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Abstract. In this article, we generalize the classification of genus one
Lefschetz fibrations to genus one simplified broken Lefschetz fibrations, which
have fibers of genera one and zero. We classify genus one Lefschetz fibrations
over the 2-disk with certain non-trivial global monodromies using chart de-
scriptions, and identify the 4-manifolds admitting genus one simplified broken
Lefschetz fibrations up to blow-ups.

1. Introduction.

The seminal work of Donaldson regarding Lefschetz pencils on symplectic manifolds
together with Gompf’s generalization of Thurston’s construction of symplectic structures
on surface bundles over surfaces show that closed orientable 4-manifolds which admit
Lefschetz fibrations over the 2-sphere are precisely the closed symplectic 4-manifolds,
up to blow-ups. In contrast, broken Lefschetz fibrations, the generalization of Lefschetz
fibrations where the topology of regular fibers are allowed to change in the expense of
introducing a 1-dimensional singular set, exist on all closed smooth oriented 4-manifolds.
It is therefore natural to ask how far analogues of various results on Lefschetz fibrations
extend within the class of closed smooth oriented 4-manifolds when broken Lefschetz
fibrations are considered. It is the authors’ contention that constraining the topology
of fibers that can appear in a broken Lefschetz fibration, and then determining which
4-manifolds can admit such fibrations is an effective way to deal with this abundance.
The classification problem we undertake in our article takes this path.

Monodromy factorizations of genus one Lefschetz fibrations over the 2-sphere, up
to Hurwitz equivalences, correspond to monodromy factorizations of genus one Lefschetz
fibrations over the 2-disk with trivial global monodromy. They were classified by Kas
[14] and Moishezon [17] independently. (Also see Matsumoto’s work [16].) This theo-
rem in particular implies that the 4-manifolds that admit non-trivial genus one Lefschetz
fibrations are very restricted; namely, only elliptic surfaces E(n) admit them [14], [16],
[17]. We consider a generalization of this famous theorem to broken Lefschetz fibra-
tions, aiming to classify simplified broken Lefschetz fibrations with fiber genera one and
zero. These simplified broken Lefschetz fibrations are the ones where we have at most
one round singular circle and connected fibers, which give the honest elliptic Lefschetz
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fibrations when the round singular set is empty. (Note that minimal genus zero broken
Lefschetz fibrations with empty round locus are nothing but S2-bundles over S2, which
are completely classified.) Fixing an isomorphism between Map(T 2), the mapping class
group of orientation-preserving self-diffeomorphisms of the 2-torus T 2, and SL(2,Z), we
consider genus one Lefschetz fibrations over the 2-disk whose global monodromy maps
to ±id times a positive power of the image of a Dehn twist along a non-separating curve
in the latter group. First we generalize Kas and Moishezon’s classification theorem to
the monodromies of genus one Lefschetz fibrations over the 2-disk with these non-trivial
global monodromies (Theorem 4, Theorem 5, and Corollary 8). To prove this result,
we use a graphical method to describe genus one Lefschetz fibrations, called a chart de-
scription, which is a suitable modification of that given in [13]. We then give a list of
all closed smooth oriented 4-manifolds (up to blow-ups) admitting a genus one relatively
minimal simplified broken Lefschetz fibration (Theorem 13 and Corollary 14), using the
handlebody descriptions studied by the first author in [4].

2. Preliminaries.

2.1. Broken Lefschetz fibrations.
Let X and Σ be compact connected oriented manifolds with/without boundary of

dimension four and two, respectively, and f : X → Σ be a smooth surjective map with
f−1(∂Σ) = ∂X. The map f is said to have a Lefschetz singularity at a point x in Int(X),
if around x and f(x) one can choose orientation preserving charts so that f conforms to
the complex local model

(u, v) 7→ u2 + v2.

Let C be the set of Lefschetz singularities of f . The map f is said to have a round
singularity along an embedded 1-manifold Z ⊂ Int(X) \ C if around every z ∈ Z, there
are coordinates (t, x1, x2, x3) with t a local coordinate on Z, in terms of which f is given
by

(t, x1, x2, x3) 7→ (t, x2
1 − x2

2 − x2
3).

We call the image f(Z) ⊂ Int(Σ) the round image. A broken Lefschetz fibration is then a
smooth surjective map f : X → Σ with f−1(∂Σ) = ∂X which is a submersion outside of
a finite set of points C ⊂ Int(X) and a finite collection of circles Z ⊂ Int(X) \C, where
it has Lefschetz singularities and round singularities, respectively, cf. [2]. We assume the
additional conditions that f |C is injective, f(C) ∩ f(Z) = ∅, and f |Z is an immersion
with normal crossings. Note that we get a genuine Lefschetz fibration when Z = ∅, and
always an honest surface fibration over ∂Σ. As shown in [19], [3], any generic map from
a closed orientable 4-manifold to the 2-sphere can be homotoped to a broken Lefschetz
fibration over Σ = S2, and thus, these fibrations are found in abundance. Lastly, note
that whenever there is a fiber in X containing a self-intersection −1 sphere, it can be
blown-down to obtain a new broken Lefschetz fibration on X ′ where X = X ′#CP2.
We will therefore focus on relatively minimal broken Lefschetz fibrations, which do not
contain such fiber components, without mentioning it any further below.
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2.2. Monodromies and chart descriptions.
Let f : X → D be a genus one Lefschetz fibration over the 2-disk, ∆ the set of

critical values. Fix a base point y0 in ∂D so that f−1(y0) is a torus whose mapping class
group Map(T 2) is used for the monodromy representation

ρ : π1(D \∆, y0) → Map(f−1(y0)) = Map(T 2).

Moreover we shall identify Map(T 2) ∼= SL(2,Z) as explained in Section 3. Now our
monodromy representation is

ρ̃ : π1(D \∆, y0) → SL(2,Z).

We denote by µ (= µ(f)) the the global monodromy ρ(∂D), and by µ̃ (= µ̃(f)) the global
monodromy ρ̃(∂D) in SL(2,Z).

A Hurwitz arc system for ∆ = {y1, . . . , yn} is an n-tuple, (A1, . . . , An), of embedded
arcs in D connecting y0 and the critical values y1, . . . , yn such that Ai ∩ Aj = {y0} for
i 6= j, and A1, . . . , An appear around y0 anti-clockwise in this order. It determines an n-
tuple, (x1, . . . , xn), of generators of π1(D\∆, y0), called a Hurwitz generator system. Here
xi (i = 1, . . . , n) is represented by a loop that starts from y0, goes along Ai toward yi,
turns around yi anti-clockwise, and comes back along Ai. Then we call (ρ(x1), . . . , ρ(xn))
or (ρ̃(x1), . . . , ρ̃(xn)) a Hurwitz system of f , or a monodromy factorization.

We use the convention for describing monodromy factorizations as follows:

(a1, . . . , an) · (b1, . . . , bm) := (a1, . . . , an, b1, . . . , bm), and

(a1, . . . , an)m := (a1, . . . , an) · · · · · (a1, . . . , an),

the concatenation of m copies, where ai, bj represent simple closed curves on a reference
fiber along which right-handed Dehn twists are performed as usual.

Chart description was first introduced in order to describe 2-dimensional braids [10],
[11], and was generalized to a method describing monodromy representations of various
topological objects [12]. A remarkable application of this method was a new proof of
the classification of monodromies of genus one Lefschetz fibrations over the 2-sphere
[13]. This is equivalent to classifying monodromies of genus one Lefschetz fibrations over
the 2-disk with the trivial global monodromy. For the purpose of this paper, we need
to classify genus one Lefschetz fibrations over the 2-disk with certain non-trivial global
monodromies.

Definition 1. A chart is a finite graph Γ in D (possibly empty or with hoops that
are closed edges with no vertices), whose edges are labeled with 1 or 2 and oriented so
that the following conditions are satisfied:

(1) The degree of each vertex is 1, 6 or 12.
(2) For a degree-six vertex v, the six incident edges are labeled alternately with 1 and

2; and three consecutive edges are oriented inward and the other three are oriented
outward (see Figure 1 where {i, j} = {1, 2}).

(3) For a degree-12 vertex v, the twelve incident edges are labeled alternately with 1 and
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2; and all edges are oriented inward or all edges are oriented outward (see Figure 1).
(4) Γ ∩ ∂D is empty or consists of some degree-one vertices of Γ. Moreover we assume

that Γ misses y0.
(5) For a degree-one vertex v in the interior of D, the incident edge is oriented outward.

A degree-one vertex of Γ is called a black vertex if it is in the interior of D, or a boundary
vertex if it is on ∂D. A degree-12 vertex is of negative type or positive type if the incident
edges are oriented inward or outward, respectively.

Figure 1. Vertices of a chart; a degree-6 vertex, a negative degree-12 vertex,
a positive degree-12 vertex, a black vertex, and a boundary vertex.

Remark 2. Definition 1 is slightly different from that of [13]. The 4th condition
in [13] is that Γ∩ ∂D is empty. We modified it so that we can treat genus one Lefschetz
fibrations with non-trivial global monodromies. The 5th condition is introduced here to
allow only positive Dehn twists to appear in local monodromies, i.e. we only allow honest
Lefschetz singularities. When we allow negative Dehn twists, too, then the definition of
a chart should be given without the 5th condition. In this case, Proposition 3 and its
proof are still valid. However, Theorem 4 does not work, because we can insert (s1, s

−1
1 )

into any monodromy factorization.

A chart Γ determines a homomorphism ρΓ : π1(D \∆Γ, y0) → SL(2,Z), where ∆Γ

is the set of black vertices, as follows: Let η : [0, 1] → D \∆Γ be a continuous map with
η(0) = η(1) = y0. Up to homotopy, assume that it is a smooth immersion intersecting Γ
transversely such that if η(t) = η(t′) ∈ η([0, 1])∩ Γ then t = t′. For each intersection, we
associate a letter sε

i if the edge of Γ through the intersection is labeled with i and the sign
of the intersection is ε. Here the sign of an intersection, say x ∈ η([0, 1])∩Γ, is +1 or −1
defined as follows: Let v1 be a tangent vector of the edge of Γ through x matching the
orientation of the edge, and let v2 be a tangent vector of η at x matching the orientation
of η. If the pair (v1, v2) matches the orientation of D, then the sign of the intersection is
+1; otherwise, it is −1. In other words, when we walk along η toward the intersection x,
if the orientation of the edge of Γ through x is from the left side of η to the right, then
the sign is +1. Read these letters along η and we obtain a word in {s1, s

−1
1 , s2, s

−1
2 },

which we call the intersection word of η with respect to Γ and denote it by wΓ(η). The
element of SL(2,Z) represented by this word is determined by the homotopy class [η] of
η, by which we define ρΓ([η]) (cf. [12], [13]). Here we regard s1 and s2 as the matrices
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s1 =
(

1 0
1 1

)
and s2 =

(
1 −1
0 1

)
,

so that the group SL(2,Z) has the presentation

〈s1, s2 | s1s2s1(s2s1s2)−1, (s1s2)6〉.

Proposition 3. For any genus one Lefschetz fibration over the 2-disk, f : X → D,
there exists a chart Γ such that the monodromy representation of f is equal to ρΓ.

Proof. This is a consequence of Theorem 5 of [12]. In Theorem 5 and Example
3 of [12], genus one Lefschetz fibrations were allowed to have singular fibers whose local
monodromies were negative Dehn twists (also known as achiral Lefschetz singularities).
Since we constrain local monodromies to be positive Dehn twists here, the black vertices
should have incident edges oriented outward, the 5th condition of Definition 1. ¤

We call a chart Γ as in Proposition 3 a chart description of the Lefschetz fibration
f : X → D. Such a chart is not unique. There are some moves on charts, called chart
moves, that do not change the Lefschetz fibration [12]. In Section 4, we show that any
chart of f can be changed to a certain standard form by chart moves (Theorem 7). As
an application, we will prove the following theorem.

Theorem 4. Consider a genus one Lefschetz fibration over the 2-disk, f : X → D,
with a monodromy representation ρ̃ : π1(D \∆, y0) → SL(2,Z) with global monodromy µ̃.
Suppose that µ̃ is sk

1 or (s1s2)3sk
1 in SL(2,Z) for a non-negative integer k. Then after

applying elementary transformations, f has monodromy factorization equal to (s1, s2)6p ·
(s1)k or to (s1, s2)6p+3 · (s1)k, respectively, for some non-negative integer p.

Here elementary transformations mean transformations in the forms:

(g1, . . . , gi, gi+1, . . . , gn) 7→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gn)

and

(g1, . . . , gi, gi+1, . . . , gn) 7→ (g1, . . . , gigi+1g
−1
i , gi, . . . , gn)

for i = 1, . . . , n− 1.
In Theorem 4, let n be the number of the Lefschetz singularities of f . Since the length

of any monodromy factorization of f is n, the number p in the theorem is determined
from n and k by p = (n− k)/12 or p = (n− 6− k)/12, respectively.

Theorem 4 is equivalent to the following.

Theorem 5. Let (g1, . . . , gn) be an n-tuple of elements of SL(2,Z) which are con-
jugates of s1.

(1) If g1 · · · gn = sk
1 in SL(2,Z) for some non-negative integer k, then p := (n−k)/12 is a

non-negative integer and (g1, . . . , gn) can be changed to (s1, s2)6p ·(s1)k by elementary
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transformations.
(2) If g1 · · · gn = (s1s2)3sk

1 in SL(2,Z) for some non-negative integer k, then p := (n−6−
k)/12 is a non-negative integer and (g1, . . . , gn) can be changed to (s1, s2)6p+3 · (s1)k

by elementary transformations.

The case of k = 0 in (1) of Theorem 5 is the famous theorem due to Moishezon
[17]. The reason why we consider that the global monodromy µ̃ is sk

1 or (s1s2)3sk
1 will

be explained in Section 3 (Theorem 6).

2.3. Handlebody descriptions of broken Lefschetz fibrations.
A broken Lefschetz fibration over the 2-disk with connected round singular set and

round image an embedded curve parallel to the boundary of the 2-disk can be depicted
rather easily using handlebodies. (As shown in [4], we can always modify such a fibration
so that all the Lefschetz critical values are enclosed by the round image on the higher
genus side.) These assumptions yield having a Lefschetz fibration over the 2-disk, and a
round 2-handle attached to it. Recall that a round 2-handle is a fiberwise 2-handle at-
tachment parametrized along S1. That is, we glue an S1×D3 to a Lefschetz fibration over
the 2-disk in one of the two possible ways: There are two splittings of the D3 = D2×D1

bundle over S1 into a D2-bundle and a D1-bundle over S1, as classified by the homotopy
classes of mappings from S1 into the Grassmannian G(3, 2). Since π1(G(3, 2)) = Z2,
we get two splittings of this sort up to isotopy, each specifying a 3-dimensional 2-handle
structure on all D3 fibers of the initial (trivial) bundle S1 × D3 → S1. When we re-
strict this bundle to the boundary, on the first component we get an S1 ×D1 subbundle
over S1. The total space L of this subbundle is a submanifold of S1 × D3. Hence a
4-dimensional round 2-handle is a copy of S1 × D3, attached to the boundary of some
4-dimensional manifold X by an embedding of L ↪→ ∂X. Round handles corresponding
to the trivial splitting of the D3 bundle over S1 are called regular or untwisted round
2-handles, whereas those corresponding to the nontrivial splitting are called twisted.

Regarding the circle factor of a regular (untwisted) round 2-handle S1 × D2 × D1

as the union of a 0-handle and a 1-handle, we can express an untwisted round 2-handle
as the union of a 4-dimensional 2-handle H2 and a 3-handle H3. For a twisted round
2-handle one obtains a similar decomposition. The splittings imply the difference: the
3-handle goes over the 2-handle geometrically twice and algebraically zero times in the
untwisted case, and both geometrically and algebraically twice in the twisted case. (The
reader can turn to [4] for the details, and for general round handles.)

Let us now describe the Kirby diagrams where one attaches a round 2-handle to
a Lefschetz fibered 4-manifold with boundary. The round 2-handle attachment to a
surface fibration over a circle that bounds a Lefschetz fibration is realized as a fiberwise
2-handle attachment. The attaching circle of the 2-handle H2 of a round 2-handle is
a simple closed curve γ on a regular fiber, which is preserved under the monodromy
of this fibration up to isotopy. Since this attachment comes from a fiberwise handle
attachment, H2 should have fiber framing zero. As usual, we do not draw the 3-handle
H3 of the round 2-handle, which is forced to be attached in a way that it completes the
fiberwise 2-handle attachments. The difference between the untwisted and twisted cases
is implicit: It is distinguished by whether the curve γ is mapped to γ or −γ under a
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self-diffeomorphism of the fiber determined by the monodromy; yielding an untwisted or
a twisted round 2-handle, respectively.

The usefulness of working with round 2-handles is that one can depict any Lefschetz
fibration over a disk together with a round 2-handle attachment via explicit Kirby dia-
grams. We first draw the Lefschetz 2-handles following the monodromy data on a regular
diagram of D2×Σg (where Σg is the regular fiber) with fiber framings −1, then attach H2

with fiber framing 0 and includes an extra 3-handle to complete it to a round 2-handle.
We draw the standard Kirby diagram where the 1-handles depict the fiber and thus we
can match the fiber framings with the blackboard framings.

To illustrate our descriptions above, let us consider the two examples given in Figure
2. In the first example the round 2-handle is attached to an elliptic Lefschetz fibration
with global monodromy isotopic to id, so γ (given by the red 0-framed 2-handle) is
mapped onto itself with the same orientation. Therefore it is a regular round 2-handle.
Whereas in the second example the global monodromy is isotopic to −id, mapping γ to
−γ. Thus, this is a twisted round 2-handle attachment. Both of these examples will be
revisited later in the paper.

Figure 2. Regular and twisted round 2-handle attachments to elliptic Lefschetz fibrations over
D2 with monodromy factorization (ta, tb)

6 and (ta, tb)
3, respectively, where ta, tb are positive

Dehn twists along the obvious fundamental group generators of the 2-torus. Red handles make
up the round 2-handles.

3. Simplified broken Lefschetz fibrations.

Let X be a closed orientable 4-manifold. We will put further constraints on the
broken Lefschetz fibrations in consideration to have a more tractable family. First, we
ask the round singular set to be connected, i.e. to consist of at most one circle, and its
image on S2 to be embedded. If the round singular set is empty, we would be dealing
with an honest Lefschetz fibration, so let us now describe the more interesting case of
non-empty round locus. We then ask all the regular fibers to be connected. (Note that
in general round singularities can give rise to disconnected regular fibers.) This gives a
decomposition of the broken Lefschetz fibration into three pieces; a genus g−1 Lefschetz
fibration over a 2-disk we call the lower side, a genus g Lefschetz fibration over a 2-
disk called the higher side, and a round cobordism between them containing the round
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singular set in the interior, where g > 0. The third, and the last condition we impose
is to have all the Lefschetz singularities on the higher side, which equivalently means
that the lower side consists of a trivial genus g − 1 surface bundle. Broken Lefschetz
fibrations satisfying these properties were extensively studied in [4], under the name
simplified broken Lefschetz fibrations (abbreviated SBLF), which we will adopt herein as
well. (Careful reader will notice that in [4], the connectivity of fibers was not built into
the definition of a simplified fibration. It was later shown in [3] that this could always be
achieved after a homotopy.) Moreover, if the highest genus of a regular fiber in a given
SBLF is g, we will call it a genus g simplified broken Lefschetz fibration. Observe that a
genus g SBLF can possibly have empty round singular set, in which case it is an honest
genus g Lefschetz fibration over S2.

Relying on the work of Gay-Kirby in [6], one can always obtain achiral broken
Lefschetz fibrations over S2 with embedded round image. These achiral Lefschetz singu-
larities can then be replaced locally by broken Lefschetz fibrations, as argued in [5], [15].
(Or alternatively the construction in [1] can be employed, where achiral singularities are
already avoided.) Furthermore, as observed by Williams, one can homotope such a bro-
ken Lefschetz fibration to one with connected round singular set and embedded round
image [20]. Next, the flip-and-slip move of [3] can be employed to obtain a homotopic
broken Lefschetz fibration with the same properties and with only connected fibers. Fi-
nally, one can push the Lefschetz singularities to the higher side, as argued in [4]. In
short, there is always a simplified broken Lefschetz fibration on any X.

The monodromy representations of SBLFs are simple. Let Mapγ(Σg) be the
subgroup of Map(Σg), the mapping class group of orientation-preserving self-diffeo-
morphisms of Σg, which consists of elements that fix the embedded curve γ, up to isotopy.
Then there is a natural homomorphism

φγ : Mapγ(Σg) → Map(Σg−1).

We let γ be the attaching circle of (the 2-handle of) a round 2-handle attached to the
higher side of a given SBLF. Observe that our assumption on the connectivity of fibers
implies that γ is a nonseparating curve. Define Sg to be the set of pairs (µ, γ) such
that µ ∈ Mapγ(Σg) and µ ∈ Ker (φγ). Recall that when the fiber genus is at least two,
fiber-preserving gluing maps are determined uniquely up to isotopy. Hence, given any
tuple (µ, γ) ∈ S =

⋃
g≥3 Sg, and a factorization of µ into positive Dehn twists, we can

construct a unique SBLF. If g < 3, then one also needs to tell how the pieces are glued
along the low genera surface bundles over circles; amounting to two possible choices for
g = 0 pieces and Z2-choices for g = 1 pieces [8].

The map φγ : Mapγ(Σg) → Map(Σg−1) above factors as

ψγ : Mapγ(Σg) → Map(Σg \N) and ϕγ : Map(Σg \N) → Map(Σg−1),

where N is an open tubular neighborhood of γ. (The middle group does not need to fix
the boundaries.)

Now let us assume that f : X → S2 is a SBLF with higher side regular fiber T 2.
We fix two generators of π1(T 2) ∼= Z2 represented by simple closed curves a and b on T 2
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and an isomorphism Map(T 2) ∼= SL(2,Z), such that the positive Dehn twist ta along a

is mapped to s1 and tb along b to s2, where

s1 =
(

1 0
1 1

)
and s2 =

(
1 −1
0 1

)
.

What underlies our choices here is the convention of [13]. So the curves a and b corre-
spond to (0, 1)T and (1, 0)T , respectively. Let µ̃ be the image of the global monodromy µ

of the Lefschetz fibration on the higher side of f : X → S2 under the chosen isomorphism
Map(T 2) ∼= SL(2,Z).

Without loss of generality, we can assume that the non-seperating curve γ is equal
to a, so the above condition translates to having

µ̃(0, 1)T = (0, 1)T or µ̃ (0, 1)T = −(0, 1)T .

For these two cases, we respectively get:

µ̃ =
(

1 0
m 1

)
or

(−1 0
n −1

)
,

where m,n are arbitrary integers. Note that the former corresponds to having a regular
round handle cobordism, whereas the latter amounts to a twisted one. (See [4].)

If the diagonal entries of µ̃ are +1, then µ̃ = sm
1 . If they are −1, then we can

express µ̃ as −id s−n
1 = (s1s2)3s−n

1 . On the other hand, if m < 0, we can employ the
following trick: Include |m| right-handed Dehn twists to the factorization, which provides
us with a SBLF f ′ : X#|m|CP2 → S2, again with higher genus one. (See the isotropic
blow-up example of [2], and [4] for the handlebody argument we reproduce here.) This
is due to the fact that, the introduction of each extra right-handed Dehn twist along a

can be seen as in Figure 3. Since the 0-framed 2-handle (drawn in red in the figure) of
the round 2-handle is attached fiberwise, it does not link with any one of the Lefschetz
2-handles, explaining why we can perform this modification without interfering with the
attachment of these 2-handles. Sliding the blow-up curve over the 0-framed 2-handle of
the round 2-handle, we realize it as a new Lefschetz 2-handle, attached along the same
curve a. The induced monodromy on the lower side does not change, and therefore it
can be glued to this broken Lefschetz fibration over the 2-disk in the same way it was
done for f : X → S2. Hence, we can replace µ̃ with µ̃′ = id, after passing to a blow-up
of X. The very same line of arguments work for n > 0 case as well, where we end up
replacing µ̃ with µ̃′ = −id. (Note that s±1

1 commutes both with −id = (s1s2)3 and sm
1 ,

so there is no order issue.)
We have proved:

Theorem 6. Let X admit a genus one simplified broken Lefschetz fibration. Then,
possibly after blowing-up X, we get a genus one simplified broken Lefschetz fibration whose
global monodromy on the higher side maps to µ̃ = sk

1 or to (s1s2)3sk
1 in SL(2,Z), for k a

non-negative integer.
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Figure 3. Blow-up of a broken Lefschetz fibration over a 2-disk.

4. Monodromies of genus one Lefschetz fibrations over a 2-disk.

Let f : X → D be a genus one Lefschetz fibration over a 2-disk and

ρ : π1(D \∆, y0) → Map(T 2)

be its monodromy representation, where ∆ is the set of critical values of f , y0 ∈ ∂D is
a fixed base point. For a given isomorphism Map(T 2) ∼= SL(2,Z), we get a monodromy
representation ρ̃ : π1(D \∆, y0) → SL(2,Z).

By Theorem 6, we may assume that the global monodromy µ̃ is equal to sk
1 or to

(s1s2)3sk
1 for a non-negative integer k. For simplicity, we denote by q (or q(f)) the integer

0 or 1 such that µ̃ = (s1s2)3qsk
1 .

The number of critical values of f is denoted by c(f) = n.
Local moves, called chart moves, are introduced in [12], [13]. If two charts are

related by chart moves, then they describe equivalent monodromy representations of
genus one Lefschetz fibrations.

Theorem 7. Let f : X → D be a genus one Lefschetz fibration with µ̃ =
(s1s2)3qsk

1 , where q ∈ {0, 1} and k is a non-negative integer. Let Γ be a chart description
of f .

(1) By chart moves, the chart Γ can be changed to a chart written as Np q (U1U2)3qUk
1

for some non-negative integer p.
(2) In (1), the number p is uniquely determined and it is equal to (c(f)− 6q − k)/12.

Here N is a chart consisting of a single degree-12 vertex of negative type and 12
black vertices together with 12 edges, which we call a nucleon, and Ui (i = 1, 2) is a
chart consisting of a black vertex and a boundary vertex with an edge labeled with i (see
Figure 4). The chart (U1U2)3qUk

1 is the union of some copies of U1 and U2 appearing
along ∂D in this order. For example, N2 q (U1U2)3U4

1 is as in Figure 5.
As a corollary to Theorem 7, we obtain Theorem 4:
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Figure 4. Left: a nucleon. Right: Ui (i = 1, 2).

Figure 5. N2 q (U1U2)
3U4

1 .

Proof of Theorem 4. Let f be a genus one Lefschetz fibration with µ̃ =
(s1s2)3qsk

1 , where q ∈ {0, 1} and k is a non-negative integer. Take a chart descrip-
tion Γ of f . By Theorem 7, we may assume that Γ is Np q (U1U2)3qUk

1 . Taking a
Hurwitz generator system of π1(D \∆Γ, y0) in an obvious way, Np yields a factorization
(s1, s2)6p and (U1U2)3qUk

1 yields (s1, s2)3q · (s1)k. ¤

Corollary 8. Let f and f ′ be genus one Lefschetz fibrations over a 2-disk with

µ̃(f) = µ̃(f ′) = (s1s2)3qsk
1

for q ∈ {0, 1} and a non-negative integer k. Then f and f ′ are equivalent if and only if
c(f) = c(f ′).

The remainder of this section is devoted to proving Theorem 7.
Let W be a word xε1

1 xε2
2 · · ·xεm

m with xi ∈ {s1, s2} and εi ∈ {1,−1} for i = 1, . . . , m.
We say that a word W ′ is a subword of W if W ′ is the empty word or if there exists a
finite sequence of integers, i1, i2, . . . , in with 1 ≤ i1 < i2 < · · · < in ≤ m such that W ′ is
x

εi1
i1

x
εi2
i2
· · ·xεin

in
.
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Lemma 9. Let W be a word (s1s2)3qsk
1 with q ∈ {0, 1} and k a non-negative integer.

Let W ′ be a subword of W . If W ′ = 1 in SL(2,Z), then W ′ is the empty word.

Proof. By a direct calculation, we see that if a subword W ′′ of (s1s2)3 is equal
to sn

1 for some n ∈ Z then W ′′ is sm
1 , for m ∈ {0, 1, 2, 3}. Thus W ′ should be the empty

word. ¤

An edge of a chart is said to be of type (1, 6), (1, 12) or (1, ∂) if the source is a
black vertex and the target is a degree-6 vertex, a degree-12 vertex or a boundary vertex,
respectively. An edge of a chart is said to be of type (n, 6), (n, 12) or (n, ∂) where
n ∈ {6, 12} if the source is a degree-n vertex and the target is a degree-six vertex, a
degree-12 vertex or a boundary vertex, respectively.

For a degree-6 vertex v of a chart, a middle edge of v means the middle one of the
three consecutive edges oriented toward v or that of the three consecutive edges oriented
outward from v. A non-middle edge of v is an edge incident to v that is not a middle
edge.

An edge e of a chart is called a boundary edge if e ∩ ∂D 6= ∅.
We can now prove:

Proof of Theorem 7. Let N(∂D) be a regular neighborhood of ∂D in D. First,
by chart moves of type ∂ defined in [12] (Fig. 13), we can change Γ so that Γ∩N(∂D) =
((U1U2)3qUk

1 ) ∩ N(∂D). This is possible because ρΓ(∂D) = µ̃ = (s1s2)3qsk
1 (see [12]).

Then let p be the number of degree-12 vertices of negative type minus the number of
those of positive type. Comparing the numbers of sources and targets of the edges, we
see that c(f) = 12p + 6q + k. Therefore p = (c(f)− 6q − k)/12 for any chart description
Γ′ with Γ′ ∩N(∂D) = ((U1U2)3qUk

1 ) ∩N(∂D). This implies the second assertion of the
theorem.

By the argument in the proof of Theorem 21 of [13], we can change Γ by chart moves
so that the degree-12 vertices are all positive or all negative.

We apply an argument similar to that of Lemma 22 of [13] to remove all edges of
type (1, 6). Let us see this procedure below, so-called the reduction process of edges of
type (1, 6). Note that every boundary edge of Γ is oriented toward the boundary ∂D.

Suppose that there exists an edge of type (1, 6), say e, incident to a black vertex v0

and a degree-6 vertex v1. Note that e is oriented from v0 to v1.

Step 1: If e is a non-middle edge of v1, then apply a chart move called a CII-move
(Figure 6 of [13]) to remove e and v1. Then the total number of edges of type (1, 6) and
degree-6 vertices decreases.

Step 2: Suppose that e is a middle edge of v1. Put e = e1, and let e2 be the first
edge of v1 that appears on the left when we walk along e1 toward v1. The edge e2 is a
non-middle edge of v1 and is oriented toward v1. Let v2 be the other endpoint of e2.

(1) If v2 is a black vertex, then e2 is an edge of type (1, 6) which is a non-middle edge
of v1. By a CII-move, we can reduce the total number of edges of type (1, 6) and
degree-6 vertices.

(2) If v2 is a boundary vertex, then it contradicts the assumption that every boundary



Broken Lefschetz fibrations with small fiber genera 889

edge is oriented toward the boundary ∂D.
Thus we assume that v2 is a vertex of degree-6 or degree-12. Let e3 be the first

edge of v2 that appears on the left when we walk along e2 toward v2.
(3) Suppose that e3 is oriented toward v2. Then v2 is a degree-6 vertex, and e2 and e3

are non-middle edges of v2. Apply a chart move, called a channel change (Figure 4 of
[13]) as in Figure 6. By a CII-move, we can remove v2 and reduce the total number
of edges of type (1, 6) and degree-6 vertices.

Figure 6. A chart move.

(4) Suppose that e3 is oriented outward from v2. Apply a channel change as in Figure
7. There are two cases.
(4-a) If the edge incident to v0 in the new chart is of type (1, 6), then go back to

Step 1.
(4-b) Otherwise, the new chart has fewer edges of type (1, 6).

Figure 7. A chart move.

Note that, except Step 2(4-a), we obtain a new chart, say Γ′, such that the number
of edges of type (1, 6) of Γ′ is less than that of Γ or the total number of edges of type
(1, 6) and degree-6 vertices of Γ′ is less than that of Γ. In Step 2(4-a), we have a new
chart, say Γ′, such that the total number of edges of type (1, 6) and degree-6 vertices of
Γ′ is less than or equal to that of Γ.

We assert that Step 2(4-a) cannot occur repeatedly forever. Suppose that Step 2(4-a)
occurs for Γ with v0 and let Γ1 be the new chart. Suppose that Step 2(4-a) occurs for Γ1

with v0 and let Γ2 be the new chart. Suppose this happens forever: for s = 1, 2, . . . , Step
2(4-a) occurs for Γs with v0 and let Γs+1 be the new chart. Then we show a contradiction
below.

Let N(Γ) be a regular neighborhood of Γ in D. Each connected component of the
closure of ∂N(Γ) \ ∂D in D is a simple loop or a simple arc. Let C be such a component
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that contains a point, say v′0, near v0. We give an orientation to C so that when we walk
along C from v′0 in this orientation, the edge e1 appears on the right side. Let C+ be C

itself if C is a loop, or let C+ be the arc that is obtained from C by cutting along v′0 such
that C+ is on the positive side of v′0 with respect to the orientation of C. In the latter
case, C+ connects v′0 with a point of ∂D. Let e1, e2, . . . , em be the edges of Γ that appear
on the right side when we walk along C+ from v′0. (This definition is compatible with
e1, e2 and e3 in Step 2(4).) For each i (i = 1, . . . , m), let εi be +1 if the orientation of the
edge ei is parallel to the orientation of C+, otherwise let εi = −1, and let fi denote the
edge ei with the sign εi in the exponential notation, i.e., fi = eεi

i . For example, in the
left of Figure 7, edges with signs f1, f2 and f3 are e+1

1 , e−1
2 and e+1

3 . Since we suppose
that Step 2(4) occurs for Γ1 with v0, we see that ε4 = −1 and ε5 = +1. Similarly, by the
assumption, we see that εi = −1 (if i is even) and εi = +1 (if i is odd).

If C+ is an arc, then em is a boundary edge of Γ. Since every boundary edge of Γ is
oriented toward the boundary ∂D, we have εm = +1. Hence m is odd, say 2s + 1. Then
the chart Γs has an edge of type (1, ∂) with v0 as an endpoint. We cannot apply Step
2(4-a) to Γs with v0. This is a contradiction.

If C+ is a loop, then f1, f2, . . . , fm is a sequence of edges of Γ as in the proof of
Lemma 22 of [13]. By a similar argument with the proof of Lemma 22 of [13], we have
a contradiction. (Here is a sketch of the proof. Note that fm is f−1

1 = e−1
1 and εm = −1.

Thus m is even. On the other hand, if e1 is labeled with 1, then ei is labeled with 2 (if
i is even) and with 1 (if i is odd). Since em = e1, em is labeled with 1. Thus m is odd.
This is a contradiction. Similarly, if e1 is labeled with 2, then we have a contradiction.)

Therefore, in the procedure above, even if Step 2(4-a) occurs many times, one of
the cases of Step 1 and Step 2 except Step 2(4-a) occurs eventually. Then the result is a
chart, say Γ′, such that the number of edges of type (1, 6) of Γ′ is less than that of Γ or
the total number of edges of type (1, 6) and degree-6 vertices of Γ′ is less than that of Γ.
If the number of edges of type (1, 6) of Γ′ is not less than that of Γ, then the number of
degree-6 vertices of Γ′ is less than that of Γ. In this case, we apply the procedure above
to this Γ′. By induction on the number of degree-6 vertices, we eventually have a chart
with fewer edges of type (1, 6) than the original chart Γ.

The whole procedure above reduces the number of edges of type (1, 6), which is
referred to as the reduction process of edges of type (1, 6) in this paper.

Repeating the reduction process of edges of type (1, 6), we remove all edges of type
(1, 6). Now every black vertex is an endpoint of an edge of type (1, 12) or (1, ∂).

Suppose that p is non-negative, i.e., there are no degree-12 vertices or there are p

degree-12 vertices of negative types. In this case, we assert that there are no edges of
type (6, ∂) or (12, ∂): Since there are no degree-12 vertices of positive type, there are no
edges of type (12, ∂). Suppose that there is an edge e of type (6, ∂) whose target is a
boundary vertex v0 and the source is a degree-six vertex v1. The three edges incident to
v1 oriented toward v1 are edges of type (6, 6). Let v2, v3, v4 be the degree-six vertices of
the sources. There might be duplication in v1, v2, v3, v4, but at least one of v2, v3, v4 is
not v1. Continue this argument and we obtain a strictly increasing family of degree-six
vertices. Since Γ has a finite number of degree-six vertices, this yields a contradiction.
Thus there are no edges of type (6, ∂) or (12, ∂). Now all boundary vertices are targets of
edges of type (1, ∂), and they form the latter part (U1U2)3qUk

1 . By the proof of Theorem
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21 of [13] again, we can change the remainder into a union of nucleons. Now we have
Np q (U1U2)3qUk

1 .
Suppose that p is a negative integer, i.e., all degree-12 vertices are of positive type.

We will show that this case never happens. All black vertices are sources of edges of type
(1, ∂). Let M be the boundary vertices of Γ which are the targets of the edges of type
(1, ∂). Let W ′ be the subword of the word (s1s2)3qsk

1 obtained by deleting letters that
correspond to the points of M . Then W ′ = 1 in SL(2,Z). (This is seen as follows. Let C

be a simple loop in D which is close and parallel to ∂D. Shrinking the (1, ∂)-edges, we
may assume that they are between the loops C and ∂D. Since there are no black vertices
inside C, ρΓ(C) = 1 in SL(2,Z).) By Lemma 9, W ′ must be the empty word. Thus Γ is
chart move equivalent to Γ′ q (U1U2)3qUk

1 for some chart Γ′ without black vertices such
that Γ′ ∩ ∂D = ∅. By a chart move, we can remove Γ′ to obtain (U1U2)3qUk

1 . Then
p = 0, a contradiction.

Hence we see that Γ is chart move equivalent to Np q (U1U2)3qUk
1 . ¤

5. Four-manifolds admitting genus one SBLFs.

We are ready to identify the total spaces of higher genus one relatively minimal
SBLFs. We are going to start with the simplest cases when either the round singular set
or the set of Lefschetz critical points is empty:

No round singularity.
If in addition there are no Lefschetz critical points, then the fibration can be triv-

ialized over each hemisphere of the base S2. Thus, the total space and the fibration
are obtained by gluing two copies of T 2 × D2 equipped with projection maps onto D2

via some fiber-preserving diffeomorphism on their boundaries. This is equivalent to per-
forming a multiplicity ±1 logarithmic transform along a regular fiber T of the standard
fibration on T 2 × S2.

Recall that the fiber framing prescribes an isomorphism

H1(∂νT ) ∼= H1(T ;Z)⊕ Z,

where νT is the normal disk bundle of T , and the Z component is generated by the
positively oriented meridian mT of T , so the image of [∂D2] under the homomorphism
induced by the boundary diffeomorphism is of the form r[C] ± [mT ] for some primitive
curve C on T . Note that for r = 0 we get back the trivial fibration on T 2 × S2, and
for r = 1, we get the standard fibration on S1 × S3 derived from the Hopf fibration
on S3. We can map C to any primitive curve using a self-diffeomorphism of the fiber
which clearly extends over T 2 × D2. A handlebody description of the total space is
therefore obtained by adding a 2-handle to the standard diagram for T 2 ×D2 as shown
in the last diagram given in Figure 8. It is easy to see that the total space in this case
is S1 × L(n, 1) for some n > 1 [7]. Finally, our choice of orientation for L(n, 1) was
unimportant, since S1 × L(n, 1) admits an orientation preserving self-diffeomorphism
composed of an orientation reversing diffeomorphism on both components.

Lemma 10. The only closed oriented 4-manifolds admitting a locally trivial torus
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Figure 8. Top left: The trivial fibration on T 2 × S2. Top right: The fibration on S1 × S3

obtained from the Hopf fibration [7]. Bottom: The locally trivial torus fibration on S1×L(n, 1),
for n > 1.

fibration over S2 are S2 × T 2, S1 × S3, and S1 × L(n, 1), n > 1.

When there are Lefschetz singularities, we get a genus one Lefschetz fibration with
monodromy factorization (s1, s2)6k in SL(2,Z), whose total space is the elliptic surface
E(k), given in Figure 9. (This is the classical result of Kas [14], Moishezon [17],
Matsumoto [16].)

One round singular circle, no Lefschetz singularity.
Three possibilities for the total spaces in this case are (S2 × S2)#(S1 × S3),

CP2#CP2#(S1 × S3), or S4, as explored in [2] and depicted by the Kirby diagrams
in Figure 10. We will refer to these as “standard” broken fibrations on the corresponding
4-manifolds. The calculus to verify the total spaces can be found in [4].

We will show that there are two more possibilities for the total spaces of such fibra-
tions, Ln and L′n, completing the list in this case. To see this, observe that the handle
diagram for the total space consists of the standard diagram for T 2 ×D2 together with
the round 2-handle, and the 2-handle from the lower side pulled back to this diagram via
a fiber preserving self-diffeomorphism of the T 3 boundary. This 2-handle can be unlinked
from the 1-handle that the 0-framed 2-handle of the round 2-handle is linking with, giv-
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Figure 9. Elliptic Lefschetz fibration on E(k).

Figure 10. Left: Total space is (S2 × S2)#(S1 × S3) or CP2#CP2#(S1 × S3), depending on
whether m is even or odd, respectively. Right: SBLF on the 4-sphere.

ing us the handle diagram on the left hand side of the Figure 11. Note that the framing
of this 2-handle depends on how the 2-handle from the lower side is pulled back to this
diagram and can attain arbitrary values l. We can then simplify this diagram by first
sliding off both the 2-handle coming from the lower side and the 2-handle corresponding
to the fiber over the 0-framed 2-handle of the round 2-handle, and then canceling the
1-handle that links with this 0-framed 2-handle. This results in the diagram on the right
hand side of the Figure 11. Note that the framing l of the remaining 2-handle linking
with the 1-handle can be made 0 or 1 by using the 0-framed 2-handle linking it once.
Hence for each n, the number of times the 2-handle runs over the 1-handle, there are only
two types of 4-manifolds depending on the parity of l. It turns out that these 4-manifolds
Ln and L′n are in fact the ones introduced by Pao [18], for l even and odd, respectively,
whose Kirby diagrams described in [9] match with ours.

Thus we have shown:

Lemma 11. The only closed oriented 4-manifolds admitting a genus one simplified
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Figure 11. Other genus one SBLFs with no Lefschetz singularities.
On the right: The manifolds Ln and L′n for l even and odd, respectively.

broken Lefschetz fibration with no Lefschetz singularities and non-empty round locus are
S4, (S2 × S2)#(S1 × S3), CP2#CP2#(S1 × S3), Ln, and L′n, n > 1.

Remark 12. One can alternatively produce all these SBLFs from the standard
one on S4 by performing various logarithmic 1 transforms along a torus fiber on the
higher side and Gluck twists along an S2 fiber on the lower side while preserving the
fibration structure. The former yields (S2 × S2)#(S1 × S3) or Ln, whereas the latter
alters the parity and hands us CP2#CP2#(S1 × S3) or L′n, respectively. This can be
easily verified by drawing the handle diagram of the lower side following [5] for the two
cases, and then analyzing all possible fiber preserving gluings of T 2 ×D2.

Non-trivial cases.
Now we assume that neither the round singular set nor the set of Lefschetz critical

points is empty. From our results in the previous sections (namely, Theorems 4 and
6) it follows that, possibly after passing to a blow-up, the factorization of the global
monodromy on the higher side is Hurwitz equivalent to (ta, tb)3n · (ta)k, for some non-
negative integers n and k. Using the blow-up argument we gave in Section 3, it is easy
to see that when n = 0, we in fact get the blow-ups of any of the genus one SBLFs with
one round singular circle covered in the previous case. Below, we will focus on the case
(ta, tb)3n+3 · (ta)k for n non-negative.

Recall that to identify the total space of such a fibration, we also need to know the
identification of the boundaries of the higher and lower side with the ends of the round
cobordism in between. Let us first assume that the higher side is identified using the
identity, and postpone the discussion of the ‘twisted’ cases. Then there is a section of
the genus one fibration on the higher side which extends through the round cobordism.
This can be matched with a section of the trivial genus zero fibration on the lower side
to get a global section S of the broken Lefschetz fibration, with self-intersection m equal
to the sum of the self-intersections of the disk section of the genus one fibration and the
disk section of the genus zero fibration contained in S. The latter self-intersection can
be any integer; this can be thought of the number of times the fibers are fully rotated
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when identifying the S2 bundles over S1 on the boundaries of the lower side and the
round cobordism. Nevertheless, we are going to see that the total space is independent
of m. In fact a slight extension of the classical observation of Moishezon shows that
any orientation and fiber preserving self-diffeomorphism of the boundary of the higher
side with global monodromy (ta, tb)3n (and therefore with (ta, tb)3n · (ta)k) for n ≥ 1
can be extended to the interior, so we can keep assuming that the 2-handle of the round
2-handle is attached as shown in Figure 12. (However we will present our proof without
appealing to this observation.)

Figure 12. The SBLF with higher side monodromy (ta, tb)
3n+3 · (ta)k and a section.

Figure 12 gives a handlebody description of such a SBLF. The section S is repre-
sented by the 2-handle with framing m, linking the 0-framed 2-handle capping off the
obvious genus one surface given by the two 1-handles. Observe that there are two types
of Lefschetz handles; 3n + 3 pairs of Lefschetz handles with vanishing cycles along a and
b attached in an alternating fashion with the given linking pattern (for (ta, tb)3n+3), and
k Lefschetz handles attached along the curve a afterward (for (ta)k). The last three pairs
are drawn thicker in the figure. We will demonstrate our Kirby calculus arguments first
using these three pairs, before handling the remaining 3n pairs inductively. Lastly, the
round 2-handle is composed of the 0-framed 2-handle attached along a and the 3-handle,
both of which are given in red in the figure.

In order to arrive to a simpler handlebody diagram of the closed orientable 4-
manifold admitting this SBLF, we start with sliding-off all the 2-handles that were linking
the 1-handle carrying the curve a, using the 0-framed 2-handle of the round 2-handle.
This includes sliding the 0-framed 2-handle corresponding to the fiber over the 0-framed
2-handle of the round 2-handle twice, and then isotoping it away from the other 1-handle
together as well (while the m-framed 2-handle is dragged away with it). The resulting
diagram is given in Figure 13.

The rest of the calculus is captured in Figures 14 and 15. Here any 2-handle whose
framing is not indicated should be understood to have framing −1. In the following
paragraphs we spell out the details of this calculus, step by step.

The first diagram in Figure 14 is obtained after canceling the 1-handle against the
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Figure 13.

Figure 14.

0-framed 2-handle of the round 2-handle going over it once, and then sliding-off the
remaining lowest Lefschetz handle linking with the far left Lefschetz 2-handle only. The
framing of the latter 2-handle now becomes 0. In this process, we slid-off all the k

Lefschetz handles corresponding to (ta)k as well, so we get a total of k+1 2-handles with
framing −1 separated from the rest of the diagram.

To obtain the second diagram, we slide the second Lefschetz handle from the left
of the first diagram over the 0-framed 2-handle on the far left. Observe that these two
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handles were linking with the rest of the handles in exactly the same way, so the handle
we slide gets separated from the bigger chunk of our diagram. Then the Lefschetz 2-
handle in the very bottom of the diagram links only with the far left 2-handle and it can
be slided-off from it, turning this handle’s framing to +1.

The third diagram contains one of the crucial steps in our inductive argument that is
to follow. Namely, we slide the second (originally the third) Lefschetz 2-handle from the
left in the second diagram over the very first 2-handle, resulting in a 0-framed 2-handle
that no longer links with the 1-handle and links only with this very first 2-handle.

The fourth diagram is obtained by sliding all the 2-handles that link with the far
left 2-handle, using the 0-framed 2-handle linking with it. In particular this splits off
another (−1)-framed 2-handle. Importantly, the diagram now reduces to the far left
2-handle going over the 1-handle once and with a 0-framed 2-handle that appears as a
meridian to it, and 3n pairs of Lefschetz 2-handles following the very same pattern that
3n + 3 pairs did so before.

The first diagram of Figure 15 is simply obtained by inductively applying the above
calculus for all these triples of pairs of Lefschetz 2-handles. We therefore get a total of
4n + 4 copies of (−1)-framed 2-handles disjoint from the rest of the diagram, in addition
to the k copies of (−1)-framed 2-handles we have separated at the very beginning.

We pass to the second diagram by sliding the n copies of (+1)-framed 2-handles over
the far left (+1)-framed 2-handle and then unlinking them using the 0-framed 2-handle.
Doing this for all, we produce n pairs of 0 and 2-framed 2-handles linking once.

The third diagram is obtained by canceling the 1-handle against the (+1)-framed
2-handle running over it once, and then canceling the 0-framed unlinked unknot against
the 3-handle. Moreover, the pairs of 0 and 2-framed 2-handles can be turned into pairs of
0 framed 2-handles linking once with each other using the standard sliding argument for

Figure 15.
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each one of them. (That is, slide the 2-framed handle over the linking 0-framed handle
to change the framing of it by two, while still keeping them linked with each other only
once.)

For the fourth and last diagram, we observe that in the presence of (−1)-framed
2-handles (which we will have even when n and k are zero), the pair of 0 and m-framed
2-handles linking once can be turned into a disjoint pair of (+1) and (−1)-framed 2-
handles. Hence, the 4-manifold which is the total space of this SBLF is

(n + 1)CP2 #(5n + k + 5)CP2.

We can now turn to the remaining case; when the boundary fibration of the higher
side is identified with the higher end of the round cobordism using a twisted gluing. When
the fibration is cooked up this way, instead of the 2-handle representing the section S,
we get a 2-handle linking with the 1-handles and the 0-framed 2-handle corresponding to
the fiber (and linking with no other handle). However, this handle could be slid-off from
the first 1-handle (for a) using the 0-framed 2-handle of the round 2-handle first, and
from the second 1-handle (for b) using the (+1)-framed 2-handle in the second diagram
in Figure 15. Moreover, it can be unlinked from this (+1)-framed 2-handle using the
0-meridian repeatedly. It is not hard to see that we will end up getting an unknot that
links with the 0-framed 2-handle (originally corresponding to the fiber) at the end. After
standard moves we arrive at the final diagram in Figure 15.

Lastly, let us note that (S2 × S2)#(S1 × S3)#CP2 = CP2#CP2#(S1 × S3)#CP2,
and Ln#CP2 = L′n#CP2, which can be easily seen by sliding the 2-handles with framings
m and l in Figures 10 and 11, respectively, over the additional (−1)-framed unknotted
2-handle, and then separating this (−1)-framed 2-handle off again using the 0-framed
meridians.

We can now summarize our results. Letting the “standard” broken Lefschetz fibra-
tions on respective 4-manifolds refer to those we have considered above, we have:

Theorem 13. If f : X → S2 is a genus one relatively minimal simplified broken
Lefschetz fibration, then one of the following holds:

• If the singular set is empty, then (X, f) is T 2×S2, S1×S3 or S1×L(n, 1), n > 1,
equipped with standard locally trivial torus fibrations.

• If the round singular set is not empty, but the set of Lefschetz critical points is,
then (X, f) is (S2×S2)#(S1×S3), CP2#CP2#(S1×S3), S4, Ln, or L′n, n > 1,
equipped with standard broken fibrations, respectively.

• If the round singular set is empty, but the set of Lefschetz critical points is not,
then (X, f) is Hurwitz equivalent to E(n) with monodromy factorization (ta, tb)6n,
n > 0.

• If neither the round singular set nor the set of Lefschetz critical points is empty,
then, possibly after blow-ups, (X, f) is any one of (S2 × S2)#(S1 × S3)#kCP2 =
CP2#CP2#(S1 × S3)#kCP2, #kCP2, Ln#kCP2 = L′n#kCP2, n > 1 and k ≥ 0,
with higher side monodromy factorization (ta)k, or it is (n+1)CP2 #(5n+k+5)CP2

with higher side monodromy factorization Hurwitz equivalent to (ta, tb)3n+3 · (ta)k,
for n ≥ 0 and k ≥ 0.
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Next corollary concerns solely with the topology of 4-manifolds admitting genus one
simplified broken Lefschetz fibrations:

Corollary 14. Let X be a 4-manifold admitting a genus one (possibly not rel-
atively minimal) simplified broken Lefschetz fibration, and k be its euler characteristic.
Then one of the following holds, possibly after replacing X with a blow-up of it :

• π1(X) = Z and X = (S1 × S3)#kCP2, CP2#(S1 × S3)#(k − 1)CP2 for k > 1, or
(S2 × S2)#(S1 × S3).

• π1(X) = Zn and X = Ln#(k − 2)CP2 or L′n#(k − 2)CP2, n > 1, k ≥ 2.
• π1(X) = Z× Z and X = (T 2 × S2)#kCP2.
• π1(X) = Z× Zn and X = (S1 × L(n, 1))#kCP2, n > 1.
• π1(X) = 1, and either X = E(n) with k = 12n, or otherwise, X = nCP2 #5nCP2,

for some non-negative n.

Proof. Fundamental groups and euler characteristics of the 4-manifolds men-
tioned in the statement are well-known, and they can be easily computed using the
handle diagrams we have given above as well. We obtain the above list after regrouping
all the 4-manifolds given in Theorem 13. (Here nCP2#5nCP2 = S4 for n = 0.) ¤

Remark 15. Except for X = S4, S1 × S3, S1 × L(n, 1), Ln, L′n, n > 1, or their
blow-ups, in all the cases covered in Theorem 13, the total space X has b+(X) > 0,
and therefore admits a near-symplectic form. For each case, we have depicted above
a fibration with a section. Since the fibers are connected, it follows that fibers are
homologically essential, and in turn, these are near-symplectic broken Lefschetz fibrations
in the sense of [2], [4], [3].

Remark 16. In the last case given in Theorem 13, we classified the ambient
4-manifolds only up to blow-ups. This is due to the essential role that the classification
of Lefschetz fibrations over the 2-disk with µ̃ = (s1s2)3qsk

1 played in our proof. There we
assume that k is a non-negative integer, which we achieved by passing to a blow-up of
the original fibration.

Nevertheless, there are genus one SBLFs which are not listed in our Theorem, unless
one passes to a blow-up of them. A nice example, due to Tim Perutz (twisted case of
which was included later in [4]), is given by the diagram in Figure 16.

Figure 16. Genus one SBLFs on S2 × S2 and CP2#CP2, for m : even and odd, respectively.
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The reader can verify that the global monodromy of the higher side of this fibration maps
to

µ̃ =
(−1 0

4 −1

)
,

in SL(2,Z), which by our treatment, requires blow-ups. As shown in [4], the total space
X of this fibration is S2×S2 or CP2#CP2, depending on the parity of m. (There appears
to be a typo in [4]; the lower left entry of µ̃ should read 4 not 2.) To apply our algorithm,
we blow-up X four times, and pass to a genus one SBLF, with monodromy factorization
(s1, s2)3 of −id in SL(2,Z). Our proof of Theorem 13 verifies that the total space is
CP2#5CP2, as expected.
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