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Abstract. It is well-known that an orthonormal scaling function gener-
ates an orthonormal wavelet function in the theory of multiresolution analysis.
We consider two families of unitary operators. One is a family of extensions
of the Hilbert transform called fractional Hilbert transforms. The other is a
new family of operators which are a kind of modified translation operators.
A fractional Hilbert transform of a given orthonormal wavelet (resp. scaling)
function is also an orthonormal wavelet (resp. scaling) function, although a
fractional Hilbert transform of a scaling function has bad localization in many
cases. We show that a modified translation of a scaling function is also a
scaling function, and it generates a fractional Hilbert transform of the corre-
sponding wavelet function. We also show a good localization property of the
modified translation operators. The modified translation operators act on the
Meyer scaling functions as the ordinary translation operators. We give a class
of scaling functions, on which the modified translation operators act as the
ordinary translation operators.

1. Introduction.

This article is concerned with an orthonormal basis of L2(R), called orthonormal
wavelets, where R denotes the set of real numbers. We denote the inner product of L2(R)
by 〈f, g〉 :=

∫
R f(x)g(x) dx and the norm by ‖f‖ :=

√
〈f, f〉. Let us define two unitary

operators in L2(R):

Tb : Translation operator, b ∈ R, (Tbf)(x) := f(x− b),

Da : Dilation operator, a ∈ R+, (Daf)(x) := a−1/2f(x/a),

where R+ (resp. R−) denotes the set of positive (resp. negative) real numbers. For
ψ ∈ L2(R) and (j, k) ∈ Z2, where Z denotes the set of integers, we set

ψj,k(x) = (D2−j Tkψ)(x) = 2j/2ψ(2jx− k). (1.1)

If {ψj,k}(j,k)∈Z2 constitutes an orthonormal basis of L2(R), then ψ is called an orthonor-
mal wavelet function, and ψj,k, j, k ∈ Z are called orthonormal wavelets. In order to
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construct an orthonormal wavelet function, a system of subspaces called a multireso-
lution approximation or a multiresolution analysis (MRA) ([8], [12]) is used, where an
orthonormal scaling function φ plays an important role. An orthonormal wavelet function
ψ is constructed from an orthonormal scaling function φ. Then, we say ψ is associated
with φ. Scaling functions are important not only for the construction of wavelet func-
tions, but also for step-wise decomposition and reconstruction of functions, based on the
orthonormal basis {ψj,k}(j,k)∈Z2 .

In many applications of wavelets, Hilbert pairs (ψ,Hψ) of wavelet functions play
important roles, where Hψ is the Hilbert transform ([10], [5] and so on) of ψ defined as
follows. Let f̂(ξ) be the Fourier transform of f :

f̂(ξ) = (f)∧(ξ) = F [f ](ξ) :=
∫

R
f(x)e−iξx dx,

where the operator F : f 7→ f̂ can be considered to be a bounded operator from L2(R)
onto L2(R). The Hilbert transform Hf of f ∈ L2(R) is defined by

(Hf)∧(ξ) = −i(sgn ξ)f̂(ξ), (1.2)

where

sgn ξ =

{
1, ξ > 0,

−1, ξ < 0.

Since H is a unitary operator which commutes with translations and dilations, if ψ

is an orthonormal wavelet function, then Hψ is also an orthonormal wavelet function.
The problem is what is the scaling function with which Hψ is associated. Let ψ be
the orthonormal wavelet function associated with a scaling function φ. Although Hψ is
the orthonormal wavelet function associated with the scaling function Hφ, the scaling
functionHφ is usually very bad function as for the localization, while the wavelet function
Hψ is not. When ψ is a so-called (Lemarié-)Meyer wavelet, Toda and Zhang [15], [16]
pointed out that Hψ is the orthonormal wavelet function associated with the scaling
function T1/2φ. This seems very unexpected and attractive.

In this article, we consider two families of translation-invariant unitary operators Hc

and T †c (c ∈ R), where Hc is a fractional Hilbert transform ([11], [5]) with H1/2 = H,
and T †c is a newly defined operator, a kind of modified translation operator. Let φ be an
arbitrary orthonormal scaling function, and ψ be the wavelet function associated with
φ. For every c ∈ R, we prove that T †c φ is also an orthonormal scaling function, and that
Hcψ is the wavelet function associated with the scaling function T †c φ. Further, we can
easily show that T †c f = Tcf if supp f̂ ⊂ [−2π, 2π]. These clarify the remarkable situation
explained above, since supp φ̂ ⊂ [−2π, 2π] for Meyer scaling functions. We also prove
that T †c has a good localization property under vanishing moments condition. A part of
the results was announced without proofs in [3].

In the next two sections, we give a short sketch of a theory of orthonormal wavelets.
In Section 4, we explain the Hilbert transform and our problem. In Section 5, we define
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two families of translation-invariant unitary operators Hc and T †c (c ∈ R). In Section 6,
the main results are given, that is, answers to our problem. In Section 7, good properties
of T †c are given. Proofs of the results in these two sections are given in Section 8. As an
extension of Meyer scaling functions, a family of scaling functions satisfying the condition
supp φ̂ ⊂ [−2π, 2π] is given in the final section.

2. Orthonormal wavelets.

If {ψj,k}(j,k)∈Z2 is an orthonormal basis of L2(R), then ψ is called an orthonormal
wavelet function ([9], [17] and so on), which is referred to as a wavelet function for short
in this article. As important examples, we give the Shannon wavelet and the Meyer
wavelets.

Example 2.1. (1) The Shannon wavelet :

ψ(x) = 2 sinc(2x)− sinc x,

where sinc x := sinπx/(πx), is a wavelet function called the Shannon wavelet. In this
case, ψ(x−1/2) is also a wavelet function, and it is sometimes called the Shannon wavelet
instead of ψ(x). The Fourier transform of ψ has a simple form.

ψ̂(ξ) =

{
1, π < |ξ| < 2π,

0, otherwise.

This ψ(x) is an entire function, but has a bad localization. In fact, ψ 6∈ L1(R).
(2) The Meyer wavelets: These wavelet functions belong to the Schwartz class S

(called the space of testing functions of rapid descent in [18]), that is, these are of
C∞ class and all the derivatives are rapidly decreasing. It is known that there is no
orthonormal wavelet function ψ with exponential decay such that ψ ∈ C∞(R) and all
the derivatives are bounded ([8, Corollary 5.5.3]). Hence, the Meyer wavelets have a
good balance between the smoothness and the localization as wavelet functions.

We explain the Meyer wavelets more precisely. Take a real-valued function b(ξ) of
C∞ class as

Figure 1. b(ξ) = | bψ(ξ)| for a Meyer wavelet.
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b(ξ) ≥ 0, b(−ξ) = b(ξ),

supp b ⊂
[
− 8

3
π,−2

3
π

]
∪

[
2
3
π,

8
3
π

]
,

b(π + ξ) = b
(
2(π − ξ)

)
for |ξ| ≤ π

3
,

b(π + ξ)2 + b(π − ξ)2 = 1 for |ξ| ≤ π

3
,

and define ψ by ψ̂(ξ) := b(ξ)e−iξ/2 (Figure 1). Sometimes, we take b(ξ) not necessarily
of C∞ class, but only sufficiently smooth (for example [8], [12]).

3. MRA.

In order to construct orthonormal wavelet functions systematically, a concept called
multiresolution analysis (MRA) was developed.

Definition 3.1. If Vj , j ∈ Z, are closed linear subspaces of L2(R) satisfying the
following conditions (i)–(v), then the sequence {Vj}j∈Z is called a multiresolution analysis
(MRA).

( i ) Vj ⊂ Vj+1, j ∈ Z.

( ii ) f ∈ Vj ⇐⇒ f(2·) ∈ Vj+1.

(iii) ∩j∈ZVj = {0}.
(iv) ∪j∈ZVj = L2(R).

( v ) there exists a function φ ∈ V0 such that {φ(· − k)}k∈Z is an orthonormal basis of
V0.

The function φ is very important and called an orthonormal scaling function, which
is referred to as a scaling function for short in this article. In this article, we do not
assume any further conditions to φ, unless otherwise specified. In particular, it can be
that φ 6∈ L1(R), and the familiar condition

∫
R φ(x) dx = 1 or φ̂(0) = 1 is not assumed.

If φ is a scaling function, then there exists a unique 2π-periodic function m0(ξ) ∈
L1

loc(R) such that

φ̂(2ξ) = m0(ξ)φ̂(ξ) a.e. on R.

This equation is called the two scale equation, and m0(ξ) is called the low-pass filter
associated with φ. The low-pass filter m0(ξ) is uniquely determined from φ, for example

by m0(ξ) =
∑

k∈Z φ̂(2ξ + 4πk) φ̂(ξ + 2πk).
It is well-known that from φ we can construct a wavelet function as follows. (See,

for example, [9], [17].)

Theorem 3.2. Let φ be a scaling function and m0 be the low-pass filter. Let
ν ∈ L1

loc(R) be a 2π-periodic function such that |ν(ξ)| = 1 a.e. We set
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m1(ξ) = e−iξ m0(ξ + π) ν(2ξ). (3.1)

If we define ψ by

ψ̂(ξ) = m1(ξ/2) φ̂(ξ/2), (3.2)

then ψ is a wavelet function.

The 2π-periodic function m1 is called the high-pass filter. These m1 and ψ are said
to be associated with φ. There are many choices of ν. In this article, if we take ν(ξ) = 1,
then we say that m1 and ψ are naturally associated with φ:

ψ̂(ξ) = e−iξ/2 m0(ξ/2 + π) φ̂(ξ/2). (3.3)

Example 3.3. (1) (Shannon) Let φ(x) = sinc x. Note that φ̂(ξ) = χ
[−π,π]

(ξ). In
this case,

Vj := {f ∈ L2(R) | supp f̂ ⊂ [−2jπ, 2jπ]}.

We have m0(ξ) = χ
[−π/2,π/2]

(ξ) for |ξ| ≤ π, that is, m0(ξ) =
∑

k∈Z χ
[−π/2,π/2]

(ξ +
2kπ) = χ

S
(ξ), where S =

⋃
k∈Z[−π/2 + 2kπ, π/2 + 2kπ]. In this case, the naturally

associated wavelet function is ψ(x − 1/2) in Example 2.1 (1). In Shannon’s case, by
taking a suitable ν(ξ), we can omit the factor e−iξ in the definition of m1(ξ), and can
take m1(ξ) = m0(ξ+π), which is real-valued. This leads to the Shannon wavelet function
ψ(x) in Example 2.1 (1).

(2) (Meyer) Let φ be a function satisfying the following conditions (Figure 2).

• φ̂ ∈ C∞(R), φ̂ ≥ 0, φ̂ is an even function.

• supp φ̂ ⊂
[
−4

3
π,

4
3
π

]
.

• φ̂(ξ) = 1 for |ξ| ≤ 2
3
π.

• |φ̂(ξ + π)|2 + |φ̂(ξ − π)|2 = 1 for |ξ| ≤ π

3
.

Figure 2. bφ(ξ) and φ(x) for a Meyer wavelet.
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Figure 3. m0(ξ) and |m1(ξ)| for a Meyer wavelet.

Then, φ is a scaling function and m0(ξ) = φ̂(2ξ) for |ξ| ≤ π, that is, m0(ξ) =∑
k∈Z φ̂(2ξ + 4kπ) (Figure 3, Left).

Further,

m1(ξ) = e−iξφ̂(2ξ + 2π) for −2π ≤ ξ ≤ 0, (Figure 3, Right)

ψ̂(ξ) = e−iξ/2{φ̂(ξ + 2π) + φ̂(ξ − 2π)}φ̂(ξ/2)

This ψ is a Meyer wavelet in Example 2.1 (2).

4. Hilbert transform.

Although the Hilbert transform H is defined on many function spaces in several
ways, it is simply defined on L2(R) by (1.2). If f is real-valued, then Hf is also real-
valued and Hf is orthogonal to f . Moreover, H commutes with Tb for every b ∈ R and
with Da for every a ∈ R+. Hence, (Hf)j,k = H(fj,k) for every j, k ∈ Z.

The Hilbert transform is important not only theoretically, but also in many applica-
tions. A pair of a function (a signal) and its Hilbert transform are often useful ([7], [14],
[2] and so on). Chaudhury-Unser [6] investigated several properties of Hψ for a wavelet
function ψ.

In the signal processing community, filter design is important. Selesnick [13] de-
signed a low-pass filter corresponding to Hψ. This low-pass filter turns out to be the
low-pass filter associated with the scaling function T †1/2φ defined in the next section.
Toda-Zhang [15], [16] pointed out the essential part of the following theorem, which
shows that the Hilbert transform of ψ is associated with T1/2φ in the case of Meyer
wavelet.

Theorem 4.1. Let φ be a Meyer scaling function and ψ be the wavelet function
naturally associated with φ. Fix arbitrary b ∈ R, and set φb := Tbφ. Then we have the
following.

(1) φb is also a scaling function.
(2) If ψb is the wavelet function naturally associated with φb, then Hψb is the wavelet

function naturally associated with T1/2φb = φb+1/2.

The statement (1) is already well-known in the field of wavelets. (2) is very unex-
pected and attractive. It is very natural to ask the following questions.
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Main Questions:

[Q1] What happens for Tcφb, c 6= 1/2?
[Q2] Which characteristics of the Meyer scaling function, do the properties described in

the theorem come from?
[Q3] What happens for other wavelets than the Meyer wavelets?

In order to give our answers, we will define two families of unitary operators Hc and
T †c , c ∈ R, in the next section.

5. Unitary operators Hc and T †
c .

In this section, we define two families of unitary operators Hc and T †c , c ∈ R. The
operators Hc are extensions of the Hilbert transform, called fractional Hilbert transforms
([11], [5] and so on).

Definition 5.1. We define unitary operators Hc on L2(R) by

Hc = (cos cπ)I + (sin cπ)H, c ∈ R, (5.1)

where I is the identity operator. In other words,

(Hcf)∧(ξ) = {cos cπ − i(sin cπ) sgn ξ}f̂(ξ) = e−icπ(sgn ξ)f̂(ξ). (5.2)

We have H1/2 = H, and Hc is called a fractional Hilbert transform. Here, we use a
different parametrization from the definition in [5] for the compatibility with the other
family of operators T †c .

If f is real-valued, then Hcf is also real-valued. Further, we have

〈f,Hcf〉 = (cos cπ) ‖f‖2 , (5.3)

which means that the “angle” between f and Hcf is cπ.
The family {Hc}c∈R constitutes a one-parameter group of unitary operators:

HcHd = Hc+d, H0 = I. Further, we have Hc+1 = −Hc, Hc+2 = Hc, H1 = −I,
H∗c = H−1

c = H−c, where U∗ denotes the adjoint operator of U .
We also have the commutativity with translations and dilations:

HcTb = TbHc, HcDa = DaHc for b, c ∈ R, a ∈ R+. (5.4)

In particular, Hc(fj,k) = (Hcf)j,k, j, k ∈ Z.
The unitary operators Hc are natural operators in the sense of the following proposi-

tion. A limited version was given in [5, Theorem 3.1], where the domain of the operators
consists of only real-valued functions.

Proposition 5.2. Let U be a unitary operator which is commutative with Tb, Da

for every b ∈ R, a ∈ R+. Then, we have the following.
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(1) There exist constants θ, c ∈ R such that U = eiθHc.
(2) If further U maps real-valued functions to real-valued functions, then there exists

c ∈ R such that U = Hc.
(3) Moreover, if 〈Uf, f〉 = 0 for every real-valued f , then U = ±H1/2 = ±H.

Proof. (1) By Lemma 2.5 in [1], we have that U is a Fourier multiplier operator:
Ûf(ξ) = α(ξ)f̂(ξ) for which the multiplier α(ξ) is positively homogeneous of degree zero,
which implies that α(ξ) is constant on each of the intervals R±. Thus, there exist α, β ∈ C
such that Ûf(ξ) = αf̂(ξ) if ξ > 0 and Ûf(ξ) = βf̂(ξ) if ξ < 0. Since U is unitary, we
have |α| = |β| = 1, and hence we can write α = eiθ−icπ and β = eiθ+icπ with θ, c ∈ R.
This means that U = eiθHc.

(2) Since Hc maps real-valued functions to real-valued functions, we have eiθ ∈ R,
that is eiθ = ±1. If eiθ = 1, then we have the result. If eiθ = −1, then by −Hc = Hc+1,
we also have the result.

(3) Since (5.3) holds for every real-valued function f , we have cos cπ = 0, that is,
c = 1/2 + n (n ∈ Z), and hence Hc = ±H1/2. ¤

Next, let us define the unitary operators T †c , a kind of modified translation operators.

Definition 5.3. We define a function τ(ξ) (Figure 4) by

τ(ξ) = ξ for |ξ| ≤ 2π,

τ(ξ) = τ(ξ + 2π) for ξ < −2π,

τ(ξ) = τ(ξ − 2π) for ξ > 2π.

We also define unitary operators T †c , c ∈ R, by (T †c f)∧(ξ) = e−icτ(ξ)f̂(ξ).

Figure 4. τ(ξ).

If f is real-valued, then T †c f is also real-valued. The family {T †c }c∈R constitutes
a one-parameter group of unitary operators: T †c T †d = T †c+d, T †0 = I. Further, T †c are
commutative with the translations (but not with the dilations): TbT

†
c = T †c Tb, b, c ∈ R.

Remark 5.4. If c = k is an integer, then e−ikτ(ξ) = e−ikξ, and hence T †k is just
the translation: T †k = Tk, k ∈ Z. If supp f̂ ⊂ [−2π, 2π], then T †c f = Tcf , c ∈ R. So, in a
sense, T †c is the translation in a low frequency domain.
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At the end of the next section, we give several graphs of T †1/2φ and related functions.

6. Main results.

In this section, we consider general scaling functions. We assume the following.

Assumption：φ is a scaling function, and ψ is the wavelet function naturally
associated with φ.

By the commutativity (5.4), the following is almost obvious, though a proof is given
in Section 8.

Proposition 6.1. For every c ∈ R, we have the followings.

(1) Hcφ is a scaling function.
(2) Hcψ is the wavelet function naturally associated with Hcφ.

Unfortunately, Hcφ has bad localization in general. In particular, if φ ∈ L1(R) and
c 6∈ Z, then Hcφ 6∈ L1(R). In fact, φ̂ is continuous and φ̂(0) 6= 0, hence Ĥcφ(ξ) has a
jump at ξ = 0. Figures 5, 6, 7 illustrate the graphs of H1/2φ = Hφ.

The following is the main result, whose proof is given in Section 8. Note that Tcφ

(c 6∈ Z) is not necessarily a scaling function.

Theorem 6.2. For every c ∈ R, we have the following.

(1) T †c φ is a scaling function.
(2) Hcψ is the wavelet function naturally associated with T †c φ.

Corollary 6.3. If supp φ̂ ⊂ [−2π, 2π], then Tcφ is a scaling function. Further,
Hcψ is the wavelet function naturally associated with Tcφ.

The scaling function T †c φ does not have so bad localization in many cases. In par-
ticular, if φ is a Meyer scaling function, then T †c φ = Tcφ ∈ S. We give more properties
of T †c in Section 7.

This theorem gives answers to the main questions in Section 4.

[Ans1] In the case of Meyer wavelets, Hcψb = Hc+bψ is naturally associated with Tcφb =
Tc+bφ, c, b ∈ R.

[Ans2] supp φ̂ ⊂ [−2π, 2π] implies that Tcφ is a scaling function, and Hcψ is associated
with Tcφ. (Corollary 6.3.)

[Ans3] In general, Hcψ is naturally associated with T †c φ. (Theorem 6.2.)

In Figures 5–7, we show the graphs of φ, Hφ = H1/2φ, T †1/2φ, ψ, and Hψ = H1/2ψ

for the case of the Meyer wavelets and the Daubechies wavelets ([8]). Nφ and Nψ denotes
the Daubechies scaling function and wavelet function where the wavelet function has N

vanishing moments. In the case of Meyer wavelets, we have T †1/2φ = T1/2φ. In the case

of Daubechies wavelets, T †1/2Nφ approaches T1/2Nφ as N →∞, since N̂φ concentrate in

[−2π, 2π]. In both cases, the scaling functions Hφ 6∈ L1(R) have bad localization. T †1/2φ

and Hψ have far better localization than Hφ, as we explain in Section 7.
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Figure 5. Case of Meyer wavelets. Left: φ (solid), Hφ (broken),

T †1/2φ (dash-dot). Right: ψ (solid), Hψ (broken).

Figure 6. Case of Daubechies wavelets N = 2. Left: 2φ (solid),

H2φ (broken), T †1/2 2φ (dash-dot). Right: 2ψ (solid), H2ψ (broken).

Figure 7. Case of Daubechies wavelets N = 8. Left: 8φ (solid),

H8φ (broken), T †1/2 8φ (dash-dot). Right: 8ψ (solid), H8ψ (broken).
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7. Properties of T †
c .

In this section, we give several properties of T †c . Let S ′ be the space of tempered
distributions on R. As for the distributions, see [18] (in this book S ′ is called the space
of distributions of slow growth) for example. The operator (1+ |D|2)s/2, s ∈ R, is defined
as

{
(1 + |D|2)s/2f

}∧
(ξ) = (1 + |ξ|2)s/2f̂(ξ) for f ∈ S ′. From now on, the derivatives are

in the distribution sense.
As for smoothness, T †c f and Hcf have the same smoothness as f in the following

sense. For s ∈ R, set Hs = {f ∈ S ′ | (1+ |D|2)s/2f ∈ L2(R)}, which is the Sobolev space
of order s. The following is almost trivial by the boundedness of e−icτ(ξ) and sgn ξ.

Proposition 7.1. Let s ≥ 0. If f ∈ Hs, then T †c f ∈ Hs and Hcf ∈ Hs.

Next, we measure the localization of f(x) by the integer index p such that (1+|·|)pf ∈
L2(R), which is equivalent to f̂ (j) ∈ L2(R), 0 ≤ j ≤ p.

For r ∈ N ∪ {0} and s ∈ R, we set

Hs
r := {f ∈ S ′ | (1 + | · |)r(1 + |D|2)s/2f ∈ L2(R)}

= {f ∈ S ′ | (·)j(1 + |D|2)s/2f ∈ L2(R) for 0 ≤ j ≤ r}
=

{
f ∈ S ′ | ∂j

ξ

{
(1 + |ξ|2)s/2f̂(ξ)

} ∈ L2(R) for 0 ≤ j ≤ r
}

=
{
f ∈ S ′ | (1 + | · |2)s/2f̂ (j) ∈ L2(R) for 0 ≤ j ≤ r

}
. (7.1)

Note that if r ∈ N and f ∈ H0
r , then (1 + | · |)r−1f ∈ L1(R) and hence f̂ ∈ Cr−1(R),

which allows us to talk about
∫
R xjf(x) dx and f̂ (j)(0) for 0 ≤ j < r.

The vanishing moments property of ψ is closely relevant to the localization of T †c φ

and Hcψ. For r ∈ N, we say that a wavelet function ψ has r vanishing moments if
(1 + |x|)r−1ψ(x) ∈ L1(R) and

∫

R
xjψ(x) dx = 0, 0 ≤ j < r.

The following is a variant of a well-known result, and it can be proved in the same
way as in [4], though the assumptions are a little different.

Theorem 7.2. Assume that r ∈ N and φ, ψ ∈ H0
r . Then, φ̂ and ψ̂ are of Cr−1

class. Also assume that

there exists l0 ∈ Z such that φ̂(π + 2l0π) 6= 0. (7.2)

Then, m0 is also of Cr−1 class. Further, ψ has r vanishing moments if and only if each
of the following conditions is satisfied.

(1) ψ̂(j)(0) = 0, 0 ≤ j < r.
(2) m

(j)
0 (π) = 0, 0 ≤ j < r.
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(3) φ̂(j)(2kπ) = 0, 0 ≤ j < r, k ∈ Z \ {0}.

Remark 7.3. It is well-known that if φ is a scaling function, then we have

∑

k∈Z
|φ̂(ξ + 2kπ)|2 = 1 a.e. on R. (7.3)

But this holds only a.e. in ξ, and it does not necessarily imply (7.2), even if φ̂ ∈ C0(R).
If we further impose some conditions which imply the local uniform convergence of the
series in (7.3), then we can show that (7.3) holds for every ξ, and hence (7.2) holds. For
example, the condition that there exist a constant ε > 0 such that φ ∈ H

1/2+ε
1/2+ε implies

the local uniform convergence.

Here, we fix r ∈ N and s ∈ R with s ≥ 0. We show that the localization condition
φ ∈ Hs

r together with the moment condition (3) in Theorem 7.2 are preserved by T †c . We
also give a similar result about Hc, whose proof is similar and simpler. As for H = H1/2,
a similar result on localization was obtained in [6].

Theorem 7.4. Let r ∈ N and s ∈ R, s ≥ 0.

(1) If f ∈ Hs
r and if f̂ (j)(2kπ) = 0 for 0 ≤ j < r, k ∈ Z\{0}, then T †c f also satisfies the

same conditions, that is, T †c f ∈ Hs
r and (T̂ †c f)(j)(2kπ) = 0 for 0 ≤ j < r, k ∈ Z\{0}.

(2) If f ∈ Hs
r and if f̂ (j)(0) = 0 for 0 ≤ j < r, then Hcf also satisfies the same

conditions, that is, Hcf ∈ Hs
r and (Ĥcf)(j)(0) = 0 for 0 ≤ j < r.

Proofs are given in the next section.

Remark 7.5. (1) Note that (1+|·|2)−1/4−ε ∈ L2(R) for every ε > 0, and hence f ∈
Hs

r implies that (1+|·|2)s/2−1/4−εf̂ (j) ∈ L1(R) for 0 ≤ j ≤ r. This is equivalent to ∂j
ξ

{
(1+

|ξ|2)s/2−1/4−εf̂(ξ)
} ∈ L1(R) for 0 ≤ j ≤ r, which implies (·)j(1 + |D|2)s/2−1/4−εf ∈

L∞(R) for 0 ≤ j ≤ r. Thus, there exists a constant C such that

|(1 + |D|2)s/2−1/4−εf(x)| ≤ C

(1 + |x|)r
, x ∈ R.

In particular, if s > 1/2, then f ∈ Hs
r implies

|f(x)| ≤ C

(1 + |x|)r
, x ∈ R.

(2) We can also show the following by similar (and easier) proofs.

( i ) If f̂ ∈ Cr−1(R) and if f̂ (j)(2kπ) = 0 for 0 ≤ j < r, k ∈ Z\{0}, then T̂ †c f ∈ Cr−1(R)

and (T̂ †c f)(j)(2kπ) = 0 for 0 ≤ j < r, k ∈ Z \ {0}.
( ii ) If f̂ ∈ Cr−1(R) and if f̂ (j)(0) = 0 for 0 ≤ j < r, then Ĥcf ∈ Cr−1(R) and

(Ĥcf)(j)(0) = 0 for 0 ≤ j < r.



Scaling functions generating fractional Hilbert transforms of a wavelet function 1287

(3) We restricted ourselves to the case s ≥ 0 since we defined the operators T †c
and Hc only on L2(R). We can extend the results to the case s < 0 by extending the
operators T †c and Hc on Hs.

Example 7.6. (1) In the case of Meyer wavelets, we can apply our theorem for all
r, s ∈ N, and hence we have T †c φ,Hcψ ∈ S by Remark 7.5 (1), although this is almost
trivial by the definition.

(2) If φ = Nφ and ψ = Nψ are the Daubechies scaling function and wavelet function
for which Nψ has N vanishing moments, then we can apply our theorem for r = N and
s = 0. In particular, Hc Nψ has also N vanishing moments.

If N ≥ 3, then we can apply our theorem for r = N and s = 1, since it is known
that Nφ, Nψ ∈ C1(R) for N ≥ 3. In particular, there exists a constant C such that

|(T †c Nφ)(x)| ≤ C

(1 + |x|)N
, |(Hc Nψ)(x)| ≤ C

(1 + |x|)N
,

by Remark 7.5 (1).
For N = 2, it is known ([8]) that there exists ε > 0 such that φ := 2φ ∈ H1/2+ε.

Since φ has a compact support, we can show that fφ ∈ H1/2+ε for every f ∈ C∞(R), in
particular, for f(x) = 1, x, x2. This implies (1 + |ξ|2)1/4+ε/2φ̂(j) ∈ L2(R), j = 0, 1, 2, and
hence we have 2φ ∈ H

1/2+ε
2 . By the same way, we have 2ψ ∈ H

1/2+ε
2 . Thus, we can use

our results for r = 2 and s = 1/2 + ε. This implies that there exists a constant C such
that

|(T †c 2φ)(x)| ≤ C

(1 + |x|)2 , |(Hc 2ψ)(x)| ≤ C

(1 + |x|)2 ,

by Remark 7.5 (1).
For N = 1 (Haar), we can have only that (1 + |x|)T †c 1φ, (1 + |x|)Hc 1ψ ∈ L2(R),

which implies T †c 1φ,Hc 1ψ ∈ L1(R) ∩ L2(R).

8. Proofs of the results.

We give a proof of Proposition 6.1.

Proof of Proposition 6.1. Since Hc is a unitary operator which commutes
with Tb and Da, (b, a) ∈ R × R+, Ṽj := Hc(Vj) constitute an MRA with the scaling
function φ̃ := Hcφ. Since

(Hcφ)∧(2ξ) = e−icπ sgn(2ξ) φ̂(2ξ) = e−icπ sgn ξ m0(ξ) φ̂(ξ) = m0(ξ) (Hcφ)∧(ξ),

the low-pass filter m̃0 for φ̃ is the same as m0.
Let m1 be the high-pass filter naturally associated with φ: m1(ξ) = e−iξ m0(ξ + π).

We have ψ̂(ξ) = m1(ξ/2) φ̂(ξ/2). Then,

(Hcψ)∧(ξ) = e−icπ(sgn ξ) ψ̂(ξ) = e−icπ(sgn ξ) m1(ξ/2) φ̂(ξ/2) = m1(ξ/2) (Hcφ)∧(ξ/2).
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This means that ψ̃ := Hcψ is the wavelet function naturally associated with φ̃ = Hcφ

with the high-pass filter m̃1 = m1. ¤

Before giving the proof of Theorem 6.2, we give known conditions for a function to
be a scaling function.

Theorem 8.1. Let φ ∈ L2(R). Then, φ is a scaling function if and only if the
following three conditions hold ([9, Chapter 7, Theorem 5.2]).

(A1) The equality

∑

k∈Z
|φ̂(ξ + 2kπ)|2 = 1 a.e. on R (8.1)

is satisfied. This condition is equivalent to that {φ(· − k)}k∈Z is an orthonormal
system.

(A2) There exists a 2π-periodic function m0(ξ) such that φ̂(2ξ) = m0(ξ)φ̂(ξ) a.e. on R.
(A3) limj→∞ |φ̂(2−jξ)| = 1 a.e. on R.

We have the following basic relation between Hc and T †c . Let bzc := max{m ∈ Z |
m ≤ z}.

Proposition 8.2. Set ρ(ξ) := τ(ξ) − π sgn ξ = ξ − π − 2πbξ/(2π)c (Figure 8).
Then, ρ is a 2π-periodic function and ρ(2ξ) = ρ(ξ) + ρ(ξ + π), ρ(−ξ) = −ρ(ξ). Further,
for f ∈ L2(R), we have

T̂ †c f(ξ) = e−icρ(ξ)Ĥcf(ξ). (8.2)

Figure 8. ρ(ξ) = τ(ξ)− π sgn ξ = ξ − π − 2πb(ξ/2π)c.

Proof. It is a straight verification to show τ(ξ)− π sgn ξ = ξ − π − 2πbξ/(2π)c.
Since ρ(ξ + 2π) = ξ + π − 2πb(ξ + 2π)/(2π)c = ξ + π − 2π(bξ/(2π)c+ 1) = ξ − π −

2πbξ/(2π)c = ρ(ξ), ρ is 2π-periodic.
If 0 ≤ ξ < π, then ρ(2ξ) − ρ(ξ) − ρ(ξ + π) = 2ξ − π − ξ + π − (ξ + π) + π = 0. If

π ≤ ξ < 2π, then ρ(2ξ)− ρ(ξ)− ρ(ξ + π) = 2ξ − π − 2π − ξ + π − (ξ + π) + π + 2π = 0.
Also, if 0 ≤ ξ < π, then ρ(ξ) + ρ(−ξ) = ξ − π + (−ξ)− π + 2π = 0. If π ≤ ξ < 2π, then
ρ(ξ)+ρ(−ξ) = ξ−π+(−ξ)−π+2π = 0. (8.2) is easily obtained by τ(ξ) = ρ(ξ)+π sgn ξ.

¤
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Fix c ∈ R. By Proposition 6.1, we know that if φ is a scaling function, then Hcφ is a
scaling function. Note that the low-pass filters are the same for φ and Hcφ. By Theorem
8.1 and Proposition 8.2, we have the following.

Proposition 8.3. If φ is a scaling function, then T †c φ is a scaling function which
defines the same MRA as Hcφ does.

Proof. Since e−icρ(ξ) is 2π-periodic, (8.2) for f = φ implies that both {(T †c φ)(· −
k)}k∈Z and {(Hcφ)(· − k)}k∈Z are the orthonormal bases of the same V0. Hence, T †c φ

and Hcφ defines the same MRA. ¤

Now, we give a proof of the main theorem.

Proof of Theorem 6.2. (1) is already proved by Proposition 8.3.
(2) We have

(T †c φ)
∧
(2ξ) = e−icτ(2ξ)φ̂(2ξ) = e−icτ(2ξ)m0(ξ)φ̂(ξ) = e−ic(τ(2ξ)−τ(ξ))m0(ξ)(T †c φ)

∧
(ξ).

Hence the low-pass filter m†
0 associated with T †c φ is

m†
0(ξ) = e−ic(τ(2ξ)−τ(ξ))m0(ξ) = e−ic(ρ(2ξ)−ρ(ξ))m0(ξ) = e−icρ(ξ+π)m0(ξ).

The high-pass filter naturally associated with T †c φ is

m†
1(ξ) = e−iξ m†

0(ξ + π) = e−iξeicρ(ξ) m0(ξ + π) = eicρ(ξ)m1(ξ),

and the wavelet function ψ† naturally associated with T †c φ is given by

ψ̂†(ξ) = m†
1(ξ/2)(T †c φ)

∧
(ξ/2) = eicρ(ξ/2)m1(ξ/2)e−icτ(ξ/2)φ̂(ξ/2) = e−icπ sgn ξψ̂(ξ).

Thus, we have ψ† = Hcψ. ¤

Before giving a proof of Theorem 7.4, we prepare the following lemma.

Lemma 8.4. Let a < b < c. If f, f ′ ∈ L2(a, c), which implies f ∈ C0(a, c), if
f(b) = 0, and if ν is a constant function on (a, b)∪ (b, c), then g := νf ∈ L2(R) satisfies
g′ = νf ′ ∈ L2(R).

Proof. Since f ′ ∈ L2(a, c) ⊂ L1(a, c), the antiderivative f in the sense of dis-
tribution is absolutely continuous on (a, c). For any ϕ ∈ C1(a, c), fϕ is also absolutely
continuous on (a, c). Hence for a < p < q < c, we have

∫ q

p

f(ξ)ϕ′(ξ) dξ =
[
f(ξ)ϕ(ξ)

]q

p
−

∫ q

p

f ′(ξ)ϕ(ξ) dξ.

Let ν(ξ) = ν1 on (a, b) and ν(ξ) = ν2 on (b, c). Then, for any ϕ ∈ D(a, c) = C∞0 (a, c),
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we have the following, with (f, ϕ) denoting the duality between D′(a, c) and D(a, c),

(g′, ϕ) = −(g, ϕ′) = −
∫ c

a

ν(ξ)f(ξ)ϕ′(ξ) dξ

= −ν1

∫ b

a+ε

f(ξ)ϕ′(ξ) dξ − ν2

∫ c−ε

b

f(ξ)ϕ′(ξ) dξ,

where ε > 0 is sufficiently small. Thus, by f(b) = 0, we have

(g′, ϕ) = −ν1

[
f(ξ)ϕ(ξ)

]b

a+ε
+ ν1

∫ b

a+ε

f ′(ξ)ϕ(ξ) dξ

− ν2

[
f(ξ)ϕ(ξ)

]c−ε

b
+ ν2

∫ c−ε

b

f ′(ξ)ϕ(ξ) dξ

=
∫ c

a

ν(ξ)f ′(ξ)ϕ(ξ) dξ = (νf ′, ϕ),

which means g′ = νf ′. ¤

Proof of Theorem 7.4. (1) We have only to show that g(ξ) := T̂ †c f(ξ) =
e−icτ(ξ)f̂(ξ) satisfies

(1 + | · |2)s/2g(j) ∈ L2(R) for 0 ≤ j ≤ r, and

g(j)(2kπ) = 0 for 0 ≤ j < r, k ∈ Z \ {0}.

Set ν(ξ) := e−ic(τ(ξ)−ξ), which is a constant function on each interval (2kπ, 2(k + 1)π),
k ∈ Z \ {−1, 0}, and (−2π, 2π). Set g1(ξ) = ν(ξ)f̂(ξ). Since g(ξ) = e−icξg1(ξ), we have
only to show

(1 + | · |2)s/2g
(j)
1 ∈ L2(R) for 0 ≤ j ≤ r, and

g
(j)
1 (2kπ) = 0 for 0 ≤ j < r, k ∈ Z \ {0}. (8.3)

By repeated use of Lemma 8.4, we have that g
(j)
1 (ξ) = ν(ξ)f̂ (j)(ξ) for 0 ≤ j ≤ r. This

shows (8.3) by the assumption on f .
(2) Since Hc is a linear combination of I and H, we have only to show that h(ξ) :=

Ĥf(ξ) = −i(sgn ξ)f̂(ξ) satisfy

(1 + | · |2)s/2h(j) ∈ L2(R) for 0 ≤ j ≤ r, and

h(j)(0) = 0 for 0 ≤ j < r.

Just in the same way as above, we can show that h(j)(ξ) = −i(sgn ξ)f̂ (j)(ξ), 0 ≤ j ≤ r,
which implies the result. ¤
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9. A generalization of the Meyer scaling functions.

If supp φ̂ ⊂ [−2π, 2π], then we have T †c φ = Tcφ. In this last section, we give a class
of scaling functions with this property, which generalizes the Meyer scaling functions.

Definition 9.1. A scaling function φ ∈ L2(R) is called a generalized Meyer scaling
function if supp φ̂ ⊂ [−a1, a2], 0 < a1 < 2π, 0 < a2 < 2π, a1/2+a2 ≤ 2π, a1 +a2/2 ≤ 2π.
A wavelet function associated with a generalized Meyer scaling function is also called a
generalized Meyer wavelet function. Note that the condition (A1) in Theorem 8.1 implies
a1+a2 ≥ 2π, and the equality holds only if |φ̂| = χ

[−a1,a2]
. The region of possible (a1, a2)

is illustrated as the gray region in Figure 9.

Note that the Meyer scaling functions are the case when a1 = a2 = (4/3)π, and the
Shannon scaling function is the case when a1 = a2 = π.

Proposition 9.2. A function φ ∈ L2(R) is a generalized Meyer scaling function
if and only if the following three conditions hold (Figure 10).

(gM1) supp φ̂ ⊂ [−a1, a2], 0 < a1 < 2π, 0 < a2 < 2π, a1/2 + a2 ≤ 2π, a1 + a2/2 ≤ 2π,
a1 + a2 ≥ 2π.

(gM2) |φ̂(ξ)| = 1 a.e. on [a2 − 2π, 2π − a1].
(gM3) |φ̂(ξ)|2 + |φ̂(ξ − 2π)|2 = 1 a.e. on [2π − a1, a2].

Figure 9. The region of (a1, a2). The boundary is included except (2π, 0), (0, 2π).

Figure 10. Graph of |bφ(ξ)| for a generalized Meyer scaling function.



1292 R. Ashino, T. Mandai and A. Morimoto

Note that (gM1) implies −2π < −a1 ≤ a2− 2π < 2π− a1 ≤ a2 < 2π, and the width
of the support is not greater than a1+a2 ≤ (8/3)π. Also note that the conditions depend
only on the absolute value of φ̂, and hence if φ is a generalized Meyer scaling function
and if |α(ξ)| = 1, then α(D)φ is also a generalized Meyer scaling function. In particular,
if φ is a generalized Meyer scaling function, then Tcφ is also a generalized Meyer scaling
function.

Proof. We omit “a.e.”. Assume that φ satisfies the conditions (gM1)–(gM3).
We first show (A1). Set F (ξ) :=

∑
k∈Z |φ̂(ξ + 2kπ)|2. On [a2 − 2π, 2π − a1], we

have F (ξ) = |φ̂(ξ)|2 = 1 by (gM1) and (gM2). On [2π − a1, a2], we have F (ξ) =
|φ̂(ξ)|2 + |φ̂(ξ− 2π)|2 = 1 by (gM1), (gM3), and by that a2 < 4π−a1, a2− 2π ≤ 2π−a1.
Since F is 2π-periodic, we have F (ξ) = 1 on R.

Next, we show (A2). Since supp φ̂(2·) ⊂ [−a1/2, a2/2] where |φ̂(ξ)| = 1 by a2 −
2π ≤ −a1/2 and a2/2 ≤ 2π − a1, there exists ν(ξ) such that φ̂(2ξ) = ν(ξ)φ̂(ξ) and
supp ν ⊂ [−a1/2, a2/2]. Set m0(ξ) :=

∑
k∈Z ν(ξ + 2kπ), which is 2π-periodic. Then, we

have φ̂(2ξ) = m0(ξ)φ̂(ξ) on R. In fact, we have

m0(ξ)φ̂(ξ) =
∑

k∈Z
ν(ξ + 2kπ)φ̂(ξ) = ν(ξ)φ̂(ξ) = φ̂(2ξ),

since (gM1) holds, supp ν ⊂ [−a1/2, a2/2], a2 ≤ 2π − a1/2 and a2/2− 2π ≤ −a1.
Since (A3) is trivially satisfied, φ is a scaling function by Theorem 8.1.
Conversely, assume that φ is a generalized Meyer scaling function. (gM1) is trivial.

Since F (ξ) = 1, we have

|φ̂(ξ)|2 = 1−
∑

k 6=0

|φ̂(ξ + 2kπ)|2.

On [a2 − 2π, 2π − a1], we have φ̂(ξ + 2kπ) = 0 if k 6= 0 by (gM1), and hence |φ̂(ξ)|2 = 1.
Finally, since a2 < 4π − a1 and a2 − 2π < 2π − a1, we have φ̂(ξ + 2kπ) = 0 on

[2π − a1, a2] if k 6= 0,−1, and hence we have (gM3) by F (ξ) = 1. ¤

Figure 11. Graph of | bψ(ξ)| for a generalized Meyer wavelet function.
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Proposition 9.3. If φ is a generalized Meyer scaling function, then any associated
wavelet function ψ has the following properties (Figure 11).

(gMw1) supp ψ̂ ⊂ [−2a1, a2 − 2π] ∪ [2π − a1, 2a2].
(gMw2) |ψ̂(ξ)| = 1 a.e. on [2a2 − 4π,−a1] ∪ [a2, 4π − 2a1],
(gMw3) |ψ̂(2ξ + 4π)| = |ψ̂(ξ)| a.e. on [−a1, a2 − 2π], |ψ̂(2ξ − 4π)| = |ψ̂(ξ)| a.e. on

[2π − a1, a2], |ψ̂(ξ)|2 + |ψ̂(ξ − 2π)|2 = 1 a.e. on [2π − a1, a2].

This proposition easily follows from the fact that ψ̂(ξ) = e−iξ/2ν(ξ) m0(ξ/2 + π)
· φ̂(ξ/2), where ν is a 2π-periodic function with |ν(ξ)| = 1 a.e. on R.

Let φ be a generalized Meyer scaling function, and ψ be the wavelet function natu-
rally associated with φ. If φ ∈ S, then the three functions T †c φ = Tcφ, ψ, and Hcψ also
belong to S, while Hcφ 6∈ L1(R) unless c ∈ Z.
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