µ) and ξ ∈
L2(Gn,µ/Pn), we have

πε(F )ξ(s′) =
∫

SnPn

F (sp)ξ(p−1s−1s′)dsdp

=
∫

SnPn

F (s′sp)ξ(p−1s−1)dsdp
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=
∫

SnPn

F (s′s−1p)∆Sn
(s−1)ξ(p−1s)dsdp

=
∫

SnPn

F (s′s−1p)∆Sn(s−1)ξ(s(s−1p−1s))dsdp

=
∫

SnPn

F (s′s−1p)∆Sn(s−1)χε(s−1ps)ξ(s)dsdp

=
∫

SnPn

F (s′s−1p)∆Sn(s−1)e−i2π Ad∗(s)`ε(log(p))ξ(s)dsdp

=
∫

Sn

F̂ pn(s′s−1; Ad∗(s)lε)ξ(s)∆Sn(s−1)ds.

Here F̂ pn is the partial Fourier transform of F in the direction Pn given by

F̂ pn(s; `) :=
∫

Pn

F (sp)e−i2π〈`,log(p)〉dp for s ∈ Sn, ` ∈ p∗n.

Hence the operator πε(F ) is given by the kernel function

Fε((a′, x′), (a, x)) = F̂ pn(a′ − a, a · (x′ − x); (−εe−2a(a · x)× ωn, εe−2a))e|λ|a,

where |λ| := ∑n
j=1 λj . In fact the linear functional εe−2a(a · x)× ωn is given by

εe−2a(a · x)× ωn = ε

( n∑

j=1

e(λj−2)axjY
∗
j

)
for a ∈ R, x ∈ Xn.

Therefore,

Fε((a′, x′), (a, x)) = F̂ pn

(
a′−a, a · (x′−x);

(
−ε

( n∑

j=1

e(λj−2)axjY
∗
j

)
, εe−2a

))
e|λ|a.

(2) For v∗ ∈ V ∗
n , we have the irreducible representation πv∗ on L2(R) defined by

πv∗ := indGn,µ

Hn
χv∗ ,

where Hn := exp(hn). The kernel function Fv∗ of the operator πv∗(F ), F ∈ L1(Gn,µ),
is given by

Fv∗(a, b) = F̂ hn(a− b, b · v∗, 0) for a, b ∈ R. (3.0.4)

(3) Finally, for (a∗, v∗0) ∈ R× V ∗
0 we have the unitary characters

χ(a∗,v∗0 )(a,v0,v,c) := e−2πi(a∗a+v∗0 (v0)) for a, c ∈ R, v0 ∈ V0, v ∈ V1.
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Definition 3.5. We denote by l∞(Γ) the C*-algebra

l∞(Γ) =
{

(φ(γ) ∈ B(Hγ))γ∈Γ; ‖φ‖ := sup
γ∈Γ

‖φ(γ)‖op < ∞
}

.

The Fourier transform Fn,µ : C∗(Gn,µ) → l∞(Γ) for C∗(Gn,µ) is given by

Fn,µ(a)(ε) = â(ε) := πε(a) for ε ∈ {+,−},
Fn,µ(a)(f) = â(f) := πf (a) for f ∈ D ∪ S,

Fn,µ(a)(a∗, v∗0) := χ(a∗,v∗0 )(a) for (a∗, v∗0) ∈ R× V ∗
0 ,

(
=

∫

R×V0×V×R
F (s, v0, v1, z)e−i2πa∗se−i2πv∗0 (v0)dsdv0dv1dz

for F ∈ L1(Gn,µ)
)

.

4. The C*-conditions.

4.1. The continuity and infinity conditions.
Theorem 4.1. For every a ∈ C∗(Gn,µ), the mapping

S ∪ D 7→ B(L2(R)) : f 7→ â(f),

is norm continuous. We also have that

lim
|f|→∞

f∈D

‖πf (a)‖op = 0.

Proof. See [LinLud, Proposition 4.2]. ¤

4.2. The condition for the open orbits Ωε.
To understand the case of open orbits, we have to take into account the boundary

points of such an orbit. It is well known that for a ∈ C∗(G) the operator πε(a) is
compact if and only if π(a) = 0 for every π in the boundary of the representation πε, i.e.,
if πγ(a) = 0 for every γ ∈ Γ0 ∪ Γ1 ∪ Γ2. In this subsection we shall give a description of
the algebra of operators πε(C∗(Gn,µ)).

Definition 4.2. For k ∈ Z and r ∈ R, let Ir,k be the half-open interval:

Ir,k := [kr, kr + r[⊂ R.

(1) Let Sδ,1 := {(a, x) ∈ R×Xn; e−a > δ3}.
(2) Let δ 7→ rδ ∈ R+ be such that limδ→0 rδ = +∞ and limδ→0 emrδδ1/2 = 0, where

1 ≤ m := maxj(2− λj).
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(3) For constants D = (D1, . . . , Dn) ∈ (R∗+)n and k = (k0, k1, . . . , kn) ∈ Zn+1, let

Sδ,D,k,2 := {(a, x1, . . . , xn) ∈ R×Xn; e−a ≤ δ3,

a ∈ Irδ,k0 , xj ∈ I
Djδ2erδ(2−λj)k0 ,kj

, j = 1, . . . , n}.

Proposition 4.3. For every compact subset K ⊆ R×Xn and δ > 0 small enough,
we have that

KSδ,D,k,2 ⊂
⋃

j0∈Z
|j0|≤1

Sδ,Dδ,j0 ,k,2 =: Rδ,D,k,2,

where Dδ,j0 = (D1e
−rδ(2−λ1)(j0), . . . , Dne−rδ(2−λn)(j0)) ∈ (R∗+)n.

Proof. Indeed, there is an M > 0 such that K ⊂ [−M, M ]n+1 ⊂ Rn+1. Let
rδ > M . For (s, u) ∈ K and (a, x) ∈ Sδ,D,k,2, it follows that

ζ := (s, u) · (a, x) = (s + a, (−a) · u + x),

and (k0+j0)rδ ≤ s+a < (k0+j0+1)rδ for some k0 ∈ Z and j0 ∈ {−1, 0, 1}. Furthermore

|e−aλj uj | = |uj |e−2ae(2−λj)a

≤ Me−2aerδ(2−λj)(k0+1)

≤ Djδ
2e−rδ(2−λj)j0erδ(2−λj)(k0+j0),

since for δ small enough Me−2aerδ(2−λj) ≤ Mδ6erδ(2−λj) < Djδ
2 for every j. Hence

xj + e−aλj uj < (kj + 1)Dje
rδ(2−λj)(−j0)δ2erδ(2−λj)(k0+j0) + e−aλj uj

< (kj + 2)Dje
rδ(2−λj)(−j0)δ2erδ(2−λj)(k0+j0),

and also

xj + e−aλj uj ≥ kjDje
rδ(2−λj)(−j0)δ2erδ(2−λj)(k0+j0) − e−aλj |uj |

≥ (kj − 1)Dje
rδ(2−λj)(−j0)δ2erδ(2−λj)(k0+j0).

Therefore ζ is contained in the set Rδ,D,k,2. ¤

Remark 4.4.

(1) The family of sets {Sδ,1, Sδ,D,k,2; δ > 0, k ∈ Zn+1} forms a partition of Rn+1.
(2) Denote by Mδ,1 the multiplication operator in L2(Rn+1) ' L2(Gn,µ/Pn, χε) with the

characteristic function of the set Sδ,1. Similarly let Mδ,D,k,2 be the multiplication op-
erator on L2(Gn,µ/Pn, χε) with the characteristic function of the set Sδ,D,k,2. These
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multiplication operators are pairwise disjoint orthogonal projections and the sum of
them is the identity operator.

Let Nδ,D,k,2 be the multiplication operator with the characteristic function of the
set Rδ,D,k,2 for δ > 0 and k ∈ Zn+1. We have the following property of the operator
Nδ,D,k,2.

Proposition 4.5. There exists a constant C > 0 such that for any bounded linear
operator L on the Hilbert space L2(Gn,µ/Pn, χε), we have that

∥∥∥∥
∑

k∈Zn+1

Nδ,D,k,2 ◦ L ◦Mδ,D,k,2

∥∥∥∥
op

≤ C sup
k
‖Nδ,D,k,2 ◦ L ◦Mδ,D,k,2‖op.

Proof. See Propositions 6.2 and 6.18 in [ILL]. ¤

Definition 4.6. For k ∈ Zn+1 and δ > 0, let

`k,δ = −ε
n∑

j=1

Djδ
2erδ(2−λj)k0kjY

∗
j ∈ h∗n.

Let σk,δ := indGn,µ

Pn
χ`k,δ

. The Hilbert space of this representation is the space

Hk,δ = L2(Gn,µ/Pn, χ`k,δ
)

and for F ∈ L1(Gn,µ), ξ ∈ Hk,δ we have that

σk,δ(F )ξ(a′, x′) =
∫

S

F̂ pn(s′s−1; Ad∗(s)`k,δ)ξ(s)∆S(s−1)ds.

Hence this operator has a kernel function given by

Fk,δ((a′, x′), (a, x)) = F̂ pn(a′ − a, a · (x′ − x); ((−a) · `k,δ, 0))e|λ|a.

Moreover, the representation σk,δ is equivalent to the representation

σn,`k,δ
:=

∫ ⊕

p⊥n⊂V ∗n

πf+`k,δ
df,

and an equivalence is given by

Un,`k,δ
: L2(R×X ) ≡ L2(Gn,µ/Pn, χ`k,δ

) →
∫ ⊕

p⊥n

L2(Gn,µ/Hn, χf+`k,δ
)df,

Un,`k,δ
(ξ)(f)(g) : =

∫

Hn/Pn

χf+`k,δ
(hn)ξ(ghn)dḣn for g ∈ G, f ∈ p⊥n . (4.2.1)
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Let CS∪D be the C*-algebra of all uniformly bounded continuous mappings from
S ∪ D into B(L2(R)). It follows from Theorem 4.1 that for every a ∈ C∗(Gn,µ) we have
that â|S∪D is contained in CS∪D.

For each f = (f0, f+, f−) ∈ V ∗
n , we denote by f1 the unique element in its

coadjoint orbit Ωf contained in S ∪ D. Let Un,k,δ(f) : L2(Gn,µ/Hn, χf+`k,δ
) →

L2(Gn,µ/Hn, χ(f+`k,δ)1) be the canonical intertwining operator of πf+`k,δ
and π(f+`k,δ)1

.
Formula (4.2.1) allows us to define a representation of the algebra CS∪D on the space
L2(Gn,µ/Pn) by

τn,`k,δ
(φ) := U−1

n,`k,δ
◦

∫

p⊥n

Un,k,δ(f)∗ ◦ φ((f + `k,δ)1) ◦ Un,k,δ(f)df ◦ Un,`k,δ
.

We have that

σn,`k,δ
(a) = τn,`k,δ

(â|S) for all a ∈ C∗(Gn,µ). (4.2.2)

Definition 4.7. For δ > 0, k ∈ Zn+1 and a ∈ C∗(Gn,µ), let

σn,k,δ(a) := σn,`k,δ
(a) ◦Mδ,D,k,2,

σn,δ(a) :=
∑

k∈Zn+1

Nδ,D,k,2 ◦ σn,k,δ(a).

Proposition 4.8. Let a ∈ C∗(Gn,µ) and ε ∈ {+,−}. Then

lim
δ→0

dis((πε(a)− σn,δ(a)),K(L2(R×X ))) = 0.

Proof. Let L1
c be the space of all F ∈ L1(Gn,µ) for which the partial Fourier

transform F̂ pn((a, x), (v∗, s)) is a C∞-function with compact support on Sn × p∗n. Take
F ∈ L1

c and choose C > 0 such that F̂ pn((a, x), (v∗, s)) = 0, whenever |a| + ‖x‖ > C or
‖v∗‖+ |s| > C. By Proposition 4.3, for δ > 0 small enough, we have that

πε(F ) ◦Mδ,D,k,2 = Nδ,D,k,2 ◦ πε(F ) ◦Mδ,D,k,2

for every k and hence

πε(F ) ◦ (I−Mδ,1)− σn,δ(F ) = πε(F ) ◦
( ∑

k

Mδ,k,2

)
− σn,δ(F )

=
∑

k∈Zn+1

Nδ,D,k,2 ◦
(
πε(F )− σn,`k,δ

(F )
) ◦Mδ,D,k,2,

and the kernel function Fδ,k of the operator a
F ,δ,k := Nδ,D,k,2 ◦ (πε(F ) − σn,`k,δ

(F )) ◦
Mδ,D,k,2 is therefore given by
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Fδ,k((a′, x′), (a, x)) =
(

F̂ pn

(
a′ − a, a · (x′ − x);

(
− ε

( n∑

j=1

e(λj−2)axjY
∗
j

)
, εe−2a

))

− F̂ pn(a′ − a, a · (x′ − x); (−ε(−a) · `k,δ, 0))
)

× e|λ|a1Sδ,D,k,2(a, x)1Rδ,D,k,2(a
′, x′) for a, a′ ∈ R, x, x′ ∈ Vn.

We see that

e(λj−2)axj − e−λ′jaDjδ
2erδ(2−λj)k0kj = e−λ′ja(xj −Djδ

2erδ(2−λj)k0kj).

Hence,

|e(λj−2)axj − e−λ′jaDjδ
2erδ(2−λj)k0kj |

≤ e−λ′jaDjδ
2erδ(2−λj)k0

= Djδ
2e(2−λj)(rδk0−a)

≤ erδ(2−λj)Djδ
2

≤ erδmDjδ
2

≤ δ. (4.2.3)

Since F ∈ L1
c , there exists a continuous function ϕ : Sn → R+ with compact support

such that

|F̂ pn(s; `)− F̂ pn(s; `′)| ≤ ϕ(s)‖`− `′‖ for `, `′ ∈ p∗n, s ∈ Sn.

Whence for any (a, x), (a′, x′) ∈ Sn and any δ > 0 small enough,

|Fδ,k((a′, x′), (a, x))|

=
∣∣∣∣F̂ pn

(
a′ − a, a · (x′ − x);

(
− ε

( n∑

j=1

e(λj−2)axjY
∗
j

)
, εe−2a

))

− F̂ pn(a′ − a, a · (x′ − x); (−ε(−a) · `k,δ, 0))
∣∣∣∣e|λ|a1Sδ,D,k,2(a, x)1Rδ,D,k,2(a

′, x′)

≤ ϕ(a′ − a, a · (x′ − x))
∥∥∥∥
(
− ε

( n∑

j=1

e(λj−2)axjY
∗
j

)
, εe−2a

)
+ (ε(−a) · `k,δ, 0)

∥∥∥∥

× e|λ|a1Sδ,D,k,2(a, x)1Rδ,D,k,2(a
′, x′)
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≤ ϕ(a′ − a, a · (x′ − x))
∥∥∥∥
( n∑

j=1

(e(λj−2)axj − e−λ′jaDjδ
2erδ(2−λj)k0kj)Y ∗

j , εe−2a

)∥∥∥∥

× e|λ|a1Sδ,D,k,2(a, x)1Rδ,D,k,2(a
′, x′)

≤ Cδϕ(a′ − a, a · (x′ − x))e|λ|a

for some constant C > 0 independent of δ by (4.2.3). Therefore by Young’s inequality
we have that

‖a
F ,δ,k‖op ≤ Cδ for k ∈ Zn+1,

and finally

‖πε(F ) ◦ (I−Mδ,1)− σn,δ(F )‖op ≤ C ′δ

for a new constant C ′, by Proposition 4.5.
On the other hand, the operator πε(F ) ◦Mδ,1 is compact since

‖πε(F ) ◦Mδ,1‖2H−S

=
∫

R

∫

{e−a>δ3}

∫

(Xn×Xn)

∣∣∣∣F̂ pn

(
a′ − a, a · (x′ − x);

(
− ε

( n∑

j=1

e(λj−2)axjY
∗
j

)
, εe−2a

))∣∣∣∣
2

× e2|λ|adada′dxdx′

=
∫

R

∫

{e−a>δ3}

∫

(Xn×Xn)

∣∣∣∣F̂ pn

(
a′, x′;

(
− ε

( n∑

j=1

xjY
∗
j

)
, εe−2a

))∣∣∣∣
2

e2nadada′dxdx′

< ∞.

Therefore,

dis((πε(F )− σn,δ(F )),K(L2(R×X )))

≤ ‖πε(F ) ◦ (I−Mδ,1)− σn,δ(F )‖op
→ 0 as δ → 0.

The Proposition follows, since L1
c is dense in C∗(Gn,µ). ¤

4.3. The two-dimensional orbits Ωv∗ and the characters.
The C*-algebras of the groups GVn = Gn,µ/Z have been determined as algebras

of operator fields in [LinLud]. We adapt this result to our present setting of almost
C0(K)-C*-algebras.

Definition 4.9. For a ∈ C∗(Gn,µ), let Φ(a) be the element of C∗(R×V0) defined
by Φ̂(a)(θ) := 〈χθ, a〉 for all θ ∈ R× V ∗

0 . The mapping Φ : C∗(Gn,µ) → C∗(R× V0) is a
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surjective homomorphism. Let the kernel of Φ be denoted by IX, then C∗(Gn,µ)/IX '
C∗(R×V0). For η ∈ Cc(Gn,µ), the element Φ(η) ∈ C∗(R×V0) is the continuous function
with compact support given by

Φ(η)(t, v0) =
∫

V1×R
η(t, v0, v, s)dvds for t ∈ R, v0 ∈ V0.

Choose ζ ∈ Cc(V1 × R) with ζ ≥ 0 and
∫

V1×R ζ(v, s)dvds = 1, define the mapping
β : Cc(R× V0) → Cc(Gn,µ) ⊂ C∗(Gn,µ) by

β(ϕ)(a, v0, v, s) = ϕ(a, v0)ζ(v, s) for ϕ ∈ Cc(R× V0), s ∈ R and v ∈ V1.

It has been shown in [LinLud] that β can be extended to a linear mapping bounded
by 1 from C∗(R × V0) into C∗(Gn,µ), such that for every ϕ ∈ C∗(R × V0) we have
Φ(β(ϕ)) = ϕ.

Definition 4.10. Let (Ωfk
)k (fk = (fk+ , fk−) ∈ D for all k) be a properly

converging sequence in Ĝn,µ, whose limit set contains the orbits Ω(f+,0) and Ω(0,f−).
Let rk, qk ∈ R be such that |rk · fk+ | = 1 and |qk · fk− | = 1 for k ∈ N. Then
limk rk = −∞ and limk qk = +∞. Choose two positive sequences (ρk)k, (κk)k such
that κk > qk,−rk < ρk for all k ∈ N, limk→∞ κk − qk = ∞, limk→∞ ρk + rk = ∞
and limk→∞((κk − qk)/rk) = 0, limk→∞((ρk + rk)/qk) = 0. We say that the sequences
(ρk, κk)k are adapted to the sequence (fk)k.

For r ∈ R, let U(r) be the unitary operator on L2(R) defined by

U(r)ξ(s) := ξ(s + r) for all ξ ∈ L2(R) and s ∈ R.

Definition 4.11. Let A = (A(f) ∈ B, f ∈ Γ) be a field of bounded operators.
We say that A satisfies the generic condition if for every properly converging sequence
(πfk

)k ⊂ Ĝn,µ with fk ∈ D for every k ∈ N, which admits limit points π(f0,0,f−), π(f0,f+,0)

and for every pair of sequences (ρk, κk)k adapted to the sequence (fk)k we have that

(1) lim
k→∞

‖U(rk) ◦A(fk) ◦ U(−rk) ◦M(ρk,+∞) −A(f0, f+, 0) ◦M(ρk,+∞)‖op = 0,

(2) lim
k→∞

‖U(qk) ◦A(fk) ◦ U(−qk) ◦M(−∞,κk) −A(f0, 0, f−) ◦M(−∞,κk)‖op = 0.

The following proposition had been proved in [LinLud, Proposition 5.2].

Proposition 4.12. For every a ∈ C∗(Gn,µ), the operator field F(a) satisfies the
generic condition.

We must show that on D, our C*-algebra satisfies the almost C0(K) conditions given
in Definition 2.2. For a ∈ C∗(Gn,µ) and f = (f0, f+, f−) ∈ V ∗

gen, we define the operator
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σf (a) := U(−r(f)) ◦ π(f0,f+,0)(a) ◦ U(r(f)) ◦M]−∞,κ(f)+r(f)]

+ U(−q(f)) ◦ π(f0,0,f−)(a) ◦ U(q(f)) ◦M[q(f)−ρ(f),+∞[,

where

r(f) = − ln(|f+|), q(f) = ln(|f−|),
ρ(f) = q(f)1/3 − r(f), κ(f) = q(f)− r(f)1/3.

We have the following proposition.

Proposition 4.13. For all f ∈ D, the operator field

f 7→ σD(f)(a) := πf (a)− σf (a) (a ∈ C∗(Gn,µ))

is contained in C0(D,K(L2(R))).

Proof. Let a ∈ C∗(Gn,µ). We know that πf (a) is a compact operator for any
f ∈ V ∗

gen, that the mapping f 7→ πf (a) is norm continuous and that limf→∞ πf (a) = 0
by Corollary 3.2 and Proposition 4.2 in [LinLud]. If F ∈ L1

c , then the kernel function
Ff0,f+ of the operator π(f0,f+,0) ◦M[ρ(f),∞[ is given by

Ff0,f+(s, t) = F̂ hn(s− t, t · f+)1[ρ(f),∞[(t).

The function Ff0,f+ is of compact support and ρ is continuous. Hence the mapping
f 7→ π(f0,f+,0) ◦ M[ρ(f),∞[ is norm continuous on D and for every f ∈ D, the operator
π(f0,f+,0) ◦M[ρ(f),∞[ is compact. Since

ρ(f) = ln(|f−|)1/3 + ln(|f+|)
= ln(|f+|)1/3 + ln(|f+|)

goes to infinity as ‖f‖ goes to infinity, it follows that π(f0,f+,0) ◦M[ρ(f),∞[ = 0 if ‖f‖ is
big enough. Similar properties hold for the mapping f 7→ π(f0,0,f−) ◦M]−∞,κ(f)] on D.

Since the boundary ∂D of D is the set S ∪ R, the generic condition tells us
that limf→∂D ‖σD(f)(a)‖ = 0. Hence the mapping f 7→ σD(f)(F ) is contained in
C0(D,K(L2(R))). The proposition follows from the density of L1

c in C∗(Gn,µ). ¤

4.4. The C*-algebras of the groups Gn,µ.
Let Γi ⊆ g∗n,µ/Gn,µ be given as in Section 3 and Γ =

⋃
Γi.

Definition 4.14. (1) For f ∈ D and φ ∈ l∞(Γ), let

σf (φ) := U(−r(f)) ◦ φ(f0, f+, 0) ◦ U(r(f)) ◦M]−∞,κ(f)+r(f)]

+ U(−q(f)) ◦ φ(f0, 0, f−) ◦ U(q(f)) ◦M[q(f)−ρ(f),+∞[.
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(2) Let ϕ = (ϕ(f) ∈ B, f ∈ Γ) be a field of bounded operators such that the restriction
of the field ϕ to the set of characters Γ0 is contained in C0(Γ0). We get the element
ϕ(0) ∈ C∗(R× V0) determined as in Definition 4.9 by the condition γ(ϕ(0)) = ϕ(γ)
for γ ∈ Γ0. We can then define as in Definition 4.9 that

σf (ϕ) := β(ϕ(0)) ∈ B(L2(R)) for f ∈ S.

Definition 4.15. Let D∗(Gn,µ) be the subset of l∞(Ĝn,µ) defined as a set of all
the operator fields φ defined over Ĝn,µ such that the mappings γ 7→ φ(γ) are norm
continuous and vanish at infinity on the sets Γ0 and Γ2 and such that φ(f) ∈ K(L2(R))
for all f ∈ D. Moreover, each φ must fulfills the following conditions:

(1) For ε ∈ {+,−},

lim
δ→0

dis((φ(ε)− σn,δ(φ)),K(L2(R×X ))) = 0, and

lim
δ→0

dis((φ∗(ε)− σn,δ(φ∗)),K(L2(R×X ))) = 0.

(2) The mappings

D 3 f 7→ (φ(f)− σf (φ)) and D 3 f 7→ (φ(f)∗ − σf (φ∗))

are contained in C0(D,K(L2(R))).
(3) The mappings

S 3 f 7→ (φ(f)− σf (φ)) and S 3 f 7→ (φ(f)∗ − σf (φ∗))

are contained in C0(S,K(L2(R))).

Theorem 4.16. The C*-algebra of Gn,µ is an almost C0(K)-C*-algebra. In par-
ticular, the Fourier transform maps C∗(Gn,µ) onto the subalgebra D∗(Gn,µ) of l∞(Γ).

Proof. Propositions 4.8 and 4.13 show that the Fourier transform maps C∗(Gn,µ)
into D∗(Gn,µ). The conditions on D∗(Gn,µ) imply that D∗(Gn,µ) is a closed involutive
subspace of l∞(Γ). It follows from [ILL] that D∗(Gn,µ) is a C*-subalgebra of l∞(Γ) and
that Fn,µ(C∗(Gn,µ)) = D∗(Gn,µ). ¤
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