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Abstract. We prove upper bounds on the transition probabilities of
random walks with i.i.d. random conductances with a polynomial lower tail
near 0. We consider both constant and variable speed models. Our estimates
are sharp. As a consequence, we derive local central limit theorems, parabolic
Harnack inequalities and Gaussian bounds for the heat kernel. Some of the
arguments are robust and applicable for random walks on general graphs. Such
results are stated under a general setting.

1. Introduction and Results.

The work presented below mainly concerns the Random Conductance Model (RCM)
with i.i.d. conductances that have polynomial lower tails at zero. We shall obtain various
heat kernel bounds, Harnack inequalities and a local central-limit theorem for such models
under sharp conditions on the fatness of the tail of the conductances near 0. Some of
our arguments exploit specific features of the model - mainly some geometric information
on the field of conductances and its spectral implications - while other arguments are
general properties of random walks on graphs. In the rest of this introduction, we will
separate results that are more robust from those that are specific to the RCM. The robust
results will be discussed in the first subsection below, and results specific to the RCM
and references to the existing literature will be given in the second subsection. Readers
who are interested in RCM may start reading this paper from the second subsection.

Notation. We use c or C as generic positive constants.

1.1. Part I: Framework and the results.
In this subsection, we give sufficient conditions for various heat kernel bounds, Har-

nack inequalities and a local central-limit theorem on a general graph. The results will
be used in the next subsection for a concrete RCM.

Let (G, π) be a weighted graph. That is, G is a countable set and ωxy = ωyx ≥ 0
for each x, y ∈ G. We write x ∼ y if and only if ωxy > 0. We assume (G, π) is connected
and it has bounded degree (i.e. there exists M > 0 such that |{y ∈ G : ωxy > 0}| ≤ M

for each x ∈ G). For x 6= y, `(x, y) = {x0, x1, . . . , xm} is called a path from x to y if
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x = x0, x1, . . . , xm = y and xi ∼ xi+1 for i = 0, . . . , m−1. Write |`(x, y)| = m. Define the
graph distance by d(x, y) = min{|`(x, y)| : `(x, y) ∈ P(x, y)} where P(x, y) is the set of
paths from x to y. We define d(x, x) = 0 for x ∈ G. Write B(x,R) := {x ∈ G : d(x, y) <

R} and B̄(x,R) := {x ∈ G : d(x, y) ≤ R}. For A ⊂ G, define π(A) =
∑

x∈A π(x) where
π(x) =

∑
y∼x ωxy, and ν(A) =

∑
x∈A νx where νx ≡ 1.

We will consider VSRW (variable speed random walk) and CSRW (constant speed
random walk) that correspond to (G, π). Both are continuous time Markov chains whose
transition probability from x to y is given by ωxy/π(x). The holding time at x is ex-
ponentially distributed with mean π(x)−1 for VSRW and with mean 1 for CSRW. The
corresponding discrete Laplace operator and heat kernel can be written as

Lθf(x) =
1
θx

∑
y

(f(y)− f(x))ωxy, p
(θ)
t (x, y) = P x(X(θ)

t = y)/θy,

where θx = θ(x) = π(x) for CSRW and θx = 1 for VSRW. Thus the notation Lπ and
X(π) correspond to CSRW and Lν , X(ν) correspond to VSRW. We may and will often
remove the script when results are valid for both types of random walks.

Let d̃(·, ·) be a metric defined by

d̃(x, y) = min
{ m−1∑

i=0

(
1 ∧ ω−1/2

xixi+1

)
: `(x, y) = {x0, x1, . . . , xm} ∈ P(x, y)

}
.

Note that by definition, it is clear that d̃(x, y) ≤ d(x, y) for all x, y ∈ G. Write B̃(x,R) :=
{x ∈ Zd : d̃(x, y) < R}. For A ⊂ G, let τA = inf{t ≥ 0 : Xt /∈ A}.

In the following, we fix θ (which is either π or ν) and consider either CSRW or
VSRW.

Assumption 1.1. Let x0 ∈ G be a distinguished point and d ≥ 1.

( i ) There exist δ > 0, c1 > 0 and T0(x0) ∈ [1,∞) such that

pt(x, y) ≤ c1t
−d/2 ∀x, y ∈ B(x0, t

(1+δ)/2), t ≥ T0(x0). (1.1)

( ii ) There exist δ > 0, c2 > 0 and R0(x0) ∈ [1,∞) such that the following hold:
(CSRW case: θ = π) c2r

2 ≤ Ex[τB(x,r)] for all x ∈ B(x0, r
1+δ) and all r ≥ R0(x0).

(VSRW case: θ = ν) c2r
2 ≤ Ex[τB̃(x,r)] for all x ∈ B̃(x0, r

1+δ) and all r ≥ R̃0(x0).
(iii) There exist CE > 0 and R1(x0) ∈ [1,∞) such that if R ≥ R1(x0) and a positive

function h : B(x0, R) −→ R+ is harmonic on B = B(x0, R), then writing B′ =
B(x0, R/2),

sup
B′

h ≤ CE inf
B′

h. (H)

(iv) Let θ be as above. There exist δ > 0, c3, c4 > 0 and R2(x0) ∈ [1,∞) such that
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c3R
d ≤ θ(B(x0, R)) ≤ sup

x∈B(x0,R1+δ)

θ(B(x,R)) ≤ c4R
d, for all R ≥ R2(x0).

(v ) (CSRW case: θ = π) There exist κ > 0 and R3(x0) ∈ [1,∞) such that

min
x∈B(x0,R)

π(x) ≥ R−κ for all R ≥ R3(x0).

(VSRW case: θ = ν) There exist c5 > 0 and R4(x0) ∈ [1,∞) such that for any
x ∈ B(x0, R), R ≥ R4(x0), if d(x, y) ≥ R then it holds that

d̃(x, y) ≥ c5d(x, y).

Under the assumption, we have the following.

Heat kernel estimates.

Proposition 1.2. Assume Assumption 1.1 and let ε ∈ (0, δ/(1 + δ)). There exist
c1, . . . , c5 > 0 and R∗(x0) ∈ [1,∞) such that for x, y ∈ G and t > 0, if

c1(d(x, y) ∨ t1/(2−ε)) ≥ R∗(x0), (1.2)

and

d(x0, x) ≤ c1(d(x, y) ∨ t1/(2−ε)), (1.3)

hold, then

pt(x, y) ≤ c2t
−d/2 exp

(− c3d(x, y)2/t
)

for t > d(x, y), (1.4)

pt(x, y) ≤ c4 exp
(− c5d(x, y)(1 ∨ log(d(x, y)/t))

)
for t ≤ d(x, y). (1.5)

Corollary 1.3. Assume Assumption 1.1. There exist c1 > 0 and R∗(x0) ∈ [1,∞)
such that if R ≥ R∗(x0), then

sup
0<s≤T

ps(x, y) ≤ c1T
−d/2 for all x, y ∈ B(x0, 2R) with d(x, y) ≥ R,

where T = R2.

For a subset A ⊂ G, let {XA
t }t≥0 be the process killed on exiting A and define the

Dirichlet heat kernel pA
t (·, ·) as

pA
t (x, y) = P x(XA

t = y)/θy.

Then the following heat kernel lower bound holds.
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Proposition 1.4. Assume Assumption 1.1. Then there exist c1, δ0 ∈ (0, 1) and
T1(x0) ∈ [1,∞) such that

p
B(x0,t1/2)
t (x, y) ≥ c1t

−d/2, ∀x, y ∈ B(x0, δ0t
1/2)

for all t ≥ T1(x0).

Parabolic Harnack inequalities and Hölder continuity of caloric functions.

For x ∈ G and R, T > 0, let C∗ ≥ 2, Q(x,R, T ) := (0, 4T ]×B(x,C∗R) and define

Q−(x,R, T ) := [T, 2T ]×B(x,R), Q+(x,R, T ) := [3T, 4T ]×B(x,R).

Let u(t, x) be a function defined on [0, 4T ]× B̄(x,C∗R). We say u(t, x) is caloric on Q if
it satisfies the following: for t ∈ (0, 4T ) and y ∈ B(x,C∗R):

∂tu(t, y) = Lθu(t, y).

We then have the following.

Theorem 1.5 (Parabolic Harnack inequalities). Assume Assumption 1.1. Then
there exist c1 > 0, C∗ ≥ 2 and R5(x0) ∈ [1,∞) such that for any R ≥ R5(x0), and any
non-negative function u = u(t, x) which is caloric on Q(x0, R, R2), it holds that

sup
(t,x)∈Q−(x0,R,R2)

u(t, x) ≤ c1 inf
(t,x)∈Q+(x0,R,R2)

u(t, x). (1.6)

Corollary 1.6. Assume Assumption 1.1. Then there exist c1, β > 0, C∗ ≥ 2 and
R6(x0) ∈ [1,∞) such that the following holds: For any R ≥ R6(x0) and T ′ ≥ R2 + 1, let
R′ =

√
T ′ and suppose that u is a positive caloric function on Q(x0, R

′, T ′). Then for
any x1, x2 ∈ B(x0, R) and any t1, t2 ∈ [4(T ′ −R2), 4T ′], we have

|u(t1, x1)− u(t2, x2)| ≤ c1(R/T ′1/2)β sup
Q+(x0,R′,T ′)

u.

Local central limit theorem.

In the following, we write the Gaussian heat kernel with covariance matrix Σ (which
is a positive definite d× d matrix) as

kt(x) :=
1√

(2πt)d detΣ
exp

(
− xΣ−1x

2t

)
.

When G = Zd, x0 = 0 and d ≥ 2, if we further assume the invariance principle, we can
obtain the following local limit theorem.

Proposition 1.7. Assume Assumption 1.1 and the following ; There exists c1 > 0
such that limR→∞R−dπ(B(0, R)) = c1 and
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lim
n→∞

P 0(n−1/2X[nt] ∈ H(y, R)) =
∫

H(y,R)

kt(z)dz, ∀y ∈ Rd, R, t > 0,

where H(y, R) = y + [−R, R]d. Then there exist a > 0 such that for each T1, T2 > 0 and
each M > 0, we have

lim
n→∞

sup
|x|≤M

sup
t∈[T1,T2]

∣∣ndpω
n2t(0, [nx])− akt(x)

∣∣ = 0,

where we write [x] = ([x1], . . . , [xd]) for x = (x1, . . . , xd) ∈ Rd.

1.2. Part II: Models and results.
In this subsection, we will consider the specific RCM with i.i.d. conductances that

have polynomial lower tails at zero. In Part I, we consider a general weighted graph, but
in Part II we consider G = Zd and the conductance is nearest neighbor and random.

Let us first define the model precisely (for more information on the RCM, see Biskup
[12] or Kumagai [29]). Consider the d-dimensional hypercubic lattice Zd and let Ed

denote the set of (unordered) nearest-neighbor pairs, called edges or bonds, i.e. Ed =
{{x, y} : x, y ∈ Zd, |x − y| = 1}. We use the notation x ∼ y if (x, y) ∈ Ed, and
ωe = ωxy = ωyx to denote the random conductance of an edge e. Let (Ω,F ,P) be the
probability space that governs the randomness of the media. We assume {ωe : e ∈ Ed}
to be positive and i.i.d.. We define π, CSRW, VSRW, their Laplace operators and
heat kernels etc. as in Part I. Note that we have two sources of randomness for the
Markov chain: the randomness of the media and the randomness of the Markov chain.
In order to clarify the randomness of the media, we often put ω ∈ Ω. For example, we
denote by (P x

ω , x ∈ Zd) the Markov laws induced by the semigroup Pt
ω := etLθ , and by

pω
t (x, y) = P x

ω (Xt = y)/θ(y) the heat kernel. Let Ex
ω be the expectation with respect to

P x
ω . As in the last subsection, we use the same notation for CSRW and VSRW when it

is clear which Markov chain we are talking about.

Our purpose is to investigate the effects of fluctuations in the environment on the
behavior of the random walk. We shall in particular get bounds on the long time behavior
of the return probability P 0

ω(Xt = 0).
It is well known that when the conductances are bounded and bounded away from

0 (the uniformly elliptic case), then the decay of the return probability obeys a standard
power law with exponent d/2. Indeed, the following (much stronger) estimates hold:
there exist constants c1, . . . , c4 such that for all x and y for all t ≥ d(x, y), then

c1t
−d/2 exp(−c2|x− y|2/t) ≤ P x

ω (Xt = y) ≤ c3t
−d/2 exp(−c4|x− y|2/t), (1.7)

both for CSRW and VSRW. We refer to Delmotte [21].
The first sharp results for non-uniformly elliptic conductances were obtained inde-

pendently by Barlow [4] and by Mathieu and Remy [32] in the case of random walks
on super-critical percolation clusters. In this case, conductances are allowed to take two
values only, 0 and 1. We assume that P(ωb > 0) > pc(d), where pc(d) is the critical
threshold for bond percolation on Zd and we condition on the event that the origin be-
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longs to the infinite cluster of positive conductances. Mathieu and Remy [32] showed
that there exists a constant C such that, for almost all realizations of the conductances,
for large enough t, we have

sup
y

P 0
ω(Xt = y) ≤ Ct−d/2. (1.8)

Barlow [4] obtained detailed two-sided Gaussian heat kernel bounds for the random walks
on super-critical percolation clusters. Namely, he proved (1.7) for all x, y on the infinite
cluster and for large enough t.

Quite often in statistical mechanics, results in percolation help understanding more
general situations through comparison arguments; the present paper is no exception.

The bounds on the return probability in the percolation case eventually lead to the
proof of functional central limit theorems and local C.L.T.. We refer to Sidoravicius
and Sznitman [33], Berger and Biskup [10] and Mathieu and Piatnitski [31] for the
percolation model, and Barlow and Hambly [9] for the local C.L.T., and to Mathieu
[30], Biskup and Prescott [14], Barlow and Deuschel [7], Andres, Barlow, Deuschel and
Hambly [1] for more general models of random conductances.

In the other direction, examples show that a slow decay of the return probability
is possible for random positive conductances. In Fontes and Mathieu [24], the authors
computed the annealed return probability for a model of random walk with positive
conductances whose law has a power tail near 0. They showed a transition from a
classical decay like t−d/2 to a slower decay. In [11], Berger, Biskup, Hoffman and Kozma
proved that for d ≥ 5, given any sequence λn ↑ ∞, there exists a product law P on
(0,∞)Ed such that

P 0
ω(Xnk

= 0) ≥ c(ω)(λnk
nk)−2

along a deterministic sequence (nk), with c(ω) > 0 almost surely. In this construction,
although the conductances are almost surely positive, their law has a very heavy tail
near 0 of the form P(ωxy < s) ∼ | log(s)|−θ, θ > 0. (Here we write f ∼ g to mean that
f(t)/g(t) = 1 + o(1) for functions f and g.)

One may then ask for what choice of P does the transition from a classical decay
with rate t−d/2 to a slower decay happens. A partial answer to this question is in the
papers of Boukhadra [16]–[17].

Let us consider positive and bounded conductances, with a power-law tail near zero:
let γ > 0 and assume the following conditions: for any e ∈ Ed,

ωe ∈ [0, 1], P(ωe ≤ u) = uγ(1 + o(1)), u → 0. (P)

It is proved in Boukhadra [17] that, when (P) is satisfied with γ > d/2, then

P 0
ω(Xt = 0) = t−(d/2)+o(1), (1.9)

for almost all environments and as t tends to +∞.
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On the other hand, it is proved in [16] that, still for an environment satisfying (P),
then for d ≥ 5

P 0
ω(X2n = 0) ≥ C(ω) n−(2+δ), (1.10)

where δ = δ(γ) is a constant such that δ(γ) −→ 0 as γ → 0.

The next theorem improves upon (1.9) in two respects: first we have extended the
domain of admissible values of γ; secondly and more importantly, we obtain a much
sharper upper bound on the return probability, to be compared with (1.8).

In this subsection, we use an equivalent and more appropriate definition of the box:

B(x, n) = x + [−n, n]d ∩ Zd

for all x ∈ Zd and write Bn = B(0, n).

Theorem 1.8. Let d ≥ 2 and suppose that the conductances (ωe, e ∈ Ed) are i.i.d.
satisfying (P). Then we have:

(1) For the CSRW, for any γ > (1/8)(d/(d−1/2)), there exist positive constants δ, c1 > 0
such that P-a.s. for all x, y ∈ B(0, t(1+δ)/2) and for t large enough,

pω
t (x, y) ≤ c1t

−d/2. (1.11)

(2) For the VSRW for any γ > 1/4, there exist positive constants δ′, c2 > 0 such that
P-a.s. for all x, y ∈ B(0, t(1+δ′)/2) and for t large enough,

pω
t (x, y) ≤ c2t

−d/2. (1.12)

Using the results in Part I, we obtain the following.

Theorem 1.9. Let γ > (1/8)(d/(d−1/2)) for CSRW and γ > 1/4 for VSRW. Then
the conclusions of Proposition 1.4 (Heat kernel lower bound), Theorem 1.5 (Parabolic
Harnack inequality), Corollary 1.6 (Hölder continuity of caloric functions) and Proposi-
tion 1.7 (Local central-limit theorem) hold.

Remarks 1.10. Let us discuss in what sense the statements in Theorem 1.8 are
optimal.
(1) For d = 2 or d = 3, the return probability P 0

ω(Xt = 0) a.s. decays like t−d/2 even
when our restrictions on γ are not satisfied (in fact for any choice of i.i.d. positive
conductances) as was proved in [11].

From Theorem 1.8, we get that P 0
ω(Xt = 0) also a.s. decays like t−d/2 when γ >

(1/8)(d/(d − 1/2)) (CSRW) or γ > 1/4 (VSRW). Whether these restrictions on γ are
optimal or not, we do not know - but, as recalled in (1.10), we know that when d ≥ 5,
then the return probability does not decay like t−d/2 for small positive values of γ.
(2) In spite of (1) above, the restrictions on γ in Theorem 1.8 are optimal as far as the
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decay of supx∈B√t
pω

t (x, x) is concerned. More precisely, we claim that if γ < (1/8)(d/(d−
1/2)) (CSRW) or γ < 1/4 (VSRW), then supx∈B√t

pω
t (x, x) cannot decay like t−d/2. The

justification of this claim is related to trapping effects on the random walk induced by
fluctuations of the conductances. These trapping effects depend on the model, CSRW or
VSRW.

The CSRW cannot be trapped on a site but it might be trapped on an edge. Indeed,
assume there exists in Bn an edge e = {x, y} of conductance of order 1 that is surrounded
by edges of conductances of order n−µ for some µ > 0. Starting at x, the random walk
will oscillate between x and y for a time of order nµ. If we insist that pω

t (x, x) ≤ c1t
−d/2

when t is of order n2, as in Theorem 1.8 (1), this imposes µ < 2. It is not difficult
to see that, under assumption (P), there will P-a.s exist edges of conductance of order
1 that are surrounded by edges of conductances smaller than n−µ for all µ such that
µγ(4d − 2) < d. Thus we deduce that it is not correct that pω

t (x, x) decays faster than
t−d/2 uniformly on the box B√t when γ < (1/8)(d/(d− 1/2)).

The VSRW may be trapped on a point: let x be such that all edges containing x

have conductances of order n−µ. Then the VSRW will wait for a time of order nµ before
its first jump. Thus the estimate pω

t (x, x) ≤ c1t
−d/2 when t is of order n2 cannot hold

unless µ < 2. It is easy to deduce from that fact that statement (1.12) in Theorem 1.8
(2) is false when γ < 1/4.
(3) One may also compare our estimates with the results in [2]. In [2], the authors
consider stationary environments of random conductances under some integrability con-
ditions. When applied to i.i.d. conductances satisfying (P), they obtain heat kernel
upper bounds as in Theorem 1.8 provided that γ > 1/4 for both models CSRW and
VSRW. (See [2, Proposition 6.3] for CSRW. The same argument also works for VSRW,
see the discussion in [2, Remark 1.5].)

Thus statement (2) in Theorem 1.8 is not new but statement (1) improves upon [2]
for the i.i.d. conductances satisfying (P). Observe also that our strategy strongly differs
from the one in [2]. The authors of [2] first establish elliptic and parabolic Harnack
inequalities from Sobolev inequalities, and then deduce heat kernel bounds. We approach
the problem the other way around: we shall first establish Theorem 1.8 using probabilistic
arguments (in particular percolation estimates) and deduce the Harnack inequality from
Theorem 1.8.

The organization of the paper is as follows. The proofs of the results in Part I and
II are given in Sections 2 and 3 respectively. The key tool in the proof of Theorem 1.8
(the main theorem in Part II) is Proposition 3.2, and its proof is given in Section 6.
The proof of Proposition 3.2 requires some preliminary percolation results and spectral
gap estimates, which are given in Section 4 and 5 respectively. Some relatively standard
proof is given in Appendix (Section 7) for completeness.

2. Proof of the results in Part I.

In the following three sections, we prove results in Part I. We first give a preliminary
lemma.
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Lemma 2.1. ( i ) Assume Assumption 1.1 (i), (iv). Then there exists c1 > 0 and
R7(x0) ∈ [1,∞) such that

Ey[τB(x,r)] ≤ c1r
2, (2.1)

for all x ∈ B(x0, r
1+δ/2), all y ∈ G and all r ≥ R7(x0).

( ii ) Assume Assumption 1.1 (i), (ii), (iv). Then there exist c2 > 0, p ∈ (0, 1) and
R8(x0) ∈ [1,∞) such that

P x(τB(x,r) ≤ t) ≤ p + c2t/r2, (2.2)

for all x ∈ B(x0, r
1+δ), t ≥ 0 and all r ≥ R8(x0).

Proof. (i) Let R7(x0) := T
1/2
0 (x0) ∨ R2(x0). For R > R7(x0) and x ∈

B(x0, R
1+δ), if y, z ∈ B(x,R) and t = c∗R2 where c∗ ≥ 4 is chosen later, we have

x, y, z ∈ B(x0, 2R1+δ) ⊂ B(x0, t
(1+δ)/2) and t ≥ T0. Thus, by Assumption 1.1 (i), (iv),

we have

P y(Xt ∈ B(x,R)) =
∑

z∈B(x,R)

p(t, y, z)θ(z) ≤ c1t
−d/2θ(B(x,R)) ≤ c1c4t

−d/2Rd ≤ 1
2
,

where we chose c
d/2
∗ ≥ 2c1c4. This implies

P y(τB(x,R) > t) ≤ 1
2
.

By the Markov property, for m a positive integer

P y(τB(x,R) > (m + 1)t) ≤ Ey[PYmt(τB(x,R) > t) : τB(x,R) > mt] ≤ 1
2
P y(τB(x,R) > mt).

By induction,

P y(τB(x,R) > mt) ≤ 2−m,

and we obtain Ey[τB(x,R)] ≤ cR2. When y /∈ B(x,R), clearly Ey[τB(x,R)] = 0, so the
result follows.

(ii) Write τ = τB(x,r). Using (i) and Assumption 1.1 (ii), we have

c2r
2 ≤ Ex[τ ] ≤ t + Ex[1{τ>t}EXt [τ ]] ≤ t + cr2P x(τ > t) ≤ t + cr2(1− P x(τ ≤ t)),

for x ∈ B(x0, r
1+δ), r ≥ R0(x0) ∨R7(x0) =: R8(x0). Rewriting, we have

P x(τ ≤ t) ≤ 1− c2/c + t/(cr2),

and (2.2) is proved. ¤
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The following lemma is from [6, Lemma 1.1].

Lemma 2.2. Let {ξi}m
i=1,H be non-negative random variables such that H ≥∑m

i=1 ξi. If the following holds for some p ∈ (0, 1), a > 0,

P (ξi ≤ t|σ(ξ1, . . . , ξi−1)) ≤ p + at, t > 0,

then

log P (H ≤ t) ≤ 2(amt/p)1/2 −m log(1/p).

Given Lemma 2.1, we have the following.

Proposition 2.3. Assume Assumption 1.1 (i), (ii), (iv), and let ε ∈ (0, δ/(1+ δ)).
Then, there exist c1, c2, c3 > 0 such that the following holds for ρ, t > 0 that satisfy
ρ2−ε ≤ t and t/ρ ≥ c1R8(x0);

P x(τB(x,ρ) ≤ t) ≤ c2 exp(−c3ρ
2/t), for all x ∈ B(x0, ρ). (2.3)

Proof. The following argument has been often made for heat kernel upper bounds
on fractals. We closely follow [4, Proposition 3.7].

Let r = bρ/mc ≥ 1 where m ∈ N is chosen later. Define inductively

σ0 = 0, σi = inf{t > σi−1 : d(Xσi−1 , Xt) = r}, r ≥ 1.

Let ξi = σi − σi−1 and let Ft = σ(Xs : s ≤ t) be the filtration of X. By Lemma 2.1, we
have

P x(ξi < u|Fσi−1) ≤ p + c1u/r2 (2.4)

if Xσi−1 ∈ B(x0, r
1+δ), r ≥ R8(x0) and u ≥ 0. Note that d(x,Xσm) = d(X0, Xσm) ≤

mr ≤ ρ so that σm ≤ τB(x,ρ) and Xσi
∈ B(x, ρ) for i = 0, 1, . . . , m. Using Lemma 2.2

with a = c1/r2, we obtain

log P x(τB(x,ρ) ≤ t) ≤ log P x(σm ≤ t) ≤ 2(c1mt/(pr2))1/2 −m log(1/p)

≤ −c2m(1− (c3tm/ρ2)1/2) (2.5)

if

x ∈ B(x0, r
1+δ/2), ρ ≤ r1+δ/2 and r ≥ R8(x0). (2.6)

Let λ = ρ2/(2c3t). If λ ≤ 1, then (2.3) is immediate by adjusting c2 in (2.3) appropriately,
so we may assume λ > 1. If we can choose m ∈ N with λ/2 ≤ m < λ and (2.5)
hold, then we have the desired estimate. So let us now verify the conditions (2.6).
Set m = bλ/2c + 1 ∈ [λ/2, λ); then since m ≥ 1, we have r ≤ ρ. By definition,
r = bρ/mc ≥ c4t/ρ for some c4 > 0, so the assumption implies r ≥ c5R8(x0). The
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assumption ρ2−ε ≤ t and the fact ε ∈ (0, δ/(1 + δ)) implies (noting that one can choose
ρ ≥ r large) r1+δ > 2ρ. Since x ∈ B(x0, ρ), we have verified that (2.3) holds. ¤

Let dθ(·, ·) be a metric that satisfies

θ−1
x

∑
y

dθ(x, y)2ωxy ≤ 1 for all x ∈ G, (2.7)

and dθ(x, y) ≤ 1 for all x ∼ y ∈ G. The following estimates, which are generalizations of
[20, Corollary 11, 12], are given in [23, Theorem 2.1, 2.2].

Proposition 2.4. There exist c1, . . . , c4 > 0 such that the following hold for x, y ∈
G;

pt(x, y) ≤ c1√
θxθy

exp(−c2dθ(x, y)2/t) for t > dθ(x, y), (2.8)

pt(x, y) ≤ c3√
θxθy

exp(−c4dθ(x, y)(1 ∨ log(dθ(x, y)/t))) for t ≤ dθ(x, y). (2.9)

We are now ready to prove Proposition 1.2.

Proof of Proposition 1.2. We first consider CSRW, namely θx = π(x). In
this case the graph distance d(·, ·) satisfies the condition of dθ in (2.7). Write D = d(x, y)
and R = d(x0, x).

Case 1: Consider first the case D2−ε ≥ t. By (1.2), we have c1D ≥ R∗(x0), and by
(1.3), R ≤ c1D. So

d(x0, y) ≤ d(x0, x) + d(x, y) = R + D ≤ (c1 + 1)D.

Substituting (c1 + 1)D to R in Assumption 1.1 (v), we have minx∈B(x0,(c1+1)D) π(x) ≥
c2D

−κ if (c1 + 1)D ≥ R3(x0), so taking R∗(x0) ≥ c1R3(x0)/(c1 + 1) and plugging this
into (2.8) and (2.9) gives the desired estimates by noting

Dκtd/2 ≤ Dκ+d(2−ε)/2 ≤ c3 exp(c4D
ε) ≤ c3 exp(c4D

2/t), for D2−ε ≥ t,

with c4 > 0 smaller than c2/2 in (2.8).
Case 2: Consider the case D2−ε < t and let ρ = bD/2c + 1 if D ≥ 1, ρ = 0 if

D = 0. Note that d(x0, y) ≤ (2D) ∨ (2R). By (1.2), R∗(x0) ≤ c1t
1/(2−ε). Also by (1.3),

R ≤ c1t
1/(2−ε), so that d(x0, y) ≤ c5t

1/(2−ε) < t(1+δ)/2 by the choice of ε. Since D2−ε < t,
(t/2)/ρ > c6t

(1−ε)/(2−ε), which is larger than c6(R∗(x0)/c1)1−ε. So the assumption for
Proposition 2.3 is satisfied by choosing R∗(x0) ≥ c∗R8(x0)1/(1−ε) for large c∗ > 0. Let
Ax = {z ∈ G : d(x, z) ≤ d(y, z)} and Ay = G \Ax. Then

pt(x, y) = P x(Xt = y, Xt/2 ∈ Ay)/θy + P x(Xt = y, Xt/2 ∈ Ax)/θy

= P x(Xt = y, Xt/2 ∈ Ay)/θy + P y(Xt = x,Xt/2 ∈ Ax)/θx =: I + II. (2.10)
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Write τ = τB(x,ρ). Then

I = P x(Xt = y, Xt/2 ∈ Ay)/θy = P x(τ < t/2, Xt = y, Xt/2 ∈ Ay)/θy

≤ P x(1{τ<t/2}PXτ (Xt−τ = y))/θy

≤ P x(τ < t/2) sup
z∈∂B(x,ρ),s<t/2

pt−s(z, y)

≤ c7 sup
z∈∂B(x,ρ),s<t/2

pt−s(z, y) exp(−c8D
2/t),

where Proposition 2.3 is used in the last inequality. Noting that d(x0, z) ≤ R + ρ ≤
c8t

1/(2−ε) < t(1+δ)/2, we obtain I ≤ c9t
−d/2 exp(−c8D

2/t). II can be bounded similarly,
so that we obtain (1.4).

We next discuss the VSRW case (i.e. θx = 1) briefly. In this case the metric
d̃(·, ·)/√M , where M is the maximum degree of the vertices, is relevant; indeed it satisfies
the condition of dθ in (2.7). So the conclusion (w.r.t. d̃) holds if (1.2) and (1.3) hold
w.r.t. d̃. Using Assumption 1.1 (v), it is easy to verify that (1.2) and (1.3) w.r.t. d

imply (1.2) and (1.3) w.r.t. d̃. Finally let us deduce (1.4) and (1.5) for d from those
for d̃. When t ≥ d̃(x, y)2, (1.4) is an on-diagonal estimate, so no distance appears
there. When t < d̃(x, y)2, (1.2) for d̃ implies R∗(x0) ≤ c1d̃(x, y)1/(1−ε), so by taking
(R∗(x0)/c3)1−ε ≥ R4(x0), we can apply Assumption 1.1 (v) (since d̃(x, y) ≤ d(x, y)) and
deduce (1.4) and (1.5) for d from those for d̃. Thus the desired estimates are established.

¤

Remark 2.5. A Gaussian off-diagonal upper bound similar to (1.4) in Proposition
1.2 can sometimes be deduced from the on-diagonal upper bound using the strategy
initiated by Grigor’yan for manifolds [25] and developed in [19], [23], [18] for the graph
setting. Indeed, motivated by the present paper, the author of [18] included in the latest
version of his preprint, stronger statements (than in the first version of the preprint) on
getting Gaussian off-diagonal upper bounds from the on-diagonal decay of the return
probabilities at both end-points. With this revised version, one can obtain Proposition
1.2 as well, but we think it is still worth providing a complete proof of Proposition 1.2
based on our different approach.

Proof of Corollary 1.3. It is easy to check (1.2) and (1.3), so we can apply
Proposition 1.2. If s ≥ R, then the result follows directly from (1.4). If s < R, then (1.5)
implies

ps(x, y) ≤ c1 exp
(− c2R(1 ∨ log(R/s))

) ≤ c1 exp(−c2R) ≤ c3R
−d,

so the result holds. ¤

We next prepare some propositions in order to prove Proposition 1.4. The idea of
the proof is based on that of [26, Theorem 3.1].

A function u is said to be harmonic in a set A ⊂ Zd if u is defined in A (that consists
of all points in A and all their neighbors) and if Lu(x) = 0 for any x ∈ A.
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As a first step, we should check the elliptic oscillation inequalities. For any nonempty
finite set U and a function u on U , denote

osc
U

u := max
U

u−min
U

u.

Proposition 2.6. Assume Assumption 1.1 (iii). Then, for any ε > 0, there exists
σ = σ(ε, CE) < 1 such that, for any σR > R1(x0) and for any function u defined in
B̄(x0, R) and harmonic in B(x0, R), we have

osc
B(x0,σr)

u ≤ ε osc
B(x0,r)

u, ∀r ∈ (R1(x0)/σ,R/2]. (2.11)

The proof is standard. For completeness, we give the proof in Section 7.
We write

Ē(x,R) := max
y∈B(x,R)

Ey[τB(x,R)].

Then, under Assumption 1.1 (i) and (iv), we have the following due to Lemma 2.1:

Ē(x,R) ≤ CR2, ∀x ∈ B(x0, R), R ≥ R7(x0). (2.12)

The next proposition can be proved similarly as [27, Proposition 11.2]. For com-
pleteness, we give the proof in Section 7.

Proposition 2.7. Assume Assumption 1.1 (iii) and let R ≥ R1(x0), u be a func-
tion on B(x0, R) satisfying the equation Lu = f with zero boundary condition. Then, for
any positive r < R/2 with σr ≥ R1(x0),

osc
B(x0,σr)

u ≤ 2
(
E(x0, r) + εE(x0, R)

)
max

B(x0,R)
|f |, (2.13)

where σ and ε are the same as in Proposition 2.6.

We now give some time derivative properties of the heat kernel.

Proposition 2.8. Let A be a nonempty finite subset of Zd.

( i ) Let f be a function on A.

ut(x) = PA
t f(x).

Then, for all 0 < s ≤ t,

‖∂t ut‖2 ≤ 1
s
‖ut−s‖2. (2.14)

( ii ) For all x, y ∈ A,
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∣∣∂t pA
t (x, y)

∣∣ ≤ 1
s

√
pA
2v(x, x) pA

2(t−s−v)(y, y) (2.15)

for all positive t, s, v such that s + v ≤ t.
(iii) Under Assumption 1.1 (i), for all x, y we have

∣∣∂t pA
t (x, y)

∣∣ ∨ |∂t pt(x, y)| ≤ C t−(d/2+1),

∀x, y ∈ B(x0, t
(1+δ)/2), t ≥ T0(x0).

(2.16)

The proof is an easy modification of the corresponding results in [27] for discrete time.
For completeness, we give the proof in Section 7.

We are now ready to prove Proposition 1.4.

Proof of Proposition 1.4. Let ε < 1/2 (we will impose some further bounds
of ε later). Let R = (t/ε)1/2, A = B(x0, R) and for any x ∈ B(x0, εR) = B(x0, (εt)1/2),
introduce the function

u(y) := pA
t (x, y).

First, we claim that u(x) ≥ ct−d/2 for large t > 0. Let B = B(x, ε1/4R); we choose ε

small enough so that B ⊂ A. Using the Schwarz inequality, we have

pA
t (x, x) ≥ pB

t (x, x) ≥
( ∑

z

pB
t/2(x, z)θz

)2

/θ(B) = (1− P x(Xt /∈ B))2/θ(B)

≥ (
1− P x

(
τB(x,ε1/4R) ≤ t)

)2
/θ(B) ≥ (1− p− c6ε

1/2)2/θ(B) ≥ c/θ(B),

where (2.2) is used in the third inequality and we take ε > 0 small enough. (We take R

large so that ε1/4R ≥ R8(x0).) So, using Assumption 1.1 (iv), the claim follows.
Now let us show that

|u(x)− u(y)| ≤ c

2
t−d/2 (2.17)

for all y ∈ B(x0, εR) so that d(x, y) ≤ 2(εt)1/2, which would imply u(y) ≥ (c/2)t−d/2

and hence prove the desired result.
Noting that x ∈ B(x0, εR) ⊂ B(x0, R), by Proposition 2.8 (iii),

max
y∈B(x0,R)

∣∣∂t pA
t (x, y)

∣∣ ≤ C t−(d/2+1), for large t. (2.18)

By Proposition 2.7, we have, for any 0 < r < R/3 and for some σ ∈ (0, 1),

osc
B(x0,σr)

u ≤ 2
(
E(x0, r) + ε2E(x0, R)

)
max

y∈B(x0,R)

∣∣∂t pA
t (x, y)

∣∣, (2.19)

for all σr ≥ R1(x0) where ε in Proposition 2.7 is now written as ε2.
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Estimating max |∂t pA
t (x, y)| by (2.18) and using (2.12), we obtain, from (2.19),

osc
B(x0,σr)

u ≤ C
r2 + ε2R2

td/2+1
, ∀x ∈ B(x0, r), t, r large.

Choosing r = εR and noting t = εR2, we obtain

osc
B(x0,σr)

u ≤ 2Cε t−d/2 ≤ c

2
t−d/2 (2.20)

provided ε ≤ c/(4C), x ∈ B(x0, (εt)1/2) = B(x0, εR) and t large.
Note that

σr = σεR = σε

(
t

ε

)1/2

= σ
√

ε t1/2 = δ0t
1/2,

where δ0 = σε1/2. Hence (2.20) implies (2.17), which was to be proved. ¤

Let us briefly mention other proofs of the results in Part I.
Proof of Theorem 1.5 is given in Section 7.

Proof of Corollary 1.6. Given Theorem 1.5, the proof is standard and similar
to the proof of [8, Corollary 4.2]. (Given Theorem 1.5, one can also modify the proof of
[2, Proposition 4.6] and [9, Proposition 3.2].) So we omit the proof. ¤

Proof of Proposition 1.7. Given Corollary 1.6, the proof is similar to [2, The-
orem 1.11] and [9, Theorem 4.2], so we omit it. ¤

3. Proof of the results in Part II.

3.1. Strategy and proof of Theorem 1.8.
We now discuss the strategy of the proof of Theorems 1.8 and how one compares

random walks with random conductances with random walks on percolation clusters.
Choose a threshold parameter ξ > 0 such that P(ωb ≥ ξ) > pc(d) where pc(d) is

the threshold percolation cluster. The i.i.d. nature of the probability measure P ensures
that for P almost any environment ω, there exists a unique infinite cluster in the graph
(Zd,Ed), that we denote by C ξ = C ξ(ω).

Provided ξ is small enough, the complement of C ξ in Zd, here denoted by H ξ, is
a union of finite connected components that we will refer to as holes, see Lemma 4.1.
Thus, by definition, holes are connected sub-graphs of the grid. Note that holes may
contain edges such that ωb ≥ ξ.

Consider the following additive functional:

A(t) =
∫ t

0
{Xs∈C ξ}ds. (3.1)
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We shall need to make a time change for the process X to bring us back to the
situation that we already know, namely random walks on an infinite percolation cluster.

Recall A(t) from (3.1) and let A−1(t) = inf{s;A(s) > t} be its inverse. Define the
corresponding time changed process

Xξ
t := XA−1(t),

which is obtained by suppressing in the trajectory of X all the visits to the holes.
For the proof of Theorem 1.8, we need the fact that Xξ behaves in a standard way in

almost any realization of the environment ω (see for eg. [30, Lemma 4.1] or [1, Theorem
4.5]). Recall that we use here the box Bn = [−n, n]d ∩ Zd.

Lemma 3.1. There exists a constant c1 such that P-a.s. and for t large enough,

sup
y

P x
ω

(
Xξ

t = y
) ≤ c1 t−d/2, (3.2)

for all x ∈ Bt ∩ C ξ.

The key tool in the proof of Theorem 1.8 is the following control on the time spent
by the process outside C ξ.

Call τh the exit time of the random walk X from H ξ; if X0 /∈ H ξ, then τh = 0.

Proposition 3.2. (1) Let d ≥ 2 and choose ε ∈ (0, 1). Then,

(1) For the CSRW, for any γ > (1/8)(d/(d − 1/2)), there exist positive constants δ, σ

and c1, . . . , c4 such that for ξ > 0 small enough, P-a.s. for all x ∈ B(0, t(1+δ)/2) and
all t large enough, we have

P x
ω (A(t) ≤ ε t) ≤ c1e

−c2tσ

, (3.3)

and

P x
ω (τh ≥ t/2) ≤ c3e

−c4tσ

. (3.4)

(2) For the VSRW for any γ > 1/4, there exist positive constants δ′, σ′ and c5, . . . , c8

such that for ξ > 0 small enough, P-a.s. for all x ∈ B(0, t(1+δ′)/2) and all t large
enough, we have

P x
ω (A(t) ≤ ε t) ≤ c5e

−c6tσ′
and P x

ω (τh ≥ t/2) ≤ c7e
−c8tσ′

. (3.5)

Proof of Theorem 1.8. Let X be the CSRW with conductances satisfying (P)
and assume γ > (1/8)(d/(d − 1/2)). One can follow the same argument for the VSRW
with γ > 1/4 and with the counting measure instead of π.

We start by reproducing here the same reasoning as in [17]. Let n = t(1+δ)/2 with
δ as in Proposition 3.2 and such that δ < 1. Assume first that x belongs to C ξ ∩ Bn.
Since the probability of return is decreasing, see for eg. [17, Lemma 3.1], we have
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P x
ω (Xt = x) ≤ 2

t

∫ t

t/2

P x
ω (Xv = x)dv =

2
t
Ex

ω

[ ∫ t

t/2
{Xv=x}dv

]
. (3.6)

The additive functional A(·) being a continuous increasing function of the time and
null outside the support of the measure dA(v), so taking u = A(v) and noting that
A′(v) = {Xv∈C ξ}, we get

Ex
ω

[ ∫ t

t/2
{Xv=x}dv

]
= Ex

ω

[ ∫ t

t/2
{Xv=x} {Xv∈C ξ}dv

]

= Ex
ω

[ ∫ A(t)

A(t/2)
{Xξ

u=x}du

]
,

which is bounded by

Ex
ω

[ ∫ t

A(t/2)
{Xξ

u=x}du

]
,

since A(t) ≤ t.
Therefore, for ε ∈ (0, 1)

P x
ω (Xt = x) ≤ 2

t
Ex

ω

[ ∫ t

A(t/2)
{A(t/2)≥ε t/2} {Xξ

u=x}du

]

+
2
t
Ex

ω

[ ∫ t

A(t/2)
{A(t/2)≤ε t/2} {Xξ

u=x}du

]

≤ 2
t

∫ t

εt/2

P x
ω (Xξ

u = x)du +
2
t

∫ t

0

P x
ω (A(t/2) ≤ ε t/2)du,

and using Lemma 3.1,

P x
ω (Xt = x) ≤ 2c1

t

∫ t

εt/2

u−d/2du + 2P x
ω (A(t/2) ≤ ε t/2)

≤ 2c1(1− (ε/2)1−d/2) t−d/2 + 2P x
ω (A(t/2) ≤ ε t/2), (3.7)

which by virtue of Proposition 3.2 for t large enough, is less than

c2 t−d/2 + 2c3 e−c4tσ

.

Since π(x) > ξ, we obtain that

pω
t (x, x) ≤ c5 t−d/2.
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Then Cauchy-Schwarz gives

pω
t (x, y) ≤

√
pω

t (x, x)pω
t (y, y) ≤ c6 t−d/2, (3.8)

for any x, y ∈ B(0, t(1+δ)/2) ∩ C ξ and all t large enough.
Recall n = t(1+δ)/2. Suppose x ∈ H ξ ∩ Bn and y ∈ C ξ ∩ Bn. Note that x belongs

to a hole with a size less than (log n)c included in B2n (see Lemma 4.1 below). It implies
that Xτh

∈ C ξ ∩B2n if X0 = x. Then the strong Markov property gives

P x
ω (Xt = y) ≤ P x

ω (τh > t/2) + Ex
ω

(
{τh≤t/2} P

Xτh
ω (Xt−τh

= y)
)

(3.9)

which, by (3.8) and (3.4), and for t large enough, is less than

c3e
−c4tσ(1+δ)/2

+ max
z∈C ξ∩B2n

sup
s∈[t/2,t]

P z
ω(Xs = y) ≤ c7 t−d/2π(y). (3.10)

Since π(y) ≥ ξ, we deduce that

pω
t (x, y) ≤ c8t

−d/2. (3.11)

Using the reversibility, we also deduce that

pω
t (x, y) ≤ c9t

−d/2 (3.12)

whenever y ∈ H ξ ∩Bn and x ∈ C ξ ∩Bn.
Last, suppose x, y ∈ H ξ ∩Bn. The strong Markov property yields

P x
ω (Xt = y)

π(y)
≤ P x

ω (τh > t/2)
π(y)

+
1

π(y)
P x

ω

(
{τh≤t/2} P

Xτh
ω (Xt−τh

= y)
)
, (3.13)

which by (3.4) and (3.12) is less than

c3

π(y)
e−c4tσ(1+δ)/2

+ max
z∈C ξ∩B2n

sup
s∈[t/2,t]

ps(z, y) ≤ c3

π(y)
e−c4tσ(1+δ)/2

+ c t−d/2. (3.14)

Since 1/π(y) ≤ nc with a constant c depending only on d and γ (cf. Lemma 4.4 below),
the claim follows. ¤

The proof of Proposition 3.2 is deferred to Section 6. Section 4 contains some
preliminary percolation results, followed by Section 5, which provides some spectral gap
estimates necessary to the proof of the proposition.

Although the main strategy is close to the argument in Boukhadra [17], note that
the spectral gap estimates we prove here are sharper and their proof involves a much
more detailed analysis of the geometry of the percolation cluster.
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3.2. Proof of Theorem 1.9.
Proof of Theorem 1.9. It is enough to check Assumption 1.1 with x0 = 0 and

the hypothesis in Proposition 1.7. (1.1) is a consequence of Theorem 1.8. Assumption
1.1 (ii) holds since it is true for the time changed process Xξ as in [1, Proposition 4.7].
(H) is proved in [1, Theorem 7.3]. Note that VSRW and CSRW share the same harmonic
functions, so this fact can be used both of them. Assumption 1.1 (iv) will be proved in
Lemma 4.5 for the CSRW case (it is trivial for the VSRW case because the reference
measure is a uniform measure). Assumption 1.1 (v) for CSRW case is true because of
Lemma 4.4 below. For n large enough (larger than some random integer), we have

min
x∈Bn

π(x) ≥ n−κ with κ >
d

γ
,

where γ is the parameter that we see in the law of the environment (P). Assumption 1.1
(ii), (v) for VSRW case is obvious in this case because d̃(·, ·) = d(·, ·) in our setting since
ωe ≤ 1 for each edge.

The first hypothesis in Proposition 1.7 holds by the law of large numbers, and the
second hypothesis is proved in [14, Theorem 2.1] and [30, Theorem 1.3]. ¤

4. Percolation.

This section contains percolation results necessary to the spectral gap estimates in
the following section.

We consider the standard Bernoulli percolation model on the grid Zd: we indepen-
dently assign to edges the value 1 (open) and 0 (closed) with probability p and q = 1−p.
Let P denote the product probability measure thus defined on {0, 1}Ed . We assume p is
supercritical so that, for P almost any environment ω, there exists a unique infinite open
cluster that we denote by C . For q small enough, the complement of C in Zd, denoted
by H , is a union of finite open clusters that are called holes.

Let x ∈ Zd and let Hx be the (possibly empty) set of sites in the finite component
of Zd \ C containing x.

Lemma 4.1. Let d ≥ 2. For p sufficiently close to 1, there exist constants C < ∞
and c > 0 such that for all n ≥ 1

P(diamH0 > n) ≤ C e−cn.

Here “diam” is the diameter in the | · |∞−distance on Zd.

Proof. See Lemma 3.1 in [14]. ¤

Recall Bn = [−n, n]d ∩Zd the ball in Zd centered at 0 and of radius n. We have the
following lemma on the proportion of sites belonging to C in a box Bn.

Lemma 4.2. Let η ∈ (0, 1). For p sufficiently close to 1, there exists constants
C < ∞ and c > 0 such that for all n ≥ 1
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P
(|Bn ∩ C | ≤ η|Bn|

) ≤ Ce−cn. (4.1)

This estimate is sufficient for us, but we do not think it is optimal. The expected
behavior would be an exponential decay in the perimeter of Bn as in dimension 2, [22,
Theorem 3].

Proof. Let θd(p) be the bond percolation probability in the grid Zd. Note that
θd(p) tends to 1 when p → 1 cf. [28, Section 1.4]. Call C (G) the infinite percolation
cluster of a (sub) graph G ⊆ Zd.

First note that P−a.s.

Sn :=
∑

x∈Bn

{x∈C} ≥
∑

−n≤`≤n

∑

x∈{`}×[−n,n]d−1

x∈C ({`}×Zd−1) =:
∑

−n≤`≤n

Sn(`). (4.2)

Then repeating the operation we get

Sn ≥
∑

−n≤`1,...,`d−2≤n

Sn(`1, . . . , `d−2) (4.3)

with

Sn(`1, . . . , `d−2) :=
∑

x∈Qd−2
i=1 {`i}×[−n,n]2

x∈C ({`1}×···×{`d−2}×Z2).

The sub-graphs {`1} × · · · × {`d−2} × Z2 are disjoint copies of Z2 in Zd.
Now set

Y (`1, . . . , `d−2) := Sn(`1, . . . , `d−2)/(2n + 1)2.

Let η ∈ (0, 1) and choose p sufficiently close to 1 such that η ∈ (0, θ2(p)). By [22,
Theorem 3], for any `1, . . . , `d−2 ∈ [−n, n] and for some c, C > 0, we have

P(Y (`1, . . . , `d−2) ≤ η) ≤ Ce−cn. (4.4)

Combined with (4.3), it implies that

P
(|Bn ∩ C | ≤ η|Bn|

) ≤ P
( ∑

−n≤`1,...,`d−2≤n

Y (`1, . . . , `d−2)/(2n + 1)d−2 ≤ η

)

≤ P
( ⋃

−n≤`1,...,`d−2≤n

{
Y (`1, . . . , `d−2) ≤ η

})

≤ C nd−2e−cn,

which gives (4.1). ¤
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Write C(x) for the open cluster containing the point x. Then we have:

Lemma 4.3. For q small enough, there exists a constant c1 > 1 such that

P(|C(0)| < ∞) ≤ c1 q2d, (4.5)

and, for all x ∼ 0,

P(|C(0)| < ∞ and |C(x)| < ∞) ≤ c1 q4d−2. (4.6)

Proof. Let us recall some necessary definitions that we can find in [28, Section
1.4]. Call a plaquette any unit (d − 1)-dimensional hypercube in Rd that is a face of
a cube of the form x + [−1/2, 1/2]d. Let Ld be the set of plaquettes. There is a one
to one correspondence between edges in Ed and plaquettes in Ld. Indeed, for any edge
{x, y} ∈ Ed, the segment [x, y] intersects one and only one plaquette. We say a set of
plaquettes is connected if all plaquettes in the set are connected by bonds in the dual
lattice of Zd.

We couple the percolation process on Ed with a percolation on Ld by declaring a
plaquette open when the corresponding edge is open and declaring it is closed otherwise.

Let us suppose that C(0) is finite. Then there exists a finite cutset of closed pla-
quettes, say $, around the origin. (A cutset around the origin is a connected set of
plaquettes c such that the origin lies in a finite connected component of the complement
of c.)

The number of such cutsets around the origin which contain m plaquettes is at most
µm, for some constant µ = µ(d) depending only on the dimension. The smallest cutset
is unique and contains 2d plaquettes. Then the usual ‘Peierls argument’ gives that the
probability on the left hand side in (4.5) is bounded by

∑

$, cutset around 0

P(all plaquettes in $ are closed) ≤
∑

m≥2d

(µq)m,

which converges and is bounded by cq2d for some c provided p is sufficiently close to 1
such that qµ < 1.

As for the second estimate (4.6), we follow the same argument but we find the
exponent 4d − 2 since this is the size of the smallest number of plaquettes necessary to
form a cutset around both the origin and x. ¤

We now describe application of the preceding lemmas to conductances satisfying
assumption (P).

We recall the following result. Call Bn the set of edges in the box Bn.

Lemma 4.4. Suppose that the conductances (ωe, e ∈ Ed) satisfy (P). Then P-a.s.,
we have

lim
n→∞

log infe∈Bn
ωe

log n
= −d

γ
.
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Proof. The proof is similar to [24, Lemma 3.6]. ¤

The density estimate Lemma 4.2 yields the following volume property for the measure θ.

Lemma 4.5. Let η ∈ (0, 1) and β ≥ 1. Let P be a product probability measure
satisfying (P). Then for ξ > 0 small enough, for P-a.e. environment, for all x ∈ Bnβ

and n large enough, we have

ξ η|Bn| ≤ π
(
B(x, n)

) ≤ 2d |Bn|. (4.7)

Proof. Let η ∈ (0, 1). Recall the infinite cluster C ξ introduced in Subsection
3.1. The right-hand side inequality in (4.7) comes from the fact that π(x) ≤ 2d. As
for the left-hand side inequality, observe that by (4.1) and the i.i.d. character of the
conductances,

P
( ⋃

x∈B
nβ

{∣∣C ξ ∩B(x, n)
∣∣ < Cη|Bn|

})
≤ |Bnβ | e−cn. (4.8)

By the Borel-Cantelli lemma, we get that for n large enough, for all x ∈ Bnβ , we have∣∣C ξ ∩B(x, n)
∣∣ ≥ η|Bn|. Since π(x) ≥ ξ for x ∈ C ξ, the claim follows. ¤

In next two lemmas we construct sets of ‘good’ paths in the percolation clusters.

Lemma 4.6. Let P be a product probability measure satisfying (P).

(1) Let γ > (1/8)(d/(d − 1/2)) and choose α ∈ (0, 2) such that γα(4d − 2) > d. For ξ

small enough, P-a.s., for n large enough, for each edge e in Bn, there exists a path
of conductances larger than n−α connecting one of the endpoints of e to the frontier
∂Bn.

(2) Let γ > 1/4 and choose α ∈ (0, 2) such that γ > 1/(2α). For ξ small enough, P-a.s.
for n large enough, for each x ∈ Bn, there exists a path of conductances larger than
n−α joining x to the frontier ∂Bn.

Let Hn = Bn ∩H ξ and Cn = Bn ∩ C ξ.

Lemma 4.7. (1) Let γ > (1/8)(d/(d − 1/2)) and choose α ∈ (0, 2) such that
γα(4d − 2) > d. For ξ small enough, P-a.s. for n large enough, there exists an
injective map ϕ on Hn into Cn such that for each edge e = {x, y} with x ∈ Hn,
there exists a path `(e, ϕ(x)) from one of the endpoints of e to ϕ(x) satisfying

|`(e, ϕ(x))| ≤ (log n)2d2
and

1
ωb

< 4 nα, ∀b ∈ `(e, ϕ(x)). (4.9)

(2) Let γ > 1/4 and choose α ∈ (0, 2) such that 2αγ > 1. For ξ small enough, P-a.s. for
n large enough, there exists an injective map ϕ′ on Hn into Cn such that for each
x ∈ Hn, there exists a path `(x, ϕ′(x)) from x to ϕ′(x) satisfying
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|`(x, ϕ′(x))| ≤ (log n)2d2
and

1
ωb

< 4 nα, ∀b ∈ `(x, ϕ′(x)). (4.10)

Proof of Lemma 4.6. (1) Let αγ(4d−2) > d for some α ∈ (0, 2). Recall Bn the
set of edges in the box Bn and set ∂Bn = Bn \ Bn−1. Note that |Bn| = O(nd−1).

Let En be the event: there exists an edge e ∈ ∂Bn such that none of its endpoints
can be joined by a path to ∂Bn+1 along edges with conductances larger than n−α; this
last event is denoted by {e= ∂Bn+1}, i.e.

En :=
⋃

e∈∂Bn

{e= ∂Bn+1}. (4.11)

Then Lemma 4.3 with q = P(ωe < n−αγ) and (P) imply that

P
(
En

) ≤ c n−1−(αγ(4d−2)−d), (4.12)

By the Borel-Cantelli lemma we then get that there is a finite positive random variable
N = N(ω) such that for any n ≥ N , for every edge e ∈ ∂Bn, there exists a path of
conductances larger than n−α joining e to ∂Bn+1. It implies that there exists a path of
conductances larger than n−α joining one of the endpoints of every edge in Bn \BN−1 to
∂Bn+1. Indeed, consider an edge f ∈ ∂Bm for some m ≥ N . From one of its endpoints
starts a path of conductances larger than n−α reaching ∂Bm+1. Let e ∈ ∂Bm+1 be the
last edge of this path. Observe that the conductance of e is larger than n−α. There is a
path of conductances larger than n−α starting from one of the endpoints of e and reaching
∂Bm+2. But since the conductance of e is larger than n−α, there is actually a path of
conductances larger than n−α starting from any of the endpoints of e and reaching
∂Bm+2. Thus we constructed a path from f to ∂Bm+2. Iterating this construction, we
obtain a path from one endpoint of f to ∂Bn+1.

By Lemma 4.4, all conductances in BN are greater than N−c for some positive
constant c depending on d and γ. We can choose n large enough such that N−c ≥ n−α,
which ensures the existence of a path of conductances larger than n−α from one of the
endpoints of e ∈ Bn to ∂Bn+1.

(2) For the second assertion of the lemma, we can follow the same reasoning with
a slight adaptation. Let γ > 1/(2α) for some α ∈ (0, 2). Set ∂Bn = {x ∈ Bn : ∃y /∈
Bn s.t.x ∼ y}, the frontier of Bn. As before, define En to be the event: there exists a
vertex x ∈ ∂Bn such that any path from x to the boundary ∂Bn+1 has at least one edge
with conductance less than n−α. Then we have by Lemma 4.3 and (P) that

P
(
En

) ≤ c n−1−d(2αγ−1). (4.13)

The rest of the proof is similar. ¤

Proof of Lemma 4.7. First let γ > (1/8)(d/(d − 1/2)) and choose α ∈ (0, 2)
such that γα(4d− 2) > d.

Let m ∈ N∗ and set Bm(z) = (2m + 1)z + Bm for z ∈ Zd. The family {Bm(z)}z∈Zd
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constitutes a partition of Zd. Note that |Bm(z)| ≥ md. Then choosing m = b(log n)d+1c,
Lemma 4.2 and the Borel-Cantelli lemma yield that P-a.s. for n large enough, the vertices
in any Bm(z) with Bm(z) ∩ Bn 6= ∅ belong to C ξ with a proportion that approaches 1
when ξ is small enough. We choose ξ small enough such that this proportion is larger
than 1/2. Therefore, for any box Bm(z) that intersects Bn, there are sufficiently many
sites in Bm(z) ∩ Cn to associate with sites in Bm(z) ∩Hn (if any) in an injective way.
Let ϕ be an injective map from Hn into Cn such that it associates a site in Bm(z)∩Hn

to a site in Bm(z) ∩ Cn.
Let us now construct the path `(e, ϕ(e)) for some edge e = {x, y} and x ∈ Bm(z)∩Hn

with Bm(z) ∩ Bn 6= ∅. By Lemma 4.6 (1), P-a.s. for n large enough, for any e of Bn,
there exists a self-avoiding path, say (x1, x2, x3, . . .) with x1 = x or y, which reaches from
e the boundary of B2n with conductances larger than (2n)−α. By Lemma 4.1 together
with the Borel-Cantelli lemma, P-a.s. for n large enough, m is larger than the size of a
hole. It follows that there is some k < m such that xk ∈ C ξ. This gives us the first part
of the path `(e, ϕ(x)).

Next we claim that it is possible to join xk with ϕ(x) ∈ Bm(z)∩Cn through a path
on C ξ inside A4m(xk) := xk + B4m (note that xk and ϕ(x) belong to A4m(xk) and that
d(ϕ(x), ∂A4m(xk)) > m). Indeed, if we suppose that it is not possible to find such a
path, there would exist a closed cutset (as seen in Lemma 4.3) of conductances less than
ξ and of diameter at least m separating xk from ϕ(x) in A4m(xk). But Lemma 4.1 rules
out this possibility since m is larger than the possible diameter of a hole. Therefore,
there exists a self-avoiding path from e to ϕ(x) through edges with conductances larger
than (2n)−α and of length less than m + (8m)d ≤ (log n)2d2

. Note here that this path
may leave the box Bn.

(2) The case for which γ > 1/4 can be treated identically using the assertion (2) of
Lemma 4.6. ¤

5. Spectral gaps estimates.

We work in L2(θ), the Hilbert space of functions on Zd with scalar product

〈f, g〉 =
∑

x∈Zd

f(x)g(x)θ(x),

where θ(x) = π(x) in the CSRW and θ(x) = 1 for the VSRW.
We also define the Dirichlet form

Eω(f, f) =
1
2

∑

{x,y}∈Ed

(f(x)− f(y))2ωxy. (5.1)

For both models, CSRW or VSRW, then Eω is the Dirichlet form on L2(θ) associated
with the corresponding random walk.

Consider the self-adjoint operator

Gω(λ) := Lθ − λMϕ, (5.2)
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where ϕ(x) := {x∈C ξ} and Mϕ is the multiplicative operator by the function ϕ, i.e.
Mϕf(x) = ϕ(x)f(x). Let Rt

ω(λ) be the semigroup generated by Gω(λ). The Feynman-
Kac formula (see [17, Proposition 3.3]) reads

Rt
ω(λ)f(x) = Ex

ω

(
f(Xt)e−λA(t)

)
, t ≥ 0, x ∈ Zd. (5.3)

The semigroup of the operator Gω(λ) with Dirichlet boundary conditions outside the
box Bn is given by

(
Rt

nf
)
(x) := Ex

ω

[
f(Xt)e−λA(t); τBn > t

]
.

Note that the operator −Gω(λ) with Dirichlet boundary conditions outside Bn is a non-
negative symmetric operator with respect to the restriction of the measure θ to Bn.
Let {λi, i ∈ {1, . . . , |Bn|}} be the set of its eigenvalues labelled in increasing order, and
{ψi, i ∈ {1, . . . , |Bn|}} the corresponding eigenfunctions with due normalization.

Then, by the min-max Theorem and (5.2), the eigenvalue λ1 is given by

λ1 = inf
f 6≡0

Eω(f, f) + λ
∑

x∈Cn
f2(x)θ(x)∑

x∈Bn
f2(x)θ(x)

, (5.4)

where the infimum is taken over functions f vanishing outside the box Bn. Recall the
notation Cn = Bn ∩ C ξ.

First, we want to prove the following key estimates on λ1.

Lemma 5.1. (1) Let X be the CSRW and take γ > (1/8)(d/(d−1/2)). Then there
exists α ∈ (0, 2) such that for sufficiently small ξ, for a.e. environment, we have for
n large enough

λ1 ≥ n−α (5.5)

when we choose λ = (1 + 8d/ξ) n−α.
(2) For the VSRW, for any γ > 1/4, there exists α ∈ (0, 2) such that for ξ small enough,

for a.e. environment, for n large enough,

λ1 ≥ n−α (5.6)

when we choose λ = 3n−α.

To obtain bounds for the exit time as in Proposition 3.2, we need to estimate another
eigenvalue.

Denote by LHn
the generator of the random walk with the vanishing Dirichlet

boundary condition on Hn = Bn ∩H ξ. The associated semigroup is given by Pt
Hn

=
etLHn .

The operator −LHn
is symmetric with respect to the measure θ and has |Hn|

nonnegative eigenvalues that we enumerate in increasing order and denote as follows:



1438 O. Boukhadra, T. Kumagai and P. Mathieu

ζ1 ≤ ζ2 ≤ · · · ≤ ζ|Hn|. (5.7)

{φi, i = 1, . . . , |Hn|} is the set of the associated normalized eigenfunctions.
The spectral gap ζ1 admits the variational definition

ζ1 = inf
f 6=0

〈−LHn
f, f〉

〈f, f〉 = inf
f 6=0

Eω(f, f)∑
x∈Hn

f(x)2θ(x)
, (5.8)

where the infimum is taken over functions f vanishing outside Hn.

Lemma 5.2. (1) For the CSRW, for any γ > (1/8)(d/(d − 1/2)), there exists
α ∈ (0, 2) such that for sufficiently small ξ, for a.e. environment, for n large enough,

ζ1 ≥ n−α. (5.9)

(2) For the VSRW, for any γ > 1/4, there exists α ∈ (0, 2) such that for ξ small enough,
for a.e. environment, for n large enough,

ζ1 ≥ n−α. (5.10)

Proof of Lemma 5.1. (1) Let γ > (1/8)(d/(d − 1/2)); then choose α′ ∈ (0, 2)
such that γα′(4d − 2) > d and α such that α′ < α < 2. Let f be a function vanishing
outside Bn. We use the notation df(b) := f(a)− f(c) for any edge b = {a, c}.

Let x ∈ Hn and call e = {x, y} the edge such that ωe = maxb3x ωb.
We use the paths ` constructed in Lemma 4.7 to get that

f(x) = f(x)− f(y) +
∑

b∈`(e,ϕ(x))

df(b) + f(ϕ(x)), (5.11)

if the path `(e, ϕ(x)) starts at y. Otherwise,

f(x) =
∑

b∈`(e,ϕ(x))

df(b) + f(ϕ(x)). (5.12)

Let us consider the case (5.11). Observe that Cauchy-Schwarz inequality gives

f(x)2 ≤ 2(f(x)− f(y))2 + 4|`(e, ϕ(x))|
∑

b∈`(e,ϕ(x))

df(b)2 + 4f(ϕ(x))2. (5.13)

Noting that π(ϕ(x)) ≥ ξ and

π(x) ≤ 2dωe ≤ 2d, (5.14)

we obtain that
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f(x)2 π(x) ≤ 4d(f(x)− f(y))2ωe + 8d|`(e, ϕ(x))|
∑

b∈`(e,ϕ(x))

df(b)2 +
8d

ξ
f(ϕ(x))2 π(ϕ(x)).

Using the bounds from Lemma 4.7 (that we apply with α′ rather than α), we get

f(x)2 π(x) ≤ 4d(f(x)− f(y))2ωe + 32dnα′ (log n)2d2 ∑

b∈`(e,ϕ(x))

df(b)2ωb

+
8d

ξ
f(ϕ(x))2π(ϕ(x)).

The case (5.12) can be treated in the same way and we have the same inequality.
Let us now sum this inequality for x ∈ Hn. Observe that: - a given edge appears

at most (log n)2d3
(because of the bound on the length of the path), - a given ϕ(x) only

appears at most once. So

∑

x∈Hn

f(x)2 π(x) ≤ 32dnα′ (log n)2d2
(log n)2d3 Eω(f, f) +

8d

ξ

∑

x∈Cn

f(x)2π(x).

Choose n big enough so that 32dnα′ (log n)2d2
(log n)2d3 ≤ nα. We have obtained

the inequality

∑

x∈Hn

f(x)2 π(x) ≤ nα Eω(f, f) +
(

8d

ξ

) ∑

x∈Cn

f2(x)π(x).

To conclude, use the variational formula (5.4).
(2) The argument is the same and here we just give an outline of the proof. Let

γ > 1/4, choose α′ ∈ (0, 2) such that γ > 1/(2α′) and α such that α′ < α < 2.
Let f be a function vanishing outside Bn.
Let x ∈ Hn. Then Lemma 4.7 implies

f(x) =
∑

b∈`(x,ϕ′(x))

df(b) + f(ϕ′(x)), (5.15)

which by Cauchy-Schwarz inequality gives

f(x)2 ≤ 2|`(x, ϕ′(x))|
∑

b∈`(x,ϕ′(x))

df(b)2 + 2f(ϕ′(x))2.

Summing over Hn, note that a given edge appears at most (log n)2d3
(because of the

bound on the length of the path), and a given ϕ(x) only appears once. Thus we obtain

∑

x∈Hn

f(x)2 ≤ 2(log n)2d2
(log n)2d3

nα′Eω(f, f) + 2
∑

x∈Cn

f(x)2,
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and hence

∑

x∈Bn

f(x)2 ≤ nα Eω(f, f) + 3
∑

x∈Cn

f2(x),

when n is large enough. The variational formula (5.4) then yields the desired estimate.
¤

We pass now to the proof of the second spectral gap ζ1.

Proof of Lemma 5.2. The argument is the same as in estimating λ1.
(1) Let X be the CSRW and assume that γ > (1/8)(d/(d− 1/2)).
Suppose x ∈ Hn and call e = {x, y} the edge such that ωe = maxb3x ωb. Let f be a

function vanishing outside Hn. Then thanks to Lemma 4.7, there exists a path `(e, ϕ(x))
connecting e to a site ϕ(x) ∈ C ξ ∩Bn. If this path starts at y, write then

f(x) = f(x)− f(y) +
∑

b∈`(e,ϕ(x))

df(b). (5.16)

Otherwise, write

f(x) =
∑

b∈`(e,ϕ(x))

df(b). (5.17)

Consider the case (5.16) and do the same thing for the second one.
By Cauchy–Schwarz inequality, (5.16) gives

f(x)2 ≤ 2(f(x)− f(y))2 + 2|`(x, ϕ(x))|
∑

b∈`(e,ϕ(x))

df(b)2. (5.18)

Multiply (5.18) by π(x) and use (5.14) and (4.9) to obtain

∑

x∈Hn

f(x)2π(x) ≤ 4d
∑

x∈Hn

(f(x)− f(y))2ωe + 8d (log n)c nα′ Eω(f, f), (5.19)

where α′ ∈ (0, 2) is chosen such that γα′(4d− 2) > d and we used again the fact that a
given edge appears at most (log n)2d3

(because of the bound on the length of the path).
Thus for α ∈ (α′, 2) and n large enough,

R.H.S. of (5.19) ≤ nαEω(f, f).

which, using (5.8), gives the lower bound (5.2).
(2) As for the VSRW, instead of (5.16), we have by Lemma 4.7,

f(x) =
∑

b∈`(x,ϕ(x))

df(b).
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The remainder of the proof is the same. ¤

6. Proof of Proposition 3.2.

With all the necessary tools in hand, we can finally provide the proof of Proposition
3.2.

Proof of Proposition 3.2. (1) Let X be the CSRW. Take γ > (1/8)(d/(d −
1/2)) and let α ∈ (0, 2) be as in Lemma 5.1. Choose δ > 0 such that

1− α
(1 + δ)

2
> 0. (6.1)

Let n = t(1+δ)/2 and suppose x ∈ Bn/2. Observe that for any constant λ > 0 (may
be P-random) and any ε ∈ (0, 1), Chebyshev’s inequality gives

P x
ω (A(t) ≤ ε t) = P x

ω (A(t) ≤ ε t; τBn > t) + P x
ω (A(t) ≤ ε t; τBn ≤ t)

≤ P x
ω

(
e−λA(t) ≥ e−ελt; τBn

> t
)

+ P x
ω (τBn

≤ t)

≤ eελt Ex
ω

(
e−λA(t); τBn

> t
)

+ P x
ω (τBn

≤ t). (6.2)

By [1, Proposition 4.7]), we have for t large enough,

P x
ω (τBn

≤ t) ≤ C e−ctδ

, (6.3)

where C, c are numerical constants.
Let us look now at the first term of the right hand side of (6.2). Recall the eigenvalues

{λi, i ∈ {1, . . . , |Bn|}} of the restricted operator −Gω(λ) and their associated normalized
eigenfunctions {ψi, i ∈ {1, . . . , |Bn|}}. For f = Bn , observe first that

(Rt
nf)(x) = Ex

ω

(
e−λA(t); τBn

> t
)

=
|Bn|∑

i=1

e−λit〈f, ψi〉ψi(x). (6.4)

Then

(Rt
nf)2(x)π(x) ≤

∑

y∈Bn

(Rt
nf)2(y)π(y) =

∑

i

e−2λit〈f, ψi〉2 ≤ e−2λ1t‖f‖22,

which is less than

2d |Bn| e−2λ1t.

Thus by Lemma 5.1 (choosing λ = cn−α) and using the fact that 1/π(x) ≤ nc, c > 0
being a constant that depends only on d and γ (cf. Lemma 4.4), we obtain
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eελt Ex
ω

(
e−λA(t); τBn > t

) ≤ C nd+c e−(1−ε)t1−α(1+δ)/2
. (6.5)

According to (6.1) and since ε ∈ (0, 1), for large enough t, we have

R.H.S. of (6.5) ≤ c e−(1−ε)tσ

(6.6)

for any σ < 1− α(1 + δ)/2. Thus (6.2)–(6.3)–(6.6) give the desired upper bound for any
σ small enough.

As for the exit time estimate, suppose x ∈ Hn = Bn ∩ H ξ with n = t(1+δ)/2.
Recall the eigenvalues {ζi, i ∈ {1, . . . , |Hn|}} of the restricted operator −LHn

and their
associated normalized eigenfunctions {φi, i = 1, . . . , |Hn|}. Let f = Hn

and observe
that

P x
ω (τh > t/2) = P

t/2
Hn

f(x) =
|Hn|∑

i=1

e−ζit/2〈f, φi〉φi(x) (6.7)

which, by Lemmas 5.2–4.1, yields that

P x
ω (τh > t/2) ≤ e−ζ1t/2

√
π(x)

‖f‖2 ≤ |Bn|√
π(x)

e−ζ1t/2 ≤ nd+c/2 e−(1/2)t1−α(1+δ)/2
(6.8)

where we used again that 1/π(x) ≤ nc. The claim follows for any σ < 1− α(1 + δ)/2.
(2) Clearly, the above argument for the CSRW holds for the VSRW with γ > 1/4

and the counting measure instead of π. ¤

7. Appendix.

Here, we give some relatively standard proofs for completeness.

Proof of Proposition 2.6. Fix a large ball B(x0, R), and denote for simplicity
Br = B(x0, r). Let us prove that, for any R1(x0) ≤ r < R/6,

osc
Br

u ≤ (1− δ) osc
B3r

u, (7.1)

where δ = δ(CE) ∈ (0, 1). Then (2.11) follows from (7.1) by iterating.
The function u − minB3r

u is nonnegative in B2r and harmonic in B2r. Applying
Assumption 1.1 (iii) to this function, we obtain

max
Br

u−min
B3r

u ≤ CE

(
min
Br

u−min
B3r

u
)
,

for all R1(x0) ≤ r ≤ R/6, so

osc
Br

u ≤ (CE − 1)
(

min
Br

u−min
B3r

u
)
.
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Similarly, we have oscBr
u ≤ (CE − 1)(maxB3r

u − maxBr
u). Summing up these two

inequalities, we get

(1 + CE) osc
Br

u ≤ (CE − 1) osc
B3r

u,

whence (7.1) follows. ¤

Proof of Proposition 2.7. Denote for simplicity Br = B(x0, r). Let

gBR
(x, y) =

∫ ∞

0

pBR
t (x, y)dt.

We then have

u(y) = −
∑

z∈BR

gBR
(y, z)f(z)θz,

and since E(x0, R) =
∑

y∈BR
gBR

(x0, y)θy, we obtain

max
BR

|u| ≤ E(x0, R) max
BR

|f |.

Let v be a function on Br that solves the Poisson equation Lv = f in Br. In the same
way

max
Br

|v| ≤ E(x, r) max
Br

|f |.

The function w = u− v is harmonic in Br ⊂ BR whence, by Proposition 2.6,

osc
Bσr

w ≤ ε osc
Br

w ∀(σr) ≥ R1(x0).

Since w = u on BR \Br, the maximum principle implies that

osc
Br

w ≤ osc
BR

w = osc
BR\Br

w = osc
BR\Br

u ≤ 2 max
BR

|u|.

Hence,

osc
Bσr

u ≤ osc
Bσr

v + osc
Bσr

w ≤ 2 max
Bσr

|v|+ 2ε max
BR

|u| ≤ 2
(
E(x0, r) + ε E(x0, R)

)
max
BR

|f |, ¤

Proof of Proposition 2.8. (i) Let LA
V be the restriction of the operator LV on

A with Dirichlet boundary conditions outside A and denote by {λi, i ∈ {1, . . . , |A|}} be
the set of eigenvalues of the positive symmetric operator −LA

V labelled in increasing order,
and {ψi, i ∈ {1, . . . , |A|}} the corresponding eigenfunctions with due normalization. We
have



1444 O. Boukhadra, T. Kumagai and P. Mathieu

ut = PA
t f =

∑

i

e−λit〈f, ψi〉ψi,

which gives

−∂t ut =
∑

i

λie
−λit〈f, ψi〉ψi,

and thus

‖∂t ut‖22 =
∑

i

λ2
i e
−2λit〈f, ψi〉2.

Using the inequality λis ≤ eλis, we get

‖∂t ut‖22 ≤
1
s2

∑

i

e−2λi(t−s)〈f, ψi〉2 =
1
s2
‖ut−s‖22.

(ii) We have the semigroup identity

pA
t (x, y) =

∑
z

pA
v (x, z)pA

t−v(z, y)θz,

from which we get

∂t pA
t (x, y) =

∑
z

pA
v (x, z)∂t pA

t−v(z, y)θz,

whence
∣∣∂t pA

t (x, y)
∣∣ ≤ ∥∥pA

v (x, ·)∥∥
2

∥∥∂t pA
t−v(y, ·)∥∥

2
,

By Proposition 2.8 (i),

∥∥∂t pA
t−v(y, ·)∥∥

2
≤ 1

s

∥∥∂t pA
t−v−s(y, ·)∥∥

2

for any s ≤ t− v. Since

∥∥pA
v (x, ·)∥∥2

2
=

∑
z

pA
v (x, z)2θz = pA

2v(x, x),

we obtain (2.15).
(iii) Choose v ' s ' t/3, it follows then from Assumption 1.1 (i) that for any

nonempty finite set A ⊂ Zd and t large enough,

pA
2v(x, x) ≤ C t−d/2 and pA

2(t−v−s)(y, y) ≤ C t−d/2, ∀x, y ∈ B(x0, t
(1+δ)/2),
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when 2t/3 ≥ T0(x0), whence by Proposition 2.8 (ii),

∣∣∂t pA
t (x, y)

∣∣ ≤ C t−(d/2+1).

By letting A → Zd, we obtain (2.16). ¤

Proof of Theorem 1.5. Given Proposition 1.4, we can use the balayage argu-
ment as in the proof of [9, Theorem 3.1]. Note that the statement of [9, Theorem 3.1]
includes estimates of very good balls, but as in the proof, we only need the heat kernel
estimates.

Let C ′ > 0 be slightly larger than 1, C∗ = δ−1
0 C ′ and define

B = B(x0, C∗R), B1 = B(x0, C
′R),

Q = Q(x0, R, R2) = (0, 4R2]×B, E = (0, 4R2]×B1.

Let u(t, x) ≥ 0 be caloric on Q. Let Z be the space-time process on R × G given by
Zt = (V0 − t,Xt), where X is the Markov chain on G, and V0 is the initial time. Define
uE by

uE(t, x) = Ex
(
u(t− TE , XTE

);TE < τQ

)
,

where TE = inf{t ≥ 0 : Zt ∈ E} and τQ = inf{t ≥ 0 : Zt /∈ Q}. Clearly, uE = u on
E, uE = 0 on Qc, and uE ≤ u on Q − E. Since a dual process of Z exists and can be
written as (V0 + t,Xt), the balayage formula holds and we can write

uE(t, x) =
∫

E

pB
t−r(x, y)νE(dr, dy), (t, x) ∈ Q,

for a suitable measure νE . Here pB
t (x, y) is the heat kernel of X, killed on exiting from

B. In this case we can write things more explicitly. Set

Jf(x) =





∑

y∈B

ωxy

θ(y)
f(y) if x ∈ B1,

0 if x ∈ B −B1.

(7.2)

The balayage formula takes the form

uE(t, x) =
∑

y∈B1

pB
t (x, y)u(0, y)θ(y) +

∑

y∈B1

∫

(0,T ]

pB
t−s(x, y)k(s, y)θ(y)ds, (7.3)

where k(s, y) is zero if y ∈ B −B1 and

k(s, y) = J(u(s, ·)− uE(s, ·))(y), y ∈ B1. (7.4)
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(See [3, Proposition 3.3]; See also [9, Appendix] for a self-contained proof of (7.3) and
(7.4) for the discrete time case.) Since u = uE on E, if s > 0 then (7.4) implies that
k(r, y) = 0 unless y ∈ ∂(B −B1).

Now let (t1, y1) ∈ Q− and (t2, y2) ∈ Q+. Note that since (ti, yi) ∈ E for i = 1, 2, we
have uE(ti, yi) = u(ti, yi). Choose R5(x0) large enough such that R5(x0) ≥ C(R∗(x0) +√

T0(x0) +
√

T1(x0)) for some C ≥ 1. By Assumption 1.1 (i), Proposition 1.4 and
Corollary 1.3, we have, writing A = ∂(B −B1) and T = R2,

pB
t2−s(x, y) ≥ c1T

−d/2 for x, y ∈ B1, 0 ≤ s ≤ T,

ps(x, y) ≤ c2T
−d/2 for x, y ∈ B1, T ≤ s ≤ 2T,

pt1−s(x, y) ≤ c2T
−d/2 for x ∈ B, y ∈ A, 0 < s ≤ t1.

Substituting these bounds in (7.3), we have

u(t2, y2) =
∑

y∈B1

pB
t2(y2, y)u(0, y)θ(y) +

∑

y∈A

∫ t2

0

pB
t2−s(y2, y)k(s, y)θ(y)ds

≥
∑

y∈B1

c1T
−d/2u(0, y)θ(y) +

∑

y∈A

∫ t1

0

c1T
−d/2k(s, y)θ(y)ds

≥
∑

y∈B1

c1c
−1
2 pB

t1(y1, y)u(0, y)θ(y) +
∑

y∈A

∫ t1

0

c1c
−1
2 pB

t1−s(y1, y)k(s, y)θ(y)ds

= c1c
−1
2 u(t1, y1),

which proves (1.6). ¤
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his father Youcef Bey.
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Inst. H. Poincaré, 25 (1989), 225–257.

[ 7 ] M. T. Barlow and J.-D. Deuschel, Invariance principle for the random conductance model with

unbounded conductances, Ann. Probab., 38 (2010), 234–276.

[ 8 ] M. T. Barlow, A. Grigor’yan and T. Kumagai, On the equivalence of parabolic Harnack inequal-

ities and heat kernel estimates, J. Math. Soc. Japan, 64 (2012), 1091–1146.

[ 9 ] M. T. Barlow and B. M. Hambly, Parabolic Harnack inequality and local limit theorem for

percolation clusters, Electron. J. Probab., 14 (2009), 1–27.

[10] N. Berger and M. Biskup, Quenched invariance principle for simple random walk on percolation

clusters, Probab. Theory Related Fields, 137 (2007), 83–120.

[11] N. Berger, M. Biskup, C. E. Hoffman and G. Kozma, Anomalous heat-kernel decay for random

walk among bounded random conductances, Ann. Inst. Henri Poincaré Probab. Stat., 44 (2008),
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