A generalization of twisted modules over vertex algebras

By Kenichiro Tanabe

(Received Apr. 4, 2013)
(Revised Nov. 6, 2013)

Abstract

For an arbitrary positive integer T we introduce the notion of a (V, T)-module over a vertex algebra V, which is a generalization of a twisted V-module. Under some conditions on V, we construct an associative algebra $A_{m}^{T}(V)$ for $m \in(1 / T) \mathbb{N}$ and an $A_{m}^{T}(V)-A_{n}^{T}(V)$-bimodule $A_{n, m}^{T}(V)$ for $n, m \in(1 / T) \mathbb{N}$ and we establish a one-to-one correspondence between the set of isomorphism classes of simple left $A_{0}^{T}(V)$-modules and that of simple $(1 / T) \mathbb{N}$-graded (V, T)-modules.

1. Introduction.

Twisted modules (or twisted sectors) were introduced in the study of the so-called orbifold models of conformal field theory (cf. [2], [3]). Let V be a vertex operator algebra and G a finite automorphism group of V. In terms of vertex operator algebras, the study of the orbifold models corresponds to the study of the subalgebra V^{G} of G-invariants in V. One of the main problems about V^{G} is to describe the V^{G}-modules in terms of V and G. Twisted modules have been studied systematically as representations of V related to this problem (cf. [6], [11], [13], [15]). For $g \in G$, every g-twisted V-module becomes a V^{G}-module. Moreover, it is conjectured that under some conditions on V, every simple V^{G}-module is contained in some simple g-twisted V-module for some $g \in G$ (cf. [2]). However, the following easy observation tells us an inconvenience of twisted V-modules from the representation theoretic viewpoint: let g, h be two different elements of G, M a g-twisted V-module and N an h-twisted V-module. Although the direct sum $M \oplus N$ is a V^{G}-module, this is not a (twisted) V-module in general. This is one of obstructions to develop the representation theory of V^{G}.

In this paper, for a vertex algebra V and a positive integer T we first introduce the notion of a (V, T)-module (cf. Definition 2.1), which is a generalization of a twisted V module, in order to resolve the inconvenience just mentioned above. Roughly speaking, a (V, T)-module is a "twisted V-module" without automorphisms. We next generalize some results by Zhu $[\mathbf{1 7}]$ to (V, T)-modules. In $[\mathbf{1 7}]$, if V is a vertex operator algebra, then Zhu constructed an associative algebra $A(V)$ and established a one-to-one correspondence between the set of isomorphism classes of the simple $A(V)$-modules and that of the simple V-modules with some conditions. Some generalizations of $A(V)$ have been obtained in $[\mathbf{4}],[\mathbf{5}],[\mathbf{6}],[\mathbf{7}],[\mathbf{8}]$ and they have played an important role in the representation theory of V. We shall show the following results for a vertex algebra V with a grading $V=\bigoplus_{i=\Delta}^{\infty} V_{i}$

[^0]such that $\Delta \in \mathbb{Z}_{\leq 0}, \mathbf{1} \in V_{0}$ and for all homogeneous element $a \in V, a_{i} V_{j} \subset V_{\mathrm{wt} a-1-i+j}$, where $V_{i}=0$ for $i<\Delta$. For every positive integer T and $n, m \in(1 / T) \mathbb{N}$, we shall construct an associative algebra $A_{m}^{T}(V)$ and an $A_{n}^{T}(V)-A_{m}^{T}(V)$-bimodule $A_{n, m}^{T}(V)$ in Theorem 4.5. If $T=1$, then $A_{n, m}^{T}(V)$ is the same as $A_{n, m}(V)$ in [5] and $A_{n}^{T}(V)$ is the same as $A_{n}(V)$ in [7]. In particular, $A_{0}^{1}(V)$ is the same as $A(V)$ in [17]. For an automorphism g of V of finite order, $A_{g, n, m}(V)$ in [6], [8] is a quotient of $A_{n, m}^{|g|}(V)$. For $m \in(1 / T) \mathbb{N}$ and a left $A_{m}^{T}(V)$-module U, we shall show in Theorem 5.13 that the $(1 / T) \mathbb{N}$-graded vector space $M(U)=\bigoplus_{n \in(1 / T) \mathbb{N}} A_{n, m}^{T}(V) \otimes_{A_{m}^{T}(V)} U$ has a structure of (V, T)-modules with a universal property. In Corollary 5.14, we establish a one-to-one correspondence between the set of isomorphism classes of simple $A_{0}^{T}(V)$-modules and that of simple $(1 / T) \mathbb{N}$-graded (V, T)-modules.

The organization of the paper is as follows. In Section 2 we introduce the notion of a (V, T)-module. In Section 3 we introduce a subspace $O_{n, m}^{T, 1}(\alpha, \beta ; z)$ of $\mathbb{C}\left[z, z^{-1}\right]$ for $n, m \in(1 / T) \mathbb{N}$ and $\alpha, \beta \in \mathbb{Z}$ and study its properties. In Section 4 we construct an associative algebra $A_{m}^{T}(V)$ and an $A_{n}^{T}(V)-A_{m}^{T}(V)$-bimodule $A_{m}^{T}(V)$ for $n, m \in(1 / T) \mathbb{N}$ by using the results in Section 4. In Section 5 we introduce the notion of a $(1 / T) \mathbb{N}$ graded (V, T)-module and study a relation between the left $A_{m}^{T}(V)$-modules and the $(1 / T) \mathbb{N}$-graded (V, T)-modules. Section 6 consists of two subsections. In Subsection 6.1 we compute the determinant of a matrix used in Section 3. In Subsection 6.2 we improve some results in [16]. In Section 7 we list some notations.

2. (V, T)-modules.

We assume that the reader is familiar with the basic knowledge on vertex algebras as presented in $[\mathbf{1}],[\mathbf{6}],[\mathbf{1 4]}$.

Throughout this paper, \mathbb{N} denotes the set of all non-negative integers, T is a fixed positive integer and $(V, Y, \mathbf{1})$ is a vertex algebra. Recall that V is the underlying vector space, $Y(-, x)$ is the linear map from V to (End $V)\left[\left[x, x^{-1}\right]\right]$, and $\mathbf{1}$ is the vacuum vector. For $i, j \in \mathbb{Z}$, define

$$
\begin{aligned}
\mathbb{Z}_{\leq i} & =\{k \in \mathbb{Z} \mid k \leq i\}, \\
\mathbb{Z}_{\geq i} & =\{k \in \mathbb{Z} \mid k \geq i\}, \\
\mathbb{C}\left[x, x^{-1}\right]_{\leq i} & =\operatorname{Span}_{\mathbb{C}}\left\{x^{k} \mid k \leq i\right\}, \\
\mathbb{C}\left[x, x^{-1}\right]_{j, i} & =\operatorname{Span}_{\mathbb{C}}\left\{x^{k} \mid j \leq k \leq i\right\} .
\end{aligned}
$$

For $f(z) \in \mathbb{C}\left[z, z^{-1}\right]$ and $a, b \in V,\left.f(z)\right|_{z^{j}=a_{j} b}$ denotes the element of V obtained from $f(z)$ by replacing z^{j} by $a_{j} b$ for all $j \in \mathbb{Z}$. For $i, j \in \mathbb{Q}$, define

$$
\delta(i \leq j)= \begin{cases}1 & \text { if } i \leq j \tag{2.1}\\ 0 & \text { if } i>j\end{cases}
$$

Let M be a vector space over \mathbb{C}. Define three linear injective maps

$$
\begin{aligned}
& \iota_{x, y}: M\left[\left[x^{1 / T}, y^{1 / T}\right]\right]\left[x^{-1 / T}, y^{-1 / T},(x-y)^{-1}\right] \rightarrow M\left(\left(x^{1 / T}\right)\right)\left(\left(y^{1 / T}\right)\right), \\
& \iota_{y, x}: M\left[\left[x^{1 / T}, y^{1 / T}\right]\right]\left[x^{-1 / T}, y^{-1 / T},(x-y)^{-1}\right] \rightarrow M\left(\left(y^{1 / T}\right)\right)\left(\left(x^{1 / T}\right)\right), \\
& \iota_{y, x-y}: M\left[\left[x^{1 / T}, y^{1 / T}\right]\right]\left[x^{-1 / T}, y^{-1 / T},(x-y)^{-1}\right] \rightarrow M\left(\left(y^{1 / T}\right)\right)((x-y))
\end{aligned}
$$

by

$$
\begin{gathered}
\iota_{x, y} f=\sum_{j, k . l} a_{j, k, l} \sum_{i=0}^{\infty}\binom{l}{i}(-1)^{i} x^{j+l-i} y^{k+i}, \\
\iota_{y, x} f=\sum_{j, k . l} a_{j, k, l} \sum_{i=0}^{\infty}\binom{l}{i}(-1)^{l-i} y^{k+l-i} x^{j+i}, \\
\iota_{y, x-y} f=\sum_{j, k . l} a_{j, k, l} \sum_{i=0}^{\infty}\binom{j}{i} y^{k+j-i}(x-y)^{l+i}
\end{gathered}
$$

for $f=\sum_{j, k . l} a_{j, k, l} x^{j} y^{k}(x-y)^{l} \in M\left[\left[x^{1 / T}, y^{1 / T}\right]\right]\left[x^{-1 / T}, y^{-1 / T},(x-y)^{-1}\right], a_{j, k, l} \in M$. We can also define the map

$$
\iota_{x-y, y}: M\left[\left[x^{1 / T}, y^{1 / T}\right]\right]\left[x^{-1 / T}, y^{-1 / T},(x-y)^{-1}\right] \rightarrow M\left(\left((x-y)^{1 / T}\right)\right)\left(\left(y^{1 / T}\right)\right)
$$

similarly. Since $\iota_{x, y}(x-y)^{i}=\sum_{j=0}^{\infty}\binom{i}{j} x^{i-j}(-1)^{j} y^{j}$ and $\iota_{x-y, y} x^{i}=\sum_{j=0}^{\infty}\binom{i}{j}(x-y)^{i-j} y^{j}$, we identify $M\left(\left((x-y)^{1 / T}\right)\right)\left(\left(y^{1 / T}\right)\right)$ with $M\left(\left(x^{1 / T}\right)\right)\left(\left(y^{1 / T}\right)\right)$ and $\iota_{x-y, y}$ with $\iota_{x, y}$.

Now we introduce a generalization of a twisted V-module.
Definition 2.1. Let M be a vector space over \mathbb{C} and $Y_{M}(-, x)$ a linear map from V to $\left(\operatorname{End}_{\mathbb{C}} M\right)\left[\left[x^{1 / T}, x^{-1 / T}\right]\right]$. We call $\left(M, Y_{M}\right)$ a (V, T)-module if
(1) For $a \in V$ and $w \in M, Y_{M}(a, x) w \in M\left(\left(x^{1 / T}\right)\right)$.
(2) $Y_{M}(\mathbf{1}, x)=\operatorname{id}_{M}$.
(3) For $a, b \in V$ and $w \in M$, there is $F(a, b, w \mid x, y) \in M\left[\left[x^{1 / T}, y^{1 / T}\right]\right]\left[x^{-1 / T}, y^{-1 / T}\right.$, $\left.(x-y)^{-1}\right]$ such that

$$
\begin{aligned}
\iota_{x, y} F(a, b, w \mid x, y) & =Y_{M}(a, x) Y_{M}(b, y) w, \\
\iota_{y, x} F(a, b, w \mid x, y) & =Y_{M}(b, y) Y_{M}(a, x) w, \quad \text { and } \\
\iota_{y, x-y} F(a, b, w \mid x, y) & =Y_{M}(Y(a, x-y) b, y) w .
\end{aligned}
$$

We note that in Definition 2.1, $F(a, b, w \mid x, y)$ is uniquely determined by $a, b \in V$ and $w \in M$ since $t_{x, y}$ is an injection. For a (V, T)-module M, a subspace N of M is called (V, T)-submodule of M if $\left(N,\left.Y_{M}\right|_{N}\right)$ is a (V, T)-module, where $\left.Y_{M}\right|_{N}$ is the restriction of Y_{M} to N. A non-zero (V, T)-module M is called simple if there is no submodule of M except 0 and M itself. For a submodule N of a (V, T)-module M, the quotient space M / N is clearly a (V, T)-module. For a set of (V, T)-modules $\left\{M_{i}\right\}_{i \in I}$, the direct sum $\bigoplus_{i \in I} M_{i}$ is a (V, T)-module.

Remark 2.2. It follows from Lemma 2.4 below that every ($V, 1$)-module is a V module and vice versa and that every g-twisted V-module is a $(V,|g|)$-module for an automorphism g of V of finite order.

Let T^{\prime} be a positive multiple of T. Then every (V, T)-module is a $\left(V, T^{\prime}\right)$-module. Thus, for positive integers T_{1} and T_{2} the direct sum of a $\left(V, T_{1}\right)$-module and a $\left(V, T_{2}\right)$ module becomes a $\left(V, T_{3}\right)$-module, where T_{3} is a positive common multiple of T_{1} and T_{2}. Thus, (V, T)-modules are closed under direct sums in this sense, while twisted V-modules are not as stated in the introduction.

Example 2.3. We introduce an easy example of simple (V, T)-modules which is not a twisted V-module. Let U be a simple vertex operator algebra. Suppose the symmetric group S_{3} of degree 3 is an atomorphism group of U. Let $\sigma, \tau \in S_{3}$ such that $|\sigma|=3$ and $|\tau|=2$ and $M=\bigoplus_{j \in(1 / 3) \mathbb{N}} M(j)$ a simple σ-twisted U-module [6]. It follows from Remark 2.2 that M is a $(U, 3)$-module. Restricting Y_{M} to $U^{\langle\tau\rangle}, M$ becomes a $\left(U^{\langle\tau\rangle}, 3\right)$-module. We shall show M is a simple $\left(U^{\langle\tau\rangle}, 3\right)$-module. Let W be a non-zero $\left(U^{\langle\tau\rangle}, 3\right)$-submodule of M. We denote the subspace $\bigoplus_{j \in i / 3+\mathbb{N}} M(j)$ of M by $M^{i}, i=0,1,2$. Since $\tau \sigma \tau=\sigma^{-1} \neq \sigma$, an improvement of [16, Theorem 2] (see Subsection 6.2) implies that M^{0}, M^{1} and M^{2} are all inequivalent simple $U^{S_{3}}$-modules. Thus, W contains at least one of M^{0}, M^{1} and M^{2} since $U^{S_{3}} \subset U^{\langle\tau\rangle}$. We denote the eigenspace $\left\{u \in U \mid \sigma u=e^{-2 \pi \sqrt{-1} r / 3} u\right\}$ of σ by $U^{(\sigma, r)}, r=0,1,2$. It follows by [9, Proposition 3.3] and [12, Theorem 1] that $U^{\langle\tau\rangle} \not \subset U^{\langle\sigma\rangle}$ and hence there exists $a=a^{0}+a^{1}+a^{2} \in U^{\langle\tau\rangle}$, $a^{r} \in U^{(\sigma, r)}$ such that at least one of a^{1}, a^{2} is not zero. Since

$$
Y_{M}(a, x)=\sum_{i \in \mathbb{Z}} a_{i}^{0} x^{-i-1}+\sum_{i \in 1 / 3+\mathbb{Z}} a_{i}^{1} x^{-i-1}+\sum_{i \in 2 / 3+\mathbb{Z}} a_{i}^{2} x^{-i-1}
$$

and M is a simple σ-twisted U-module, W contains at least two of M^{0}, M^{1} and M^{2}. Repeating the same argument, we obtain that M is a simple $\left(U^{\langle\tau\rangle}, 3\right)$-module.

Since at least one of a^{1}, a^{2} above is not zero, M is not a $U^{\langle\tau\rangle}$-module. Suppose M is a g-twisted $U^{\langle\tau\rangle}$-module for some $g \in \operatorname{Aut} U^{\langle\tau\rangle}$ of order 3. Then, the eigenspace $\left(U^{\langle\tau\rangle}\right)^{(g, r)}=\left\{v \in U^{\langle\tau\rangle} \mid g v=e^{-2 \pi \sqrt{-1} r / 3} v\right\}$ of g is a subspace of $U^{(\sigma, r)}$ for each $r=0,1,2$ since $Y_{M}(b, x)=\sum_{j \in r / 3+\mathbb{Z}} b_{j} x^{-j-1}$ for $b \in\left(U^{\langle\tau\rangle}\right)^{(g, r)}$. Therefore, $\left(U^{\langle\tau\rangle}\right)^{(g, 1)}=$ $\left(U^{\langle\tau\rangle}\right)^{(g, 2)}=0$ since there is no representation ρ of S^{3} such that $\rho(\sigma)=e^{-2 \pi \sqrt{-1} r / 3}$ and $\rho(\tau)=1$ for $r=1,2$. This contradicts to that the order of g is equal to 3 . We conclude that M is not a twisted $U^{\langle\tau\rangle}$-module.

Let M be a vector space. For $s=0, \ldots, T-1$ and $X(x, y)=\sum_{i, j \in(1 / T) \mathbb{Z}} X_{i j} x^{i} y^{j} \in$ $M\left[\left[x^{1 / T}, x^{-1 / T}, y^{1 / T}, y^{-1 / T}\right]\right], X_{i j} \in M$, we define

$$
\begin{align*}
X(x, y)^{s, x} & =\sum_{\substack{i \in s / T+\mathbb{Z} \\
j \in(1 / T) \mathbb{Z}}} X_{i j} x^{i} y^{j} \quad \text { and } \\
X(x, y)^{s, y} & =\sum_{\substack{i \in(1 / T) \mathbb{Z} \\
j \in s / T+\mathbb{Z}}} X_{i j} x^{i} y^{j} \tag{2.2}
\end{align*}
$$

in $M\left[\left[x^{1 / T}, x^{-1 / T}, y^{1 / T}, y^{-1 / T}\right]\right]$. In the same way, for $s=0, \ldots, T-1$ and $X(x, y)=$ $\sum_{i, j \in(1 / T) \mathbb{Z}} \sum_{k \in \mathbb{Z}} X_{i j k} x^{i} y^{j}(x-y)^{k} \in M\left[\left[x^{1 / T}, y^{1 / T}\right]\right]\left[x^{-1 / T}, y^{-1 / T},(x-y)^{-1}\right]$, we define

$$
\begin{align*}
& X(x, y)^{s, x}=\sum_{\substack{i \in s / T+\mathbb{Z} \\
j \in(1 / T) \mathbb{Z}}} \sum_{k \in \mathbb{Z}} X_{i j k} x^{i} y^{j}(x-y)^{k} \quad \text { and } \\
& X(x, y)^{s, y}=\sum_{\substack{i \in(1 / T) \mathbb{Z} \\
j \in s / T+\mathbb{Z}}} \sum_{k \in \mathbb{Z}} X_{i j k} x^{i} y^{j}(x-y)^{k} \tag{2.3}
\end{align*}
$$

in $M\left[\left[x^{1 / T}, y^{1 / T}\right]\right]\left[x^{-1 / T}, y^{-1 / T},(x-y)^{-1}\right]$. Clearly

$$
\sum_{s=0}^{T-1} X(x, y)^{s, x}=\sum_{s=0}^{T-1} X(x, y)^{s, y}=X(x, y)
$$

For $0 \leq s \leq T-1, j \in s / T+\mathbb{Z}, k \in(1 / T) \mathbb{Z}$ and $l \in \mathbb{Z}$, the following fact is well known and straightforward:

$$
\begin{align*}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) \iota_{x_{1}, x_{2}}\left(\left.\left(x_{1}^{j} x_{2}^{k} x_{0}^{l}\right)\right|_{x_{0}=x_{1}-x_{2}}\right)-x_{0}^{-1} \delta\left(\frac{-x_{2}+x_{1}}{x_{0}}\right) \iota_{x_{2}, x_{1}}\left(\left.\left(x_{1}^{j} x_{2}^{k} x_{0}^{l}\right)\right|_{x_{0}=x_{1}-x_{2}}\right) \\
& \quad=x_{1}^{-1}\left(\frac{x_{2}+x_{0}}{x_{1}}\right)^{-s / T} \delta\left(\frac{x_{2}+x_{0}}{x_{1}}\right) \iota_{x_{2}, x_{0}}\left(\left.\left(x_{1}^{j} x_{2}^{k} x_{0}^{l}\right)\right|_{x_{1}=x_{2}+x_{0}}\right) \tag{2.4}
\end{align*}
$$

The argument in the proof of the following lemma is well known (cf. [14, Sections 3.2-3.4]).

Lemma 2.4. Let $A\left(x_{1}, x_{2}\right) \in M\left(\left(x_{1}^{1 / T}\right)\right)\left(\left(x_{2}^{1 / T}\right)\right), B\left(x_{2}, x_{1}\right) \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{1}^{1 / T}\right)\right)$, and $C\left(x_{2}, x_{0}\right) \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right)$. Then, the three following conditions are equivalent.
(1) There is $F \in M\left[\left[x_{1}^{1 / T}, x_{2}^{1 / T}\right]\right]\left[x_{1}^{-1 / T}, x_{2}^{-1 / T},\left(x_{1}-x_{2}\right)^{-1}\right]$ such that

$$
\iota_{x_{1}, x_{2}} F=A\left(x_{1}, x_{2}\right), \quad \iota_{x_{2}, x_{1}} F=B\left(x_{2}, x_{1}\right), \quad \text { and } \quad \iota_{x_{2}, x_{1}-x_{2}} F=C\left(x_{2}, x_{1}-x_{2}\right)
$$

(2) There are $C^{[s]}\left(x_{2}, x_{0}\right) \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right), \quad s=0, \ldots, T-1$ such that $\sum_{s=0}^{T-1} C^{[s]}\left(x_{2}, x_{0}\right)=C\left(x_{2}, x_{0}\right)$ and

$$
\begin{align*}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) A\left(x_{1}, x_{2}\right)^{s, x_{1}}-x_{0}^{-1} \delta\left(\frac{-x_{2}+x_{1}}{x_{0}}\right) B\left(x_{2}, x_{1}\right)^{s, x_{1}} \\
& \quad=x_{1}^{-1}\left(\frac{x_{2}+x_{0}}{x_{1}}\right)^{-s / T} \delta\left(\frac{x_{2}+x_{0}}{x_{1}}\right) C^{[s]}\left(x_{2}, x_{0}\right) . \tag{2.5}
\end{align*}
$$

(3) There are positive integers l, q and $C^{[s]}\left(x_{2}, x_{0}\right) \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right)$, $s=0, \ldots, T-1$ such that $\sum_{s=0}^{T-1} C^{[s]}\left(x_{2}, x_{0}\right)=C\left(x_{2}, x_{0}\right)$,

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)^{l} A\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)^{l} B\left(x_{2}, x_{1}\right) \tag{2.6}
\end{equation*}
$$

in $M\left[\left[x_{1}^{1 / T}, x_{2}^{1 / T}, x_{1}^{-1 / T}, x_{2}^{-1 / T}\right]\right]$ and

$$
\begin{align*}
& \left.\iota_{x_{0}, x_{2}}\left(x_{0}+x_{2}\right)^{-s / T+q}\left(A\left(x_{1}, x_{2}\right)^{s, x_{1}}\right)\right|_{x_{1}=x_{0}+x_{2}} \\
& \quad=\iota_{x_{2}, x_{0}}\left(x_{2}+x_{0}\right)^{-s / T+q} C^{[s]}\left(x_{2}, x_{0}\right) \tag{2.7}
\end{align*}
$$

in $M\left[\left[x_{0}, x_{2}^{1 / T}, x_{0}^{-1}, x_{2}^{-1 / T}\right]\right]$.
In this case, F and $C^{[s]}\left(x_{2}, x_{0}\right), s=0, \ldots, T-1$ are uniquely determined by $A\left(x_{1}, x_{2}\right)$, $B\left(x_{2}, x_{1}\right)$ and $C\left(x_{2}, x_{0}\right)$.

Proof. We show (1) implies (2). Define $C^{[s]}\left(x_{2}, x_{0}\right) \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right)$ by $C^{[s]}\left(x_{2}, x_{1}-x_{2}\right)=\iota_{x_{2}, x_{1}-x_{2}} F^{s, x_{1}} \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{1}-x_{2}\right)\right)$ for $s=0, \ldots, T-1$. Clearly, $\sum_{s=0}^{T-1} C^{[s]}\left(x_{2}, x_{0}\right)=C\left(x_{2}, x_{0}\right)$. Since $\iota_{x_{1}, x_{2}} F^{s, x_{1}}=A\left(x_{1}, x_{2}\right)^{s, x_{1}}$ and $\iota_{x_{2}, x_{1}} F^{s, x_{1}}=$ $B\left(x_{2}, x_{1}\right)^{s, x_{1}}$ for $s=0, \ldots, T-1$, (2.5) follows from (2.4).

We show (2) implies (3). Let l be a positive integer such that $x_{0}^{l} C^{[s]}\left(x_{2}, x_{0}\right) \in$ $M\left(\left(x_{2}^{1 / T}\right)\right)\left[\left[x_{0}\right]\right]$ for all $s=0, \ldots, T-1$. Multiplying (2.5) by x_{0}^{l} and then taking $\operatorname{Res}_{x_{0}}$, we have $\left(x_{1}-x_{2}\right)^{l} A\left(x_{1}, x_{2}\right)^{s, x_{1}}=\left(x_{1}-x_{2}\right)^{l} B\left(x_{2}, x_{1}\right)^{s, x_{1}}$ and hence (2.6). Let q be a positive integer such that $x_{1}^{-s / T+q} B\left(x_{2}, x_{1}\right)^{s, x_{1}} \in M\left(\left(x_{2}^{1 / T}\right)\right)\left[\left[x_{1}\right]\right]$ for all $s=0, \ldots, T-1$. Multiplying (2.5) by $x_{1}^{-s / T+q}$ and then taking $\operatorname{Res}_{x_{1}}$, we have (2.7).

We show (3) implies (1). Since the left-hand side of (2.6) is an element of $M\left(\left(x_{1}^{1 / T}\right)\right)\left(\left(x_{2}^{1 / T}\right)\right)$ and the right-hand side of (2.6) is an element of $M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{1}^{1 / T}\right)\right), G=$ $\left(x_{1}-x_{2}\right)^{l} A\left(x_{1}, x_{2}\right)\left(=\left(x_{1}-x_{2}\right)^{l} B\left(x_{2}, x_{1}\right)\right)$ is an element of $M\left[\left[x_{1}^{1 / T}, x_{2}^{1 / T}\right]\right]\left[x_{1}^{-1 / T}, x_{2}^{-1 / T}\right]$. Define

$$
F=\left(x_{1}-x_{2}\right)^{-l} G \in M\left[\left[x_{1}^{1 / T}, x_{2}^{1 / T}\right]\right]\left[x_{1}^{-1 / T}, x_{2}^{-1 / T},\left(x_{1}-x_{2}\right)^{-1}\right] .
$$

It is clear that $\iota_{x_{1}, x_{2}} F=A\left(x_{1}, x_{2}\right)$ and $\iota_{x_{2}, x_{1}} F=B\left(x_{2}, x_{1}\right)$. Applying the same argument to (2.7), we obtain $H_{s} \in M\left[\left[x_{1}^{1 / T}, x_{2}^{1 / T}\right]\right]\left[x_{1}^{-1 / T}, x_{2}^{-1 / T},\left(x_{1}-x_{2}\right)^{-1}\right], s=0, \ldots, T-1$ such that

$$
\begin{aligned}
& \iota_{x_{1}-x_{2}, x_{2}} H_{s}=A\left(x_{1}, x_{2}\right)^{s, x_{1}}=A\left(\left(x_{1}-x_{2}\right)+x_{2}, x_{2}\right)^{s, x_{1}} \text { and } \\
& \iota_{x_{2}, x_{1}-x_{2}} H_{s}=C^{[s]}\left(x_{2}, x_{1}-x_{2}\right) .
\end{aligned}
$$

Since $M\left(\left(\left(x_{1}-x_{2}\right)^{1 / T}\right)\right)\left(\left(x_{2}^{1 / T}\right)\right)=M\left(\left(x_{1}^{1 / T}\right)\right)\left(\left(x_{2}^{1 / T}\right)\right)$ and $\iota_{x_{1}, x_{2}}$ is injective, we have $F^{s, x_{1}}=H_{s}$ for all $s=0, \ldots, T-1$ and therefore $\iota_{x_{2}, x_{1}-x_{2}} F=C\left(x_{2}, x_{1}-x_{2}\right)$.

We show F and $C^{[s]}\left(x_{2}, x_{0}\right), s=0, \ldots, T-1$ are uniquely determined. Since $\iota_{x_{1}, x_{2}}$ is injective and $\iota_{x_{1}, x_{2}} F=A\left(x_{1}, x_{2}\right), F$ is uniquely determined. In the above argument that (3) implies (1), we have constructed F such that $\iota_{x_{1}, x_{2}} F=A\left(x_{1}, x_{2}\right)$ and $\iota_{x_{2}, x_{1}-x_{2}} F^{s, x_{1}}=$ $C^{[s]}\left(x_{2}, x_{1}-x_{2}\right)$. Thus, $C^{[s]}\left(x_{2}, x_{0}\right), s=0, \ldots, T-1$ in (3) are uniquely determined. A similar argument shows that $C^{[s]}\left(x_{2}, x_{0}\right), s=0, \ldots, T-1$ in (2) are uniquely determined and that $C^{[s]}\left(x_{2}, x_{0}\right)$ in (2) is the same as that in (3) for each s.

Remark 2.5. The following facts for (2.5) are well known and straightforward.
(1) A direct computation shows that (2.5) is equivalent to

$$
\begin{align*}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) A\left(x_{1}, x_{2}\right)-x_{0}^{-1} \delta\left(\frac{-x_{2}+x_{1}}{x_{0}}\right) B\left(x_{2}, x_{1}\right) \\
& \quad=\frac{1}{T} \sum_{j=0}^{T-1} x_{1}^{-1} \delta\left(e^{2 \pi \sqrt{-1} j / T} \frac{\left(x_{2}+x_{0}\right)^{1 / T}}{x_{1}^{1 / T}}\right) \sum_{s=0}^{T-1} e^{2 \pi \sqrt{-1} j s / T} C^{[s]}\left(x_{2}, x_{0}\right) \tag{2.8}
\end{align*}
$$

(2) If we write $A\left(x_{1}, x_{2}\right)=\sum_{p, q} A_{(p, q)} x_{1}^{-p-1} x_{2}^{-q-1}, B\left(x_{2}, x_{1}\right)=\sum_{p, q} B_{(p, q)} x_{2}^{-p-1} x_{1}^{-q-1}$ and $C^{[s]}\left(x_{2}, x_{0}\right)=\sum_{p, q} C_{(p, q)}^{[s]} x_{2}^{-p-1} x_{0}^{-q-1}$, where $A_{(p, q)}, B_{(p, q)}, C_{(p, q)} \in M$, then we have

$$
\begin{equation*}
\sum_{i=0}^{\infty}\binom{l}{i}(-1)^{i}\left(A_{(l+j-i, k+i)}+(-1)^{l+1} B_{(l+k-i, j+i)}\right)=\sum_{i=0}^{\infty}\binom{j}{i} C_{(j+k-i, l+i)}^{[-s]} \tag{2.9}
\end{equation*}
$$

for $0 \leq s \leq T-1, j \in s / T+\mathbb{Z}, k \in(1 / T) \mathbb{Z}$ and $l \in \mathbb{Z}$ by comparing the coefficients of both sides of (2.5). Thus, a direct computation shows that (2.5) is also equivalent to the condition that

$$
\begin{align*}
& \operatorname{Res}_{x_{1}} A\left(x_{1}, x_{2}\right) \iota_{x_{1}, x_{2}}\left(x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}\right)-\operatorname{Res}_{x_{1}} B\left(x_{2}, x_{1}\right) \iota_{x_{2}, x_{1}}\left(x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}\right) \\
& \quad=\operatorname{Res}_{x_{1}-x_{2}} C^{[-s]}\left(x_{2}, x_{1}-x_{2}\right) \iota_{x_{2}, x_{1}-x_{2}}\left(x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}\right) \tag{2.10}
\end{align*}
$$

in $M\left[\left[x_{2}^{1 / T}, x_{2}^{-1 / T}\right]\right]$ for all $0 \leq s \leq T-1, j \in s / T+\mathbb{Z}, k \in(1 / T) \mathbb{Z}$ and $l \in \mathbb{Z}$. Here, Res_{x} is defined by

$$
\operatorname{Res}_{x} f(x)=f_{-1}
$$

for $f(x)=\sum_{i \in(1 / T) \mathbb{Z}} f_{i} x^{i} \in M\left[\left[x^{1 / T}, x^{-1 / T}\right]\right]$.
REmARK 2.6. For $q \in \mathbb{Z}$ we denote by $M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right) \geq q$ the set of all elements in $M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right)$ of the form $\sum_{\substack{i \in(1 / T) \mathbb{Z} \\ j \in \mathbb{Z} \geq q}} X_{i j} x_{2}^{i} x_{0}^{j}$. Suppose $C\left(x_{2}, x_{0}\right)$ in Lemma 2.4 is an element of $M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right) \geq q$. Since $\iota_{x_{2}, x_{1}-x_{2}} x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}=\sum_{i=0}^{\infty}\binom{j}{i} x_{2}^{k+j-i}\left(x_{1}-\right.$ $\left.x_{2}\right)^{l+i}$, we see that F in Lemma 2.4 (1) has the form $F=\left(x_{1}-x_{2}\right)^{q} G$, where $G \in M\left[\left[x_{1}^{1 / T}, x_{2}^{1 / T}\right]\right]\left[x_{1}^{-1 / T}, x_{2}^{-1 / T}\right]$. Thus, $C^{[s]}\left(x_{2}, x_{1}-x_{2}\right)=\iota_{x_{2}, x_{1}-x_{2}} F^{s, x_{1}} \in$ $M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{1}-x_{2}\right)\right) \geq q$ and hence $C^{[s]}\left(x_{2}, x_{0}\right) \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right) \geq q$ for all $s=0, \ldots, T-1$.

Let M be a (V, T)-module. For $a \in V$ and $s=0, \ldots, T-1$, we define $Y_{M}^{s}(a, x)$ by

$$
\begin{equation*}
Y_{M}^{s}(a, x)=\sum_{i \in s / T+\mathbb{Z}} a_{i} x^{-i-1} \tag{2.11}
\end{equation*}
$$

Let $a, b \in V$ and $w \in M$. We apply Lemma 2.4 to $A\left(x_{1}, x_{2}\right)=Y_{M}\left(a, x_{1}\right) Y_{M}\left(b, x_{2}\right) w$, $B\left(x_{2}, x_{1}\right)=Y_{M}\left(b, x_{2}\right) Y_{M}\left(a, x_{1}\right) w$ and $C\left(x_{2}, x_{0}\right)=Y_{M}\left(Y\left(a, x_{0}\right) b, x_{2}\right) w$. In this case F in Lemma 2.4 (1) is equal to $F\left(a, b, w \mid x_{1}, x_{2}\right)$ in Definition 2.1 (3). We denote by $Y_{M}^{(-s)}\left(a, b \mid x_{2}, x_{0}\right)(w)$ the element $C^{[s]}\left(x_{2}, x_{0}\right)$ of $M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right), s=0, \ldots, T-1$ in this case. That is,

$$
\begin{equation*}
Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{1}-x_{2}\right)(w)=\iota_{x_{2}, x_{1}-x_{2}}\left(F\left(a, b, w \mid x_{1}, x_{2}\right)^{-s, x_{1}}\right), \tag{2.12}
\end{equation*}
$$

where $F\left(a, b, w \mid x_{1}, x_{2}\right)^{-s, x_{1}}$ is defined by (2.3). The conditions in Lemma 2.4 (2) become

$$
\begin{equation*}
\sum_{s=0}^{T-1} Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)(w)=Y_{M}\left(Y\left(a, x_{0}\right) b, x_{2}\right) w \tag{2.13}
\end{equation*}
$$

and

$$
\begin{align*}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y_{M}^{s}\left(a, x_{1}\right) Y_{M}\left(b, x_{2}\right) w-x_{0}^{-1} \delta\left(\frac{-x_{2}+x_{1}}{x_{0}}\right) Y_{M}\left(b, x_{2}\right) Y_{M}^{s}\left(a, x_{1}\right) w \\
& \quad=x_{1}^{-1}\left(\frac{x_{2}+x_{0}}{x_{1}}\right)^{s / T} \delta\left(\frac{x_{2}+x_{0}}{x_{1}}\right) Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)(w) . \tag{2.14}
\end{align*}
$$

The uniqueness of $F\left(a, b, w \mid x_{1}, x_{2}\right)$ for each $a, b \in V$ and $w \in M$ implies that for fixed $a, b \in V$ the $\operatorname{map} Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right): M \rightarrow M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right)$ is linear and that the map $V \times V \ni(a, b) \mapsto Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right) \in \operatorname{Hom}_{\mathbb{C}}\left(M, M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right)\right)$ is bilinear. We write

$$
Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)=\sum_{i \in(1 / T) \mathbb{Z}} \sum_{j \in \mathbb{Z}} Y_{M}^{(s)}(a, b ; i, j) x_{2}^{-i-1} x_{0}^{-j-1}
$$

where $Y_{M}^{(s)}(a, b ; i, j) \in \operatorname{End}_{\mathbb{C}} M$.
REMARK 2.7. Let g be an automorphism of V of finite order, t a positive multiple of $|g|$ and $\left(M, Y_{M}\right)$ a g-twisted V-module. As stated in Remark 2.2, $\left(M, Y_{M}\right)$ is a (V, t) module by Lemma 2.4. We explain what is $Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)$ for $a, b \in V$ and $s=0, \ldots$, $t-1$ in this case. We denote by $V^{(g, r)}, r=0, \ldots, t-1$ the eigenspace $\{v \in V \mid g v=$ $\left.e^{-2 \pi \sqrt{-1} r / t} v\right\}$ of g. For $a \in V$, we denote by $a^{(g, r)}$ the r-th component of a in the decomposition $V=\bigoplus_{r=0}^{t-1} V^{(g, r)}$, that is, $a=\sum_{r=0}^{t-1} a^{(g, r)}, a^{(g, r)} \in V^{(g, r)}$.

Let $0 \leq s \leq t-1, a, b \in V$ and $w \in M$. Since

$$
\begin{aligned}
& \left(Y_{M}\left(a, x_{1}\right) Y_{M}\left(b, x_{2}\right) w\right)^{-s, x_{1}}=Y_{M}\left(a^{(g, s)}, x_{1}\right) Y_{M}\left(b, x_{2}\right) w \quad \text { and } \\
& \left(Y_{M}\left(b, x_{2}\right) Y_{M}\left(a, x_{1}\right) w\right)^{-s, x_{1}}=Y_{M}\left(b, x_{2}\right) Y_{M}\left(a^{(g, s)}, x_{1}\right) w
\end{aligned}
$$

it follows by (2.5) that

$$
\begin{equation*}
Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)(w)=Y_{M}\left(Y\left(a^{(g, s)}, x_{0}\right) b, x_{2}\right) w \tag{2.15}
\end{equation*}
$$

Let $a, b \in V, w \in M, j, k \in(1 / T) \mathbb{Z}, l \in \mathbb{Z}$ and s the integer uniquely determined by the conditions $0 \leq s \leq T-1$ and $s / T \equiv j(\bmod \mathbb{Z})$. It follows by (2.9) or by comparing the coefficients of both sides of (2.14) that

$$
\begin{align*}
& \sum_{i=0}^{\infty}\binom{j}{i} Y_{M}^{(s)}(a, b ; j+k-i, l+i)(w) \\
& \quad=\sum_{i=0}^{\infty}\binom{l}{i}(-1)^{i}\left(a_{l+j-i} b_{k+i}+(-1)^{l+1} b_{l+k-i} a_{j+i}\right) w \tag{2.16}
\end{align*}
$$

It follows by (2.10) that

$$
\begin{align*}
& \operatorname{Res}_{x_{1}-x_{2}} \iota_{x_{2}, x_{1}-x_{2}}\left(x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}\right) Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{1}-x_{2}\right)(w) \\
& =\operatorname{Res}_{x_{1}} \iota_{x_{1}, x_{2}}\left(x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}\right) Y_{M}\left(a, x_{1}\right) Y_{M}\left(b, x_{2}\right) w \\
& \quad-\operatorname{Res}_{x_{1}} \iota_{x_{2}, x_{1}}\left(x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}\right) Y_{M}\left(b, x_{2}\right) Y_{M}\left(a, x_{1}\right) w \\
& = \\
& \quad \operatorname{Res}_{x_{1}} \iota_{x_{1}, x_{2}}\left(x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}\right) Y_{M}^{s}\left(a, x_{1}\right) Y_{M}\left(b, x_{2}\right) w \tag{2.17}\\
& \quad-\operatorname{Res}_{x_{1}} \iota_{x_{2}, x_{1}}\left(x_{1}^{j} x_{2}^{k}\left(x_{1}-x_{2}\right)^{l}\right) Y_{M}\left(b, x_{2}\right) Y_{M}^{s}\left(a, x_{1}\right) w .
\end{align*}
$$

Lemma 2.8. We use the notation above. Let L be an integer such that $a_{i} b=0$ for all $i \in \mathbb{Z}_{\geq L+1}$. Then

$$
\begin{align*}
& Y_{M}^{(s)}(a, b ; j+k, l)(w) \\
& =\sum_{m=0}^{L-l}\binom{-j}{m} \sum_{i=0}^{\infty}\binom{l+m}{i}(-1)^{i}\left(a_{l+m+j-i} b_{k-m+i}+(-1)^{l+m+1} b_{l+k-i} a_{j+i}\right) w . \tag{2.18}
\end{align*}
$$

Proof. It follows from Remark 2.6 that $Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)(w) \in M\left(\left(x_{2}^{1 / T}\right)\right)$ $\cdot\left(\left(x_{0}\right)\right) \geq-L-1$. Thus, if $l>L$, then the both-sides of (2.18) are equal to 0 . Suppose $l \leq L$. Define

$$
R(m)=\sum_{i=0}^{\infty}\binom{m}{i}(-1)^{i}\left(a_{m+j-i} b_{k-m+l+i}+(-1)^{m+1} b_{l+k-i} a_{j+i}\right) w
$$

for $m \in \mathbb{Z}_{\leq L}$. Since

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
\binom{j}{1} & 1 & \ddots & & \vdots \\
\binom{j}{2} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\binom{j}{L-l} & \cdots & \binom{j}{2} & \binom{j}{1} & 1
\end{array}\right)\left(\begin{array}{c}
Y_{M}^{(s)}(a, b ; j+k+l-L, L)(w) \\
Y_{M}^{(s)}(a, b ; j+k+l-L+1, L-1)(w) \\
\vdots \\
Y_{M}^{(s)}(a, b ; j+k, l)(w)
\end{array}\right)=\left(\begin{array}{c}
R(L) \\
R(L-1) \\
\vdots \\
R(l)
\end{array}\right)
$$

by (2.16), we have

$$
\left(\begin{array}{c}
Y_{M}^{(s)}(a, b ; j+k+l-L, L)(w) \\
Y_{M}^{(s)}(a, b ; j+k+l-L+1, L-1)(w) \\
\vdots \\
Y_{M}^{(s)}(a, b ; j+k, l)(w)
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
\binom{-j}{1} & 1 & \ddots & & \vdots \\
\binom{-j}{2} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\binom{-j}{L-l} & \cdots & \binom{-j}{2} & \binom{-j}{1} & 1
\end{array}\right)\left(\begin{array}{c}
R(L) \\
R(L-1) \\
\vdots \\
R(l)
\end{array}\right) .
$$

This implies (2.18).
Let $a, b \in V, w \in M, j, k \in(1 / T) \mathbb{Z}, l \in \mathbb{Z}$ and s the integer uniquely determined by the conditions $0 \leq s \leq T-1$ and $s / T \equiv j(\bmod \mathbb{Z})$. It follows by Lemma 2.4 that $F\left(a, \mathbf{1}, w \mid x_{1}, x_{2}\right)=Y_{M}\left(a, x_{1}\right) w$ since

$$
\begin{aligned}
Y_{M}\left(a, x_{1}\right) Y_{M}\left(\mathbf{1}, x_{2}\right) w & =Y_{M}\left(a, x_{1}\right) w \\
& \in M\left[\left[x_{1}^{1 / T}, x_{2}^{1 / T}\right]\right]\left[x_{1}^{-1 / T}, x_{2}^{-1 / T},\left(x_{1}-x_{2}\right)^{-1}\right] .
\end{aligned}
$$

Comparing the coefficients of

$$
\begin{aligned}
& \iota_{x_{2}, x_{1}-x_{2}} x_{1}^{j} Y_{M}^{(s)}\left(a, \mathbf{1} \mid x_{2}, x_{1}-x_{2}\right)(w) \\
& \quad=\sum_{k \in(1 / T) \mathbb{Z}} \sum_{l \in \mathbb{Z}} \sum_{i=0}^{\infty}\binom{j}{i} Y_{M}^{(s)}(a, \mathbf{1} ; j+k-i, l+i)(w) x_{2}^{-k-1}\left(x_{1}-x_{2}\right)^{-l-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \iota_{x_{2}, x_{1}-x_{2}} x_{1}^{j} Y_{M}^{s}\left(a, x_{1}\right) w \\
& \quad=\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}}\binom{k}{-l-1}(-1)^{l+1} a_{j+k+l+1} w x_{2}^{-k-1}\left(x_{1}-x_{2}\right)^{-l-1},
\end{aligned}
$$

we have

$$
\begin{align*}
& \sum_{i=0}^{-l-1}\binom{j}{i} Y_{M}^{(s)}(a, \mathbf{1} ; j+k-i, l+i)(w) \\
& \quad= \begin{cases}\binom{k}{-l-1}(-1)^{l+1} a_{j+k+l+1} w & \text { if } k \in \mathbb{Z} \\
0 & \text { if } k \notin \mathbb{Z}\end{cases} \tag{2.19}
\end{align*}
$$

Here, we used $Y_{M}^{(s)}\left(a, \mathbf{1} \mid x_{2}, x_{1}-x_{2}\right)(w) \in M\left(\left(x_{2}^{1 / T}\right)\right)\left[\left[x_{1}-x_{2}\right]\right]$ by Remark 2.6. We can also obtain (2.19) by taking $b=\mathbf{1}$ in (2.16). Taking $l=-1$ in (2.19), we have

$$
Y_{M}^{(s)}(a, \mathbf{1} ; i,-1)(w)= \begin{cases}a_{i} w & \text { if } i \in s / T+\mathbb{Z}, \tag{2.20}\\ 0 & \text { if } i \notin s / T+\mathbb{Z} .\end{cases}
$$

By a similar argument, we have $F\left(\mathbf{1}, a, w \mid x_{1}, x_{2}\right)=Y_{M}\left(a, x_{2}\right) w, Y_{M}^{(s)}\left(\mathbf{1}, a \mid x_{2}, x_{1}-\right.$ $\left.x_{2}\right)(w)=\delta_{s, 0} Y_{M}\left(a, x_{2}\right) w$ and hence

$$
\begin{equation*}
Y_{M}^{(s)}(\mathbf{1}, a ; k, l)(w)=\delta_{s, 0} \delta_{l,-1} a_{k} w \tag{2.21}
\end{equation*}
$$

Lemma 2.9. Let M be $a(V, T)$-module. Then, $Y_{M}\left(a_{-2} \mathbf{1}, x\right)=(d / d x) Y_{M}(a, x)$.
Proof. Let $a \in V, w \in M, k \in(1 / T) \mathbb{Z}$ and $s \in \mathbb{Z}$ with $0 \leq s \leq T-1$. Taking $j=s / T$ and $l=-2$ in (2.19), we have

$$
\begin{align*}
& Y_{M}^{(s)}\left(a, \mathbf{1} ; \frac{s}{T}+k,-2\right) w+\frac{s}{T} Y_{M}^{(s)}\left(a, \mathbf{1} ; \frac{s}{T}+k-1,-1\right) w \\
& \quad= \begin{cases}-k a_{s / T+k-1} w & \text { if } k \in \mathbb{Z} \\
0 & \text { if } k \notin \mathbb{Z}\end{cases} \tag{2.22}
\end{align*}
$$

Let $r \in \mathbb{Z}$ with $0 \leq r \leq T-1$ and $n \in r / T+\mathbb{Z}$. By (2.20) and (2.22), we have

$$
\begin{aligned}
\left(a_{-2} \mathbf{1}\right)_{n} w & =\sum_{s=0}^{T-1} Y_{M}^{(s)}(a, \mathbf{1} ; n,-2)(w) \\
& =\sum_{s=0}^{T-1} Y_{M}^{(s)}\left(a, \mathbf{1} ; \frac{s}{T}+\left(-\frac{s}{T}+n\right),-2\right)(w) \\
& =\sum_{s=0}^{T-1} \frac{-s}{T} Y_{M}^{(s)}\left(a, \mathbf{1} ; \frac{s}{T}+\left(-\frac{s}{T}+n-1\right),-1\right)(w)-\left(-\frac{r}{T}+n\right) a_{n-1} w \\
& =\frac{-r}{T} a_{n-1} w-\left(-\frac{r}{T}+n\right) a_{n-1} w \\
& =-n a_{n-1} w
\end{aligned}
$$

3. Subspaces of $\mathbb{C}\left[z, z^{-1}\right]$.

Throughout this section we fix a non-positive integer Δ. This is the lowest weight of a graded vertex algebra $V=\bigoplus_{i=\Delta}^{\infty} V_{i}$ which will be discussed in Section 4. In this section we introduce a subspace $O_{n, m}^{T, 1}(\alpha, \beta ; z)$ of $\mathbb{C}\left[z, z^{-1}\right]$ (see (3.11) below) for $n, m \in(1 / T) \mathbb{N}$ and $\alpha, \beta \in \mathbb{Z}$ and we study its properties. The subspace $O_{n, m}^{T, 1}(\alpha, \beta ; z)$ will be used to define the subspace $O_{n, m}^{T, 1}(V)$ of V in Section 4.

For $N, q \in \mathbb{Z}$ and $Q \in \mathbb{Q}, O(N, Q, q ; z)$ denotes the subspace of $\mathbb{C}\left[z, z^{-1}\right]$ spanned by

$$
\begin{equation*}
\operatorname{Res}_{x}\left((1+x)^{Q} x^{q+j} \sum_{i \in \mathbb{Z}_{\leq N}} z^{i} x^{-i-1}\right)=\sum_{i=0}^{N-q-j}\binom{Q}{i} z^{i+q+j}, \quad j=0,-1, \ldots \tag{3.1}
\end{equation*}
$$

and $z^{i}, i \in \mathbb{Z}_{\geq N+1}$. We note that if $N \leq q$, then $O(N, Q, q ; z)=\mathbb{C}\left[z, z^{-1}\right]$. We also note that

$$
\begin{equation*}
O(N, Q, q ; z) \subset O(N, Q, q+1 ; z) \subset \cdots \tag{3.2}
\end{equation*}
$$

A similar computation as in the proof of Lemma 2.8 shows the following lemma (or see [16, Proof of Lemma 2]).

Lemma 3.1. Fix $N, q \in \mathbb{Z}, Q \in \mathbb{Q}$ and $i \in \mathbb{Z}_{\leq N}$. Then

$$
\begin{equation*}
z^{i} \equiv \sum_{k=1}^{N-q} \sum_{j=1}^{k}\binom{-Q}{-i+q+j}\binom{Q}{k-j} z^{q+k} \quad(\bmod O(N, Q, q ; z)) \tag{3.3}
\end{equation*}
$$

The proof of the following lemma is similar to that of [16, Lemma 3].
Lemma 3.2. Let $N \in \mathbb{Z}, q_{0}, \ldots, q_{T-1} \in \mathbb{Z}$ and $Q_{0}, \ldots, Q_{T-1} \in \mathbb{Q}$ such that $Q_{i} \not \equiv Q_{j}$ $(\bmod \mathbb{Z})$ for all $i \neq j$. The diagonal map $\mathbb{C}\left[z, z^{-1}\right] \ni f \mapsto(f, \ldots, f) \in \mathbb{C}\left[z, z^{-1}\right]^{\oplus T}$ induces an isomorphism

$$
\mathbb{C}\left[z, z^{-1}\right] / \bigcap_{s=0}^{T-1} O\left(N, Q_{s}, q_{s} ; z\right) \rightarrow \bigoplus_{s=0}^{T-1} \mathbb{C}\left[z, z^{-1}\right] / O\left(N, Q_{s}, q_{s} ; z\right)
$$

as vector spaces.
Proof. It is sufficient to show that the induced map is surjective. Note that $\mathbb{C}\left[z, z^{-1}\right]_{\geq N+1}$ is a subspace of $O\left(N, Q_{s}, q_{s} ; z\right)$ for each s. Fix an integer q such that $q \leq \min \left\{q_{0}, \ldots, q_{T-1}\right\}$. We may assume $q \leq N$ from the comment right after (3.1). Since $O\left(N, Q_{s}, q ; z\right)$ is a subspace of $O\left(N, Q_{s}, q_{s} ; z\right)$ for each $s=0, \ldots, T-1$, it is sufficient to show that the diagonal map

$$
\mathbb{C}\left[z, z^{-1}\right]_{N+1-T(N-q), N} \ni f \mapsto\left(f+O\left(N, Q_{s}, q ; z\right)\right)_{s=0}^{T-1} \in \bigoplus_{s=0}^{T-1} \mathbb{C}\left[z, z^{-1}\right] / O\left(N, Q_{s}, q ; z\right)
$$

is surjective. For a Laurent polynomial $\Lambda(z)=\sum_{i=N+1-T(N-q)}^{N} \lambda_{i} z^{i} \in$ $\mathbb{C}\left[z, z^{-1}\right]_{N+1-T(N-q), N}$, it follows by (3.3) that

$$
\begin{equation*}
\Lambda(z) \equiv \sum_{i=N+1-T(N-q)}^{N} \lambda_{i} \sum_{k=1}^{N-q} \sum_{j=1}^{k}\binom{-Q_{s}}{-i+q+j}\binom{Q_{s}}{k-j} z^{q+k} \quad\left(\bmod O\left(N, Q_{s}, q ; z\right)\right) \tag{3.4}
\end{equation*}
$$

for $s=0, \ldots, T-1$. We denote $\sum_{j=1}^{k}\binom{-Q_{s}}{-i+q+j}\binom{Q_{s}}{k-j}$ by $\alpha_{-i+q}^{s, k}$ for $0 \leq s \leq T-1$, $1 \leq k \leq N-q$ and $i \in \mathbb{Z}$. Define $T T(N-q) \times(N-q)$-matrices $\Gamma_{s}, s=0, \ldots, T-1$ by

$$
\Gamma_{s}=\left(\begin{array}{cccc}
\alpha_{(T-1)(N-q)-1}^{s, 1} & \alpha_{(T-1)(N-q)-1}^{s, 2} & \cdots & \alpha_{(T-q)(N-q)-1}^{s, N-q} \\
\alpha_{(T-1)(N-q)-2}^{s, 1} & \alpha_{(T-1)(N-q)-2}^{s, 2} & \cdots & \alpha_{(T-q)(N-q)-2}^{s, N-1} \\
\vdots & \vdots & & \vdots \\
\alpha_{-N+q}^{s, 1} & \alpha_{-N+q}^{s, 2} & \cdots & \alpha_{-N+q}^{s, N-q}
\end{array}\right)
$$

Since

$$
\left(\lambda_{N+1-T(N-q)}, \lambda_{N+2-T(N-q)}, \ldots, \lambda_{N}\right) \Gamma_{s}\left(\begin{array}{c}
z^{q+1} \\
\vdots \\
z^{N}
\end{array}\right)
$$

is equal to the right-hand side of (3.4) for $s=0, \ldots, T-1$, it is sufficient to show that the square matrix

$$
\begin{equation*}
\Gamma=\left(\Gamma_{0} \Gamma_{1} \cdots \Gamma_{T-1}\right) \tag{3.5}
\end{equation*}
$$

of order $T(N-q)$ is non-singular. It is proved in Subsection 6.1 that Γ is non-singular.

For $N \in \mathbb{Z}$ and $\gamma \in \mathbb{Q}$, define a linear automorphism $\varphi_{N, \gamma}$ of $\mathbb{C}\left[z, z^{-1}\right]$ by

$$
\varphi_{N, \gamma}\left(z^{i}\right)= \begin{cases}(-1)^{i+1} \operatorname{Res}_{x}\left((1+x)^{\gamma-i} x^{i} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right) & \text { for } i \leq N \tag{3.6}\\ z^{i} & \text { for } i \geq N+1\end{cases}
$$

Lemma 3.3.

$$
\begin{align*}
& \varphi_{N, \gamma}\left(\operatorname{Res}_{x}\left((1+x)^{k} x^{i} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right)\right) \\
& \quad=(-1)^{i+1} \operatorname{Res}_{x}\left((1+x)^{\gamma-k-i} x^{i} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right) \tag{3.7}
\end{align*}
$$

for $k \in \mathbb{Q}$ and $i \in \mathbb{Z}_{\leq N}$. In particular, $\varphi_{N, \gamma}^{2}=\mathrm{id}_{\mathbb{C}\left[z, z^{-1}\right]}$ and

$$
\varphi_{N, \gamma}(O(N, Q, q ; z))=O(N, \gamma-Q-q, q ; z)
$$

for $Q \in \mathbb{Q}$ and $q \in \mathbb{Z}$.

Proof. We simply write $\varphi=\varphi_{N, \gamma}$. Let $i \in \mathbb{Z}_{\leq N}$. Since

$$
\varphi\left(z^{i}\right)=(-1)^{i+1} \sum_{j=0}^{N-i}\binom{\gamma-i}{j} z^{i+j}
$$

we have

$$
\begin{aligned}
\varphi & \left(\operatorname{Res}_{x}(1+x)^{k} x^{i} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right)=\sum_{j=0}^{N-i}\binom{k}{j} \varphi\left(z^{i+j}\right) \\
& =\sum_{j=0}^{N-i}\binom{k}{j}(-1)^{i+j+1} \sum_{m=0}^{N-i-j}\binom{\gamma-i-j}{m} z^{i+j+m} \\
& =\sum_{j=0}^{N-i}\binom{k}{j}(-1)^{i+j+1+m} \sum_{m=0}^{N-i-j}\binom{-\gamma+i+j+m-1}{m} z^{i+j+m} \\
& =\sum_{l=0}^{N-i}(-1)^{i+1+l} z^{i+l} \sum_{\substack{0 \leq j, m \leq N-i \\
j+m=l}}\binom{k}{j}\binom{-\gamma+i+l-1}{m} \\
& =\sum_{l=0}^{N-i}(-1)^{i+1+l} z^{i+l}\binom{k-\gamma+i+l-1}{l} \\
& =(-1)^{i+1} \sum_{l=0}^{N-i}\binom{-k+\gamma-i}{l} z^{i+l} \\
& =(-1)^{i+1} \operatorname{Res}_{x}\left((1+x)^{\gamma-k-i} x^{i} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right)
\end{aligned}
$$

By this, $\varphi^{2}\left(z^{j}\right)=z^{j}$ for $j \in \mathbb{Z}$. Since

$$
\begin{aligned}
& \varphi\left(\operatorname{Res}_{x}\left((1+x)^{Q} x^{q+d} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right)\right. \\
& \quad=(-1)^{q+d+1} \operatorname{Res}_{x}\left((1+x)^{\gamma-Q-q-d} x^{q+d} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right) \\
& \quad=(-1)^{q+d+1} \sum_{m=0}^{-d}\binom{-d}{m} \operatorname{Res}_{x}\left((1+x)^{\gamma-Q-q} x^{q+d+m} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right)
\end{aligned}
$$

for $d \in \mathbb{Z}_{\leq 0}$, we have $\varphi_{N, \gamma}(O(N, Q, q ; z))=O(N, \gamma-Q-q, q ; z)$.
Throughout the rest of this section, $m=l_{1}+i_{1} / T, p=l_{2}+i_{2} / T, n=l_{3}+i_{3} / T \in$
$(1 / T) \mathbb{N}$ with $l_{1}, l_{2}, l_{3} \in \mathbb{N}$ and $0 \leq i_{1}, i_{2}, i_{3} \leq T-1$. We always denote m, p, n as above until further notice. For $i, j \in(1 / T) \mathbb{Z}, r(i, j)$ denotes the integer uniquely determined by the conditions

$$
\begin{equation*}
0 \leq r(i, j) \leq T-1 \text { and } i-j \equiv \frac{r(i, j)}{T} \quad(\bmod \mathbb{Z}) \tag{3.8}
\end{equation*}
$$

For $0 \leq s \leq T-1, s^{\vee}$ denotes the integer uniquely determined by the conditions

$$
\begin{equation*}
0 \leq s^{\vee} \leq T-1 \text { and } i_{1}-i_{3} \equiv s+s^{\vee} \quad(\bmod T) \tag{3.9}
\end{equation*}
$$

For $s=0, \ldots, T-1$ and $\alpha, \beta \in \mathbb{Z}$, define

$$
\begin{align*}
O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z)=O(& \alpha+\beta-1-\Delta, \alpha-1+l_{1}+\delta\left(s \leq i_{1}\right)+\frac{s}{T} \\
& \left.-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)-1 ; z\right) \tag{3.10}
\end{align*}
$$

and

$$
\begin{equation*}
O_{n, m}^{T, 1}(\alpha, \beta ; z)=\bigcap_{s=0}^{T-1} O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z), \tag{3.11}
\end{equation*}
$$

where Δ is the fixed non-positive integer as stated at the beginning of this section and $\delta(i \leq j)$ is defined in (2.1). For $\alpha, \beta \in \mathbb{Z}, j \in \mathbb{Z}_{\leq 0}$ and $s=0, \ldots, T-1, \Psi_{n, m}^{(T ; s)}(\alpha, \beta, j ; z)$ denotes the Laurent polynomial in $O_{n, m}^{(T ; s), 1}(\alpha, \bar{\beta} ; z)$ defined by (3.1), that is,

$$
\begin{align*}
& \Psi_{n, m}^{(T ; s)}(\alpha, \beta, j ; z) \\
& \quad=\operatorname{Res}_{x}\left((1+x)^{\alpha-1+l_{1}+\delta\left(s \leq i_{1}\right)+s / T} x^{-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)-1+j} \sum_{\substack{i \in \mathbb{Z} \\
i \leq \alpha+\beta-1-\Delta}} z^{i} x^{-i-1}\right) \\
& =\sum_{i=0}^{\alpha+\beta-\Delta+l_{1}+l_{3}+\delta\left(s \leq i_{1}\right)+\delta\left(T \leq s+i_{3}\right)-j}\binom{\alpha-1+l_{1}+\delta\left(s \leq i_{1}\right)+\frac{s}{T}}{i} \\
& \quad \times z^{i-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)-1+j} . \tag{3.12}
\end{align*}
$$

The disjoint union $\left\{\Psi_{n, m}^{(T ; s)}(\alpha, \beta, j ; z) \mid j=0,-1, \ldots\right\} \cup\left\{z^{i} \mid i \geq \alpha+\beta-\Delta\right\}$ spans $O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z)$.

Lemma 3.4. Let $m^{\prime}=l_{1}^{\prime}+i_{1}^{\prime} / T, n^{\prime}=l_{3}^{\prime}+i_{3}^{\prime} / T \in(1 / T) \mathbb{N}$ with $l_{1}^{\prime}, l_{3}^{\prime} \in \mathbb{N}$ and $0 \leq i_{1}^{\prime}, i_{3}^{\prime} \leq T-1$. If $m^{\prime} \leq m$ and $n^{\prime} \leq n$, then $O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z) \subset O_{n^{\prime}, m^{\prime}}^{(T ; s), 1}(\alpha, \beta ; z)$ for $\alpha, \beta \in \mathbb{Z}$ and $s=0, \ldots, T-1$. In particular, $O_{n, m}^{T, 1}(\alpha, \beta ; z) \subset O_{n^{\prime}, m^{\prime}}^{T, 1}(\alpha, \beta ; z)$.

Proof. Let $\rho_{1}=l_{1}+\delta\left(s \leq i_{1}\right)-\left(l_{1}^{\prime}+\delta\left(s \leq i_{1}^{\prime}\right)\right)$ and $\rho_{3}=l_{3}+\delta\left(T \leq s+i_{3}\right)-$ $\left(l_{3}^{\prime}+\delta\left(T \leq s+i_{3}^{\prime}\right)\right)$ for $s=0, \ldots, T-1$. It follows by $m^{\prime} \leq m$ and $n^{\prime} \leq n$ that ρ_{1} and ρ_{3} are non-negative integers. Since

$$
\Psi_{n, m}^{(T ; s)}(\alpha, \beta, j ; z)=\sum_{i=0}^{\rho_{1}}\binom{\rho_{1}}{i} \Psi_{n^{\prime}, m^{\prime}}^{(T ; s)}\left(\alpha, \beta, j-\rho_{1}-\rho_{3}+i ; z\right),
$$

the proof is complete.
A direct computation shows

$$
\begin{equation*}
\frac{-s-s^{\vee}+i_{1}-i_{3}}{T}+\delta\left(T \leq s^{\vee}+i_{3}\right)=\delta\left(s \leq i_{1}\right)-1 \tag{3.13}
\end{equation*}
$$

for $s=0, \ldots, T-1$ and hence

$$
\begin{equation*}
\delta\left(s^{\vee} \leq i_{1}\right)+\delta\left(T \leq s^{\vee}+i_{3}\right)=\delta\left(s \leq i_{1}\right)+\delta\left(T \leq s+i_{3}\right) \tag{3.14}
\end{equation*}
$$

For a non-positive integer j, it follows by (3.7), (3.13) and (3.14) that

$$
\begin{aligned}
& \varphi_{\alpha+\beta-1-\Delta, \alpha+\beta+m-n-2}\left(\Psi_{n, m}^{\left(T ; s^{\vee}\right)}(\beta, \alpha, j ; z)\right) \\
& =(-1)^{-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)+j} \\
& \times \operatorname{Res}_{x}\left((1+x)^{\alpha-1+l_{1}+\delta\left(s \leq i_{1}\right)+s / T-j} x^{-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)-1+j}\right. \\
& \left.\times \sum_{\substack{i \in \mathbb{Z} \\
i \leq \alpha+\beta-1-\Delta}} z^{i} x^{-i-1}\right) \\
& =(-1)^{-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)+j} \sum_{k=0}^{-j}\binom{-j}{k} \Psi_{n, m}^{(T ; s)}(\alpha, \beta, j+k ; z)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\varphi_{\alpha+\beta-1-\Delta, \alpha+\beta+m-n-2}\left(O_{n, m}^{\left(T ; ;^{\vee}\right), 1}(\beta, \alpha ; z)\right)=O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z) . \tag{3.15}
\end{equation*}
$$

Thus, $\varphi_{\alpha+\beta-1-\Delta, \alpha+\beta+m-n-2}$ induces an isomorphism

$$
\begin{equation*}
\mathbb{C}\left[z, z^{-1}\right] / O_{n, m}^{\left(T ; s^{\vee}\right), 1}(\beta, \alpha ; z) \rightarrow \mathbb{C}\left[z, z^{-1}\right] / O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z) \tag{3.16}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathbb{C}\left[z, z^{-1}\right] / \bigcap_{s=0}^{T-1} O_{n, m}^{(T ; s), 1}(\beta, \alpha ; z) \cong \mathbb{C}\left[z, z^{-1}\right] / \bigcap_{s=0}^{T-1} O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z) \tag{3.17}
\end{equation*}
$$

by Lemma 3.1.
For $r=0, \ldots, T-1$ and $i \in \mathbb{Z}_{\leq \alpha+\beta-1-\Delta}$, it follows by the argument in the proof of Lemma 3.2 that there exists a unique Laurent polynomial in $\mathbb{C}\left[z, z^{-1}\right]_{\alpha+\beta-\Delta-T\left(\alpha+\beta-\Delta+l_{1}+l_{3}+2\right), \alpha+\beta-1-\Delta}$, which we denote by $E_{n, m}^{(T ; r)}(\alpha, \beta, i ; z)$, such that

$$
\begin{align*}
& E_{n, m}^{(T ; r)}(\alpha, \beta, i ; z) \equiv \delta_{r, s} z^{i} \\
& \qquad \begin{array}{l}
\left(\bmod O\left(\alpha+\beta-1-\Delta, \alpha-1+l_{1}+\delta\left(s \leq i_{1}\right)+\frac{s}{T},-l_{1}-l_{3}-3 ; z\right)\right) \\
\\
\qquad=0, \ldots, T-1
\end{array}
\end{align*}
$$

We also define

$$
\begin{equation*}
E_{n, m}^{(T ; r)}(\alpha, \beta, i ; z)=0 \text { for } i \in \mathbb{Z}_{\geq \alpha+\beta-\Delta} \tag{3.19}
\end{equation*}
$$

for convenience. Since

$$
-l_{1}-l_{3}-3 \leq-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)-1,
$$

it follows by (3.2), (3.18) and (3.19) that

$$
\begin{equation*}
E_{n, m}^{(T ; r)}(\alpha, \beta, i ; z) \equiv \delta_{r, s} z^{i} \quad\left(\bmod O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z)\right) \tag{3.20}
\end{equation*}
$$

for $r, s=0, \ldots, T-1$ and $i \in \mathbb{Z}$. It follows from Lemma 3.2 that

$$
\begin{equation*}
\sum_{s=0}^{T-1} E_{n, m}^{(T ; s)}(\alpha, \beta, i ; z) \equiv z^{i} \quad\left(\bmod O_{n, m}^{T, 1}(\alpha, \beta ; z)\right) \tag{3.21}
\end{equation*}
$$

for $i \in \mathbb{Z}$. Define a Laurent polynomial $\Phi_{n, p, m}^{T}(\alpha, \beta ; z)$ by

$$
\begin{align*}
& \Phi_{n, p, m}^{T}(\alpha, \beta ; z) \\
& =\sum_{i=0}^{l_{2}}\binom{-l_{1}-l_{3}+l_{2}-\delta\left(r(p, n) \leq i_{1}\right)-\delta\left(T \leq r(p, n)+i_{3}\right)}{i} \\
& \quad \times \operatorname{Res}_{x}\left((1+x)^{\alpha-1+l_{1}+\delta\left(r(p, n) \leq i_{1}\right)+r(p, n) / T}\right. \\
& \left.\quad \times x^{-l_{1}-l_{3}+l_{2}-\delta\left(r(p, n) \leq i_{1}\right)-\delta\left(T \leq r(p, n)+i_{3}\right)-i} \sum_{j \in \mathbb{Z}} E_{n, m}^{(T ; r(p, n))}(\alpha, \beta, j ; z) x^{-j-1}\right) \\
& \in \mathbb{C}\left[z, z^{-1}\right]_{\alpha+\beta-\Delta-T\left(\alpha+\beta-\Delta+l_{1}+l_{3}+2\right), \alpha+\beta-1-\Delta,} \tag{3.22}
\end{align*}
$$

where $r(p, n)$ is defined in (3.8). This is used to define the product $*_{n, p, m}^{T}$ on a vertex
algebra in Section 4.
We denote $\operatorname{Span}_{\mathbb{C}}\left\{z^{i} \in \mathbb{C}\left[z, z^{-1}\right] \mid i \neq-1\right\}$ by $\mathbb{C}\left[z, z^{-1}\right]_{\neq-1}$. The following two results will be used to compute $\mathbf{1} *_{n, p, m}^{T} a$ for $a \in V$ in Section 4.

Lemma 3.5. Let $\alpha, r \in \mathbb{Z}$ with $0 \leq r \leq T-1$. Then

$$
\sum_{j \in \mathbb{Z}} E_{n, m}^{(T ; r)}(0, \alpha, j ; z) x^{-j-1} \equiv \delta_{r, 0} z^{-1} \quad\left(\bmod \left(\mathbb{C}\left[z, z^{-1}\right]_{\neq-1}\right)((x))\right)
$$

Proof. Since

$$
\Psi_{n, m}^{(T ; 0)}(0, \alpha, j ; z)=\sum_{i=0}^{\alpha+\Delta+l_{1}+l_{3}+1-j}\binom{l_{1}}{i} z^{i-l_{1}-l_{3}-2+j} \in \mathbb{C}\left[z, z^{-1}\right]_{\leq-2}
$$

for all $j \in \mathbb{Z}_{\leq 0}, O_{n, m}^{(T ; 0), 1}(0, \alpha ; z)$ is a subspace of $\mathbb{C}\left[z, z^{-1}\right]_{\neq-1}$. By (3.20), we have the desired result.

Lemma 3.6. For $\alpha \in \mathbb{Z}$, we have

$$
\Phi_{n, p, m}^{T}(0, \alpha ; z) \equiv \delta_{n, p} z^{-1} \quad\left(\bmod \mathbb{C}\left[z, z^{-1}\right]_{\neq-1}\right)
$$

Proof. If $n \not \equiv p(\bmod \mathbb{Z})$, then it follows by Lemma 3.5 that

$$
\Phi_{n, p, m}^{T}(0, \alpha ; z) \equiv 0 \quad\left(\bmod \mathbb{C}\left[z, z^{-1}\right]_{\neq-1}\right)
$$

Suppose $n \equiv p(\bmod \mathbb{Z})$. By Lemma 3.5 again, the same computation as in the proof of [4, Lemma 4.7] shows

$$
\Phi_{n, p, m}^{T}(0, \alpha ; z) \equiv \delta_{n, p} z^{-1} \quad\left(\bmod \mathbb{C}\left[z, z^{-1}\right]_{\neq-1}\right)
$$

The following result will be used in order to obtain Lemma 4.3, which induces the commutator formula in Lemma 5.9.

Lemma 3.7. For $\alpha, \beta \in \mathbb{Z}$, we have

$$
\begin{align*}
& \Phi_{n, p, m}^{T}(\alpha, \beta ; z)-\varphi_{\alpha+\beta-1-\Delta, \alpha+\beta+m-n-2}\left(\Phi_{n, m+n-p, m}^{T}(\beta, \alpha ; z)\right) \\
& \quad-\operatorname{Res}_{x}(1+x)^{\alpha-1+p-n} \sum_{j \in \mathbb{Z}} E_{n, m}^{(T ; r(p, n))}(\alpha, \beta, j ; z) x^{-j-1} \in O_{n, m}^{T, 1}(\alpha, \beta ; z) \tag{3.23}
\end{align*}
$$

Proof. The proof is similar to that of [5, Lemma 3.4]. We simply write $r=r(p, n)$ and $\varphi=\varphi_{\alpha+\beta-1-\Delta, \alpha+\beta+m-n-2}$. It follows by

$$
(m+n-p)-n \equiv \frac{i_{1}-i_{2}}{T} \equiv \frac{r^{\vee}}{T} \quad(\bmod \mathbb{Z})
$$

that $\Phi_{n, m+n-p, p}^{T}(\beta, \alpha ; z) \in \bigcap_{s \neq r^{\vee}} O_{n, m}^{(T ; s), 1}(\beta, \alpha ; z)$, where r^{\vee} is defined in (3.9). Since $\varphi\left(\Phi_{n, m+n-p, p}^{T}(\beta, \alpha ; z)\right) \in \bigcap_{s \neq r} O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z)$ by (3.15), we have

$$
\begin{aligned}
& \Phi_{n, p, m}^{T}(\alpha, \beta ; z)-\varphi\left(\Phi_{n, m+n-p, m}^{T}(\beta, \alpha ; z)\right) \\
& \quad-\operatorname{Res}_{x}(1+x)^{\alpha-1+p-n} \sum_{j \in \mathbb{Z}} E_{n, m}^{(T ; r)}(\alpha, \beta, j ; z) x^{-j-1} \in \bigcap_{s \neq r} O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z) .
\end{aligned}
$$

Thus, it is sufficient to show (3.23) modulo $O_{n, m}^{(T ; r), 1}(\alpha, \beta ; z)$ by Lemma 3.2. Define

$$
\varepsilon= \begin{cases}1 & \text { if } T \leq i_{1}+i_{3}-i_{2} \tag{3.24}\\ 0 & \text { if } 0 \leq i_{1}+i_{3}-i_{2}<T \\ -1 & \text { if } i_{1}+i_{3}-i_{2}<0\end{cases}
$$

It follows by the formula of ε in the proof of [$\mathbf{5}$, Lemma 3.4] and (3.14) that

$$
\begin{aligned}
& \Phi_{n, m+n-p, m}^{T}(\beta, \alpha ; z) \\
& =\sum_{i=0}^{l_{1}+l_{3}-l_{2}+\varepsilon}\binom{-l_{1}-l_{3}+\left(l_{1}+l_{3}-l_{2}+\varepsilon\right)-\delta\left(r^{\vee} \leq i_{1}\right)-\delta\left(T \leq r^{\vee}+i_{3}\right)}{i} \\
& \quad \times \operatorname{Res}_{x}(1+x)^{\beta-1+l_{1}+\delta\left(r^{\vee} \leq i_{1}\right)+r^{\vee} / T} \\
& \quad \times x^{-l_{1}-l_{3}+\left(l_{1}+l_{3}-l_{2}+\varepsilon\right)-\delta\left(r^{\vee} \leq i_{1}\right)-\delta\left(T \leq r^{\vee}+i_{3}\right)-i} \sum_{j \in \mathbb{Z}} E_{n, m}^{\left(T ; r^{\vee}\right)}(\beta, \alpha, j ; z) x^{-j-1} \\
& =\sum_{i=0}^{l_{1}+l_{3}-l_{2}+\varepsilon}\binom{-l_{2}-1}{i} \operatorname{Res}_{x}(1+x)^{\beta-1+l_{1}+\delta\left(r^{\vee} \leq i_{1}\right)+r^{\vee} / T} x^{-l_{2}-1-i} \\
& \quad \times \sum_{j \in \mathbb{Z}} E_{n, m}^{\left(T ; r^{\vee}\right)}(\beta, \alpha, j ; z) x^{-j-1} .
\end{aligned}
$$

Thus, it follows by (3.7) that

$$
\begin{align*}
& \varphi\left(\Phi_{n, m+n-p, m}^{T}(\beta, \alpha ; z)\right) \\
& \quad=\sum_{i=0}^{l_{1}+l_{3}-l_{2}+\varepsilon}\binom{-l_{2}-1}{i}(-1)^{-l_{2}-i} \operatorname{Res}_{x}(1+x)^{\alpha-1+p-n+i} x^{-l_{2}-1-i} \\
& \quad \times \sum_{j \in \mathbb{Z}} E_{n, m}^{(T ; r)}(\alpha, \beta, j ; z) x^{-j-1} \tag{3.25}
\end{align*}
$$

and therefore

$$
\begin{aligned}
& \varphi\left(\Phi_{n, m+n-p, m}^{T}(\beta, \alpha ; z)\right) \\
& \equiv \sum_{i=0}^{l_{1}+l_{3}-l_{2}+\varepsilon}\binom{-l_{2}-1}{i}(-1)^{-l_{2}-i} \operatorname{Res}_{x}(1+x)^{\alpha-1+p-n+i} x^{-l_{2}-1-i} \\
& \quad \times \sum_{\substack{j \in \mathbb{Z} \\
j \leq \alpha+\beta-1-\Delta}} z^{j} x^{-j-1} \quad\left(\bmod O_{n, m}^{(T ; r), 1}(\alpha, \beta ; z)\right) .
\end{aligned}
$$

The same argument as in the proof of [$\mathbf{5}$, Lemma 3.4] shows

$$
\begin{aligned}
& \Phi_{n, p, m}^{T}(\alpha, \beta ; z)-\varphi\left(\Phi_{n, m+n-p, m}^{T}(\beta, \alpha ; z)\right) \\
& \equiv \sum_{i=0}^{l_{2}}\binom{-l_{1}-l_{3}+l_{2}-\varepsilon-1}{i} \\
& \quad \times \operatorname{Res}_{x}\left((1+x)^{\alpha-1+l_{1}+\delta\left(r \leq i_{1}\right)+r / T} x^{-l_{1}-l_{3}+l_{2}-\varepsilon-1-i} \sum_{\substack{j \in \mathbb{Z} \\
j \leq \alpha+\beta-1-\Delta}} z^{j} x^{-j-1}\right) \\
& \quad-\sum_{i=0}^{l_{1}+l_{3}-l_{2}+\varepsilon}\binom{-l_{2}-1}{i}(-1)^{-l_{2}-i} \operatorname{Res}_{x}(1+x)^{\alpha-1+p-n+i} x^{-l_{2}-1-i} \sum_{\substack{j \in \mathbb{Z} \\
j \leq \alpha+\beta-1-\Delta}} z^{j} x^{-j-1} \\
& =\operatorname{Res}_{x}(1+x)^{\alpha-1+p-n} \sum_{\substack{j \in \mathbb{Z} \\
j \leq \alpha+\beta-1-\Delta}} z^{j} x^{-j-1} .
\end{aligned}
$$

The proof is complete.
Let $l \in(1 / T) \mathbb{N}$ with $l \leq n, m$. Then, it follows by Lemma 3.4 that

$$
E_{n, m}^{(T ; r)}(\alpha, \beta, i ; z) \equiv E_{n-l, m-l}^{(T ; r)}(\alpha, \beta, i ; z) \quad\left(\bmod O_{n-l, m-l}^{T, 1}(\alpha, \beta ; z)\right)
$$

for $\alpha, \beta, i \in \mathbb{Z}$. The same computation as in the proof of [$\mathbf{5}$, Proposition 4.3] shows the following lemma.

Lemma 3.8. Let $l \in(1 / T) \mathbb{N}$ with $l \leq n, m$. Then

$$
\Phi_{n, p, m}^{T}(\alpha, \beta ; z) \equiv \Phi_{n-l, p-l, m-l}^{T}(\alpha, \beta ; z) \quad\left(\bmod O_{n-l, m-l}^{T, 1}(\alpha, \beta ; z)\right)
$$

for $\alpha, \beta \in \mathbb{Z}$.
Let T^{\prime} be a positive multiple of T and $\alpha, \beta \in \mathbb{Z}$. Set $d=T^{\prime} / T$. We note that $m=l_{1}+d i_{1} / T^{\prime}, p=l_{2}+d i_{2} / T^{\prime}$ and $n=l_{3}+d i_{3} / T^{\prime}$. Thus it follows by (3.10) that

$$
\begin{equation*}
O_{n, m}^{\left(T^{\prime} ; d r\right), 1}(\alpha, \beta ; z)=O_{n, m}^{(T ; r), 1}(\alpha, \beta ; z) \tag{3.26}
\end{equation*}
$$

for $r=0, \ldots, T-1$. By this and (3.20), we have

$$
E_{n, m}^{\left(T^{\prime} ; d r\right)}(\alpha, \beta, i ; z) \equiv \delta_{r, s} z^{i} \quad\left(\bmod O_{n, m}^{(T ; s), 1}(\alpha, \beta, i ; z)\right)
$$

for $i \in \mathbb{Z}$ and $r, s=0, \ldots, T-1$. Therefore, Lemma 3.2 implies

$$
E_{n, m}^{\left(T^{\prime} ; d r\right)}(\alpha, \beta, i ; z) \equiv E_{n, m}^{(T ; r)}(\alpha, \beta, i ; z) \quad\left(\bmod O_{n, m}^{T, 1}(\alpha, \beta ; z)\right)
$$

for $i \in \mathbb{Z}$ and $r=0, \ldots, T-1$. By (3.22), we have the following result.
Lemma 3.9. Let T^{\prime} be a positive multiple of T and $\alpha, \beta \in \mathbb{Z}$. Then

$$
\Phi_{n, p, m}^{T^{\prime}}(\alpha, \beta ; z) \equiv \Phi_{n, p, m}^{T}(\alpha, \beta ; z) \quad\left(\bmod O_{n, m}^{T, 1}(\alpha, \beta ; z)\right)
$$

4. Associative algebras $A_{m}^{T}(V)$ and bimodules $A_{n, m}^{T}(V)$.

Throughout the rest of this paper, we always assume the following properties for a vertex algebra V : V has a grading $V=\bigoplus_{i=\Delta}^{\infty} V_{i}$ such that $\Delta \in \mathbb{Z}_{\leq 0}, \mathbf{1} \in V_{0}$ and for any homogeneous element $a \in V, a_{i} V_{j} \subset V_{\mathrm{wt} a-1-i+j}$, where $V_{i}=0$ for $i<\Delta$. Every vertex operator algebra satisfies these properties. Throughout this section, we fix $m=l_{1}+i_{1} / T$, $p=l_{2}+i_{2} / T, n=l_{3}+i_{3} / T \in(1 / T) \mathbb{N}$ with $l_{1}, l_{2}, l_{3} \in \mathbb{N}$ and $0 \leq i_{1}, i_{2}, i_{3} \leq T-1$.

In this section, we first define a product $*_{n, p, m}^{T}$ on V and a quotient space $A_{n, m}^{T}(V)$ of V. In the following, we shall use a similar argument as in [4, Section 3]. For $a \in V_{i}$, we denote i by wt a. Define

$$
\begin{equation*}
\hat{E}_{n, m}^{(T ; s)}(a, b, i)=\left.E_{n, m}^{(T ; s)}(\text { wt } a, \text { wt } b, i ; z)\right|_{z^{j}=a_{j} b} \in V \tag{4.1}
\end{equation*}
$$

for homogeneous elements a, b of V and $i \in \mathbb{Z}$, where $E_{n, m}^{(T ; s)}(\mathrm{wt} a, \mathrm{wt} b, i ; z)$ is defined in (3.18), and extend $\hat{E}_{n, m}^{(T ; s)}(a, b, i)$ for arbitrary $a, b \in V$ by linearity.

Let $O_{n, m}^{T, 0}(V)$ be the subspace of V spanned by

$$
\begin{equation*}
\left\{a_{-2} \mathbf{1}+(\operatorname{wt} a+m-n) a \in V \mid \text { homogeneous } a \in V\right\} \tag{4.2}
\end{equation*}
$$

and $O_{n, m}^{T, 1}(V)$ the subspace of V spanned by

$$
\left\{\begin{array}{l|l}
\left.P(z)\right|_{z^{j}=a_{j} b} \in V & \begin{array}{l}
\text { homogeneous } a, b \in V \text { and } \\
P(z) \in O_{n, m}^{T, 1}(\text { wt } a, \text { wt } b ; z)
\end{array} \tag{4.3}
\end{array}\right\} .
$$

A similar argument as in the proof of [17, Lemma 2.1.3] shows the following lemma as stated in the proof of [4, Lemma 2.3].

Lemma 4.1. For homogeneous $a, b \in V$, we have

$$
\begin{aligned}
& \operatorname{Res}_{x}(1+x)^{i} x^{j} Y(b, x) a \\
& \quad \equiv(-1)^{j+1} \operatorname{Res}_{x}(1+x)^{\mathrm{wt} a+\mathrm{wt} b+m-n-2-i-j} x^{j} Y(a, x) b \quad\left(\bmod O_{n, m}^{T, 0}(V)\right)
\end{aligned}
$$

for $i \in \mathbb{Q}, j \in \mathbb{Z}$ and homogeneous $a, b \in V$.
By (3.21), we have

$$
\begin{equation*}
\sum_{s=0}^{T-1} \hat{E}_{n, m}^{(T ; s)}(a, b, i) \equiv a_{i} b \quad\left(\bmod O_{n, m}^{T, 1}(V)\right) \tag{4.4}
\end{equation*}
$$

for $i \in \mathbb{Z}$. Define

$$
\begin{equation*}
a *_{n, p, m}^{T} b=\left.\Phi_{n, p, m}^{T}(\mathrm{wt} a, \mathrm{wt} b ; z)\right|_{z^{j}=a_{j} b} \in V \tag{4.5}
\end{equation*}
$$

for homogeneous $a, b \in V$, where $\Phi_{n, p, m}^{T}$ is defined in (3.22), and extend $a *_{n, p, m}^{T} b$ for arbitrary $a, b \in V$ by linearity. By $Y(\mathbf{1}, x)=\mathrm{id}_{V}$ and Lemma 3.6, we have

$$
\begin{equation*}
\mathbf{1} *_{n, p, m}^{T} a=\delta_{n, p} a \tag{4.6}
\end{equation*}
$$

for $a \in V$.
Definition 4.2. Let $O_{n, m}^{T, 2}(V)$ be the subspace of V spanned by

$$
u *_{n, p_{3}, m}^{T}\left(\left(a *_{p_{3}, p_{2}, p_{1}}^{T} b\right) *_{p_{3}, p_{1}, m}^{T} c-a *_{p_{3}, p_{2}, m}^{T}\left(b *_{p_{2}, p_{1}, m}^{T} c\right)\right)
$$

for all $a, b, c, u \in V$ and all $p_{1}, p_{2}, p_{3} \in(1 / T) \mathbb{N}$. Define

$$
O_{n, m}^{T, 3}(V)=\sum_{p_{1}, p_{2} \in(1 / T) \mathbb{N}} V *_{n, p_{2}, p_{1}}^{T}\left(O_{p_{2}, p_{1}}^{T, 0}(V)+O_{p_{2}, p_{1}}^{T, 1}(V)\right) *_{n, p_{1}, m}^{T} V
$$

and

$$
O_{n, m}^{T}(V)=O_{n, m}^{T, 0}(V)+O_{n, m}^{T, 1}(V)+O_{n, m}^{T, 2}(V)+O_{n, m}^{T, 3}(V)
$$

By (4.6), we have

$$
\left(a *_{n, p_{2}, p_{1}}^{T} b\right) *_{n, p_{1}, m}^{T} c-a *_{n, p_{2}, m}^{T}\left(b *_{p_{2}, p_{1}, m}^{T} c\right) \in O_{n, m}^{T, 2}(V)
$$

for $a, b, c \in V$ and $p_{1}, p_{2} \in(1 / T) \mathbb{N}$.
Lemma 4.3. For $a, b \in V$, we have

$$
\begin{aligned}
& a *_{n, p, m}^{T} b-b *_{n, m+n-p, m}^{T} a-\operatorname{Res}_{x}(1+x)^{\mathrm{wt} a-1+p-n} \sum_{j \in \mathbb{Z}} \hat{E}_{n, m}^{(T ; r(p, n))}(a, b, j) x^{-j-1} \\
& \quad \in O_{n, m}^{T, 0}(V)+O_{n, m}^{T, 1}(V)
\end{aligned}
$$

where $r(p, n)$ is defined in (3.8).
Proof. We may assume a and b to be homogeneous elements of V. We simply write $r=r(p, n)$. Let ε be the integer defined in (3.24). By Lemma 4.1 and (3.25), we have

$$
\begin{aligned}
& b *_{n, m+p-n, m}^{T} a \\
& \equiv \sum_{i=0}^{l_{1}+l_{3}-l_{2}+\varepsilon}\binom{-l_{2}-1}{i}(-1)^{-l_{2}-i} \operatorname{Res}_{x}(1+x)^{\mathrm{wt} a-1+p-n+i} x^{-l_{2}-1-i} \\
& \quad \times \sum_{j \in \mathbb{Z}} \hat{E}_{n, m}^{(T ; r)}(a, b, j) x^{-j-1} \quad\left(\bmod O_{n, m}^{T, 0}(V)+O_{n, m}^{T, 1}(V)\right) \\
& =\sum_{i=0}^{l_{1}+l_{3}-l_{2}+\varepsilon}\binom{-l_{2}-1}{i}(-1)^{-l_{2}-i} \operatorname{Res}_{x}(1+x)^{\mathrm{wt} a-1+p-n+i} x^{-l_{2}-1-i} \\
& \quad \times\left.\sum_{j \in \mathbb{Z}} E_{n, m}^{(T ; r)}(\mathrm{wt} a, \mathrm{wt} b, j ; z)\right|_{z^{k}=a_{k} b} x^{-j-1} \\
& =\left.\varphi_{\mathrm{wt} a+\mathrm{wt} b-1-\Delta, \mathrm{wt} a+\mathrm{wt} b+m-n-2}\left(\Phi_{n, m+n-p, m}^{T}(\mathrm{wt} b, \mathrm{wt} a ; z)\right)\right|_{z^{k}=a_{k} b},
\end{aligned}
$$

where $\varphi_{\mathrm{wt}} a+\mathrm{wt} b-1-\Delta, \mathrm{wt} a+\mathrm{wt} b+m-n-2$ is defined by (3.6). Thus, the assertion follows from Lemma 3.7.

By (4.6) and Lemmas 3.5 and 4.3, we have

$$
\begin{equation*}
a *_{n, m, m}^{T} \mathbf{1} \equiv a \quad\left(\bmod O_{n, m}^{T, 0}(V)+O_{n, m}^{T, 1}(V)\right) \tag{4.7}
\end{equation*}
$$

for $a \in V$.
The same argument as in the proof of [5, Lemma 3.8] shows the following lemma.
Lemma 4.4. For $m, p, n \in(1 / T) \mathbb{Z}$, we have $V *_{n, p, m}^{T} O_{p, m}^{T}(V) \subset O_{n, m}^{T}(V)$ and $O_{n, p}^{T}(V) *_{n, p, m}^{T} V \subset O_{n, m}^{T}(V)$.

We define

$$
\begin{equation*}
A_{n, m}^{T}(V)=V / O_{n, m}^{T}(V) \tag{4.8}
\end{equation*}
$$

If $m=n$, we simply write $A_{m}^{T}(V)=A_{m, m}^{T}(V)$. By Definition 4.2, (4.6), (4.7) and Lemma 4.4, we have the following result.

Theorem 4.5. Let $m, n \in(1 / T) \mathbb{N}$. Then, $\left(A_{m}^{T}(V), *_{m, m, m}^{T}\right)$ is an associative \mathbb{C} algebra and $A_{n, m}^{T}(V)$ is an $A_{n}^{T}(V)-A_{m}^{T}(V)$-bimodule, where the left action of $A_{n}^{T}(V)$ is given by $*_{n, n, m}^{T}$ and the right action of $A_{m}^{T}(V)$ is given by $*_{n, m, m}^{T}$.

Lemmas 3.4 and 3.8 imply the following result.

Proposition 4.6. Let $l, m, n \in(1 / T) \mathbb{N}$ with $l \leq n, m$. Then $O_{n, m}^{T, 1}(V)$ is a subspace of $O_{n-l, m-l}^{T, 1}(V)$. Moreover, the identity map on V induces a surjective algebra homomorphism $A_{m}^{T}(V) \rightarrow A_{m-l}^{T}(V)$ and a surjective $A_{n}^{T}(V)-A_{m}^{T}(V)$-bimodule homomorphism $A_{n, m}^{T}(V) \rightarrow A_{n-l, m-l}^{T}(V)$.

Lemma 3.9 and (3.26) imply the following result.
Proposition 4.7. Let $m, n \in(1 / T) \mathbb{N}$ and T^{\prime} a positive multiple of T. Then $O_{n, m}^{T, 1}(V)$ is a subspace of $O_{n, m}^{T^{\prime}, 1}(V)$. Moreover, the identity map on V induces a surjective algebra homomorphism $A_{m}^{T^{\prime}}(V) \rightarrow A_{m}^{T}(V)$ and a surjective $A_{n}^{T^{\prime}}(V)-A_{m}^{T^{\prime}}(V)$-bimodule homomorphism $A_{n, m}^{T^{\prime}}(V) \rightarrow A_{n, m}^{T}(V)$.

Remark 4.8. Suppose V is a vertex operator algebra. Let g be an automorphism of V of finite order t. In [5], a product $*_{g, m, p}^{n}$ on V and a quotient space $A_{g, n, m}(V)=$ $V / O_{g, n, m}(V)$ of V are constructed for each $n, p, m \in(1 / t) \mathbb{N}$. If $g=\mathrm{id}_{V}$, then $*_{g, m, p}^{n}=$ $*_{m, p}^{n}$ and $A_{g, n, m}(V)=A_{n, m}(V)$, where $*_{m, p}^{n}$ is a product on V and $A_{n, m}(V)$ is a quotient space of V constructed in [4].

We shall discuss a relation between $A_{g, n, m}(V)$ and $A_{n, m}^{T}(V)$. Suppose $T=1$. Then $*_{n, p, m}^{1}=*_{m, p}^{n}$ by the definition. Moreover, $O_{n, m}^{1,0}(V)+O_{n, m}^{1,1}(V)=O_{n, m}^{\prime}(V)$ by (3.10) and (3.11), where $O_{n, m}^{\prime}(V)$ is the subspace of V defined on p. 801 in [4]. Thus, $O_{n, m}^{1}(V)=$ $O_{n, m}(V)$ and $A_{n, m}^{1}(V)=A_{n, m}(V)$.

We shall use the notation in Remark 2.7 and [5]. For homogeneous $a, b \in V$ and $P(z) \in O_{n, m}^{t, 1}(\mathrm{wt} a, \mathrm{wt} b ; z)$, the definition of $O_{n, m}^{t, 1}(\mathrm{wt} a, \mathrm{wt} b ; z)$ implies

$$
\left.P(z)\right|_{z^{j}=a_{j} b}=\left.\sum_{r=0}^{t-1} P(z)\right|_{z^{j}=a_{j}^{(g, r)} b} \in O_{g, n, m}^{\prime}(V)
$$

where $O_{g, n, m}^{\prime}(V)$ is the subspace of V defined on p. 4240 in [5]. Thus, $O_{n, m}^{t, 1}(V)$ is a subspace of $O_{g, n, m}^{\prime}(V)$. We simply write $r=r(p, n)$, which is defined in (3.8). For $s=0, \ldots, t-1$, we have
$\hat{E}_{n, m}^{(t ; r)}\left(a^{(g, s)}, b, i\right)-\delta_{r, s} a_{i}^{(g, s)} b=\left.\left(E_{n, m}^{(t ; r)}\left(\operatorname{wt} a^{(g, s)}\right.\right.$, wt $\left.\left.b, i ; z\right)-\delta_{r, s} z^{i}\right)\right|_{z^{j}=a_{j}^{(g, s)} b} \in O_{g, n, m}^{\prime}(V)$
since $E_{n, m}^{(t ; r)}\left(\operatorname{wt}^{(g, s)}, \operatorname{wt} b, i ; z\right)-\delta_{r, s} z^{i} \in O_{n, m}^{(t ; s), 1}\left(\operatorname{wt} a^{(g, s)}\right.$, wt $\left.b ; z\right)$ by (3.20). Therefore, by (3.22) and (4.5) we have

$$
\begin{aligned}
a *_{n, p, m}^{t} b & =\sum_{s \neq r} a^{(g, s)} *_{n, p, m}^{t} b+a^{(g, r)} *_{n, p, m}^{t} \\
& \equiv a^{(g, r)} *_{g, m, p}^{n} b \quad\left(\bmod O_{g, n, m}^{\prime}(V)\right) .
\end{aligned}
$$

We conclude that $O_{n, m}^{t, 1}(V) \subset O_{g, n, m}(V)$ and $A_{g, n, m}(V)$ is a quotient space of $A_{n, m}^{t}(V)$.
For an automorphism group G of V of finite order, the same argument as above shows $A_{G, n}(V)$ in $[\mathbf{1 6}]$ is a quotient space of $A_{n}^{|G|}(V)$.
5. $(1 / T) \mathbb{N}$-graded (V, T)-modules and $A_{n, m}^{T}(V)$.

Throughout this section, we always assume the properties mentioned at the beginning of Section 4 for a vertex algebra V as stated there. In this section, for $m \in(1 / T) \mathbb{N}$ we describe a relation between the $A_{m}^{T}(V)$-modules and the $(1 / T) \mathbb{N}$-graded (V, T)-modules defined below.

Definition 5.1. $\quad A(1 / T) \mathbb{N}$-graded (V, T)-module M is a (V, T)-module with a $(1 / T) \mathbb{N}$-grading $M=\bigoplus_{n \in(1 / T) \mathbb{N}} M(n)$ such that

$$
a_{i} M(n) \subset M(n+\mathrm{wt} a-i-1)
$$

for homogeneous $a \in V$ and $i, n \in(1 / T) \mathbb{N}$, where $M(n)=0$ for $n<0$.
For a $(1 / T) \mathbb{N}$-graded (V, T)-module M, a (V, T)-submodule N of M is called $(1 / T) \mathbb{N}$ $\operatorname{graded}(V, T)$-submodule of M if N is a $(1 / T) \mathbb{N}$-graded (V, T)-module such that every homogeneous subspace of N is contained in some homogeneous subspace of M. A non-zero $(1 / T) \mathbb{N}$-graded (V, T)-module M is called simple if there is no $(1 / T) \mathbb{N}$-graded submodule of M except 0 and M itself.

In the following, we shall use a similar argument as in [4, Section 4]. Throughout this section, $m=l_{1}+i_{1} / T, n=l_{3}+i_{3} / T \in(1 / T) \mathbb{N}$ with $l_{1}, l_{2} \in \mathbb{N}$ and $0 \leq i_{1}, i_{3} \leq T-1$. Until Proposition 5.7, $M=\bigoplus_{i \in(1 / T) \mathbb{N}} M(i)$ is a $(1 / T) \mathbb{N}$-graded (V, T)-module. Without loss of generality, we can shift the grading of a $(1 / T) \mathbb{N}$-graded (V, T)-module M so that $M(0) \neq 0$ if $M \neq 0$.

Define a linear map $o_{n, m}: V \rightarrow \operatorname{Hom}_{\mathbb{C}}(M(m), M(n))$ by

$$
\begin{equation*}
o_{n, m}(a)=a_{\mathrm{wt} a+m-n-1} \tag{5.1}
\end{equation*}
$$

for homogeneous $a \in V$ and extend $o_{n, m}(a)$ for an arbitrary $a \in V$ by linearity. If $m=n$, we simply write $o=o_{m, m}$. Define a linear map $Z_{M, n, m}^{(s)}(a, b ;-): \mathbb{C}\left[z, z^{-1}\right] \rightarrow$ $\operatorname{Hom}_{\mathbb{C}}(M(m), M)$ by

$$
\begin{equation*}
Z_{M, n, m}^{(s)}\left(a, b ; z^{i}\right)=Y_{M}^{(s)}(a, b ; \text { wt } a+\mathrm{wt} b+m-n-2-i, i) \tag{5.2}
\end{equation*}
$$

for $s=0, \ldots, T-1$ and homogeneous $a, b \in V$ and extend $Z_{M, n, m}^{(s)}(a, b ;-)$ for arbitrary elements $a, b \in V$ by linearity. Lemma 2.8 implies that the image of $Z_{M, n, m}^{(s)}(a, b ; f(z))$: $M(m) \rightarrow M$ is contained in $M(n)$ for $f(z) \in \mathbb{C}\left[z, z^{-1}\right]$. That is, $Z_{M, n, m}^{(s)}(a, b ;-)$: $\mathbb{C}\left[z, z^{-1}\right] \rightarrow \operatorname{Hom}_{\mathbb{C}}(M(m), M(n))$.

Lemma 5.2. For $s=0, \ldots, T-1$ and homogeneous $a, b \in V, Z_{M, n, m}^{(s)}(a, b ;-)=0$ on $O_{n, m}^{(T ; s), 1}($ wt a, wt $b ; z)$.

Proof. It is sufficient to show that $Z_{M, n, m}^{(s)}\left(a, b ; \Psi_{n, m}^{(T ; s)}(\operatorname{wt} a, \operatorname{wt} b, d ; z)\right)=0$ for all $d \in \mathbb{Z}_{\leq 0}$. Let $w \in M(m)$. Since $Y_{M}\left(Y\left(a, x_{0}\right) b, x_{2}\right) w \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right) \geq-\mathrm{wt} a-\mathrm{wt} b+\Delta$, it
follows by Remark 2.6 that

$$
\begin{equation*}
Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)(w) \in M\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right) \geq-\mathrm{wt} a-\mathrm{wt} b+\Delta \tag{5.3}
\end{equation*}
$$

Let

$$
\begin{aligned}
& j=\mathrm{wt} a-1+l_{1}+\delta\left(s \leq i_{1}\right)+\frac{s}{T} \\
& k=\mathrm{wt} b-1+l_{1}+\delta\left(s^{\vee} \leq i_{1}\right)+\frac{s^{\vee}}{T}-d \text { and } \\
& l=-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)-1+d
\end{aligned}
$$

where s^{\vee} is defined in (3.9). Since $a_{j+i}=b_{k+i}=0$ on $M(m)$ for all $i \in \mathbb{N}$, it follows by (2.16), (3.13) and (5.3) that

$$
\begin{aligned}
& Z_{M, n, m}^{(s)}\left(a, b ; \Psi_{n, m}^{(T ; s)}(\mathrm{wt} a, \mathrm{wt} b, d ; z)\right)(w) \\
& \quad=\sum_{i=0}^{\mathrm{wt} a+\mathrm{wt} b-1-\Delta-l}\binom{j}{i} Y_{M}^{(s)}(a, b ; j+k-i, l+i)(w) \\
& \quad=\sum_{i=0}^{\infty}\binom{j}{i} Y_{M}^{(s)}(a, b ; j+k-i, l+i)(w) \\
& \quad=0
\end{aligned}
$$

Lemma 5.3. For $u \in O_{n, m}^{T, 0}(V)+O_{n, m}^{T, 1}(V), o_{n, m}(u)=0$ on $M(m)$.
Proof. Let a, b be homogeneous elements of V. It follows by Lemma 2.9 that $o_{n, m}\left(a_{-2} \mathbf{1}+(\mathrm{wt} a+m-n) a\right)=0$ on $M(m)$. Let $P(z)=\sum_{i \in \mathbb{Z}} \lambda_{i} z^{i} \in O_{n, m}^{T, 1}($ wt a, wt $b ; z)$. It follows by Lemma 5.2 that on $M(m)$

$$
\begin{aligned}
o_{n, m}\left(\sum_{i \in \mathbb{Z}} \lambda_{i} a_{i} b\right) & =\sum_{i \in \mathbb{Z}} \lambda_{i} o_{n, m}\left(a_{i} b\right) \\
& =\sum_{s=0}^{T-1} \sum_{i \in \mathbb{Z}} \lambda_{i} Y_{M}^{(s)}(a, b ; \text { wt } a+\mathrm{wt} b+m-n-2-i, i) \\
& =\sum_{s=0}^{T-1} \sum_{i \in \mathbb{Z}} \lambda_{i} Z_{M, n, m}^{(s)}\left(a, b ; z^{i}\right) \\
& =\sum_{s=0}^{T-1} Z_{M, n, m}^{(s)}(a, b ; P(z)) \\
& =0 .
\end{aligned}
$$

Lemma 5.4. For $a, b \in V$ and $w \in M(m)$

$$
o_{n, m}\left(a *_{n, p, m}^{T} b\right) w=o_{n, p}(a) o_{p, m}(b) w
$$

Proof. We may assume a and b to be homogeneous elements of V. We simply write $r=r(p, n)$, which is defined in (3.8). By (3.20) and Lemma 5.2, we have

$$
\begin{align*}
& Z_{M, n, m}^{(r)}\left(a, b ; E_{n, m}^{(T ; r)}(\mathrm{wt} a, \mathrm{wt} b, j ; z)\right)(w) \\
& \quad=Z_{M, n, m}^{(r)}\left(a, b ; z^{j}\right)(w) \\
& \quad=Y_{M}^{(r)}(a, b ; \mathrm{wt} a+\mathrm{wt} b+m-n-2-j, j) \tag{5.4}
\end{align*}
$$

for $j \in \mathbb{Z}$. We write $\Phi_{n, p, m}^{T}($ wt a, wt $b ; z)=\sum_{i \in \mathbb{Z}} \lambda_{i} z^{i}, \lambda_{i} \in \mathbb{C}$. By (5.4), we have

$$
\begin{align*}
& o_{n, m}\left(a *_{n, p, m}^{T} b\right) w=\sum_{i \in \mathbb{Z}} \lambda_{i} o_{n, m}\left(a_{i} b\right) w \\
& =\sum_{s=0}^{T-1} \sum_{i \in \mathbb{Z}} \lambda_{i} Y_{M}^{(s)}(a, b ; \mathrm{wt} a+\mathrm{wt} b+m-n-2-i, i)(w) \\
& =\sum_{s=0}^{T-1} Z_{M, n, m}^{(s)}\left(a, b ; \Phi_{n, p, m}^{T}(\mathrm{wt} a, \mathrm{wt} b ; z)\right)(w) \\
& =Z_{M, n, m}^{(r)}\left(a, b ; \Phi_{n, p, m}^{T}(\operatorname{wt} a, \mathrm{wt} b ; z)\right)(w) \\
& =\sum_{i=0}^{l_{2}}\left(\begin{array}{c}
\left.-l_{1}-l_{3}+l_{2}-\delta\left(r \leq i_{1}\right)-\delta\left(T \leq r+i_{3}\right)\right) \\
i
\end{array} \quad \times \operatorname{Res}_{x}\left((1+x)^{\mathrm{wt} a-1+l_{1}+\delta\left(r \leq i_{1}\right)+r / T} x^{-l_{1}-l_{3}+l_{2}-\delta\left(r \leq i_{1}\right)-\delta\left(T \leq r+i_{3}\right)-i}\right.\right. \\
& \left.\quad \times \sum_{j \in \mathbb{Z}} Z_{M, n, m}^{(r)}\left(a, b ; E_{n, m}^{(T ; r)}(\mathrm{wt} a, \mathrm{wt} b, j ; z)\right)(w) x^{-j-1}\right) \\
& = \\
& \quad \sum_{i=0}^{l_{2}}\left(-l_{1}-l_{3}+l_{2}-\delta\left(r \leq i_{1}\right)-\delta\left(T \leq r+i_{3}\right)\right) \\
& \quad \times \operatorname{Res}_{x}\left((1+x)^{\mathrm{wt} a-1+l_{1}+\delta\left(r \leq i_{1}\right)+r / T} x^{-l_{1}-l_{3}+l_{2}-\delta\left(r \leq i_{1}\right)-\delta\left(T \leq r+i_{3}\right)-i}\right. \\
& \left.\quad \times \sum_{j \in \mathbb{Z}} Y_{M}^{(r)}(a, b ; \mathrm{wt} a+\mathrm{wt} b+m-n-2-j, j)(w) x^{-j-1}\right) . \tag{5.5}
\end{align*}
$$

Let $\mu=-l_{1}-l_{3}+l_{2}-\delta\left(r \leq i_{1}\right)-\delta\left(T \leq r+i_{3}\right)$ and $i \in \mathbb{Z}$. Then

$$
\begin{aligned}
& \operatorname{Res}_{x}\left((1+x)^{\mathrm{wt} a-1+l_{1}+\delta\left(r \leq i_{1}\right)+r / T} x^{\mu-i}\right. \\
&\left.\times \sum_{j \in \mathbb{Z}} Y_{M}^{(r)}(a, b ; \mathrm{wt} a+\mathrm{wt} b+m-n-2-j, j)(w) x^{-j-1}\right) \\
&= \sum_{k=0}^{\infty}\binom{\mathrm{wt} a-1+l_{1}+\delta\left(r \leq i_{1}\right)+r / T}{k} \\
& \times Y_{M}^{(r)}(a, b ; \mathrm{wt} a+\mathrm{wt} b+m-n-2-\mu+i-k, \mu-i+k)(w) \\
&=\sum_{k=0}^{\infty}\binom{\mathrm{wt} a-1+l_{1}+\delta\left(r \leq i_{1}\right)+r / T}{k} \\
& \quad \times \operatorname{Res}_{x_{2}} \operatorname{Res}_{x_{1}-x_{2}}\left(x_{2}^{\mathrm{wt} a+\mathrm{wt} b+m-n-2-\mu+i-k}\left(x_{1}-x_{2}\right)^{\mu-i+k} Y_{M}^{(r)}\left(a, b \mid x_{2}, x_{1}-x_{2}\right)(w)\right) \\
&= \operatorname{Res}_{x_{2}} \operatorname{Res}_{x_{1}-x_{2}}\left(x_{1}^{\mathrm{wtt} a-1+l_{1}+\delta\left(r \leq i_{1}\right)+r / T} x_{2}^{\mathrm{wt} b-1+l_{1}+\delta\left(r^{\vee} \leq i_{1}\right)+r^{\vee} / T-l_{2}+i-1}\right. \\
&\left.\quad \times\left(x_{1}-x_{2}\right)^{-l_{1}-l_{3}+l_{2}-\delta\left(r \leq i_{1}\right)-\delta\left(T \leq r+i_{3}\right)-i} Y_{M}^{(r)}\left(a, b \mid x_{2}, x_{1}-x_{2}\right)(w)\right),
\end{aligned}
$$

where we used (3.13) in the last step and r^{\vee} is defined in (3.9). Thus, (5.5) becomes

$$
\begin{align*}
& o_{n, m}\left(a *_{n, p, m}^{T} b\right) w \\
& \left.\qquad \begin{array}{rl}
l_{2} \\
=\sum_{i=0}\left(-l_{1}-l_{3}+l_{2}\right. & -\delta\left(r \leq i_{1}\right)-\delta\left(T \leq r+i_{3}\right) \\
i
\end{array}\right) \\
& \times \operatorname{Res}_{x_{2}} \operatorname{Res}_{x_{1}-x_{2}} \\
& \left(x_{1}^{\mathrm{wt} a-1+l_{1}+\delta\left(r \leq i_{1}\right)+r / T} x_{2}^{\mathrm{wt} b-1+l_{1}+\delta\left(r^{\vee} \leq i_{1}\right)+r^{\vee} / T-l_{2}+i-1}\right. \\
& \tag{5.6}\\
& \times\left(x_{1}-x_{2}\right)^{-l_{1}-l_{3}+l_{2}-\delta\left(r \leq i_{1}\right)-\delta\left(T \leq r+i_{3}\right)-i} \\
& \\
& \left.\times Y_{M}^{(r)}\left(a, b \mid x_{2}, x_{1}-x_{2}\right)(w)\right) .
\end{align*}
$$

The rest of the proof is the same as that of [$\mathbf{5}$, Lemma 5.1] by (2.17).
The following result is a direct consequence of Lemma 5.4.
Corollary 5.5. If M is generated by one homogeneous element w as a (V, T) module, then $M=\left\{a_{i} w \mid a \in V, i \in(1 / T) \mathbb{Z}\right\}$.

We define an $A_{n}^{T}(V)-A_{m}^{T}(V)$-bimodule structure on $\operatorname{Hom}_{\mathbb{C}}(M(m), M(n))$ by

$$
(a f b)(w)=a(f(b w))
$$

for $f \in \operatorname{Hom}_{\mathbb{C}}(M(m), M(n)), a \in A_{n}^{T}(V), b \in A_{m}^{T}(V)$ and $w \in M(m)$. For a (V, T) module W and $m \in(1 / T) \mathbb{N}$, define

$$
\Omega_{m}(W)=\left\{w \in W \mid a_{\mathrm{wt} a-1+k} w=0 \text { for all homogeneous } a \in V \text { and } k>m\right\}
$$

Clearly, $\bigoplus_{i=0}^{m} M(i) \subset \Omega_{m}(M)$.
Lemmas 5.3 and 5.4 imply the following results.
Lemma 5.6. For $u \in O_{n, m}^{T}(V), o_{n, m}(u)=0$ on $M(m)$. The linear map $o_{n, m}: V \rightarrow$ $\operatorname{Hom}_{\mathbb{C}}(M(m), M(n))$ induces an $A_{n}^{T}(V)-A_{m}^{T}(V)$-bimodule homomorphism from $A_{n, m}^{T}(V)$ to $\operatorname{Hom}_{\mathbb{C}}(M(m), M(n))$.

Proposition 5.7. Let W be a (V, T)-module. Then o : $V \rightarrow \operatorname{End}_{\mathbb{C}}\left(\Omega_{m}(W)\right)$ induces a representation of $A_{m}^{T}(V)$. In particular, $M(m)$ is a left $A_{m}^{T}(V)$-module.

For a left $A_{m}^{T}(V)$-module U, set

$$
M(U)=\bigoplus_{n \in(1 / T) \mathbb{N}} A_{n, m}^{T}(V) \bigotimes_{A_{m}^{T}(V)} U
$$

and $M(U)(n)=A_{n, m}^{T}(V) \bigotimes_{A_{m}^{T}(V)} U$ for every $n \in(1 / T) \mathbb{N}$. For homogeneous $a \in V$ and $i \in(1 / T) \mathbb{Z}$, define an operator a_{i} from $M(U)(n)$ to $M(U)(n+\mathrm{wt} a-i-1)$ by

$$
a_{i}(b \otimes u)= \begin{cases}\left(a *_{n+\mathrm{wt} a-i-1, n, m}^{T} b\right) \otimes u & \text { if } n+\mathrm{wt} a-i-1 \geq 0 \tag{5.7}\\ 0 & \text { if } n+\mathrm{wt} a-i-1<0\end{cases}
$$

for $b \otimes u \in M(U)(n)$ with $b \in V$ and $u \in U$. This operation is well-defined (cf. [4, p. 815]). We extend a_{i} for an arbitrary $a \in V$ by linearity and set

$$
Y_{M(U)}(a, x)=\sum_{i \in(1 / T) \mathbb{Z}} a_{i} x^{-i-1}: M(U) \rightarrow M(U)\left(\left(x^{1 / T}\right)\right) .
$$

We shall show $\left(M(U), Y_{M(U)}\right)$ is a $(1 / T) \mathbb{N}$-graded (V, T)-module. For homogeneous $a, b \in V, s \in \mathbb{Z}$ with $0 \leq s \leq T-1, i \in(1 / T) \mathbb{Z}$ and $j \in \mathbb{Z}$, define a linear map $Y_{M(U)}^{(s)}(a, b ; i, j): M(U)(n) \rightarrow M(U)(\operatorname{wt} a+\mathrm{wt} b-i-j-2+n)$ by

$$
\begin{align*}
& Y_{M(U)}^{(s)}(a, b ; i, j)(c \otimes u) \\
& =\left(\hat{E}_{\mathrm{wt} t+\mathrm{wt} b-i-j-2+n, n}^{(T ; s)}(a, b, j) *_{\mathrm{wt} a+\mathrm{wt} b-i-j-2+n, n, m}^{T} c\right) \otimes u \tag{5.8}
\end{align*}
$$

for $c \otimes u \in M(U)(n)$ with $c \in V$ and $u \in U$. This operation is also well-defined. We extend $Y_{M(U)}^{(s)}(a, b ; i, j)$ for arbitrary $a, b \in V$ by linearity and set

$$
Y_{M(U)}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)=\sum_{i \in(1 / T) \mathbb{Z}} \sum_{j \in \mathbb{Z}} Y_{M(U)}^{(s)}(a, b ; i, j) x_{2}^{-i-1} x_{0}^{-j-1} .
$$

It follows by (3.19) and (4.1) that $Y_{M(U)}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)$ is a linear map from $M(U)$ to $M(U)\left(\left(x_{2}^{1 / T}\right)\right)\left(\left(x_{0}\right)\right)$.

From now on, we simply write $M=M(U)$. By (4.4) we have

$$
\begin{aligned}
& \sum_{s=0}^{T-1} Y_{M}^{(s)}(a, b ; i, j)(c \otimes u) \\
& \quad=\sum_{s=0}^{T-1}\left(\hat{E}_{\mathrm{wt}}^{(T ; s)} a+\mathrm{wt} b-i-j-2+n, n\right. \\
& \quad=\left(\left(a_{j} b\right) *_{\mathrm{wt}}^{T} a+\mathrm{wt} b-i-j-2+n, n, m\right. \\
& \quad=\left(a_{j} b\right)_{i}(c \otimes u) \otimes u
\end{aligned}
$$

for homogeneous $a, b \in V$ and $c \otimes u \in M(n)$ with $c \in V$ and $u \in U$. Thus

$$
\begin{equation*}
\sum_{s=0}^{T-1} Y_{M}^{(s)}\left(a, b \mid x_{2}, x_{0}\right)(w)=Y_{M}\left(Y\left(a, x_{0}\right) b, x_{2}\right) w \tag{5.9}
\end{equation*}
$$

for $w \in M$.
Lemma 5.8. (1) $a_{i} M(n)=0$ for homogeneous $a \in V$ and $i>\operatorname{wt} a-1+n$.
(2) $Y_{M}(\mathbf{1}, x)=\operatorname{id}_{M}$.

Proof. Clearly, (1) holds. Let $a \otimes u \in M(n)$ with $a \in V$ and $u \in U$. By Lemma 3.6, we have

$$
\begin{aligned}
\mathbf{1}_{i}(a \otimes u) & =\left(\mathbf{1} *_{-i-1+n, n, m}^{T} a\right) \otimes u \\
& =\delta_{i,-1}\left(\mathbf{1}_{-1} a\right) \otimes u=\delta_{i,-1} a \otimes u
\end{aligned}
$$

for $i \in(1 / T) \mathbb{Z}$.
Lemma 5.9. Let a, b be homogeneous elements of $V, i, j \in(1 / T) \mathbb{Z}$ and r the integer uniquely determined by the conditions $0 \leq r \leq T-1$ and $r / T \equiv i(\bmod \mathbb{Z})$. Then

$$
\left[a_{i}, b_{j}\right] w=\sum_{k=0}^{\infty}\binom{i}{k} Y_{M}^{(r)}(a, b ; i+j-k, k)(w)
$$

for $w \in$ M. In particular,

$$
\left(x_{1}-x_{2}\right)^{l}\left[Y_{M}\left(a, x_{1}\right), Y_{M}\left(b, x_{2}\right)\right]=0
$$

for $l \in \mathbb{Z}_{\geq \max \{\mathrm{wt} a+\mathrm{wt} b-\Delta, 0\}}$.
Proof. Let $c \otimes u \in M(n)$ with $c \in V$ and $u \in U$. By Lemma 4.3, we have

$$
\left.\left.\left.\begin{array}{l}
a_{i} b_{j}(c \otimes u)-b_{j} a_{i}(c \otimes u) \\
=\left(a *_{\mathrm{wt}}^{T} a+\mathrm{wt} b-i-j-2+n, \mathrm{wt} b-1-j+n, m\right. \\
\quad-\left(b *_{\mathrm{wt}}^{T} a+\mathrm{wt} b-i-j-2+n, \mathrm{wt} a-1-i+n, m\right. \\
\quad\left(a *_{\mathrm{wt} t}^{T} a-1-j+n, n, m\right. \\
T
\end{array}\right)\right) \otimes u\right\}
$$

$$
\begin{aligned}
&=\left(\left(a *_{\mathrm{wt}}^{T} a+\mathrm{wt} b-i-j-2+n, \mathrm{wt} b-1-j+n, n\right.\right. \\
&-\left(\left(b *_{\mathrm{wt}}^{T} a+\mathrm{wt} b-i-j-2+n, \mathrm{wt} a-1-i+n, n\right.\right. \\
&=\left(\operatorname { R e s } _ { x } (1 + x) ^ { i } \left(\sum_{p \in \mathbb{Z}} \hat{E}_{\mathrm{wt}}^{(T ; r)} a+\mathrm{wt} b-i-j-2+n, n\right.\right. \\
& \mathrm{wt} a+\mathrm{wt} b-i-j-2+n, n, m \\
&\left.(a, b, p) x^{-p-1}\right) *_{\mathrm{wt}}^{T} a+\mathrm{wt} b-i-j-2+n, n, m \\
&=\left(\sum_{k=0}^{\infty}\binom{i}{k} \hat{E}_{\mathrm{wt}}^{(T ; r)} a+\mathrm{wt} b-i-j-2+n, n\right. \\
&=\left.(a, b, k) *_{\mathrm{wt} t a+\mathrm{wt} b-i-j-2+n, n, m}^{T} c\right) \otimes u \\
&= \sum_{k=0}^{\infty}\binom{i}{k} Y_{M}^{(r)}(a, b ; i+j-k, k)(c \otimes u) .
\end{aligned}
$$

The last formula follows from this and Remark 2.6 (cf. [14, Remark 3.1.13]).
We recall that $Y_{M}^{r}(a, x)$ denotes $\sum_{i \in r / T+\mathbb{Z}} a_{i} x^{-i-1}$ for $a \in V$ (cf. (2.11)).
Lemma 5.10. Let $a, b \in V$ with a being homogeneous, $l, r \in \mathbb{N}$ with $0 \leq r \leq T-1$ and $n=l_{3}+i_{3} / T \in(1 / T) \mathbb{N}$ with $l_{3}, i_{3} \in \mathbb{N}$ and $0 \leq i_{3} \leq T-1$. Then

$$
\begin{aligned}
& \operatorname{Res}_{x_{0}} x_{0}^{l}\left(x_{2}+x_{0}\right)^{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T} Y_{M}^{(r)}\left(a, b \mid x_{2}, x_{0}\right)(w) \\
& \quad=\operatorname{Res}_{x_{0}} x_{0}^{l}\left(x_{0}+x_{2}\right)^{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T} Y_{M}^{r}\left(a, x_{0}+x_{2}\right) Y_{M}\left(b, x_{2}\right) w
\end{aligned}
$$

for $w \in M(n)$.
Proof. Using Lemma 5.9, we obtain the formula by the same computation as in the proof of [5, Lemma 5.9].

Lemma 5.11. Let $a, b \in V$ with a being homogeneous, $r \in \mathbb{N}$ with $0 \leq r \leq T-1$ and $n=l_{3}+i_{3} / T \in(1 / T) \mathbb{N}$ with $l_{3} \in \mathbb{N}$ and $0 \leq i_{3} \leq T-1$. Then

$$
\begin{aligned}
& \operatorname{Res}_{x_{0}} x_{0}^{-l}\left(x_{2}+x_{0}\right)^{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T} Y_{M}^{(r)}\left(a, b \mid x_{2}, x_{0}\right)(w) \\
& \quad=\operatorname{Res}_{x_{0}} x_{0}^{-l}\left(x_{0}+x_{2}\right)^{\operatorname{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T} Y_{M}^{r}\left(a, x_{0}+x_{2}\right) Y_{M}\left(b, x_{2}\right) w
\end{aligned}
$$

for $w \in M(n)$.
Proof. Let $c \otimes u \in M(n)$ with $c \in V$ and $u \in U$. We may assume b to be a homogeneous element of V. We shall show

$$
\begin{aligned}
& \operatorname{Res}_{x_{0}} x_{0}^{-l}\left(x_{2}+x_{0}\right)^{\mathrm{wt} a+q} x_{2}^{\mathrm{wt} b-q} Y_{M}^{(r)}\left(a, b \mid x_{2}, x_{0}\right)(c \otimes u) \\
& \quad=\operatorname{Res}_{x_{0}} x_{0}^{-l}\left(x_{0}+x_{2}\right)^{\mathrm{wt} a+q} x_{2}^{\mathrm{wt} b-q} Y_{M}^{r}\left(a, x_{0}+x_{2}\right) Y_{M}\left(b, x_{2}\right) c \otimes u,
\end{aligned}
$$

where $q=-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T$. We have

$$
\begin{align*}
& \operatorname{Res}_{x_{0}} x_{0}^{-l}\left(x_{2}+x_{0}\right)^{\mathrm{wt} a+q} x_{2}^{\mathrm{wt} b-q} Y_{M}^{(r)}\left(a, b \mid x_{2}, x_{0}\right)(c \otimes u) \\
& =\sum_{j=0}^{\infty} \sum_{k \in(1 / T) \mathbb{Z}}\binom{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T}{j} x_{2}^{-k-1+\mathrm{wt} a+\mathrm{wt} b-j} \\
& \quad \times Y_{M}^{(r)}(a, b ; k, j-l)(c \otimes u) \\
& =\sum_{j=0}^{\infty} \sum_{k \in(1 / T) \mathbb{N}}\binom{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T}{j} x_{2}^{-l+k-n+1} \\
& \quad \times Y_{M}^{(r)}(a, b ; \mathrm{wt} a+\mathrm{wt} b-j+l-k+n-2, j-l)(c \otimes u) \\
& =\sum_{j=0}^{\infty} \sum_{k \in(1 / T) \mathbb{N}}\binom{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T}{j} x_{2}^{-l+k-n+1} \\
& \quad \times\left(\hat{E}_{k, n}^{(T ; r)}(a, b, j-l) *_{k, n, m}^{T} c\right) \otimes u \\
& = \\
& \sum_{k \in(1 / T) \mathbb{N}} x_{2}^{-l+k-n+1}\left(\operatorname{Res}_{x} x^{-l}(1+x)^{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T}\right. \tag{5.10}\\
& \left.\times\left(\sum_{j \in \mathbb{Z}} \hat{E}_{k, n}^{(T ; r)}(a, b, j) x^{-j-1}\right) *_{k, n, m}^{T} c\right) \otimes u .
\end{align*}
$$

On the other hand, applying the same computation as in the proof of [5, Lemma 5.10] to

$$
\begin{aligned}
& \operatorname{Res}_{x_{0}} x_{0}^{-l}\left(x_{0}+x_{2}\right)^{\mathrm{wt} a+q} x_{2}^{\mathrm{wt} b-q} Y_{M}^{r}\left(a, x_{0}+x_{2}\right) Y_{M}\left(b, x_{2}\right)(c \otimes u) \\
& \quad=\sum_{s=0}^{T-1} \operatorname{Res}_{x_{0}} x_{0}^{-l}\left(x_{0}+x_{2}\right)^{\mathrm{wt} a+q} x_{2}^{\mathrm{wt} b-q} Y_{M}^{r}\left(a, x_{0}+x_{2}\right) Y_{M}^{s}\left(b, x_{2}\right)(c \otimes u)
\end{aligned}
$$

we have

$$
\begin{aligned}
& \operatorname{Res}_{x_{0}} x_{0}^{-l}\left(x_{0}+x_{2}\right)^{\mathrm{wt} a+q} x_{2}^{\mathrm{wt} t-q} Y_{M}^{r}\left(a, x_{0}+x_{2}\right) Y_{M}\left(b, x_{2}\right)(c \otimes u) \\
& =\sum_{s=0}^{T-1} \sum_{\substack{k \in\left(i_{3}-r-s\right) / T+\mathbb{Z} \\
0 \leq k}} x_{2}^{-l+k-n+1} \\
& \times \sum_{\substack{j \in\left(i_{3}-s\right) / T+\mathbb{Z} \\
0 \leq j \leq k+l_{3}+\delta\left(r \leq i_{3}\right)+r / T-l}}\binom{-l}{-j+l_{3}+\delta\left(r \leq i_{3}\right)+r / T-l+k} \\
& \times(-1)^{-j+l_{3}+\delta\left(r \leq i_{3}\right)+r / T-l+k}\left(a *_{k, j, m}^{T}\left(b *_{j, n, m}^{T} c\right)\right) \otimes u
\end{aligned}
$$

$$
\begin{align*}
& \equiv \sum_{s=0}^{T-1} \sum_{\substack{k \in\left(i_{3}-r-s\right) / T+\mathbb{Z} \\
0 \leq k}} x_{2}^{-l+k-n+1} \\
& \times \sum_{\substack{\left.j \in i_{3}-s\right) / T+\mathbb{Z} \\
0 \leq j \leq k+l_{3}-\delta\left(r \leq i_{3}\right)+r / T-l}}\binom{-l}{-j+l_{3}+\delta\left(r \leq i_{3}\right)+r / T-l+k} \\
& \times(-1)^{-j+l_{3}+\delta\left(r \leq i_{3}\right)+r / T-l+k}\left(\left(a *_{k, j, n}^{T} b\right) *_{k, n, m}^{T} c\right) \otimes u \\
& \tag{5.11}
\end{align*}
$$

Moreover, for each $k=l_{4}+\left(i_{3}-r-s\right) / T \in\left(i_{3}-r-s\right) / T+\mathbb{Z}$ with $k \geq 0$ and $l_{4} \in \mathbb{Z}$, we have

$$
\begin{align*}
& \sum_{\substack{j \in\left(i_{3}-s\right) / T+\mathbb{Z} \\
0 \leq j \leq k+l_{3}+\delta\left(r \leq i_{3}\right)+r / T-l}}\left(\begin{array}{c}
-l \\
\\
\times(-1)^{-j+l_{3}+\delta\left(r \leq i_{3}\right)+r / T-l+k} a *_{k, j, n}^{T} b \\
= \\
l_{4}+l_{3}+\delta\left(r \leq i_{3}\right)+\delta\left(s \leq i_{3}\right)-l-1 \\
l_{p=0}
\end{array} \sum_{-l}^{-l} \begin{array}{l}
\\
p
\end{array}\right)(-1)^{p} \sum_{i=0}^{l_{4}+l_{3}+\delta\left(r \leq i_{3}\right)+\delta\left(s \leq i_{3}\right)-l-1-p}\binom{-p-l}{i} \\
& \times \operatorname{Res}_{x}(1+x)^{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T} x^{-p-l-i} \sum_{j \in \mathbb{Z}} \hat{E}_{k, n}^{(T ; r)}(a, b, j) x^{-j-1} \\
= & \operatorname{Res}_{x} x^{-l}(1+x)^{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T} \sum_{j \in \mathbb{Z}} \hat{E}_{k, n}^{(T ; r)}(a, b, j) x^{-j-1}
\end{align*}
$$

by [4, Proposition 5.3]. By (5.10)-(5.12) the proof is complete.
By Lemmas 5.10 and 5.11, we have the following result.
Lemma 5.12. Let $a, b \in V$ with a being homogeneous, $r \in \mathbb{N}$ with $0 \leq r \leq T-1$ and $n=l_{3}+i_{3} / T \in(1 / T) \mathbb{N}$ with $l_{3}, i_{3} \in \mathbb{N}$ and $0 \leq i_{3} \leq T-1$. Then

$$
\begin{aligned}
& \left(x_{2}+x_{0}\right)^{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T} Y_{M}^{(r)}\left(a, b \mid x_{2}, x_{0}\right) \\
& \quad=\left(x_{0}+x_{2}\right)^{\mathrm{wt} a-1+l_{3}+\delta\left(r \leq i_{3}\right)+r / T} Y_{M}^{r}\left(a, x_{0}+x_{2}\right) Y_{M}\left(b, x_{2}\right)
\end{aligned}
$$

on $M(n)$.
By (5.9) and Lemmas 2.4, 5.8, 5.9 and 5.12, the same argument as in the proof of [4, Theorem 4.13] shows the following theorem.

Theorem 5.13. Let U be a left $A_{m}^{T}(V)$-module. Then $M(U)=\bigoplus_{n \in(1 / T) \mathbb{N}}$ $\cdot A_{n, m}^{T}(V) \bigotimes_{A_{m}^{T}(V)} U$ is a $(1 / T) \mathbb{N}$-graded (V, T)-module with $M(U)(n)=A_{n, m}^{T}(V)$
$\otimes_{A_{m}^{T}(V)} U$ and the following universal property: for a (V, T)-module W and an $A_{m}^{T}(V)$ homomorphism $\sigma: U \rightarrow \Omega_{m}(W)$, there is a unique homomorphism $\bar{\sigma}: M(U) \rightarrow W$ of (V, T)-modules that extends σ. Moreover, if U cannot factor through $A_{m-1 / T}^{T}(V)$, then $M(U)(0) \neq 0$.

The following result immediately follows from Theorem 5.13 (cf. [7, Theorem 4.9]).
Corollary 5.14. For every $m \in(1 / T) \mathbb{N}$, there is a bijection between the set of isomorphism classes of simple left $A_{m}^{T}(V)$-modules which cannot factor through $A_{m-1 / T}^{T}(V)$ and that of simple $(1 / T) \mathbb{N}$-graded (V, T)-modules.

6. Appendix.

6.1. The determinant of a matrix.

In this subsection we shall show that the matrix Γ in (3.5) is non-singular. Let b, t be positive integers and x_{0}, \ldots, x_{t-1} indeterminates. We denote by E_{n} the $n \times n$ identity matrix. Define $\alpha_{i}^{k}\left(x_{s}\right)=\sum_{j=1}^{k}\binom{x_{s}}{i+j}\binom{-x_{s}}{k-j} \in \mathbb{C}\left[x_{s}\right]$ for $0 \leq s \leq t-1,1 \leq k \leq b$ and $i \in \mathbb{Z}$. Note that

$$
\begin{equation*}
\operatorname{deg} \alpha_{i}^{k}\left(x_{s}\right)=i+k \tag{6.1}
\end{equation*}
$$

for $i \in \mathbb{N}$. Define $t b t \times b$-matrices $A_{s}, s=0, \ldots, t-1$ by

$$
A_{s}=\left(\begin{array}{cccc}
\alpha_{(t-1) b-1}^{1}\left(x_{s}\right) & \alpha_{(t-1) b-1}^{2}\left(x_{s}\right) & \cdots & \alpha_{(t-1) b-1}^{b}\left(x_{s}\right) \tag{6.2}\\
\alpha_{(t-1) b-2}^{1}\left(x_{s}\right) & \alpha_{(t-1) b-2}^{2}\left(x_{s}\right) & \cdots & \alpha_{(t-1) b-2}^{b}\left(x_{s}\right) \\
\vdots & \vdots & & \vdots \\
\alpha_{-b}^{1}\left(x_{s}\right) & \alpha_{-b}^{2}\left(x_{s}\right) & \cdots & \alpha_{-b}^{b}\left(x_{s}\right)
\end{array}\right)
$$

and set $A=\left(A_{0} \cdots A_{t-1}\right)$. The following result implies Γ is non-singular.
Proposition 6.1.

$$
\operatorname{det} A=\prod_{0 \leq i<j \leq t-1} \prod_{k=-b+1}^{b-1}\left(\frac{x_{i}-x_{j}+k}{b(j-i)+k}\right)^{b-|k|}
$$

Proof. Since

$$
\begin{aligned}
& \left(\alpha_{i}^{1}\left(x_{s}\right), \ldots, \alpha_{i}^{b}\left(x_{s}\right)\right) \\
& \quad=\left(\binom{x_{s}}{i+1},\binom{x_{s}}{i+2}, \ldots,\binom{x_{s}}{i+b}\right)\left(\begin{array}{ccccc}
1 & \binom{-x_{s}}{1} & \binom{-x_{s}}{2} & \ldots & \binom{-x_{s}}{b} \\
0 & 1 & \binom{-x_{s}}{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \binom{-x_{s}}{2} \\
\vdots & & \ddots & \ddots & \binom{-x_{s}}{1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right),
\end{aligned}
$$

the determinant of A is equal to that of $B=\left(B_{0} \cdots B_{t-1}\right)$, where

$$
B_{s}=\left(\begin{array}{cccc}
\binom{x_{s}}{(t-1) b} & \binom{x_{s}}{(t-1) b+1} & \cdots & \binom{x_{s}}{t b-1} \\
\binom{x_{s}}{(t-1) b-1} & \binom{x_{s}}{(t-1) b} & \cdots & \binom{x_{s}}{t b-2} \\
\vdots & \vdots & & \vdots \\
\binom{x_{s}}{-b+1} & \binom{x_{s}}{-b+2} & \cdots & \binom{x_{s}}{0}
\end{array}\right), s=0, \ldots, t-1 .
$$

The same argument as in the proof of [16, Proposition 9] shows that $\left(x_{i}-x_{j}+k\right)^{b-|k|}$ is a factor of $\operatorname{det} B$ for each $0 \leq i<j \leq t-1$ and $-b+1 \leq k \leq b-1$. Thus, there is $c \in \mathbb{C}\left[x_{0}, \ldots, x_{t-1}\right]$ such that

$$
\operatorname{det} B=c \prod_{0 \leq i<j \leq t-1} \prod_{k=-b+1}^{b-1}\left(x_{i}-x_{j}+k\right)^{b-|k|}
$$

Since $\alpha_{i}^{k}\left(x_{s}\right)=\delta_{i+k, 0}$ for $i<0$, we have $A_{s}=\binom{A_{s}^{\prime}}{E_{b}}, s=0, \ldots, T-1$, where

$$
A_{s}^{\prime}=\left(\begin{array}{cccc}
\alpha_{(t-1) b-1}^{1}\left(x_{s}\right) & \alpha_{(t-1) b-1}^{2}\left(x_{s}\right) & \cdots & \alpha_{(t-1) b-1}^{b}\left(x_{s}\right) \\
\alpha_{(t-1) b-2}^{1}\left(x_{s}\right) & \alpha_{(t-1) b-2}^{2}\left(x_{s}\right) & \cdots & \alpha_{(t-1) b-2}^{b}\left(x_{s}\right) \\
\vdots & \vdots & & \vdots \\
\alpha_{0}^{1}\left(x_{s}\right) & \alpha_{0}^{2}\left(x_{s}\right) & \cdots & \alpha_{0}^{b}\left(x_{s}\right)
\end{array}\right) .
$$

It follows by

$$
\left(\begin{array}{cc}
E_{(t-1) b} & -A_{0}^{\prime} \tag{6.3}\\
O & E_{b}
\end{array}\right) A=\left(\begin{array}{cccc}
O & A_{1}^{\prime}-A_{0}^{\prime} & \cdots & A_{t-1}^{\prime}-A_{0}^{\prime} \\
E_{b} & E_{b} & \cdots & E_{b}
\end{array}\right)
$$

that $\operatorname{det} A=(-1)^{(t-1) b^{2}} \operatorname{det}\left(A_{1}^{\prime}-A_{0}^{\prime} \cdots A_{t-1}^{\prime}-A_{0}^{\prime}\right)$. Thus, the degree of $\operatorname{det} A \in$ $\mathbb{C}\left[x_{0}, \ldots, x_{t-1}\right]$ is at most $\binom{t}{2} b^{2}$ by (6.1). Since the degree of $\prod_{0 \leq i<j \leq t-1} \prod_{k=-b+1}^{b-1}\left(x_{i}-\right.$ $\left.x_{j}+k\right)^{b-|k|}$ is equal to $\binom{t}{2} b^{2}$, we have $c \in \mathbb{C}$.

Substituting $((t-1) b,(t-2) b, \ldots, 0)$ for $\left(x_{0}, x_{1}, \ldots, x_{t-1}\right)$, we obtain

$$
1=c \prod_{0 \leq i<j \leq t-1} \prod_{k=-b+1}^{b-1}(b(j-i)+k)^{b-|k|}
$$

The proof is complete.

6.2. Some improvements of results on $A_{G, n}(V)$.

The purpose of this subsection is to improve Theorems 1 and 2 in [16]. Let $V=$ $\bigoplus_{j=\Delta}^{\infty} V_{j}$ be a vertex operator algebra and G an automorphism group of V of finite order t. For $g \in G$ and $n \in(1 / t) \mathbb{N}, O_{g, n}(V)$ is the subspace of V defined in [8].

In [16], under the condition that $\Delta=0$, we constructed an associative algebra
$A_{G, n}(V)$ for each $n \in(1 / t) \mathbb{Z}$ in Theorem 1 and got a duality theorem of Schur-Weyl type in Theorem 2 by using $A_{G, n}(V)$. The condition that $\Delta=0$ was used in order to show the non-singularity of a matrix in [16, Lemma 3].

We shall show [16, Theorems 1 and 2] without assuming $\Delta=0$. To do this, it is sufficient to show the following lemma, which is an improvement of [16, Lemma 3], by using $\hat{E}_{n, m}^{(t ; s)}(a, b, i)$ defined in (4.1). We note that the existence of $\hat{E}_{n, m}^{(t ; s)}(a, b, i)$ follows from Lemma 3.2 and Proposition 6.1. We use the notation in Remark 2.7.

Lemma 6.2. For $a, b \in V=\bigoplus_{j=\Delta}^{\infty} V_{j}, 0 \leq r \leq t-1, p \in \mathbb{Z}, n \in(1 / t) \mathbb{N}$ and $g \in G$, we have

$$
\hat{E}_{n, n}^{(t ; r)}(a, b, p) \equiv a_{p}^{(g, r)} b \quad\left(\bmod O_{g, n}(V)\right)
$$

Proof. We may assume a, b to be homogeneous. We write $n=l+i / t$ with $l, i \in \mathbb{N}$ and $0 \leq i \leq t-1$. We use the notation in Section 3. It follows from (3.1) that the image of the subspace O (wt $a+\mathrm{wt} b-1-\Delta$, wt $a-1+l+\delta(s \leq i)+s / t,-2 l-3 ; z)$ of $\mathbb{C}\left[z, z^{-1}\right]$ under the map $\left.\mathbb{C}\left[z, z^{-1}\right] \ni f \mapsto f\right|_{z^{j}=a_{j}^{(g, s)} b} \in V$ is contained in $O_{g, n}(V)$ for $s=0, \ldots, t-1$. By (3.18), we have

$$
\begin{aligned}
\hat{E}_{n, n}^{(t ; r)}(a, b, p) & =\left.E_{n, n}^{(t ; r)}(\operatorname{wt} a, \text { wt } b, p ; z)\right|_{z^{j}=a_{j} b} \\
& =\left.\sum_{s \neq r} E_{n, n}^{(t ; r)}(\operatorname{wt} a, \operatorname{wt} b, p ; z)\right|_{z^{j}=a_{j}^{(g, s)} b}+\left.E_{n, n}^{(t ; r)}(\operatorname{wt} a, \operatorname{wt} b, p ; z)\right|_{z^{j}=a_{j}^{(g, r)} b} \\
& \equiv a_{p}^{(g, r)} b \quad\left(\bmod O_{g, n}(V)\right)
\end{aligned}
$$

7. List of Notations.

$$
\begin{aligned}
& \delta(i \leq j) \quad= \begin{cases}1 & \text { if } i \leq j, \\
0 & \text { if } i>j .\end{cases} \\
& Y_{M}^{s}(a, x) \quad=\sum_{i \in s / T+\mathbb{Z}} a_{i} x^{-i-1} \text { where } Y_{M}(a, x)=\sum_{i \in(1 / T) \mathbb{Z}} a_{i} x^{-i-1} . \\
& O(N, Q, q ; z) \quad \text { the subspace of } \mathbb{C}\left[z, z^{-1}\right] \text { spanned by } \operatorname{Res}_{x}\left((1+x)^{Q} x^{q+j} \sum_{i \in \mathbb{Z}_{\leq N}}\right. \\
& \left.\cdot z^{i} x^{-i-1}\right), j=0,-1, \ldots \text { and } z^{i}, i \in \mathbb{Z}_{\geq N+1} \text { where } N, q \in \mathbb{Z} \text { and } Q \in \mathbb{Q} \text {. } \\
& \varphi_{N, \gamma} \quad \varphi_{N, \gamma}\left(z^{i}\right)= \begin{cases}(-1)^{i+1} \operatorname{Res}_{x}\left((1+x)^{\gamma-i} x^{i} \sum_{j \in \mathbb{Z}_{\leq N}} z^{j} x^{-j-1}\right) \\
& \text { for } i \leq N, \\
z^{i} & \text { for } i \geq N+1,\end{cases} \\
& \text { for } z^{i} \in \mathbb{C}\left[z, z^{-1}\right] \text {. } \\
& r(i, j) \quad \text { the integer uniquely determined by the conditions that } 0 \leq r(i, j) \leq \\
& T-1 \text { and } i-j \equiv r(i, j) / T(\bmod \mathbb{Z}) \text { where } i, j \in(1 / T) \mathbb{Z} \text { and } T \in \mathbb{Z}_{>0} . \\
& s^{\vee} \quad \text { the integer uniquely determined by the conditions that } 0 \leq s^{\vee} \leq T-1 \\
& \text { and } i_{1}-i_{3} \equiv s+s^{\vee}(\bmod T) \text { where } T \in \mathbb{Z}_{>0} \text { and } i_{1}, i_{3}, s \in \mathbb{Z} \text { with } \\
& 0 \leq i_{1}, i_{3}, s \leq T \text {. }
\end{aligned}
$$

$O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z)=O\left(\alpha+\beta-1-\Delta, \alpha-1+l_{1}+\delta\left(s \leq i_{1}\right)+s / T\right.$,

$$
\left.-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)-1 ; z\right)
$$

$O_{n, m}^{T, 1}(\alpha, \beta ; z)=\bigcap_{s=0}^{T-1} O_{n, m}^{(T ; s), 1}(\alpha, \beta ; z)$.
$\Psi_{n, m}^{(T ; s)}(\alpha, \beta, j ; z)=\operatorname{Res}_{x}\left((1+x)^{\alpha-1+l_{1}+\delta\left(s \leq i_{1}\right)+s / T} x^{-l_{1}-l_{3}-\delta\left(s \leq i_{1}\right)-\delta\left(T \leq s+i_{3}\right)-1+j}\right.$

$$
\left.\times \sum_{\substack{i \in \mathbb{Z} \\ i \leq \alpha+\beta-1-\Delta}} z^{i} x^{-i-1}\right) \quad(\text { cf. (3.12)) }
$$

$E_{n, m}^{(T ; r)}(\alpha, \beta, i ; z) \quad$ the Laurent polynomial in $\mathbb{C}\left[z, z^{-1}\right]_{\alpha+\beta-\Delta-T\left(\alpha+\beta-\Delta+l_{1}+l_{3}+2\right), \alpha+\beta-1-\Delta}$ uniquely determined by the condition (3.18).
$\Phi_{n, p, m}^{T}(\alpha, \beta ; z)=\sum_{i=0}^{l_{2}}\left(\begin{array}{c}-l_{1}-l_{3}+l_{2}-\delta\left(r(p, n) \leq i_{1}\right)-\delta\left(T \leq r(p, n)+i_{3}\right)\end{array}\right)$ $\times \operatorname{Res}_{x}\left((1+x)^{\alpha-1+l_{1}+\delta\left(r(p, n) \leq i_{1}\right)+r(p, n) / T}\right.$

$$
\times x^{-l_{1}-l_{3}+l_{2}-\delta\left(r(p, n) \leq i_{1}\right)-\delta\left(T \leq r(p, n)+i_{3}\right)-i}
$$

$$
\left.\times \sum_{j \in \mathbb{Z}} E_{n, m}^{(T ; r(p, n))}(\alpha, \beta, j ; z) x^{-j-1}\right) \quad(\text { cf. }(3.22))
$$

$\hat{E}_{n, m}^{(T ; s)}(a, b, i) \quad=\left.E_{n, m}^{(T ; s)}(\operatorname{wt} a, \operatorname{wt} b, i ; z)\right|_{z^{j}=a_{j} b} \in V$.
$a *_{n, p, m}^{T} b \quad=\left.\Phi_{n, p, m}^{T}($ wt a, wt $b ; z)\right|_{z^{j}=a_{j} b} \in V$.
$O_{n, m}^{T, 0}(V) \quad$ the subspace of V spanned by $\left\{a_{-2} \mathbf{1}+(\right.$ wt $a+m-n) a \in V \mid$ homogeneous $a \in V\}$.
$O_{n, m}^{T, 1}(V) \quad$ the subspace of V spanned by
$\left\{\begin{array}{l|l}\left.P(z)\right|_{z^{j}=a_{j} b} \in V & \begin{array}{l}\text { homogeneous } a, b \in V \text { and } \\ P(z) \in O_{n, m}^{T, 1}(\mathrm{wt} a, \mathrm{wt} b ; z)\end{array}\end{array}\right\}$.
$O_{n, m}^{T, 2}(V) \quad$ the subspace of V spanned by $u *_{n, p_{3}, m}^{T}\left(\left(a *_{p_{3}, p_{2}, p_{1}}^{T} b\right) *_{p_{3}, p_{1}, m}^{T} c-\right.$
$O_{n, m}^{T, 3}(V) \quad=\sum_{p_{1}, p_{2} \in(1 / T) \mathbb{N}}\left(V *_{n, p_{2}, p_{1}}^{T}\left(O_{p_{2}, p_{1}}^{T, 0}(V)+O_{p_{2}, p_{1}}^{T, 1}(V)\right) *_{n, p_{1}, m}^{T} V\right)$.
$O_{n, m}^{T}(V) \quad=O_{n, m}^{T, 0}(V)+O_{n, m}^{T, 1}(V)+O_{n, m}^{T, 2}(V)+O_{n, m}^{T, 3}(V)$.
$Z_{M, n, m}^{(s)}\left(a, b ; z^{i}\right)=Y_{M}^{(s)}(a, b ; \mathrm{wt} a+\mathrm{wt} b+m-n-2-i, i)$.

References

[1] R. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A., 83 (1986), 3068-3071.
[2] R. Dijkgraaf, C. Vafa, E. Verlinde and H. Verlinde, The operator algebra of orbifold models, Comm. Math. Phys., 123 (1989), 485-526.
[3] L. Dixon, J. A. Harvey, C. Vafa and E. Witten, String on orbifolds, Nucl. Phys. B, 261 (1985), 620-678; String on orbifolds II, Nucl. Phys. B, 274 (1986), 285-314.
[4] C. Dong and C. Jiang, Bimodules associated to vertex operator algebras, Math. Z., 259 (2008), 799-826.
[5] C. Dong and C. Jiang, Bimodules and g-rationality of vertex operator algebras, Trans. Amer. Math. Soc., 360 (2008), 4235-4262.
[6] C. Dong, H. S. Li and G. Mason, Twisted representations of vertex operator algebras, Math. Ann., 310 (1998), 571-600.
[7] C. Dong, H. S. Li and G. Mason, Vertex operator algebras and associative algebras, J. Algebra, 206 (1998), 67-96.
[8] C. Dong, H. S. Li and G. Mason, Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices, (1998), 389-397.
[9] C. Dong and G. Mason, On quantum Galois theory, Duke Math. J., 86 (1997), 305-321.
[10] E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, 2nd edn. Mathematical Surveys and Monographs, 88, Amer. Math. Soc., Providence, 2004.
[11] I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Math., 134, Academic Press, 1988.
[12] A. Hanaki, M. Miyamoto and D. Tambara, Quantum Galois theory for finite groups, Duke Math. J., 97 (1999), 541-544.
[13] J. Lepowsky, Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A., 82 (1985), 8295-8299.
[14] J. Lepowsky and H. S. Li, Introduction to Vertex Operator Algebras and their Representations, Progress in Mathematics, 227, Birkhauser Boston, Inc., Boston, MA, 2004.
[15] H. S. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Contemp. Math., 193 (1996), 203-236.
[16] M. Miyamoto and K. Tanabe, Uniform product of $A_{g, n}(V)$ for an orbifold model V and G-twisted Zhu algebra, J. Algebra, 274 (2004), 80-96.
[17] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc., 9 (1996), 237-302.

Kenichiro Tanabe

Department of Mathematics
Hokkaido University
Kita 10, Nishi 8, Kita-Ku, Sapporo
Hokkaido 060-0810, Japan
E-mail: ktanabe@math.sci.hokudai.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 17B69; Secondary 17B68.
 Key Words and Phrases. vertex algebra, twisted module.
 This research was partially supported by JSPS Grant-in-Aid for Scientific Research (No. 24540003).

