Griess algebras generated by the Griess algebras of two 3A-algebras with a common axis

By Ching Hung LAM and Che Sheng SU

(Received Nov. 25, 2012) (Revised May 31, 2013)

Abstract. In this article, we study Griess algebras generated by two pairs of Ising vectors (a_0, a_1) and (b_0, b_1) such that each pair generates a 3A-algebra U_{3A} and their intersection contains the W_3 -algebra $\mathcal{W}(4/5) \cong$ $L(4/5, 0) \oplus L(4/5, 3)$. We show that there are only 3 possibilities, up to isomorphisms and they are isomorphic to the Griess algebras of the VOAs $V_{F(1A)}$, $V_{F(2A)}$ and $V_{F(3A)}$ constructed by Höhn–Lam–Yamauchi.

1. Introduction.

The study of vertex operator algebra (VOA) as a module of a simple Virasoro VOA was first initiated by Dong-Mason-Zhu [DMZ], in which they showed that the famous Moonshine VOA V^{\natural} has a full sub-VOA isomorphic to a tensor product of 48 copies of the simple Virasoro VOA L(1/2, 0). Partially motivated by $[\mathbf{DMZ}]$ and Conway's work [Co], Miyamoto [Mi1] introduced the notion of simple conformal vectors of central charge 1/2, which we call *Ising vectors* in this article. In addition, he developed a method to construct involutions in the automorphism group of a VOA V from Ising vectors. These automorphisms are often called Miyamoto involutions. When V is the famous Moonshine VOA V^{\natural} , Miyamoto [Mi2] also showed that there is a 1-1 correspondence between the 2A-involutions of the Monster group and Ising vectors in V^{\natural} (cf. [Hö]). This correspondence turns out to be very important in the study of the Monster group. In particular, many mysterious phenomena associated with the 2A-involutions of the Monster can be interpreted using the theory of VOA. For instance, the McKay's observation on the affine E_8 -diagram has been studied in [LYY], [LYY2] using Miyamoto involutions and several VOAs generated by two Ising vectors have been constructed explicitly and studied. These VOAs are usually denoted by U_{nX} , where nX = 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, or 3C and we call them the nX-algebra. In [Sa], the Griess algebras generated by two Ising vectors contained in a VOA with a positive definite invariant bilinear form over \mathbb{R} are classified. The main result is that the Griess algebras $\mathcal{G}U_{nX}$ of the nine VOAs $U_{nX}, nX \in \{1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A\}$, constructed in [LYY] exhaust all the possibilities. He thus established another natural correspondence between the dihedral groups generated by two 2A-involutions and Griess sub-algebras generated by two Ising vectors in V^{\natural} .

In [**HLY**], certain mysterious relations between the Fischer group Fi_{24} and the affine E_6 -diagram are studied. In particular, some VOAs generated by a pair of 3A-algebras

²⁰¹⁰ Mathematics Subject Classification. Primary 17B69; Secondary 20B25.

Key Words and Phrases. Griess algebra, vertex operator algebra, Ising vector, Miyamoto involution.

are constructed. These VOAs are denoted by $V_{F(1A)}$, $V_{F(2A)}$, and $V_{F(3A)}$ in [**HLY**]. In this paper, we will study Griess sub-algebras generated by the Griess algebras of two 3A-algebras U and U' such that their intersection contains a sub-VOA isomorphic to $\mathcal{W}(4/5) = L(4/5, 0) \bigoplus L(4/5, 3)$. We will show that there are only three possibilities, up to isomorphism and they are isomorphic to the Griess algebras of $V_{F(1A)}$, $V_{F(2A)}$, and $V_{F(3A)}$. Our technique is similar to [**LS**], in which Griess algebras generated two 2A-algebras with a common Ising vector were studied.

The main idea is to analyze various Griess sub-algebras generated by two Ising vectors using Sakuma's Theorem. The organization of the paper is as follows. In Section 2, we review some basic definitions and results about VOAs over \mathbb{R} and Griess algebras. In particular, we recall the definition of Miyamoto involutions and some of the consequences. A result of Sakuma is also reviewed. In Section 3, we recall some facts and list some basic properties of the 3A and 6A-algebras. An automorphism associated to a W_3 -algebra $\mathcal{W}_3(4/5) = L(4/5, 0) \bigoplus L(4/5, 3)$ and its real form $\mathcal{W}^+_{\mathbb{R}}$ will also be reviewed. In Section 4, we will state and prove our main theorem by case and case analysis.

2. Preliminary.

The following theorem is well-known (cf. [FLM, Theorem 8.9.5]).

THEOREM 2.1. Let $(V, Y, \mathbf{1}, \omega)$ be a VOA with $V = \bigoplus_{n \in \mathbb{Z}} V_n$, $V_n = 0$ for n < 0, dim $V_0 = 1$, and $V_1 = 0$. Then the weight 2 space V_2 has a commutative (non-associative) algebra structure defined by the product,

$$a \cdot b = a_{(1)}b \ (= b_{(1)}a).$$

Moreover, there is a symmetric bilinear form $\langle \cdot, \cdot \rangle$ defined by

$$\langle a, b \rangle \mathbf{1} = a_{(3)}b \ (= b_{(3)}a), \quad a, b \in V_2.$$

which is the restriction of the contragredient (cf. [FHL, Section 5.2]) bilinear form of V on V_2 . Note that the bilinear form on V_2 is invariant in the sense that

$$\langle a \cdot b, c \rangle = \langle a, b \cdot c \rangle \quad for \ all \ a, b, c \in V_2.$$
 (1)

DEFINITION 2.2. The algebra $\mathcal{G} = \mathcal{G}V = (V_2, \cdot, \langle \cdot, \cdot \rangle)$ in Theorem 2.1 is called the *Griess algebra*. An automorphism of \mathcal{G} is a linear automorphism that preserves the product and the bilinear form. The group of all automorphisms of \mathcal{G} is denoted by $\operatorname{Aut}(\mathcal{G})$. It is clear that $f \in \operatorname{Aut}(V)$ implies $f|_{\mathcal{G}} \in \operatorname{Aut}(\mathcal{G})$.

In this article, all VOAs are over the real field \mathbb{R} , unless otherwise stated. The following is our main assumption.

ASSUMPTION 1. Let $(V, Y, \mathbf{1}, \omega)$ be a VOA over \mathbb{R} with $V = \bigoplus_{n \in \mathbb{Z}} V_n$, $V_n = 0$ for n < 0, dim $V_0 = 1$ and $V_1 = 0$. We assume the contragredient bilinear form of V is positive definite.

The next theorem is important to our discussion. The proof can be found in [Mi1, Theorem 6.3].

THEOREM 2.3 (Norton inequality). Let V be a VOA satisfying Assumption 1. Then for all a, b in $\mathcal{G} = V_2$, we have

$$\langle a \cdot a, b \cdot b \rangle \ge \langle a \cdot b, a \cdot b \rangle.$$

In particular, if a, b are idempotents in \mathcal{G} , then $\langle a, b \rangle = \langle a \cdot a, b \cdot b \rangle \geq \langle a \cdot b, a \cdot b \rangle \geq 0$.

Next we recall the basic notion of Ising vectors and Miyamoto involutions. We mainly follow the notations in [Mi1].

DEFINITION 2.4. Let $(V, Y, \mathbf{1}, \omega)$ be a VOA such that $V_n = 0$ for n < 0, dim $V_0 = 1$ and $V_1 = 0$. An element $e \in V_2$ is called an *Ising vector* if the sub-VOA Vir(e) generated by e is isomorphic to the simple Virasoro VOA L(1/2, 0).

To define the automorphisms τ_e and σ_e , we need to know the decomposition of V as a Vir(e)-module. If V is a VOA over \mathbb{C} , the decomposition is shown in [Mi1]; this decomposition also holds for a VOA over \mathbb{R} with a positive definite contragredient form [Mi4, Theorem 2.4].

PROPOSITION 2.5 ([Mi1], [Mi4]). Let $(V, Y, \mathbf{1}, \omega)$ be a VOA over \mathbb{R} with a positive definite contragredient form. For an Ising vector $e \in V$, and a constant $h \in \mathbb{R}$, let $V_e(h)$ be the sum of all irreducible Vir(e)-submodules of V isomorphic to L(1/2, h). Then we have the submodule decomposition

$$V = V_e(0) \bigoplus V_e\left(\frac{1}{2}\right) \bigoplus V_e\left(\frac{1}{16}\right).$$
(2)

DEFINITION 2.6. Define a linear map $\tau_e: V \to V$ by

$$\tau_e = \begin{cases} 1 & \text{on } V_e(0) \bigoplus V_e\left(\frac{1}{2}\right), \\ \\ -1 & \text{on } V_e\left(\frac{1}{16}\right). \end{cases}$$

Let V^{τ_e} be the fixed point subspace of τ_e in V, i.e.,

$$V^{\tau_e} = \{ v \in V \mid \tau_e(v) = v \} = V_e(0) \bigoplus V_e\left(\frac{1}{2}\right).$$

Define a linear map $\sigma_e: V^{\tau_e} \to V^{\tau_e}$ by

$$\sigma_e = \begin{cases} 1 & \text{on } V_e(0), \\ -1 & \text{on } V_e\left(\frac{1}{2}\right). \end{cases}$$

THEOREM 2.7 (cf. [Mi1, Theorem 4.7 and Theorem 4.8]). Let e be an Ising vector of a VOA V. Then the map τ_e defined in Definition 2.6 is an automorphism of V. Moreover, for any $\rho \in \operatorname{Aut}(V)$, we have $\rho \tau_e \rho^{-1} = \tau_{\rho(e)}$.

On the fixed point sub-VOA V^{τ_e} , we have $\sigma_e \in \operatorname{Aut}(V^{\tau_e})$. In addition, for any $\varrho \in \operatorname{Aut}(V^{\tau_e})$, we have $\varrho \sigma_e \varrho^{-1} = \sigma_{\varrho(e)}$.

REMARK 2.8. Note that for any Ising vector e and $x \in \mathcal{G}$, $x + \tau_e(x) \in V^{\tau_e}$ and thus $\sigma_e(x + \tau_e(x))$ is well-defined.

The following lemma can be found in [Sa, (2.2)].

LEMMA 2.9. Let e be an Ising vector of a VOA V. Let $\mathcal{G}_e(h) = \{x \in \mathcal{G} \mid e \cdot x = hx\}$ be the h-eigenspace of e for h = 0, 2, 1/2, 1/16. Then for any $x \in \mathcal{G} = V_2$, we have the decomposition $x = x_0 + x_2 + x_{1/2} + x_{1/16}$, where $x_h \in \mathcal{G}_e(h)$. Moreover,

$$x_{1/16} = \frac{1}{2}(x - \tau_e(x)), \quad x_{1/2} = \frac{1}{2}\left(\frac{1}{2}(x + \tau_e(x)) - \sigma_e\left(\frac{1}{2}(x + \tau_e(x))\right)\right), \quad x_2 = 4\langle e, x \rangle e.$$

Hence

$$e \cdot x = 8\langle e, x \rangle e + \frac{1}{2^2} \left(\frac{1}{2} (x + \tau_e(x)) - \sigma_e \left(\frac{1}{2} (x + \tau_e(x)) \right) \right) + \frac{1}{2^5} (x - \tau_e(x)).$$

If $\tau_e(x) = x$, then

$$e \cdot x = 8\langle e, x \rangle e + \frac{1}{2^2}(x - \sigma_e(x))$$

In particular, $e \cdot e = 2e$ and $\langle e, e \rangle = 1/2^2$.

In [Sa], the Griess algebras generated by two Ising vectors in a VOA satisfying Assumption 1 has been classified.

NOTATION 2.10. For $x_1, \ldots, x_n \in V_2$, we denote by $\mathcal{G}\{x_1, \ldots, x_n\}$ the Griess subalgebra generated by x_1, \ldots, x_n .

THEOREM 2.11 (cf. [Sa] and [IPSS]). Let V be a VOA satisfying Assumption 1. Let x_0, x_1 be Ising vectors in V_2 . Then the Griess sub-algebra $\mathcal{G}\{x_0, x_1\}$ generated by x_0 and x_1 is isomorphic to one of the following 9 cases.

$\mathcal{G}\{x_0, x_1\}$	$\mathcal{G}U_{1A}$	$\mathcal{G}U_{2A}$	$\mathcal{G}U_{2B}$	$\mathcal{G}U_{3A}$	$\mathcal{G}U_{3C}$	$\mathcal{G}U_{4A}$	$\mathcal{G}U_{4B}$	$\mathcal{G}U_{5A}$	$\mathcal{G}U_{6A}$
$\langle x_0, x_1 \rangle$	$\frac{1}{2^2}$	$\frac{1}{2^5}$	0	$\frac{13}{2^{10}}$	$\frac{1}{2^8}$	$\frac{1}{2^7}$	$\frac{1}{2^8}$	$\frac{3}{2^9}$	$\frac{5}{2^{10}}$

We will refer to [Sa] and [LYY2] for the exact structures of the Griess algebras $\mathcal{G}U_{nX}$ (cf. [IPSS, Tabe 3]).

REMARK 2.12. By Sakuma's Theorem (Theorem 2.11), it is easy to see that a = b

if and only if $\langle a, b \rangle = 1/2^2$ for any two Ising vectors a, b.

3. 3A-algebra U_{3A} and 6A-algebra U_{6A} .

In this section, we will review and list some properties of the 3A-algebra U_{3A} and U_{6A} (cf. [LYY2], [IPSS]).

3.1. 3A-algebra.

Let $\mathcal{G}U_{3A}$ be the Griess algebra of U_{3A} . Then dim $\mathcal{G}U_{3A} = 4$ and it is spanned by three Ising vectors x_0, x_1, x_2 and a Virasoro vector μ of central charge 4/5 (cf. [IPSS, Table 3]).

For $\{i, j, k\} = \{0, 1, 2\}$, the multiplication and the bilinear form are given by

$$x_i \cdot x_j = \frac{1}{2^4} (2x_i + 2x_j + x_k) - \frac{135}{2^{10}} \mu, \tag{3}$$

$$x_i \cdot \mu = \frac{2}{3^2} (2x_i - x_j - x_k) + \frac{5}{2^4} \mu, \tag{4}$$

$$\mu \cdot \mu = 2\mu, \tag{5}$$

and

$$\langle x_i, x_j \rangle = \frac{13}{2^{10}}, \quad \langle x_i, \mu \rangle = \frac{1}{2^4}, \quad \langle \mu, \mu \rangle = \frac{2}{5}.$$
 (6)

Moreover, we have

$$\tau_{x_i}(x_j) = x_k \quad \text{and} \quad \tau_{x_i}(\mu) = \mu. \tag{7}$$

For $i \in \{0, 1, 2\}$, the fixed point sub-algebra $\mathcal{G}^{\tau_{x_i}}$ has dimension 3 and is spanned by x_i , $x_j + x_k$ and μ . Moreover we have

$$\sigma_{x_i}(x_j + x_k) = -\frac{3x_i}{2^4} + \frac{x_j + x_k}{2^2} + \frac{135\mu}{2^7},\tag{8}$$

$$\sigma_{x_i}(\mu) = \frac{2x_i}{3^2} + \frac{8(x_j + x_k)}{3^2} - \frac{\mu}{2^2}.$$
(9)

We call the ordered set (x_0, x_1, x_2, μ) a normal $\mathcal{G}U_{3A}$ basis.

3.2. 6A-algebra.

Let $\mathcal{G}U_{6A}$ be the Griess algebra of U_{6A} . Then dim $\mathcal{G}U_{6A} = 8$ and there is a basis $(x_0, x_1, x_2, x_3, x_4, x_5, x, \mu)$ for $\mathcal{G}U_{6A}$ such that the multiplication and the bilinear form are given as follows (cf. **[LYY2]** and **[IPSS**, Table 3]).

- For $k \equiv i + 2 \pmod{6}$, $m \equiv i 2 \pmod{6}$, the quadruple (x_i, x_k, x_m, μ) forms a normal $\mathcal{G}U_{3A}$ basis. Hence their structures are shown as in $\mathcal{G}U_{3A}$.
- For $l \equiv i+3 \pmod{6}$, the triple (x_i, x_l, x) forms a normal $\mathcal{G}U_{2A}$ basis. In particular, we have $x_i \cdot x_l = (1/4)(x_i + x_l x)$.

• For $j \equiv i + 1 \pmod{6}$, $\{i, j, k, l, m, n\} = \{0, 1, 2, 3, 4, 5\}$, we have

$$x_i \cdot x_j = \frac{1}{2^5} (x_i + x_j - x_k - x_l - x_m - x_n + x) + \frac{45}{2^{10}} \mu.$$
(10)

We also have

$$x \cdot \mu = 0, \qquad \langle x, \mu \rangle = 0$$
 (11)

and

$$\langle x_i, x_j \rangle = \frac{5}{2^{10}} \quad \text{for } j \equiv i + 1 \pmod{6}.$$
 (12)

Moreover, for $i, j \in \mathbb{Z}_6$, we have

$$\tau_{x_i}(x_j) = x_{2i-j}.$$
 (13)

The fixed point sub-algebra $\mathcal{G}^{\tau_{x_i}}$ has dimension 6 and is spanned by $x_i, x_l, x, \mu, x_j + x_n, x_k + x_m$, where $l \equiv i + 3 \pmod{6}, j \equiv i + 1 \pmod{6}, n \equiv i - 1 \pmod{6}, k \equiv i + 2 \pmod{6}, m \equiv i - 2 \pmod{6}$. Moreover we have

$$\sigma_{x_i}(x_j + x_n) = \frac{x_i}{2^4} + \frac{x_l}{2^2} + (x_j + x_n) + \frac{x_k + x_m}{2^2} - \frac{x_l}{2^2} - \frac{45\mu}{2^7}.$$

We call the ordered set $(x_0, x_1, x_2, x_3, x_4, x_5, x, \mu)$ a normal $\mathcal{G}U_{6A}$ basis.

3.3. The order 3 automorphism g induced by $\mathcal{W}^+_{\mathbb{R}}$.

Let $L_{\mathbb{C}}(4/5,0)$ be the Virasoro VOA of central charge 4/5 and $L_{\mathbb{C}}(4/5,3)$ be the irreducible $L_{\mathbb{C}}(4/5,0)$ -module of highest weight 3 over the complex field \mathbb{C} .

In [Mi2], the real form $\mathcal{W}_{\mathbb{R}}^+$ of the W_3 -algebra $\mathcal{W}_{\mathbb{C}}(4/5) = L_{\mathbb{C}}(4/5,0) \oplus L_{\mathbb{C}}(4/5,3)$ (cf. [KMY], [LLY]) has been studied.

PROPOSITION 3.1 ([Mi2, Theorem 6.1]). There is a unique real sub-VOA $\mathcal{W}_{\mathbb{R}}^+$ of $\mathcal{W}_{\mathbb{C}}(4/5)$ which possesses a positive definite invariant bilinear form over \mathbb{R} and $\mathcal{W}_{\mathbb{R}}^+ \otimes_{\mathbb{R}} \mathbb{C} = \mathcal{W}_{\mathbb{C}}(4/5)$. This VOA $\mathcal{W}_{\mathbb{R}}^+$ is rational.

THEOREM 3.2 ([Mi2, Theorem 6.2]). Assume that a VOA V over \mathbb{R} contains a sub-VOA $X \cong \mathcal{W}^+_{\mathbb{R}}$. Then there is an order 3 automorphism $g = g_X$ of V induced by X.

Now suppose $U \cong U_{3A}$ is contained in a real VOA V satisfying Assumption 1. Let (a_0, a_1, a_2, μ) be a normal $\mathcal{G}U_{3A}$ basis of U. Then U contains a unique sub-VOA X isomorphic to $\mathcal{W}^+_{\mathbb{R}}$ (cf. [**LYY2**], [**SY**]). In this case, the Virasoro element of X is μ . By the theorem above, g defines an order 3 automorphism on V and U.

LEMMA 3.3 ([**LYY2**], [**SY**]). Let (a_0, a_1, a_2, μ) be a normal $\mathcal{G}U_{3A}$ basis of U and let g be as in Theorem 3.2. Then $\tau_{a_0}\tau_{a_1} = g$ or g^{-1} .

4. Main Result.

In [**HLY**], McKay's E_6 -observation and the Fischer group Fi_{24} were studied. Along with other results, three VOAs $V_{F(1A)}$, $V_{F(2A)}$, and $V_{F(3A)}$ generated by two 3A algebras were constructed. We will denote their Griess algebras by $\mathcal{G}V_{F(1A)}$, $\mathcal{G}V_{F(2A)}$, and $\mathcal{G}V_{F(3A)}$ respectively.

The following is our main theorem.

THEOREM 4.1. Let V be a VOA satisfying Assumption 1. Let $U \cong U_{3A}$ and $U' \cong U_{3A}$ be sub-VOAs of V such that $U \cap U'$ contains a sub-VOA isomorphic to $\mathcal{W}^+_{\mathbb{R}}$. Let (a_0, a_1, a_2, μ) and (b_0, b_1, b_2, μ) be normal $\mathcal{G}U_{3A}$ bases of $\mathcal{G}U$ and $\mathcal{G}U'$ respectively and let \mathcal{G} be the sub-Griess algebra generated by $\mathcal{G}U$ and $\mathcal{G}U'$. Then one of the following three cases occur.

1. $\mathcal{G}{a_0, b_0} \cong \mathcal{G}U_{1A}$ and $\mathcal{G} \cong \mathcal{G}V_{F(1A)}$.

2. $\mathcal{G}{a_0, b_0} \cong \mathcal{G}U_{2A}$ or $\mathcal{G}U_{6A}$ and $\mathcal{G} \cong \mathcal{G}V_{F(2A)}$.

3. $\mathcal{G}{a_0, b_0} \cong \mathcal{G}U_{3A}$ and $\mathcal{G} \cong \mathcal{G}V_{F(3A)}$.

REMARK 4.2. In [**HLY**], it was shown that $V_{F(1A)} \cong U_{3A}$, $V_{F(2A)} \cong U_{6A}$ and $V_{F(3A)}$ is isomorphic to the ternary code VOA associated to the ternary tetra code (see [**KMY**]). Its Griess algebra is of dimension 12 and is spanned by nine Ising vectors $x_{i,j}$, $i, j \in \{0, 1, 2\}$, and four Virasoro vectors μ_1, μ_2, μ_3 and μ_4 of central charge 4/5 subject to a relation

$$32\sum_{i,j\in\{0,1,2\}}x_{i,j}-45(\mu_1+\mu_2+\mu_3+\mu_4)=0.$$

By Theorem 2.11, there are nine possible structures for $\mathcal{G}\{a_0, b_0\}$. We will prove Theorem 4.1 by analyzing these nine cases in details.

First we recall the order 3 automorphism $g = g_X$ discussed in Section 3.3 for a sub-VOA $X \cong \mathcal{W}^+_{\mathcal{R}}$ of $U \cap U'$. By reindexing a_0 and a_1 or b_0 and b_1 if necessary, we may assume that (see Lemma 3.3)

$$\tau_{a_0}\tau_{a_1} = \tau_{b_0}\tau_{b_1} = g.$$

LEMMA 4.3. We have $\tau_{a_i}g = g^{-1}\tau_{a_i}$ and g commutes with $\tau_{a_i}\tau_{b_j}$ for any $i, j \in \{0, 1, 2\}$.

PROOF. Since $g = \tau_{a_0} \tau_{a_1} = \tau_{b_0} \tau_{b_1}$, both τ_{a_i} and τ_{b_i} invert g. Hence, we have

$$\tau_{a_i}\tau_{b_j}g = \tau_{a_i}g^{-1}\tau_{b_j} = g\tau_{a_i}\tau_{b_j}$$

as desired.

4.1. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{1A}$.

In this case, $a_0 = b_0$. Hence $\{a_0, a_1, a_2\} = \{b_0, b_1, b_2\}$ and $\mathcal{G} \cong \mathcal{G}U_{3A}$ by the following proposition.

PROPOSITION 4.4. Suppose $a_i = b_j$ for some $i, j \in \{0, 1, 2\}$. Then $\{a_0, a_1, a_2\} = \{b_0, b_1, b_2\}$ and $\mathcal{G} \cong \mathcal{G}U_{3A}$. In particular, $\mathcal{G} \cong \mathcal{G}U_{3A}$ if $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{1A}$.

PROOF. Without loss, we may assume $a_0 = b_0$. Then by (4) and (6),

$$\begin{aligned} \langle a_0 \cdot \mu, b_1 \rangle &= \left\langle \frac{2}{3^2} (2a_0 - a_1 - a_2) + \frac{5}{2^4} \mu, b_1 \right\rangle \\ &= \frac{2}{3^2} \left(2 \cdot \frac{13}{2^{10}} - \langle a_1, b_1 \rangle - \langle a_2, b_1 \rangle \right) + \frac{5}{2^4} \cdot \frac{1}{2^4}. \end{aligned}$$

On the other hand,

$$\langle a_0, \mu \cdot b_1 \rangle = \left\langle b_0, \frac{2}{3^2} (2b_1 - b_0 - b_2) + \frac{5}{2^4} \mu \right\rangle$$

$$= \frac{2}{3^2} \left(2 \cdot \frac{13}{2^{10}} - \frac{1}{2^2} - \frac{13}{2^{10}} \right) + \frac{5}{2^4} \cdot \frac{1}{2^4}$$

by (4) and (6). Since $\langle a_0 \cdot \mu, b_1 \rangle = \langle a_0, \mu \cdot b_1 \rangle$ by (1), we have $\langle a_1, b_1 \rangle + \langle a_2, b_1 \rangle = 267/2^{10}$, which implies $\max\{\langle a_1, b_1 \rangle, \langle a_2, b_1 \rangle\} \ge (1/2) \cdot (267/2^{10}) > 1/2^5$. Thus, we have $b_1 = a_1$ or $b_1 = a_2$ since by Theorem 2.11 and Remark 2.12, $\langle a_i, b_j \rangle \le 1/2^5$ if $a_i \ne b_j$. In either case, we have $\{a_0, a_1, a_2\} = \{b_0, b_1, b_2\}$ and \mathcal{G} is isomorphic to $\mathcal{G}U_{3A}$.

4.2. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{2A}$.

In this case, set $c_0 = \sigma_{a_0}(b_0)$. Then by **[IPSS**, Table 3], we have $\mathcal{G}\{a_0, b_0\} =$ Span $\{a_0, b_0, c_0\}$,

$$a_0 \cdot b_0 = \frac{1}{2^2}(a_0 + b_0 - c_0)$$
 and $\langle a_0, b_0 \rangle = \frac{1}{2^5}.$ (14)

PROPOSITION 4.5. Suppose $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{2A}$. Then $\mathcal{G} = \mathcal{G}\{a_0, b_1\} = \mathcal{G}\{a_0, b_2\} \cong \mathcal{G}U_{6A}$.

PROOF. We will first calculate the values of $\langle a_0, b_j \rangle$ for j = 1, 2. By (14) and (6), we have

$$\langle a_0 \cdot b_0, b_1 \rangle = \left\langle \frac{1}{2^2} (a_0 + b_0 - c_0), b_1 \right\rangle = \frac{1}{2^2} \left(\langle a_0, b_1 \rangle + \frac{13}{2^{10}} - \langle c_0, b_1 \rangle \right),$$

and by (3)

$$\begin{aligned} \langle a_0, b_0 \cdot b_1 \rangle &= \left\langle a_0, \frac{1}{2^4} (2b_0 + 2b_1 + b_2) - \frac{135}{2^{10}} \mu \right\rangle \\ &= \frac{2}{2^4} \cdot \frac{1}{2^5} + \frac{2}{2^4} \langle a_0, b_1 \rangle + \frac{1}{2^4} \langle a_0, b_2 \rangle - \frac{135}{2^{10}} \cdot \frac{1}{2^4} \end{aligned}$$

Since $\langle a_0 \cdot b_0, b_1 \rangle = \langle a_0, b_0 \cdot b_1 \rangle$ by (1), we obtain

Griess algebras generated by the Griess algebras of two 3A-algebras

$$\langle c_0, b_1 \rangle = \frac{123}{2^{12}} + \frac{1}{2} \langle a_0, b_1 \rangle - \frac{1}{2^2} \langle a_0, b_2 \rangle.$$
(15)

Since by Theorem 2.11,

$$\langle a_0, b_1 \rangle, \langle a_0, b_2 \rangle, \langle c_0, b_1 \rangle \in \left\{ \frac{1}{2^2}, \frac{1}{2^5}, \frac{13}{2^{10}}, \frac{1}{2^7}, \frac{3}{2^9}, \frac{5}{2^{10}}, \frac{1}{2^8}, 0 \right\},$$
 (16)

we have

$$\langle c_0, b_1 \rangle = \frac{123}{2^{12}} + \frac{1}{2} \langle a_0, b_1 \rangle - \frac{1}{2^2} \langle a_0, b_2 \rangle \le \frac{123}{2^{12}} + \frac{1}{2} \cdot \frac{1}{2^2} < \frac{1}{2^2}.$$

Hence $c_0 \neq b_1$ and $\langle c_0, b_1 \rangle \leq 1/2^5$.

We also note that $a_0 \neq b_1$ and $a_0 \neq b_2$; otherwise, $\{a_0, a_1, a_2\} = \{b_0, b_1, b_2\}$ by Proposition 4.4 and $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{2A}$. Therefore, $\langle a_0, b_1 \rangle \leq 1/2^5$ and $\langle a_0, b_2 \rangle \leq 1/2^5$.

Now by (15), we have

$$\langle c_0, b_1 \rangle = \frac{123}{2^{12}} + \frac{1}{2} \langle a_0, b_1 \rangle - \frac{1}{2^2} \langle a_0, b_2 \rangle \ge \frac{123}{2^{12}} - \frac{1}{2^2} \cdot \frac{1}{2^5} = \frac{91}{2^{12}} > \frac{13}{2^{10}}$$

and hence

$$\langle c_0, b_1 \rangle = \frac{1}{2^5}.$$
 (17)

Therefore by (15), we have

$$2^{11}\langle a_0, b_1 \rangle = 2^{10}\langle a_0, b_2 \rangle + 5.$$
(18)

Note that $2^{11}\langle a_0, b_1 \rangle$ is an even integer, so $2^{10}\langle a_0, b_2 \rangle$ is an odd integer and hence $\langle a_0, b_2 \rangle = 5/2^{10}$ or $13/2^{10}$ by (16). If $\langle a_0, b_2 \rangle = 13/2^{10}$, then $\langle a_0, b_1 \rangle = 9/2^{10}$ which is impossible. Hence, we have $\langle a_0, b_2 \rangle = 5/2^{10}$ and $\langle a_0, b_1 \rangle = 5/2^{10}$. That means $\mathcal{G}\{a_0, b_1\} \cong \mathcal{G}\{a_0, b_2\} \cong \mathcal{G}U_{6A}$ and $\mathcal{G}\{c_0, b_1\} \cong \mathcal{G}U_{2A}$.

CLAIM. $\mathcal{G} = \mathcal{G}\{a_0, b_1\}.$

Let $(a_0, b_1, x_2, x_3, x_4, x_5, e, \mu')$ be the normal $\mathcal{G}U_{6A}$ basis for $\mathcal{G}\{a_0, b_1\}$ (see Section 3.2 for the definition). We will show that $x_3 = b_0$, $x_5 = b_2$, $\{x_2, x_4\} = \{a_1, a_2\}$, $e = c_0$, $\mu' = \mu$ and $\mathcal{G} = \mathcal{G}\{a_0, b_1\}$.

Since $\mathcal{G}\{c_0, a_0\} \cong \mathcal{G}\{c_0, b_0\} \cong \mathcal{G}\{c_0, a_1\} \cong \mathcal{G}\{c_0, b_1\} \cong \mathcal{G}U_{2A}$ and \mathcal{G} is generated by a_0, a_1, b_0, b_1 , the map σ_{c_0} is well-defined on \mathcal{G} . Moreover,

$$\tau_{b_0}\sigma_{c_0}\tau_{b_0} = \sigma_{\tau_{b_0}(c_0)} = \sigma_{c_0},\tag{19}$$

i.e., τ_{b_0} commutes with σ_{c_0} . Therefore,

$$\tau_{a_0} = \tau_{\sigma_{c_0}(b_0)} = \sigma_{c_0} \tau_{b_0} \sigma_{c_0} = \tau_{b_0}$$

and hence by (13),

$$x_5 = \tau_{a_0}(b_1) = \tau_{b_0}(b_1) = b_2.$$

Since (b_1, x_5, x_3, μ') is a normal $\mathcal{G}U_{3A}$ basis for $\mathcal{G}\{b_1, b_2\}$, we have

$$x_3 = \tau_{b_1}(x_5) = \tau_{b_1}(b_2) = b_0$$
 and $\mu' = \mu$.

Note that μ and μ' are both determined by b_0 (= x_3), b_1 , b_2 (= x_5) using (3). Recall that $(a_0, b_1, x_2, x_3, x_4, x_5, e, \mu')$ is the normal $\mathcal{G}U_{6A}$ basis for $\mathcal{G}\{a_0, b_1\}$. Thus, we have

$$e = \sigma_{a_0}(x_3) = \sigma_{a_0}(b_0) = c_0.$$

Finally, we will show that $\{a_1, a_2\} = \{x_2, x_4\}$. By (8), we have

$$\begin{split} \sigma_{a_0}(a_1+a_2) &= -\frac{3}{2^4}a_0 + \frac{a_1+a_2}{2^2} + \frac{135}{2^7}\mu, \\ \sigma_{a_0}(x_2+x_4) &= -\frac{3}{2^4}a_0 + \frac{x_2+x_4}{2^2} + \frac{135}{2^7}\mu'. \end{split}$$

Note that $\mu = \mu'$ and hence

$$\begin{split} \langle a_1 + a_2, x_2 + x_4 \rangle \\ &= \langle \sigma_{a_0}(a_1 + a_2), \sigma_{a_0}(x_2 + x_4) \rangle \\ &= \left\langle -\frac{3}{2^4}a_0 + \frac{a_1 + a_2}{2^2} + \frac{135}{2^7}\mu, -\frac{3}{2^4}a_0 + \frac{x_2 + x_4}{2^2} + \frac{135}{2^7}\mu \right\rangle \\ &= \frac{3}{2^4} \cdot \frac{3}{2^4} \cdot \frac{1}{2^2} + \frac{1}{2^4}\langle a_1 + a_2, x_2 + x_4 \rangle + \frac{135^2}{2^{14}} \cdot \frac{2}{5} - 2 \cdot \frac{3}{2^4} \cdot \frac{1}{2^2} \left(\frac{13}{2^{10}} + \frac{13}{2^{10}}\right) \\ &- 2 \cdot \frac{3}{2^4} \cdot \frac{135}{2^7} \cdot \frac{1}{2^4} + 2 \cdot \frac{1}{2^2} \cdot \frac{135}{2^7} \left(\frac{1}{2^4} + \frac{1}{2^4}\right) \\ &= \frac{1}{2^4}\langle a_1 + a_2, x_2 + x_4 \rangle + \frac{8070}{2^{14}}, \end{split}$$

which implies

$$\langle a_1 + a_2, x_2 + x_4 \rangle = \frac{269}{2^9}.$$

On the other hand, we also have

$$\langle a_1 + a_2, a_1 + a_2 \rangle = \frac{1}{2^2} + \frac{1}{2^2} + 2 \cdot \frac{13}{2^{10}} = \frac{269}{2^9},$$

and similarly

$$\langle x_2 + x_4, x_2 + x_4 \rangle = \frac{269}{2^9}.$$

Thus, by the Schwartz inequality, we get $a_1 + a_2 = x_2 + x_4$.

Taking inner product with a_1 , we get

$$\langle a_1, x_2 \rangle + \langle a_1, x_4 \rangle = \langle a_1, x_2 + x_4 \rangle = \langle a_1, a_1 + a_2 \rangle = \frac{1}{2^2} + \frac{13}{2^{10}} = \frac{77}{2^{10}}$$

which implies $\max\{\langle a_1, x_2 \rangle, \langle a_1, x_4 \rangle\} \ge (1/2) \cdot (77/2^{10}) > 1/2^5$. Then by Theorem 2.11, we have

$$(\langle a_1, x_2 \rangle, \langle a_1, x_4 \rangle) = \left(\frac{1}{2^2}, \frac{13}{2^{10}}\right) \text{ or } \left(\frac{13}{2^{10}}, \frac{1}{2^2}\right).$$

It implies $x_2 = a_1$ or $x_4 = a_1$. In either case, $\{x_2, x_4\} = \{a_1, a_2\}$. Therefore, $\mathcal{G} \subset \mathcal{G}\{a_0, b_1\}$ and thus $\mathcal{G} = \mathcal{G}\{a_0, b_1\}$. \Box

4.3. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{2B}$.

In this case, $a_0 \cdot b_0 = 0$ and $\langle a_0, b_0 \rangle = 0$ (cf. **[IPSS**, Table 3]). Then, we have

$$0 = \langle a_0 \cdot b_0, \mu \rangle = \langle a_0, b_0 \cdot \mu \rangle$$

= $\left\langle a_0, \frac{2}{3^2} (2b_0 - b_1 - b_2) + \frac{5}{2^4} \mu \right\rangle$
= $\frac{-2}{3^2} (\langle a_0, b_1 \rangle + \langle a_0, b_2 \rangle) + \frac{5}{2^4} \cdot \frac{1}{2^4}$

by (1), (4) and (6). Therefore we have

$$\langle a_0, b_1 \rangle + \langle a_0, b_2 \rangle = \frac{45}{2^9}$$

which implies $\max\{\langle a_0, b_1 \rangle, \langle a_0, b_2 \rangle\} \ge (1/2) \cdot (45/2^9) > 1/2^5$. It means $a_0 = b_1$ or $a_0 = b_2$ since $\langle a_i, b_j \rangle \le 1/2^5$ if $a_i \ne b_j$. It is impossible since $\langle b_0, b_1 \rangle = \langle b_0, b_2 \rangle = 13/2^{10}$ by our assumption.

4.4. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{3C}$.

In this case,

$$\langle a_0, b_0 \rangle = \frac{1}{2^8} \tag{20}$$

and there is an Ising vector $c_0 \in \mathcal{G}$ such that

$$a_0 \cdot b_0 = \frac{1}{2^5} (a_0 + b_0 - c_0) \tag{21}$$

(cf. [IPSS, Table 3]). Therefore,

$$\langle a_0 \cdot b_0, b_1 \rangle = \left\langle \frac{1}{2^5} (a_0 + b_0 - c_0), b_1 \right\rangle$$

= $\frac{1}{2^5} \left(\langle a_0, b_1 \rangle + \frac{13}{2^{10}} - \langle c_0, b_1 \rangle \right).$

On the other hand,

$$\langle a_0, b_0 \cdot b_1 \rangle = \left\langle a_0, \frac{1}{2^4} (2b_0 + 2b_1 + b_2) - \frac{135}{2^{10}} \mu \right\rangle$$
$$= \frac{1}{2^4} (2\langle a_0, b_1 \rangle + \langle a_0, b_2 \rangle) - \frac{127}{2^{14}}$$

by (3), (6) and (20). Hence (1) implies that

$$0 = (3\langle a_0, b_1 \rangle + 2\langle a_0, b_2 \rangle + \langle c_0, b_1 \rangle) - \frac{267}{2^{10}}$$

By Proposition 4.4, it is clear that $a_0 \neq b_1$, $a_0 \neq b_2$, $c_0 \neq b_1$. Thus, $\langle a_0, b_1 \rangle$, $\langle a_0, b_2 \rangle$, $\langle c_0, b_1 \rangle \leq 1/2^5$ and hence $(3\langle a_0, b_1 \rangle + 2\langle a_0, b_2 \rangle + \langle c_0, b_1 \rangle) - (267/2^{10}) \leq 6 \cdot (1/2^5) - (267/2^{10}) = -75/2^{10} < 0$, which contradicts the above equation. So this case is impossible.

4.5. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{4A}$.

In this case, there exist Ising vectors c_0 , d_0 , and a Virasoro vector u of central charge 1 (cf. [**IPSS**, Table 3]) so that

$$\mathcal{G}\{a_0, b_0\} = \text{Span}\{a_0, b_0, c_0, d_0, u\}.$$

In addition, $\tau_{a_0}(b_0) = d_0$ and $\mathcal{G}\{b_0, d_0\} \cong \mathcal{G}U_{2B}$. Applying τ_{a_0} to the normal $\mathcal{G}U_{3A}$ basis (b_0, b_1, b_2, μ) , we get another normal $\mathcal{G}U_{3A}$ basis $(d_0, \tau_{a_0}(b_1), \tau_{a_0}(b_2), \mu)$. Since $\mathcal{G}\{b_0, d_0\} \cong \mathcal{G}U_{2B}$, this case is also impossible by the analysis of $\mathcal{G}U_{2B}$ (see Section 4.3).

4.6. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{4B}$.

In this case, there exist Ising vectors $c_0, d_0, e \in \mathcal{G}$ such that

$$\mathcal{G}\{a_0, b_0\} = \text{Span}\{a_0, b_0, c_0, d_0, e\}$$

 $\mathcal{G}{a_0, c_0} = \text{Span}{a_0, c_0, e} \cong \mathcal{G}U_{2A} \text{ and } \mathcal{G}{b_0, d_0} = \text{Span}{b_0, d_0, e} \cong \mathcal{G}U_{2A} \text{ (cf. [IPSS, Table 3]). Moreover,}$

$$a_0 \cdot b_0 = \frac{1}{2^5} (a_0 + b_0 - c_0 - d_0 + e), \tag{22}$$

$$\langle a_0, b_0 \rangle = \frac{1}{2^8},\tag{23}$$

and

$$\tau_{b_0}(a_0) = c_0$$

Applying τ_{b_0} to the normal $\mathcal{G}U_{3A}$ basis (a_0, a_1, a_2, μ) , we get another normal $\mathcal{G}U_{3A}$ basis $(c_0, \tau_{b_0}(a_1), \tau_{b_0}(a_2), \mu)$. Then by Proposition 4.5, we have

$$\mathcal{G}\{a_0, a_1, a_2, c_0, \tau_{b_0}(a_1), \tau_{b_0}(a_2), \mu\} = \mathcal{G}\{c_0, a_1\} = \mathcal{G}\{a_0, \tau_{b_0}(a_1)\} \cong \mathcal{G}U_{6A}.$$

Set $x_0 = a_0$, $x_1 = \tau_{b_0}(a_1)$, $x_3 = c_0$, $x_5 = \tau_{b_0}(a_2)$. Then there exists $\{x_2, x_4\} = \{a_1, a_2\}$ such that $(x_0, x_1, x_2, x_3, x_4, x_5, e, \mu)$ forms a normal $\mathcal{G}U_{6A}$ basis for $\mathcal{G}\{c_0, a_1\}$.

Similarly, set $y_0 = b_0$, $y_1 = \tau_{a_0}(b_1)$, $y_3 = d_0$, $y_5 = \tau_{a_0}(b_2)$. There exists $\{y_2, y_4\} = \{b_1, b_2\}$, such that $(y_0, y_1, y_2, y_3, y_4, y_5, e, \mu)$ forms a normal $\mathcal{G}U_{6A}$ basis for $\mathcal{G}\{d_0, b_1\}$.

LEMMA 4.6. For i = 1, 2, 4, 5, $\mathcal{G}\{x_0, y_i\} \cong \mathcal{G}\{x_3, y_i\} \cong \mathcal{G}U_{6A}$, and hence $\langle x_0, y_i \rangle = \langle x_3, y_i \rangle = 5/2^{10}$. Similarly, $\langle x_i, y_0 \rangle = \langle x_i, y_3 \rangle = 5/2^{10}$ for i = 1, 2, 4, 5.

PROOF. Since (x_0, x_2, x_4, μ) , (y_0, y_2, y_4, μ) are normal $\mathcal{G}U_{3A}$ bases, by Lemma 4.3, the order 3 element $\tau_{y_i}\tau_{y_0}$ commutes with $\tau_{y_0}\tau_{x_0}$ for i = 2, 4. Since $\mathcal{G}\{x_0, y_0\} \cong \mathcal{G}U_{4B}$, $\tau_{y_0}\tau_{x_0}$ has order 2 or 4. Hence $\tau_{y_i}\tau_{y_0}\cdot\tau_{y_0}\tau_{x_0}$ has order 6 or 12. Since $\tau_{y_i}\tau_{y_0}\cdot\tau_{y_0}\tau_{x_0} = \tau_{y_i}\tau_{x_0}$, by 6-transposition property (Theorem 2.11), $\tau_{y_i}\tau_{x_0}$ must have order ≤ 6 and hence has order 6 and $\mathcal{G}\{x_0, y_i\} \cong \mathcal{G}U_{6A}$ for i = 2, 4.

Since $(a_0, d_0) = (x_0, y_3)$, we have $\mathcal{G}\{x_0, y_3\} = \mathcal{G}\{a_0, d_0\} \cong \mathcal{G}U_{4B}$. Since (x_0, x_2, x_4, μ) , (y_1, y_3, y_5, μ) form normal $\mathcal{G}U_{3A}$ bases, $\tau_{y_i}\tau_{y_3}$ commutes with $\tau_{y_3}\tau_{x_0}$ for i = 1, 5 and thus we also have $\mathcal{G}\{x_0, y_i\} \cong \mathcal{G}U_{6A}$ for i = 1, 5 by the same arguments as before.

PROPOSITION 4.7. It is impossible that $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{4B}$.

PROOF. By Lemma 4.6, (23) and (10), we have

$$\langle x_1 \cdot x_0, y_0 \rangle = \left\langle \frac{1}{2^5} (x_0 + x_1 - x_2 - x_3 - x_4 - x_5 + e) + \frac{45}{2^{10}} \mu, y_0 \right\rangle$$

= $\frac{7}{2^{11}}$,

and by (22), Lemma 4.6 and (12),

$$\langle x_1, x_0 \cdot y_0 \rangle = \left\langle x_1, \frac{1}{2^5} (x_0 + y_0 - x_3 - y_3 + e) \right\rangle$$

= $\frac{3}{2^{12}}$.

Hence by (1) we get a contradiction. So this case is impossible.

4.7. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{5A}$.

In this case, $\tau_{a_0} \tau_{b_0}$ has order 5.

465

C. H. LAM and C. S. SU

PROPOSITION 4.8. It is impossible that $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{5A}$.

PROOF. By Lemma 4.3, the order 3 element $\tau_{a_1}\tau_{a_0}$ commutes with $\tau_{a_0}\tau_{b_0}$ and hence $\tau_{a_1}\tau_{a_0} \cdot \tau_{a_0}\tau_{b_0}$ has order 15. But $\tau_{a_1}\tau_{a_0} \cdot \tau_{a_0}\tau_{b_0} = \tau_{a_1}\tau_{b_0}$, which has order ≤ 6 by the 6-transposition property (Theorem 2.11). It is a contradiction.

4.8. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{6A}$.

In this case, set $x_0 = a_0$, $x_1 = b_0$. Then there exist x_2 , x_3 , x_4 , x_5 , e, μ' such that the ordered set $(x_0, x_1, x_2, x_3, x_4, x_5, e, \mu')$ forms a normal $\mathcal{G}U_{6A}$ basis for $\mathcal{G}\{a_0, b_0\}$.

PROPOSITION 4.9. Suppose $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{6A}$. Then $\mathcal{G} = \mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{6A}$.

PROOF. Since $\tau_{x_i}(x_j) = x_{2i-j}$ by (13) and μ is fixed by $\tau_{x_0} = \tau_{a_0}$ and $\tau_{x_1} = \tau_{b_0}$, we have

$$\langle x_4, \mu \rangle = \langle \tau_{x_0} x_2, \mu \rangle = \langle x_2, \mu \rangle = \langle \tau_{x_1} x_0, \mu \rangle = \langle x_0, \mu \rangle = \frac{1}{2^4}.$$

Similarly, we also have

$$\langle x_3, \mu \rangle = \langle \tau_{x_1} x_5, \mu \rangle = \langle x_5, \mu \rangle = \langle \tau_{x_0} x_1, \mu \rangle = \langle x_1, \mu \rangle = \frac{1}{2^4}.$$

Now let $h = \tau_{b_0}\tau_{a_0} = \tau_{x_1}\tau_{x_0}$. Then $\mathcal{G}\{h(b_0), h(b_1)\} \cong \mathcal{G}\{b_0, b_1\} \cong \mathcal{G}U_{3A}$ and the set $(h(b_0), h(b_1), h(b_2), h(\mu)) = (x_3, h(b_1), h(b_2), \mu)$ will form a normal $\mathcal{G}U_{3A}$ basis for $\mathcal{G}\{h(b_0), h(b_1)\}$. Note that $h(b_0) = h(x_1) = x_3$ and $h(\mu) = \tau_{b_0}\tau_{a_0}(\mu) = \mu$.

Since $\mathcal{G}\{a_0, x_3\} \cong \mathcal{G}U_{2A}$ and $\{a_0, x_3, e\}$ forms a basis for $\mathcal{G}\{a_0, x_3\}$, by Proposition 4.5, we have $\mathcal{G}\{a_0, a_1, x_3, h(b_1)\} = \mathcal{G}\{a_0, h(b_1)\} \cong \mathcal{G}U_{6A}$. Hence $\langle a_i, e \rangle = 1/2^5$ for i = 1, 2 and $\langle e, \mu \rangle = 0$. Similarly we can also prove $\langle b_i, e \rangle = 1/2^5$ for i = 1, 2.

Finally, we will show that $\{a_1, a_2\} = \{x_2, x_4\}$ and $\{b_1, b_2\} = \{x_3, x_5\}$. By the structure of the 6A-algebra, we have

$$\langle b_0 \cdot a_0, \mu \rangle = \left\langle \frac{1}{2^5} (x_0 + x_1 - x_2 - x_3 - x_4 - x_5 + e) + \frac{45}{2^{10}} \mu', \mu \right\rangle$$
$$= -\frac{1}{2^8} + \frac{45}{2^{10}} \langle \mu', \mu \rangle$$

by (10) and (6), and

$$\langle b_0, a_0 \cdot \mu \rangle = \left\langle b_0, \frac{2}{3^2} (2a_0 - a_1 - a_2) + \frac{5}{2^4} \mu \right\rangle$$
$$= \frac{50}{2^8 \cdot 3^2} - \frac{2}{3^2} (\langle b_0, a_1 \rangle + \langle b_0, a_2 \rangle)$$

by (4) and (12). By (1), it implies

Griess algebras generated by the Griess algebras of two 3A-algebras

$$\langle \mu', \mu \rangle = \frac{2^2}{3^4 \cdot 5} \big(59 - 2^9 (\langle b_0, a_1 \rangle + \langle b_0, a_2 \rangle) \big).$$
 (24)

Since $\mathcal{G}\{x_0, x_2\} \cong \mathcal{G}U_{3A}$, we have

$$\langle x_2 \cdot x_0, \mu \rangle = \left\langle \frac{1}{2^4} (2x_0 + 2x_2 + x_4) - \frac{135}{2^{10}} \mu', \mu \right\rangle$$
$$= \frac{5}{2^8} - \frac{135}{2^{10}} \langle \mu', \mu \rangle$$

by (3) and

$$\langle x_2, x_0 \cdot \mu \rangle = \langle x_2, a_0 \cdot \mu \rangle = \left\langle x_2, \frac{2}{3^2} (2a_0 - a_1 - a_2) + \frac{5}{2^4} \mu \right\rangle$$
$$= \frac{58}{2^8 \cdot 3^2} - \frac{2}{3^2} (\langle x_2, a_1 \rangle + \langle x_2, a_2 \rangle)$$

by (4), which implies

$$\langle \mu', \mu \rangle = \frac{2^2}{3^5 \cdot 5} \left(-13 + 2^9 (\langle x_2, a_1 \rangle + \langle x_2, a_2 \rangle) \right)$$
(25)

by (1). From (24) and (25), we get

$$3\langle b_0, a_1 \rangle + 3\langle b_0, a_2 \rangle + \langle x_2, a_1 \rangle + \langle x_2, a_2 \rangle = \frac{95}{2^8},$$

which implies

$$\max\{\langle b_0, a_1 \rangle, \langle b_0, a_2 \rangle, \langle x_2, a_1 \rangle, \langle x_2, a_2 \rangle\} \ge \frac{95}{2^8(3+3+1+1)} > \frac{1}{2^5}.$$
 (26)

By Proposition 4.4, $a_i \neq b_j$ for any $i, j \in \{0, 1, 2\}$ and thus we must have $x_2 = a_1$ or $x_2 = a_2$. A similar argument also shows that $x_3 = b_1$ or b_2 . Therefore, $\mathcal{G} = \mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{6A}$.

4.9. Case: $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{3A}$.

In this case, there exists c_0 and μ_0 such that (a_0, b_0, c_0, μ_0) forms a normal $\mathcal{G}U_{3A}$ basis.

LEMMA 4.10. Let (a_0, a_1, a_2, μ) and (b_0, b_1, b_2, μ) be normal $\mathcal{G}U_{3A}$ bases. Suppose $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{3A}$. Then either

1. $\{a_0, a_1, a_2\} = \{b_0, b_1, b_2\}$ and $\mathcal{G} \cong \mathcal{G}U_{3A}$; or 2. $\mathcal{G}\{a_i, b_j\} \cong \mathcal{G}U_{3A}$ for $i, j \in \mathbb{Z}_3$.

PROOF. By Lemma 4.3, for i = 1, 2, the order 3 element $\tau_{a_i} \tau_{a_0}$ commutes with $\tau_{a_0} \tau_{b_0}$, which has order 3 by assumption. Hence $\tau_{a_i} \tau_{a_0} \cdot \tau_{a_0} \tau_{b_0} = \tau_{a_i} \tau_{b_0}$ has order 1 or 3

for i = 1, 2.

CASE 1. If $\tau_{a_i}\tau_{b_0}$ is of order 1, then $\tau_{a_i}\tau_{a_0} = (\tau_{a_0}\tau_{b_0})^{-1}$ and we have

$$a_j = \tau_{a_i} \tau_{a_0} a_0 = \tau_{b_0} \tau_{a_0} a_0 = c_0,$$

where $\{0, i, j\} = \{0, 1, 2\}$. Thus, by Proposition 4.4, we have $b_0 \in \{a_0, a_1, a_2\}$ and $\{a_0, a_1, a_2\} = \{b_0, b_1, b_2\}.$

CASE 2. If $\tau_{a_i}\tau_{b_0}$ has order 3, then $\mathcal{G}\{a_i, b_0\} \cong \mathcal{G}U_{3A}, \mathcal{G}U_{3C}$ or $\mathcal{G}U_{6A}$.

By the discussion in Section 4.4, $\mathcal{G}\{a_i, b_0\} \cong \mathcal{G}U_{3C}$ is impossible.

If $\mathcal{G}\{a_i, b_0\} \cong \mathcal{G}U_{6A}$, then by Proposition 4.9, $\langle a_0, b_0 \rangle = 1/32$ or $5/2^{10}$, which is again impossible since $\mathcal{G}\{a_0, b_0\} \cong \mathcal{G}U_{3A}$. Therefore, $\mathcal{G}\{a_i, b_0\} \cong \mathcal{G}U_{3A}$ is the only possible case. Similarly, we also have $\mathcal{G}\{a_i, b_j\} \cong \mathcal{G}U_{3A}$ for any i, j = 0, 1, 2.

From now on, we assume $\{a_0, a_1, a_2\} \neq \{b_0, b_1, b_2\}$, which implies $\mathcal{G}\{a_i, b_j\} \cong \mathcal{G}U_{3A}$ for all $i \neq j$.

Recall that $g = \tau_{a_0} \tau_{a_1} = \tau_{a_2} \tau_{a_0}$ is of order 3.

NOTATION 4.11. Let $h = \tau_{a_0} \tau_{b_0}$. Then h is of order 3 and it commutes with g by Lemma 4.3. Moreover, we have

$$\begin{aligned} \tau_{a_2} \tau_{b_0} &= \tau_{a_2} \tau_{a_0} \cdot \tau_{a_0} \tau_{b_0} = gh, \\ \tau_{a_1} \tau_{b_0} &= \tau_{a_1} \tau_{a_0} \cdot \tau_{a_0} \tau_{b_0} = g^2 h. \end{aligned}$$

For i, j = 0, 1, 2, denote

$$x_{i,j} = h^i g^j(a_0).$$

Note that $x_{0,0} = a_0$, $x_{0,1} = g(a_0) = a_1$, $x_{0,2} = g^2(a_0) = a_2$, and $x_{1,0} = h(a_0) = b_0$. By definition, it is also easy to see that

$$h^k g^\ell(x_{i,j}) = x_{i+k, j+\ell}, \quad \text{for } i, j, k, \ell \in \mathbb{Z}_3.$$

NOTATION 4.12. For any $(i, j) \neq (0, 0)$, denote

$$\mathcal{G}_{i,j,0} = \mathcal{G}\{x_{0,0}, x_{i,j}\} \cong \mathcal{G}U_{3A}$$

Then there exists a Virasoro vector $\mu_{i,j,0}$ of central charge 4/5 such that $(x_{0,0}, x_{i,j}, x_{2i,2j}, \mu_{i,j,0})$ forms a normal 3A-basis of $\mathcal{G}_{i,j,0}$. For k = 1, 2, we denote

$$\mathcal{G}_{0,1,k} = h^k(\mathcal{G}_{0,1,0}) = h^k(\mathcal{G}_{0,2,0}).$$

Then $\mathcal{G}_{0,1,k} \cong \mathcal{G}U_{3A}$ and there is a Virasoro vector $\mu_{0,1,k}$ of central charge 4/5 such that $(x_{k,0}, x_{k,1}, x_{k,2}, \mu_{0,1,k})$ forms a normal basis for $\mathcal{G}_{0,1,k}$.

REMARK 4.13. By our assumption, we have $\mu_{0,1,0} = \mu_{0,1,1} = \mu_{0,1,2} = \mu$. We use $\mu_{0,1}$ to denote $\mu_{0,1,0} = \mu_{0,1,1} = \mu_{0,1,2}$. Note that $\mu_{0,1}$ is fixed by $\tau_{x_{i,j}}$ for all i, j.

NOTATION 4.14. For $(i, j) \neq (0, 0), (0, 1)$ and (0, 2), we denote

$$\mathcal{G}_{i,j,k} = g^k(\mathcal{G}_{i,j,0}).$$

Then, $\mathcal{G}_{i,j,k} \cong \mathcal{G}U_{3A}$ for any k = 0, 1, 2. Let $\mu_{i,j,k}$ be the Virasoro vector of central charge 4/5 such that $(x_{0,k}, x_{i,j+k}, x_{2i,2j+k}, \mu_{i,j,k})$ forms a normal $\mathcal{G}U_{3A}$ basis for $\mathcal{G}_{i,j,k}$. Note that $\mu_{i,j,k} = \mu_{2i,2j,k}$ and $g^{\ell}(\mu_{i,j,k}) = \mu_{i,j,k+\ell}$ for any $i \neq 0$.

We will show $\mu_{1,i,j} = \mu_{1,i,k}$ for all i, j, k (Lemma 4.23). This turns out to be the most complicated part of the proof.

LEMMA 4.15. For any $n, i, k, \ell \in \mathbb{Z}_3$, we have

$$\tau_{x_{n,n\ell+k}}(\mu_{1,\ell,i}) = \mu_{1,\ell,-k-i}.$$
(27)

PROOF. By Lemma 4.3, we have

$$\tau_{x_{i,j}}(x_{k,\ell}) = h^i g^j \tau_{a_0} g^{-j} h^{-i} h^k g^\ell(a_0) = h^{-k+2i} g^{-\ell+2j} \tau_{a_0}(a_0) = x_{-i-k,-j-\ell}.$$

Thus, $\tau_{x_{n,n\ell+k}}$ maps the normal $\mathcal{G}U_{3A}$ basis $(x_{0,i}, x_{1,i+\ell}, x_{2,i+2\ell}, \mu_{1,\ell,i})$ to

$$(x_{-n,-n\ell-k-i}, x_{-n-1,-n\ell-k-i-\ell}, x_{-n-2,-n\ell-k-i-2\ell}, \tau_{x_{n,n\ell+k}}(\mu_{1,\ell,i})).$$

Then we have

$$\{ x_{-n,-n\ell-k-i}, x_{-n-1,-n\ell-k-i-\ell}, x_{-n-2,-n\ell-k-i-2\ell} \}$$

= $\{ x_{0,-k-i}, x_{-1,-k-i-\ell}, x_{-2,-k-i-2\ell} \}$
= $\{ x_{0,-k-i}, x_{2,-k-i+2\ell}, x_{1,-k-i+\ell} \}.$

Since $(x_{0,-k-i}, x_{1,-k-i+\ell}, x_{2,-k-i+2\ell}, \mu_{1,\ell,-k-i})$ forms a normal $\mathcal{G}U_{3A}$ basis, we have that $\tau_{x_{n,n\ell+k}}(\mu_{1,\ell,i}) = \mu_{1,\ell,-k-i}$.

LEMMA 4.16. For any $i, j \in \mathbb{Z}_3$, $y \in \{\mu_{0,1}, \mu_{1,0,k}, \mu_{1,1,k}, \mu_{1,2,k} \mid k = 0, 1, 2\}$, we have

$$\langle x_{i,j}, y \rangle = \frac{1}{2^4} \tag{28}$$

and

$$\langle \mu_{1,i,j}, \mu_{1,k,\ell} \rangle = 0, \quad \langle \mu_{0,1}, \mu_{1,i,j} \rangle = 0$$
(29)

for all i, j, and for $k \neq i$.

PROOF. By (3),

$$\langle x_{0,0}, x_{0,1} \cdot x_{1,0} \rangle = \left\langle x_{0,0}, \frac{1}{2^4} (2x_{0,1} + 2x_{1,0} + x_{2,2}) - \frac{135}{2^{10}} \mu_{1,2,1} \right\rangle$$
$$= \frac{65}{2^{14}} - \frac{135}{2^{10}} \langle x_{0,0}, \mu_{1,2,1} \rangle$$

and

$$\begin{aligned} \langle x_{0,0}, x_{0,1} \cdot x_{1,0} \rangle &= \langle x_{0,0} \cdot x_{0,1}, x_{1,0} \rangle \\ &= \left\langle \frac{1}{2^4} (2x_{0,1} + 2x_{1,0} + x_{2,2}) - \frac{135}{2^{10}} \mu_{0,1}, x_{1,0} \right\rangle \\ &= \frac{65}{2^{14}} - \frac{135}{2^{10}} \cdot \frac{1}{2^4}. \end{aligned}$$

Therefore, we have $\langle x_{0,0}, \mu_{1,2,1} \rangle = 1/2^4$. Similarly, we can get (28). By (28),

$$\langle \mu_{1,0,1}, x_{0,1} \cdot x_{1,0} \rangle = \left\langle \mu_{1,0,1}, \frac{1}{2^4} (2x_{0,1} + 2x_{1,0} + x_{2,2}) - \frac{135}{2^{10}} \mu_{1,2,1} \right\rangle$$
$$= \frac{5}{2^8} - \frac{135}{2^{10}} \langle \mu_{1,0,1}, \mu_{1,2,1} \rangle$$

and

$$\langle \mu_{1,0,1}, x_{0,1} \cdot x_{1,0} \rangle = \langle \mu_{1,0,1} \cdot x_{0,1}, x_{1,0} \rangle$$

$$= \left\langle \frac{2}{3^2} (2x_{0,1} - x_{2,1} - x_{1,1}) + \frac{5}{2^4} \mu_{1,0,1}, x_{1,0} \right\rangle$$

$$= \frac{5}{2^8}.$$

Thus, we get $\langle \mu_{1,0,1}, \mu_{1,2,1} \rangle = 0$. Similar argument gives (29).

LEMMA 4.17. We have

$$\mu_{1,i,j} \cdot \mu_{1,k,\ell} = 0 \tag{30}$$

for $i \neq k$, and

$$\mu_{0,1} \cdot \mu_{1,i,j} = 0 \tag{31}$$

for $i \in \mathbb{Z}_3$.

Proof. By Theorem 2.3, (5) and (29), we have

Griess algebras generated by the Griess algebras of two 3A-algebras

$$\begin{aligned} \langle \mu_{1,i,j} \cdot \mu_{1,k,\ell}, \mu_{1,i,j} \cdot \mu_{1,k,\ell} \rangle &\leq \langle \mu_{1,i,j} \cdot \mu_{1,i,j}, \mu_{1,k,\ell} \cdot \mu_{1,k,\ell} \rangle \\ &= \langle 2\mu_{1,i,j}, 2\mu_{1,k,\ell} \rangle \\ &= 0. \end{aligned}$$

Since the inner product is positive definite by Assumption 1, we have (30). Similarly, we can get (31). $\hfill \Box$

LEMMA 4.18. For $x \in \{x_{i,j} \mid i, j\}, \mu' \in \{\mu_{0,1}, \mu_{1,i,j} \mid i, j\}$, we have

$$x \cdot \mu' = \frac{1}{2}x + \frac{5}{2^5}\mu' + \frac{3}{2^5}\tau_x(\mu') - \frac{1}{2^3}\sigma_x(\mu' + \tau_x(\mu')).$$
(32)

PROOF. By Lemma 2.9 and (28), we have

$$\begin{aligned} x \cdot \mu' &= 8\langle x, \mu' \rangle x + \frac{1}{2^2} \left(\frac{1}{2} (\mu' + \tau_x(\mu')) - \sigma_x \left(\frac{1}{2} (\mu' + \tau_x(\mu')) \right) \right) + \frac{1}{2^5} (\mu' - \tau_x(\mu')) \\ &= \frac{1}{2} x + \frac{5}{2^5} \mu' + \frac{3}{2^5} \tau_x(\mu') - \frac{1}{2^3} \sigma_x(\mu' + \tau_x(\mu')) \end{aligned}$$

as desired.

LEMMA 4.19. For $i \in \{0, 1, 2\}$, we have

$$\langle \mu_{1,i,0}, \mu_{1,i,2} \rangle = \langle \mu_{1,i,1}, \mu_{1,i,2} \rangle = \langle \mu_{1,i,0}, \mu_{1,i,1} \rangle.$$
(33)

PROOF. Since $g \in Aut(\mathcal{G})$ preserve the inner product, we have

$$\langle \mu_{1,i,0}, \mu_{1,i,1} \rangle = \langle g^{j}(\mu_{1,i,0}), g^{j}(\mu_{1,i,1}) \rangle = \langle \mu_{1,i,j}, \mu_{1,i,1+j} \rangle$$

for any j = 0, 1, 2.

LEMMA 4.20. For $x = x_{k,\ell}$, $\mu' = \mu_{1,i,j}$, $\mu'' = \tau_x(\mu')$, we have

$$\langle \sigma_x(\mu'+\mu''),\mu'\rangle = \frac{-1}{2^2} + \frac{3}{2^2} \langle \mu',\mu''\rangle.$$
 (34)

PROOF. By (32), (28), and (29), we have

$$\langle x \cdot \mu', \mu' \rangle = \left\langle \frac{1}{2}x + \frac{5}{2^5}\mu' + \frac{3}{2^5}\mu'' - \frac{1}{2^3}\sigma_x(\mu' + \mu''), \mu' \right\rangle$$
$$= \frac{3}{2^5} + \frac{3}{2^5}\langle \mu', \mu'' \rangle - \frac{1}{2^3}\langle \sigma_x(\mu' + \mu''), \mu' \rangle.$$

By (5), we also have

471

C. H. LAM and C. S. SU

$$\langle x \cdot \mu', \mu' \rangle = \langle x, \mu' \cdot \mu' \rangle = 2 \langle x, \mu' \rangle = \frac{1}{2^3}.$$

Hence we get

$$\langle \sigma_x(\mu'+\mu''),\mu'\rangle = \frac{-1}{2^2} + \frac{3}{2^2}\langle \mu',\mu''\rangle$$

as desired.

LEMMA 4.21. Let $\mu' = \mu_{i,j,k}$ and $\mu'' = \mu_{i',j',k'}$. If $(i,j) \neq (i',j')$ or (2i',2j'), then we have

$$\langle \sigma_x(\mu' + \tau_x(\mu')), \mu'' \rangle = \frac{1}{2^2} \tag{35}$$

for any $x = x_{k,\ell}$.

PROOF. By Lemma 4.17, we have $\mu' \cdot \mu'' = 0$ and $\langle \mu', \mu'' \rangle = \langle \tau_x(\mu'), \mu'' \rangle = 0$. Hence by (1) and (32),

$$0 = \langle x, \mu' \cdot \mu'' \rangle = \langle x \cdot \mu', \mu'' \rangle$$

= $\left\langle \frac{1}{2}x + \frac{5}{2^5}\mu' + \frac{3}{2^5}\tau_x(\mu') - \frac{1}{2^3}\sigma_x(\mu' + \tau_x(\mu')), \mu'' \right\rangle$
= $\frac{1}{2^5} - \frac{1}{2^3} \langle \sigma_x(\mu' + \tau_x(\mu')), \mu'' \rangle,$

which implies (35).

LEMMA 4.22. We have

$$\begin{aligned} 6075\mu_{0,1}\cdot\mu_{1,1,1} &= 64x_{0,1} - 656(x_{0,0} + x_{0,2}) - 576(x_{1,2} + x_{2,0}) + 384(x_{1,0} + x_{1,1} + x_{2,1} + x_{2,2}) \\ &+ 810\mu_{0,1} + 1260\mu_{1,1,1} - 135(\mu_{1,1,0} + \mu_{1,1,2}) + 360(\mu_{1,0,1} + \mu_{1,2,1}) \\ &+ 45(\mu_{1,0,0} + \mu_{1,0,2} + \mu_{1,2,0} + \mu_{1,2,2}) - 720(\sigma_{x_{0,1}}(\mu_{1,0,0} + \mu_{1,0,2} + \mu_{1,2,0} + \mu_{1,2,2}) \\ &+ 180(\sigma_{x_{0,0}}(\mu_{1,1,1} + \mu_{1,1,2}) + \sigma_{x_{0,2}}(\mu_{1,1,0} + \mu_{1,1,1})) \\ &= 0. \end{aligned}$$

PROOF. We will expand both sides of the equality

$$\sigma_{x_{0,1}}\big((x_{0,2}+x_{0,0})\cdot(x_{1,2}+x_{2,0})\big) = \sigma_{x_{0,1}}(x_{0,2}+x_{0,0})\cdot\sigma_{x_{0,1}}(x_{1,2}+x_{2,0})$$

By (8), we have

$$\sigma_{x_{0,1}} \left((x_{0,2} + x_{0,0}) \cdot (x_{1,2} + x_{2,0}) \right)$$

$$= \sigma_{x_{0,1}} \left(\frac{1}{2^4} (2x_{0,2} + 2x_{1,2} + x_{2,2}) + \frac{1}{2^4} (2x_{0,2} + 2x_{2,0} + x_{1,1}) + \frac{1}{2^4} (2x_{0,0} + 2x_{1,2} + x_{2,1}) \right)$$

$$+ \frac{1}{2^4} (2x_{0,0} + 2x_{2,0} + x_{1,0}) - \frac{135}{2^{10}} (\mu_{1,0,2} + \mu_{1,2,2} + \mu_{1,2,0} + \mu_{1,0,0}) \right)$$

$$= \frac{1}{2^4} x_{0,0} - \frac{15}{2^7} x_{0,1} + \frac{1}{2^4} x_{0,2} + \frac{1}{2^6} x_{1,0} + \frac{1}{2^6} x_{1,1} + \frac{1}{2^4} x_{1,2} + \frac{1}{2^4} x_{2,0} + \frac{1}{2^6} x_{2,1}$$

$$+ \frac{1}{2^6} x_{2,2} + \frac{135}{2^9} \mu_{0,1} + \frac{135}{2^9} \mu_{1,1,1} + \frac{135}{2^{11}} \mu_{1,0,1} + \frac{135}{2^{11}} \mu_{1,2,1}$$

$$- \frac{135}{2^{10}} \sigma_{x_{0,1}} (\mu_{1,0,0} + \mu_{1,0,2}) - \frac{135}{2^{10}} \sigma_{x_{0,1}} (\mu_{1,2,0} + \mu_{1,2,2}).$$

$$(36)$$

By (8), (32), and (27), we also have

$$\begin{aligned} \sigma_{x_{0,1}}(x_{0,2} + x_{0,0}) \cdot \sigma_{x_{0,1}}(x_{1,2} + x_{2,0}) \\ &= \left(\frac{-3}{2^4}x_{0,1} + \frac{1}{2^2}x_{0,2} + \frac{1}{2^2}x_{0,0} + \frac{135}{2^7}\mu_{0,1}\right) \cdot \left(\frac{-3}{2^4}x_{0,1} + \frac{1}{2^2}x_{1,2} + \frac{1}{2^2}x_{2,0} + \frac{135}{2^7}\mu_{1,1,1}\right) \\ &= \frac{187}{2^{10}}x_{0,0} - \frac{33}{2^8}x_{0,1} + \frac{187}{2^{10}}x_{0,2} - \frac{7}{2^7}x_{1,0} - \frac{7}{2^7}x_{1,1} + \frac{43}{2^8}x_{1,2} + \frac{43}{2^8}x_{2,0} \\ &- \frac{7}{2^7}x_{2,1} - \frac{7}{2^7}x_{2,2} + \frac{945}{2^{13}}\mu_{0,1} - \frac{135}{2^{14}}(\mu_{1,0,0} + \mu_{1,0,2} + \mu_{1,2,0} + \mu_{1,2,2}) + \frac{135}{2^{12}}\mu_{1,1,1} \\ &+ \frac{405}{2^{14}}(\mu_{1,1,0} + \mu_{1,1,2}) - \frac{135}{2^{12}}\left(\sigma_{x_{0,0}}(\mu_{1,1,1} + \mu_{1,1,2}) + \sigma_{x_{0,2}}(\mu_{1,1,0} + \mu_{1,1,1})\right) \\ &+ \frac{18225}{2^{14}}\mu_{0,1} \cdot \mu_{1,1,1}. \end{aligned} \tag{37}$$

Hence we have by (31), (36), (37),

$$\begin{aligned} 0 &= 6075\mu_{0,1} \cdot \mu_{1,1,1} \\ &= 64x_{0,1} - 656(x_{0,0} + x_{0,2}) - 576(x_{1,2} + x_{2,0}) + 384(x_{1,0} + x_{1,1} + x_{2,1} + x_{2,2}) \\ &+ 810\mu_{0,1} + 1260\mu_{1,1,1} - 135(\mu_{1,1,0} + \mu_{1,1,2}) + 360(\mu_{1,0,1} + \mu_{1,2,1}) \\ &+ 45(\mu_{1,0,0} + \mu_{1,0,2} + \mu_{1,2,0} + \mu_{1,2,2}) - 720(\sigma_{x_{0,1}}(\mu_{1,0,0} + \mu_{1,0,2} + \mu_{1,2,0} + \mu_{1,2,2}) \\ &+ 180(\sigma_{x_{0,0}}(\mu_{1,1,1} + \mu_{1,1,2}) + \sigma_{x_{0,2}}(\mu_{1,1,0} + \mu_{1,1,1})), \end{aligned}$$

as desired.

LEMMA 4.23. For $i, k, \ell \in \{0, 1, 2\}$, we have

$$\langle \mu_{1,i,k}, \mu_{1,i,\ell} \rangle = \frac{2}{5}.$$
 (38)

Hence, $\mu_{1,i,k} = \mu_{1,i,\ell}$ for any i, k, ℓ .

PROOF. By Lemma 4.22 and (33), (34), and (35), we have

$$\begin{split} 0 &= \langle 6075\mu_{0,1} \cdot \mu_{1,1,1}, \mu_{1,0,0} \rangle \\ &= 64 \cdot \frac{1}{2^4} - 656 \left(\frac{1}{2^4} + \frac{1}{2^4} \right) - 576 \left(\frac{1}{2^4} + \frac{1}{2^4} \right) + 384 \left(\frac{1}{2^4} + \frac{1}{2^4} + \frac{1}{2^4} + \frac{1}{2^4} \right) \\ &+ 810 \cdot 0 + 1260 \cdot 0 - 135(0 + 0) + 360(\langle \mu_{1,0,0}, \mu_{1,0,1} \rangle + 0)r \\ &+ 45 \left(\frac{2}{5} + \langle \mu_{1,0,0}, \mu_{1,0,1} \rangle + 0 + 0 \right) - 720 \left(-\frac{1}{2^2} + \frac{3}{2^2} \langle \mu_{1,0,0}, \mu_{1,0,1} \rangle + \frac{1}{2^2} \right) \\ &+ 180 \left(\frac{1}{2^2} + \frac{1}{2^2} \right) \\ &= 54 - 135 \langle \mu_{1,0,0}, \mu_{1,0,1} \rangle, \end{split}$$

which implies $\langle \mu_{1,0,0}, \mu_{1,0,1} \rangle = 2/5$. Similarly, one can prove $\langle \mu_{1,i,k}, \mu_{1,i,\ell} \rangle = 2/5$, also. \Box

NOTATION 4.24. We denote $\mu_{1,i,0} = \mu_{1,i,1} = \mu_{1,i,2}$ by $\mu_{1,i}$ for $i \in \{0, 1, 2\}$.

PROPOSITION 4.25. For any $(i, j) \neq (i', j')$, we have

$$\mu_{i,j} \cdot \mu_{i',j'} = 0. \tag{39}$$

Moreover,

$$\mu_{0,1} + \mu_{1,0} + \mu_{1,1} + \mu_{1,2} = \frac{32}{45} (x_{0,0} + x_{0,1} + x_{0,2} + x_{1,0} + x_{1,1} + x_{1,2} + x_{2,0} + x_{2,1} + x_{2,2}).$$
(40)

Therefore, the dimension of \mathcal{G} is 12.

PROOF. The first assertion follows from (29) and Lemma 4.23. To prove (40), let

$$\tilde{\mu} = \mu_{0,1} + \mu_{1,0} + \mu_{1,1} + \mu_{1,2},$$

$$\tilde{x} = \frac{32}{45}(x_{0,0} + x_{0,1} + x_{0,2} + x_{1,0} + x_{1,1} + x_{1,2} + x_{2,0} + x_{2,1} + x_{2,2})$$

Then by Lemmas 4.16, 4.22, and $\langle \mu_{i,j}, \mu_{i',j'} \rangle = 0$ for $(i,j) \neq (i'j')$, we have

$$\langle \tilde{\mu} - \tilde{x}, \tilde{\mu} - \tilde{x} \rangle = 0$$

and thus $\tilde{\mu} = \tilde{x}$ as desired.

To check the dimension of \mathcal{G} , for $\{a_1, a_2, \ldots, a_{12}\} = \{x_{i,j}, \mu_{0,1}, \mu_{1,0}, \mu_{1,1} \mid i, j \in \mathbb{Z}_3\}$, we can get $\det(\langle a_i, a_j \rangle) = 3^{42}/2^{86} \cdot 5^2 \neq 0$ by computer. Hence the dimension of \mathcal{G} is 12.

REMARK 4.26. From our proof, we have shown that $(x_{i_0,j_0}, x_{i_1,j_1}, x_{i_2,j_2}, \mu_{i,j})$ forms a normal $\mathcal{G}U_{3A}$ basis of $\mathcal{G}\{x_{i_0,j_0}, x_{i_1,j_1}\}$ if and only if

$$\begin{cases} (i_0, j_0) + (i_1, j_1) + (i_2, j_2) \equiv (0, 0) \pmod{3}, \\ (i_1, j_1) - (i_0, j_0) \equiv \pm (i, j) \pmod{3}. \end{cases}$$

The Griess algebra \mathcal{G} is isomorphic to $\mathcal{G}V_{F(3A)}$ and the structure is summarized as in Figure 1.

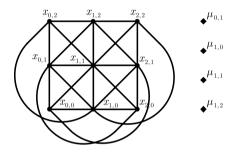


Figure 1. Configuration for $\mathcal{G}V_{F(3A)}$.

References

- [Co] J. H. Conway, A simple construction for the Fischer-Griess monster group, Invent. Math., 79 (1985), 513–540.
- [DMZ] C. Y. Dong, G. Mason and Y. C. Zhu, Discrete series of the Virasoro algebra and the moonshine module, In: Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, Pennsylvania, 1991, (eds. William J. Haboush and Brian J. Parshall), Proc. Sympos. Pure Math., 56, part 2, Amer. Math. Soc., Providence, RI, 1994, pp. 295–316.
- [FHL] I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 104, no. 494, Amer. Math. Soc., Providence, RI, 1993.
- [FLM] I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, New York, 1988.
- [Hö] G. Höhn, The group of symmetries of the shorter moonshine module, Abh. Math. Semin. Univ. Hambg., 80 (2010), 275–283.
- [HLY] G. Höhn, C. H. Lam and H. Yamauchi, McKay's E₆-observation on the largest Fischer group, Comm. Math. Phys., **310** (2012), 329–365.
- [IPSS] A. A. Ivanov, D. V. Pasechnik, Á. Seress and S. Shpectorov, Majorana representations of the symmetric group of degree 4, J. Algebra, **324** (2010), 2432–2463.
- [KMY] M. Kitazume, M. Miyamoto and H. Yamada, Ternary codes and vertex operator algebras, J. Algebra, 223 (2000), 379–395.
- [Li] H. S. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra, 96 (1994), 279–297.
- [LLY] C. H. Lam, N. Lam and H. Yamauchi, Extension of unitary Virasoro vertex operator algebra by a simple module, Int. Math. Res. Not., 11 (2003), 577–611.
- [LS] C. H. Lam and C. S. Su, Griess algebras generated by 3 Ising vectors of central 2A-type, J. Algebra, 374 (2013), 141–166.
- [LYY] C. H. Lam, H. Yamada and H. Yamauchi, Vertex operator algebras, extended E_8 diagram,

475

C. H. LAM and C. S. SU

and McKay's observation on the Monster simple group, Trans. Amer. Math. Soc., **359** (2007), 4107–4123.

- [LYY2] C. H. Lam, H. Yamada and H. Yamauchi, McKay's observation and vertex operator algebras generated by two conformal vectors of central charge 1/2, IMRP Int. Math. Res. Pap., 3 (2005), 117–181.
- [Mi1] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, J. Algebra, 179 (1996), 523–548.
- [Mi2] M. Miyamoto, 3-state Potts model and automorphisms of vertex operator algebras of order 3, J. Algebra, 239 (2001), 56–76.
- [Mi3] M. Miyamoto, Vertex operator algebras generated by two conformal vectors whose τ -involutions generate S_3 , J. Algebra, **268** (2003), 653–671.
- [Mi4] M. Miyamoto, A new construction of the moonshine vertex operator algebra over the real number field, Ann. of Math. (2), 159 (2004), 535–596.
- [Sa] S. Sakuma, 6-transposition property of τ -involutions of vertex operator algebras, Int. Math. Res. Not. IMRN, **2007**, Art. ID rnm 030.
- [SY] S. Sakuma and H. Yamauchi, Vertex operator algebra with two Miyamoto involutions generating S₃, J. Algebra, 267 (2003), 272–297.

Ching Hung LAMChe Sheng SUInstitute of MathematicsDepartment of MathematicsAcademia SinicaNational Taiwan UniversityTaipei 10617, TaiwanTaipei 10617, TaiwanandE-mail: d97221001@ntu.edu.twNational Center for Theoretical SciencesTaiwanE-mail: chlam@math.sinica.edu.twE-mail: d97221001@ntu.edu.tw