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Pseudoconvex domains in the Hopf surface

By Norman Levenberg and Hiroshi Yamaguchi

(Received Mar. 5, 2013)

Abstract. With the aid of the technique of variation of domains devel-
oped in Memoirs of Amer. Math. Soc., Vol. 209, No. 984 (2011), we character-
ize the pseudoconvex domains with smooth boundary in Hopf surfaces which
are not Stein.

1. Introduction.

Let a ∈ C∗ := C \ {0} with |a| > 1 and let Ha be the Hopf manifold with respect
to a, i.e., Ha = Cn \ {(0, . . . , 0)}/ ∼ where z′ ∼ z if and only if there exists m ∈ Z such
that z′ = amz in Cn \ {0}. In a previous paper [1] we showed that any pseudoconvex
domain D ⊂ Ha with Cω-smooth boundary which is not Stein is biholomorphic to Ta ×
D0 where D0 is a Stein domain in Pn−1 with Cω-smooth boundary and Ta is a one-
dimensional torus. This was achieved using the technique of variation of domains in a
complex Lie group developed in [1] applied to Ha as a complex homogeneous space with
transformation group GL(n,C) (Theorem 6.5 in [1]).

For a, b ∈ C∗ with |b| ≥ |a| > 1 we let H(a,b) be the Hopf surface with respect
to (a, b), i.e., H(a,b) = C2 \ {(0, 0)}/ ∼, where (z, w) ∼ (z′, w′) if and only if there
exists n ∈ Z such that z′ = anz, w′ = bnw. We set Ta = Ta × {0}, Tb = {0} × Tb, and
H∗(a,b) = H(a,b)\(Ta∪Tb). For (z, w) ∈ C2\{(0, 0)} we denote by [z, w] the corresponding
point in H(a,b).

We remark thatH(a,b) is not a complex Lie group. However, H∗(a,b) is both a complex
Lie group and a complex homogeneous space. With the aid of the aforementioned tech-
nique of variation of domains in [1], we can characterize the domains with Cω-smooth
boundary in H(a,b) which are not Stein.

We set

ρ :=
log |b|
log |a| ≥ 1 (1.1)

and we define the holomorphic vector field

Xu := (log |a|)z ∂

∂z
+ (log |b|)w ∂

∂w
(1.2)

on C2. This induces a holomorphic vector field on H(a,b) which we still write as Xu.
These vector fields Xu are crucial and will be discussed in Section 3. We let σ̃u be the
integral curve of Xu with initial value at [1, 1].
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To state our result, we divide the parameter space of pairs (a, b) into two disjoint
sets following the discussion on p. 52 in [2]. We let

S := {(a, b) ∈ C∗ × C∗ : 1 < |a| ≤ |b|} = S1 ∪ S2

where

S1 := {(a, b) ∈ S : there do not exist positive integers P, Q with aQ = bP }.

If (a, b) ∈ S1, then H(a,b) admits no nonconstant meromorphic functions. If (a, b) ∈ S2,
there exist positive integers P, Q such that aQ = bP ; letting P be the minimal such
integer, H(a,b) admits the non-constant meromorphic function wP /zQ. Indeed, in this
case any meromorphic function on H(a,b) is a rational function of wP /zQ. For (a, b) ∈ S2,
since ρ = log |b|/log |a| and τ := (1/2π)(Q arg a− P arg b) are rational, we set

ρ := q/p, q ≥ p ≥ 1 and (p, q) = 1; (1.3)

τ := m/l, l ≥ 1 and (l, m) = ±1 or τ = 0 (and we set l = 1). (1.4)

We have the following decompositions of H := H(a,b).

Proposition 1.1. Let H := H(a,b) be a Hopf surface.

(α) In case (a, b) ∈ S1 we have

H =
( ⋃

c∈(0,∞)

Σc

)
∪ (Ta ∪ Tb) (1.5)

and this is a disjoint union. Here Σc is the closure of [z0, w0]σ̃u with c =
|w0|log p/|z0|log q (and Σc is independent of the choice of [z0, w0] provided c =
|w0|log p/|z0|log q), and hence Σc is a real three-dimensional Levi-flat hypersurface
in H∗ := H∗(a,b). We set Σ0 = Ta and Σ∞ = Tb so that H =

⋃
c∈[0,∞] Σc.

(β) In case (a, b) ∈ S2, with ρ and τ as in (1.3) and (1.4), we have

H =
( ⋃

c∈C∗
σc

)
∪ (Ta ∪ Tb) (1.6)

which is a disjoint union. Here σc := [z0, w0]σ̃u with c = wpl
0 /zql

0 (where σc is inde-
pendent of the choice of [z0, w0] provided c = wpl

0 /zql
0 ), and hence σc is compact curve

in H∗. We note that Ta = [z0, 0] exp tXu where z0 6= 0 and Tb = [0, w0] exp tXu

where w0 6= 0. We set σ0 = Ta and σ∞ = Tb so that H =
⋃

c∈P1 σc.

We can now state our main result.

Theorem 1.1. Let D be a pseudoconvex domain in H(a,b) with Cω-smooth bound-
ary. Suppose D is not Stein.
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Case a: (a, b) ∈ S1.
D reduces to one of the following :

(a-1) There exist 0 < k1 < k2 < +∞ such that D =
⋃

c∈(k1,k2)
Σc.

(a-2′) There exists a positive number k such that D =
⋃

c∈[0,k) Σc.
(a-2′′) There exists a positive number k such that D =

⋃
c∈(k,+∞] Σc.

Case b: (a, b) ∈ S2.
D =

⋃
c∈δ σc for some domain δ in P1 with smooth boundary.

Remark 1.1. In Case a, the Levi-flat hypersurfaces Σc for c 6= 0,∞ are level
sets of the logarithmically pluriharmonic function s[z, w] :=|w|log |a|/|z|log |b| on H∗ (see
(2.5)) and hence all these surfaces are biholomorphically equivalent in H∗. In Case b,
the compact curves σc are level sets of the meromorphic function f [z, w] :=wpl/zql and
for c ∈ C∗ each σc is conformally equivalent to a torus T(a,b). A detailed construction of
T(a,b) is discussed in Appendix A (Section 5).

The main idea behind the proof is this: starting with a pseudoconvex domain D ⊂ H
with smooth boundary, we consider D∗ = D ∩H∗. We construct a natural plurisubhar-
monic exhaustion function using our c-Robin function techniques in [1]. It is natural
to try to extend this function to D first as a plurisubharmonic function and then as an
exhaustion function. The construction of a plurisubharmonic exhaustion function on D

is the most delicate part in the proof of the theorem (see Section 4). Hirschowitz ([3], [4])
proved the existence of such a function on a pseudoconvex domain in an infinitesimally
homogeneous space. However, a Hopf surface H(a,b) with a 6= b is not an infinitesimally
homogeneous space – this essentially follows from the fact that any holomorphic vector
field on H(a,b) is of the form c1z(∂/∂z) + c2w(∂/∂w)dw where c1, c2 ∈ C (cf. Exam-
ple 2.15 on pp. 69–71 of [2]) – thus we cannot apply his result. We study obstructions
to our resulting plurisubharmonic exhaustion function (or a modification of it) being
strictly plurisubharmonic arising from the possible existence of certain holomorphic vec-
tor fields. As a by-product of this procedure, we also encounter an interesting class of
Stein subdomains in H which we call Nemirovskii-type domains.

The outline of our paper is the following. In the next section, we briefly discuss
properties of the Hopf surface H(a,b), and in Section 3 we state without proof some
preliminary results, including a classification in Lemma 3.1 of the holomorphic vector
fields on H(a,b) and their integral curves. This yields the decompositions (1.5) and (1.6)
of H(a,b) in Proposition 1.1. The proof of Theorem 1.1 is given in Section 4. At the end
of this section we give an example of the aforementioned Nemirovskii-type domain. The
proofs of the results in Section 3 are given at the end of the paper in Appendix A and
Appendix B.

We would like to thank Professor Tetsuo Ueda for suggesting this problem and for
many useful comments, and we also thank the referee for his/her very careful reading of
the original manuscript which allowed us to make many corrections.
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2. Properties of the Hopf surface H(a,b).

We write C∗ := C \ {0} and (C2)∗ := C2 \ {(0, 0)}. Fix a, b ∈ C∗ with 1 < |a| ≤ |b|.
For (z, w), (z′, w′) ∈ (C2)∗, we define the equivalence relation

(z, w) ∼ (z′, w′) if and only if ∃ n ∈ Z such that z′ = anz, w′ = bnw.

The space (C2)∗/ ∼ consisting of all equivalence classes

[z, w] := {(anz, bnw) : n ∈ Z}, (z, w) ∈ (C2)∗

is called the Hopf surface H = H(a,b); it is a complex two-dimensional compact manifold.
For z, z′ ∈ C∗ we define z ∼a z′ if and only if there exists n ∈ Z such that z′ = anz

in C∗. Then

Ta := C∗/ ∼a and Tb := C∗/ ∼b

are complex one-dimensional tori, and H contains two disjoint compact analytic curves
Ta = Ta × {0} and Tb = {0} × Tb. We have Ta ∪ Tb = {(z, w) ∈ (C2)∗ : zw = 0}/ ∼
in H; for simplicity we write Ta ∪ Tb = {zw = 0}. We consider the subdomain H∗ of H
defined by

H∗ := H \ {zw = 0}. (2.1)

Thus H is a compactification of H∗ by two disjoint one-dimensional tori. The set H∗ is
a complex Lie group and will play a crucial role in this work.

We give a more precise description of the Hopf surface. A fundamental domain for
H is

F := ({|z| ≤ |a|} × {|w| ≤ |b|}) \ ({|z| ≤ 1} × {|w| ≤ 1})
= E1 ∪ E2 b (C2)∗, (2.2)

where

E1 = E′
1 × E′′

1 := {|z| ≤ |a|} × {1<|w| ≤ |b|},
E2 = E′

2 × E′′
2 := {1<|z| ≤ |a|} × {|w| ≤ |b|}.

For k = 0,±1, . . . we set Fk := F · (ak, bk). Then F0 = F ; each Fk is a fundamental
domain; and we have the disjoint union (C2)∗ =

⋃∞
n=−∞ Fn.

The Hopf surface H is obtained by gluing the boundaries of ∂F in the following way:
setting

L′a := {|z| ≤ |a|} × {|w| = |b|}, L′1 = {|z| ≤ 1} × {|w| = 1};
L′′b := {|z| = |a|} × {|w| ≤ |b|}, L′′1 = {|z| = 1} × {|w| ≤ 1},
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we have the identifications:

(1) (z, w) ∈ L′a with (z/a, w/b) ∈ L′1;

(2) (z, w) ∈ L′′b with (z/a, w/b) ∈ L′′1 .

We set

I = {(an, bn) ∈ C∗ × C∗ : n ∈ Z} ⊂ C∗ × C∗, (2.3)

which is a discrete set in (C2)∗. For D ⊂ C∗ × C∗ we set

D̃ = D · I = {(anz, bnw) ∈ C∗ × C∗ : (z, w) ∈ D, n ∈ Z} ⊂ C∗ × C∗ (2.4)

and

D/ ∼ = {[z, w] ∈ H : (z, w) ∈ D̃} ⊂ H.

Therefore D̃/ ∼ = D/ ∼. We note that the subset (D̃/ ∼)∩F in (C)∗ is equal to D̃∩F ,
but it is not necessarily the same as D ∩ F .

We give an example of the action of the equivalence relation which will illustrate the
difference between the Lie group H∗ and the Hopf surface H. Let D = Cz × {w} where
w 6= 0. As a subset of H∗, the complex curve D∩(C∗×C∗)/ ∼ is closed and is equivalent
to C∗. However, as a complex curve in H, D/ ∼ is not closed and is equivalent to C.
Moreover, if |b|k−1 < |w| < |b|k, then (0, w) ∈ Fk and

D/ ∼ = D0 ∪D1 ∪D2 ∪ · · ·

where

D0 = {|z| < |a|k} × {w}, Dn = {|a|k−1 ≤ |z| ≤ |a|k} × {w/bn}, n = 1, 2, . . .

Thus D0 is a disk and Dn, n = 1, 2, . . . are annuli such that Dn+1 = Dn · (1, 1/b), n =
1, 2, . . .. Hence the Dn, n = 1, 2, 3, . . . are conformally equivalent and, as n → ∞, they
wind around and converge to Ta in H.

Following T. Ueda, we consider the following real-valued function U [z, w] on H∗:

U [z, w] =
log |z|
log |a| −

log |w|
log |b| for [z, w] ∈ H∗. (2.5)

This has the following properties:

(1) U [z, w] is a pluriharmonic function on H∗ satisfying

lim
[z,w]→Ta

U [z, w] = +∞ and lim
[z,w]→Tb

U [z, w] = −∞,



236 N. Levenberg and H. Yamaguchi

thus for any interval I b (−∞,∞), the subdomain U−1(I) ofH∗ is relatively compact
in H∗.

(2) |U [z, w]| := Max {U [z, w],−U [z, w]} is a plurisubharmonic exhaustion function for
H∗ which is pluriharmonic everywhere except on the Levi-flat set

log |z|
log |a| =

log |w|
log |b| , i.e., |w| = |z|ρ in H∗.

(3) For c ∈ (−∞,+∞), the level set

Sc : U [z, w] = c

is equal to |w| = k|z|ρ where k = e−c log |b| > 0. Thus {k2|z|ρ ≤ |w| ≤ k1|z|ρ} is equal
to U−1([c1, c2]) where ki = e−ci log |b|; while {|w| ≤ k|z|ρ} is equal to U−1([c,+∞))∪
Ta; and {|w| ≥ k|z|ρ} is equal to U−1((−∞, c]) ∪ Tb where k = e−c log |b|.

From (2) and (3), it is immediately clear that each of the domains D in (a-1), (a-2′)
and (a-2′′) in the statement of Theorem 1.1 contains a compact, Levi-flat hypersurface
Sc for appropriate c; hence each such D is not Stein.

3. Preliminary results.

In this section, we discuss two basic results which we will need. The first concerns
holomorphic vector fields in H = H(a,b), while the second concerns general pseudoconvex
domains with Cω-smooth boundary in C2.

We consider the linear space X of all holomorphic vector fields X of the form

X = αz
∂

∂z
+ βw

∂

∂w
, α, β ∈ C

in C2. Any such X clearly induces a holomorphic vector field on H. The integral curve
C of X with initial value (z0, w0) ∈ C∗ × C∗ is

(z0, w0) exp tX =

{
z = z0e

αt,

w = w0e
βt,

t ∈ C.

Therefore, if, for example, α 6= 0, we can write

C : w = c0z
β/α where c0 = w0

/
z

β/α
0 .

Regarding X as a holomorphic vector field on H, the integral curve [z0, w0] exp tX of X

in H with initial value [z0, w0] is equal to {w = c0 zβ/α}/ ∼ in H∗. We will often simply
write exp tX := [1, 1] exp tX in H.

In particular, we recall the vector fields

Xu := (log |a|)z ∂

∂z
+ (log |b|)w ∂

∂w
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from the introduction. The integral curve of Xu with initial value (1, 1) is

exp tXu =

{
z = e(log |a|)t,

w = e(log |b|)t,
t ∈ C.

Thus w = zρ with 1ρ = 1. We set σ̃u := {exp tXu : t ∈ C}/ ∼ ⊂ H∗ and denote by Σ̃u

the closure of σ̃u in H. For future use, we define the linear subspace Xu = {cXu : c ∈ C}
of X.

The next lemma gives more precise information about the integral curves and will
be crucial in the proof of the key Lemma 4.2.

Lemma 3.1. 1. For Xu = (log |a|)z(∂/∂z) + (log |b|)w(∂/∂w) we have:
(1) In case (a, b) ∈ S1, σ̃u is a non-compact curve in H and Σ̃u = {|w|log |a| =

|z|log |b|}/ ∼ is a real three-dimensional Levi-flat closed hypersurface in H with
Σ̃u b H∗.

(2) In case (a, b) ∈ S2, σ̃u is a compact curve in H∗ such that
i) σ̃u = [z0, w0]σu if and only if wpl

0 = zql
0 ;

ii) σ̃u, as a Riemann surface, is equivalent to the torus T(a,b) from Remark 1.1.
2. For X = αz(∂/∂z) + βw(∂/∂w) 6∈ {cXu : c ∈ C}, the integral curve σ := {exp tX :

t ∈ C}/ ∼ in H∗ is not relatively compact in H∗. If we let Σ denote the closure of σ

in H, then:
(1) If α, β 6= 0, we have Σ ⊃ Ta ∪ Tb.
(2) If only one of α or β is not 0, e.g., α 6= 0 and β = 0, we have Σ ⊃ Ta and

Σ ∩ Tb = ∅.

Remark 3.1. The decompositions of the Hopf surface H := H(a,b) in the two cases
(a, b) ∈ S1 or (a, b) ∈ S2 given as (1.5) and (1.6) in Proposition 1.1 will essentially follow
from Lemma 3.1. The precise proofs of Lemma 3.1 and Proposition 1.1 are in Appendix
A.

We now turn to an elementary property of a pseudoconvex domain D with Cω-
smooth boundary in C2. In C2 = Cz × Cw we consider disks

∆1 = {|z| < r1}, ∆2 = {|w| < r2}

and the bidisk ∆ = ∆1×∆2. Let D be a pseudoconvex domain with Cω boundary in ∆.
We do not assume D is relatively compact. Thus there exists a Cω-smooth, real-valued
function ψ(z, w) on ∆ such that

D = {(z, w) ∈ ∆ : ψ(z, w) < 0};
∂D ∩∆ = {(z, w) ∈ ∆ : ψ(z, w) = 0},

and on ψ(z, w) = 0 we have both ∇(z,w)ψ(z, w) 6= 0 and the Levi form Lψ(z, w) ≥ 0.
We write out this last condition: for
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Lψ(z, w) =
∂2ψ

∂z∂z

∣∣∣∣
∂ψ

∂w

∣∣∣∣
2

− 2<
{

∂2ψ

∂z∂w

∂ψ

∂z

∂ψ

∂w

}
+

∂2ψ

∂w∂w

∣∣∣∣
∂ψ

∂z

∣∣∣∣
2

,

we have Lψ(z, w) ≥ 0 on ψ(z, w) = 0. (3.1)

We may assume

ψ(0, 0) = 0 and
∂ψ

∂w
(0, 0) 6= 0

so that {w : ψ(0, w) = 0} is a Cω-smooth simple arc in ∆2 passing through w = 0.
We set S := ∂D ∩∆,

D(z) := {w ∈ ∆2 : (z, w) ∈ D} ⊂ ∆2; and

S(z) := {w ∈ ∆2 : (z, w) ∈ S} ⊂ ∆2,

so that D =
⋃

z∈∆1
(z, D(z)) ⊂ ∆ and S =

⋃
z∈∆1

(z, S(z)) ⊂ ∆. Taking r1, r2 > 0
sufficiently small we can insure that

( i ) for each z ∈ ∆1, D(z) is a non-empty domain in ∆2 and S(z) is a Cω-smooth open
arc in ∆2 connecting two points a(z) and b(z) on ∂∆2;

( ii ) 0 ∈ S(0).

We also need to assume the following condition for Lemma 3.2:

(iii) ψ(z, 0) 6≡ 0 in ∆1, hence, for any disk δ1 = {|z| < r} ⊂ ∆1, there exists z0 ∈ δ1

with 0 6∈ S(z0).

Under these three conditions we have the following.

Lemma 3.2. For any disk δ1 = {|z| < r} ⊂ ∆1, there exists a disk δ2 = {|w| <

r′} ⊂ ∆2 with

⋃

z∈δ1

S(z) ⊃ D(0) ∩ δ2.

The proof of Lemma 3.2 is in Appendix B. This result will be used in proving Lemma
4.1.

4. Construction of the plurisubharmonic exhaustion function −λ[z,w]
on D.

Let (α, β) ∈ C∗ × C∗. If we define

(α, β) : [z, w] ∈ H 7→ [αz, βw] ∈ H,

then (α, β) is an automorphism of H. Thus C∗ × C∗ acts as a commutative group
of automorphisms of H with identity element e = (1, 1). Although C∗ × C∗ is not
transitive on H, it is transitive on H∗. Hence H∗ is a complex homogeneous space with
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Lie transformation group C∗ ×C∗ which acts transitively. This is the setting of Chapter
6 of [1]. For any [z, w] ∈ H∗ the isotropy subgroup I[z,w] of C∗ × C∗ is

I[z,w] := {(α, β) ∈ C∗ × C∗ : (α, β)[z, w] = [z, w]}
= {(an, bn) ∈ C∗ × C∗ : n ∈ Z}
= I in (2.3),

and thus is independent of [z, w] ∈ H∗. We have

H∗ = (C∗ × C∗)/I.

In what follows we will generally consider the restriction to C∗×C∗ of the Euclidean
metric ds2 = |dz|2+|dw|2 on C2, and we fix a positive real-valued function c(z, w) of class
Cω on C2. This allows us to define c-harmonic functions and thus a c-Green function
and c-Robin constant associated to a smoothly bounded domain Ω b C∗×C∗ and a point
p0 ∈ Ω (if Ω 6b C∗ × C∗ we define these by exhaustion); cf., Chapter 1 of [1]. Varying
the point p0 yields the c-Robin function for Ω. However, we remark that any Kähler
metric dS2 and positive function C(z, w) of class Cω on C∗×C∗ gives rise to a C-Green
function and hence a C-Robin function on Ω; this flexibility will be used in the 4th case
of the proof of Lemma 4.3. For simplicity, we will always take c(z, w) (or C(z, w)) to be
a positive constant.

In this section we always assume that D ⊂ H is a pseudoconvex domain with Cω-
smooth boundary in H. Our first goal is to construct a plurisubharmonic exhaustion
function for D. We note that

if D ⊃ Ta or D ⊃ Tb, then D is not Stein.

We define

D∗ := D ∩ {zw 6= 0} ⊂ H∗

(see (2.1)). The distinction between D ⊂ H and D∗ ⊂ H∗ will be very important. Since
(α, β) ∈ C∗ × C∗ defines an automorphism of H, for [z, w] ∈ H we can define

D[z, w] = {(α, β) ∈ C∗ × C∗ : (α, β)[z, w] ∈ D} ⊂ C∗ × C∗.

Equivalently, using the notation D∩Ta = Da×{0}, D∩Tb = {0}×Db, D̃a = {anz :
z ∈ Da, n ∈ Z} ⊂ C∗z and D̃b = {bnw : w ∈ Db, n ∈ Z} ⊂ C∗w, we have

D[z, w] =
((

1
z
,

1
w

)
·D∗

)
· I =

(
1
z
,

1
w

)
· D̃∗ if [z, w] ∈ H∗;

D[z, 0] =
(

1
z
Da,C∗

)
· I =

(
1
z
D̃a

)
× C∗w if [z, 0] ∈ Ta;
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D[0, w] =
(
C∗,

1
w

Db

)
· I = C∗z ×

(
1
w

D̃b

)
if [0, w] ∈ Tb.

We note the following:

(1) If e ∈ D then D[e] = D̃ \ {zw = 0} = D̃∗; and given [z, w] ∈ H, [z, w] ∈ D if and
only if e ∈ D[z, w] (recall the definition of D̃ (and hence D̃∗) in (2.4)).

(2) For each [z, w] ∈ D, D[z, w] is an open set with Cω boundary ∂D[z, w] but it is not
relatively compact in C∗ × C∗. We have
( i ) D[z, w] = D[z, w] · I;
( ii ) For [z, w] ∈ D∗ we define

D∗[z, w] = {(α, β) ∈ C∗ × C∗ : (α, β)[z, w] ∈ D∗}.

Then D[z, w] = D∗[z, w].
(3) ( i ) For [z, w] ∈ D∗ we have

D[z, w] = D̃∗ ·
(

1
z
,

1
w

)
, (4.1)

and for [z, w], [z′, w′] ∈ D∗

D[z′, w′] =
(

z

z′
,

w

w′

)
D[z, w]. (4.2)

In particular, the sets D[z, w] for [z, w] ∈ D∗ are biholomorphic in C∗ × C∗.
( ii ) For any two points [z, 0], [z′, 0] ∈ D ∩ Ta

D[z′, 0] =
(

z

z′
, 1

)
D[z, 0].

In particular, the sets D[z, 0] for [z, 0] ∈ D ∩ Ta are biholomorphic in C∗ × C∗.
(4) Fix [z0, 0] ∈ D ∩ Ta and let [zn, wn] ∈ D∗ (n = 1, 2, . . .) with [zn, wn] → [z0, 0] as

n →∞ in H. For 0 < r < R, consider the product of annuli

A(r,R) : {r < |z| < R} × {r < |w| < R} ⊂ C∗ × C∗.

Then

lim
n→∞

∂D[zn, wn] ∩ A(r,R) = ∂D[z0, 0] ∩ A(r,R) (4.3)

in the Hausdorff metric as compact sets in C∗ × C∗.
We set

D :=
⋃

[z,w]∈D

([z, w], D[z, w]). (4.4)
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This is a pseudoconvex domain in D×(C∗×C∗) which we consider as a function-theoretic
“parallel” variation

D : [z, w] ∈ D → D[z, w] ⊂ C∗ × C∗.

Since e ∈ D[z, w] for [z, w] ∈ D, we have the c-Green function g([z, w], (ξ, η)) with pole
at e and the c-Robin constant λ[z, w] for (D[z, w], e) with respect to the metric ds2 on
C∗ × C∗ and the function c(z, w) > 0. We call [z, w] → λ[z, w] the c-Robin function for
D.

The function −λ[z, w] is a candidate to be a plurisubharmonic exhaustion function
for D. To be precise, we have the following fundamental result.

Lemma 4.1. 1. −λ[z, w] is a plurisubharmonic function on D.
2. We have the following :

(a) For any [z0, w0] ∈ ∂D∗, lim[z,w]→[z0,w0] λ[z, w] = −∞.
(b) If ∅ 6= ∂D∩Ta 6= Ta then for any [z0, 0] ∈ ∂D∩Ta we have lim[z,w]→[z0,0] λ[z, w] =

−∞ (and similarly if Ta is replaced by Tb).
3. If ∂D 6⊃ Ta and ∂D 6⊃ Tb, then −λ[z, w] is a plurisubharmonic exhaustion function

for D.

Proof. Note that 3. follows from 1. and 2. We divide the proof of 1. into two
steps.

1st step: −λ[z, w] is plurisubharmonic on D∗.

Fix [ζ0] = [z0, w0] ∈ D∗. Let a ∈ C2 \ {0} with ‖a‖ = 1 and let B = {|t| < r} ⊂ Ct

be a small disk and let (z(t), w(t)) = ζ0 + at be such that the complex line l : t ∈ B →
[ζ(t)] = [z(t), w(t)] = [ζ0]+at passing through [ζ0] is contained in D∗. It suffices to prove
that −λ(t) := −λ[z(t), w(t)] is subharmonic on B, i.e.,

∂2λ(t)
∂t∂t

≤ 0 on B.

For brevity we write

D(t) := D[ζ(t)] ⊂ C∗ × C∗ for t ∈ B;

g(t, (z, w)) := g([ζ(t)], (z, w)) for (z, w) ∈ D[ζ(t)].

By (4.2) we have

D(t) = D[ζ0] ·
(

z0

z(t)
,

w0

w(t)

)
in C∗ × C∗. (4.5)

We thus have the parallel variation of domains D(t) in C∗ × C∗ with parameter
t ∈ B:

D|B : t ∈ B → D(t) ⊂ C∗ × C∗.
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We write

D|B :=
⋃

t∈B

(t,D(t)); ∂D|B =
⋃

t∈B

(t, ∂D(t)) in B × (C∗ × C∗),

where again we identify the variation with the total space D|B . By (4.4), D|B is a
pseudoconvex domain in B × (C∗ × C∗) (and hence a Stein domain) such that ∂D|B is
Cω smooth. Using the notation ζ = (z, w) ∈ C∗ × C∗ and g(t, ζ) = g(t, (z, w)), we have
the following variation formula from Theorem 3.1 of [1]:

(?)
∂2λ(t)
∂t∂t

= − c2

∫

∂D(t)

K2(t, ζ)‖∇ζ g(t, ζ)‖2dSζ

− 4 c2

∫∫

D(t)

(∣∣∣∣
∂2g(t, ζ)

∂t∂z

∣∣∣∣
2

+
∣∣∣∣
∂2g(t, ζ)

∂t∂w

∣∣∣∣
2)

dVζ

− 2 c2

∫∫

D(t)

c(ζ)
∣∣∣∣
∂g(t, ζ)

∂t

∣∣∣∣
2

dVζ .

Here 1/c2 is the surface area of the unit sphere in C2, dVζ is the Euclidean volume
element in C2;

K2(t, ζ) = L(t, ζ)/‖∇ζψ(t, ζ)‖3

where L(t, ζ) is the “diagonal” Levi form defined by

L(t, ζ) =
∂2ψ

∂t∂t
‖∇ζψ‖2 − 2<

{
∂ψ

∂t

(
∂ψ

∂z

∂2ψ

∂t∂z
+

∂ψ

∂w

∂2ψ

∂t∂w

)}
+

∥∥∥∥
∂2ψ

∂t

∥∥∥∥
2

∆ζψ;

and ψ(t, ζ) is a defining function of D|B . The quantity K2(t, ζ) is independent of the
defining function ψ(t, ζ) (cf., Chapter 3 of [1]). Since D|B is pseudoconvex in B × (C∗ ×
C∗), following Theorem 3.2 of [1] we have K2(t, ζ) ≥ 0 on ∂D|B and hence ∂2λ(t)/∂t∂t ≤
0 on B, proving the first step.

Since c(z, w) > 0 in C∗×C∗, the variation formula immediately implies the following
rigidity result which will be useful later (cf., Lemma 4.1 of [1]).

Remark 4.1. If (∂2λ/∂t∂t)(0) = 0, then (∂g/∂t)(0, (z, w)) ≡ 0 on D(0), i.e.,

∂g([ζ0] + at, (z, w))
∂t

∣∣∣∣
t=0

≡ 0 on D[ζ0].

2nd step: Plurisubharmonic extension of −λ[z, w] to D.

We fix a point of D ∩ [(Ta × {0}) ∪ ({0} × Tb)], e.g., [z0, 0] with z0 6= 0. Let
[zn, wn] ∈ D∗ (n = 1, 2, . . .) with [zn, wn] → [z0, 0] as n →∞. By (4.3)
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lim
n→∞

(g([zn, wn], (α, β))− g([z0, 0], (α, β))) = 0

uniformly for (α, β) in K b D[z0, 0] ⊂ C∗ × C∗.

It follows that limn→∞ λ[zn, wn] = λ[z0, 0], i.e., λ[z, w] is continuous and finite at [z0, 0].
Hence λ[z, w] is continuous and finite-valued on D. Since D ∩ Ta is a complex line, it
follows from the first step that −λ[z, w] extends to be plurisubharmonic from D∗ ∩Ta to
D ∩ Ta. Hence −λ[z, w] extends to be plurisubharmonic on D. ¤

We divide the proof of 2. in two steps; the first step is 2 (a).

1st step: Fix [z′, w′] ∈ ∂D∗. If [z, w] ∈ D → [z′, w′] in H, then λ[z, w] → −∞.

Since [z′, w′] ∈ ∂D∗, we have z′ 6= 0 and w′ 6= 0. If [z, w] ∈ D∗ tends to [z′, w′] in
H, then ∂D[z, w] ⊂ C∗ × C∗ tends to the single point e in the sense that if we define
d[z, w] = dist(∂D[z, w], e) > 0, where

dist(∂D[z, w], e) := Min
{√

|ξ − 1|2 + |η − 1|2 : (ξ, η) ∈ ∂D[z, w]
}
,

then d[z, w] → 0 as [z, w] → [z′, w′]. Indeed, let [z, w] ∈ D approach [z′, w′] in H. By
slightly deforming the fundamental domain F ⊂ C∗ × C∗ if necessary, we may assume
(z′, w′), (z, w) ∈ F . Since

∂D[z, w] =
{(

α

z
,
β

w

)
∈ C∗ × C∗ : [α, β] ∈ ∂D

}

and [z′, w′] ∈ ∂D∗,

d[z, w] = dist(∂D[z, w], e) ≤
√
|z′/z − 1|2 + |w′/w − 1|2

which clearly tends to 0 as [z, w] → [z′, w′]. Since ∂D[z, w] is a smooth real three-
dimensional hypersurface, it follows by standard potential-theoretic arguments that
−λ[z, w] → +∞. ¤

It remains to prove 2 (b). Thus we assume ∅ 6= ∂D ∩ Ta 6= Ta.

2nd step: Fix [z0, 0] ∈ ∂D ∩ Ta. If [z, w] ∈ D → [z0, 0] in H, then λ[z, w] → −∞.

For the proof of this step we require Lemma 3.2. Fix p0 = [z0, 0] ∈ ∂D ∩ Ta. We
want to show

lim
[z,w]→[z0,0], [z,w]∈D

λ[z, w] = −∞.

We take a sequence {[zn, wn]}n ⊂ D which converges to p0 in H. We show

lim
n→∞

λ[zn, wn] = −∞. (4.6)

From continuity of λ[z, w] in D, it suffices to prove (4.6) for [zn, wn] ∈ D∗. Moreover,
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since ∂D[zn, wn] is smooth, as in the end of the first step, we need only show

lim
n→∞

dist(∂D[zn, wn], e) = 0. (4.7)

This is the key technical step and it is here where we will use Lemma 3.2 and the
pseudoconvexity of the domain D in H.

We may assume that p0 = [z0, 0] ∈ ∂D lies in the fundamental domain F and we take
a sufficiently small bidisk ∆ = ∆1 ×∆2 with center (z0, 0) so that ∆ ⊂ F . Let ψ(z, w)
be a defining function of D in ∆, i.e., ψ(z, w) ∈ Cω(∆) with D ∩∆ = {ψ(z, w) < 0} and
∂D ∩∆ = {ψ(z, w) = 0}. Since ∂D is smooth in H, we have two cases:

Case (c1) :
∂ψ

∂z
6= 0 on ∆; Case (c2) :

∂ψ

∂w
6= 0 on ∆.

Apriori, we also have two cases relating to the behavior of ψ(z, 0) on ∆1:

Case (d1) : ψ(z, 0) 6≡ 0 on ∆1; Case (d2) : ψ(z, 0) ≡ 0 on ∆1.

However, the hypothesis ∂D 6⊃ Ta in 2 (b) together with the real-analyticity of ∂D imply
that Case (d2) does not occur. Thus it suffices to prove (4.7) assuming that ψ(z, 0) 6≡ 0
on ∆1.

Proof of (4.7) in Case (c1). In this case, by taking a suitably smaller bidisk
∆ if necessary, l(0) := {ψ(z, 0) = 0} is a Cω-smooth arc in ∆1 passing through z = z0

and l(0)× {0} ⊂ ∂D ∩∆. For w ∈ ∆2,

l(w) := {z ∈ ∆1 : (z, w) ∈ ∂D ∩∆}

is a simple Cω-smooth arc in ∆1.
Fix ε > 0. Since z0 6= 0, we can find a disk δ1 ⊂ ∆1 with center z0 such that

∣∣∣∣
z′

z′′
− 1

∣∣∣∣ < ε for all z′, z′′ ∈ δ1.

Now we take δ2 : |w| < r < ε in ∆2 so that each arc l(w) passes through a certain point
ζ(w) in δ1. For sufficiently large n0, if n ≥ n0 we have (zn, wn) ∈ δ1× δ2. Since wn ∈ δ2,
we have ζ(wn) ∈ l(wn)∩δ1 so that (ζ(wn), wn) ∈ ∂D in H. Hence, (ζ(wn)/zn, wn/wn) =
(ζ(wn)/zn, 1) ∈ ∂D[zn, wn] in C∗ × C∗. Thus

dist(∂D[zn, wn], e) ≤ dist
((

ζ(wn)
zn

, 1
)

, e

)
=

∣∣∣∣
ζ(wn)

zn
− 1

∣∣∣∣ < ε for n ≥ n0.

Proof of (4.7) in Case (c2). In this case, by taking a suitably smaller bidisk
∆ if necessary, S(z0) := {ψ(z0, w) = 0} is a Cω-smooth arc in ∆2 passing through w = 0
and {z0} × S(z0) ⊂ ∂D ∩∆. For z ∈ ∆1,
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S(z) := {w ∈ ∆2 : (z, w) ∈ ∂D ∩∆},

is a simple Cω-smooth arc in ∆2.
Fix δ1 := {|z − z0| < r1} b ∆1. Case (d1) corresponds to the condition (iii) in

Lemma 3.2, thus this lemma implies that there exists a disk δ2 := {|w| < r2} such that

⋃

z∈δ1

S(z) ⊃ D(z0) ∩ δ2. (4.8)

Fix ε > 0. Taking r1 sufficiently small, we can insure that

|z′/z′′ − 1| < ε for all z′, z′′ ∈ δ1.

Take a disk δ2 ⊂ ∆2 satisfying (4.8). For sufficiently large n0, if n ≥ n0 we have
(zn, wn) ∈ δ1 × δ2. We divide the points wn ∈ δ2 into two types:

Case (i): wn ∈ δ2 ∩D(z0); Case (ii): wn ∈ δ2 \D(z0).

In Case (i), using (4.8) we can find z∗ ∈ δ1 with wn ∈ S(z∗) so that (z∗, wn) ∈ ∂D

in H (see wn, z∗, ∂D(z∗) in the figure below).
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Thus, (z∗/zn, wn/wn) = (z∗/zn, 1) in ∂D[zn, wn] in C∗ × C∗ and hence

dist(∂D[zn, wn], e) ≤ dist((z∗/zn, 1), e) = |z∗/zn − 1| < ε for all n ≥ n0.

In Case (ii), let ` = [zn, z0] be a segment in δ1. We can find z∗ ∈ ` with wn ∈ ∂D(z∗).
Indeed, as z goes from zn to z0 along `, the arcs ∂D(z)∩ δ2 transform from ∂D(zn)∩ δ2

to ∂D(z0) ∩ δ2 in a continuous fashion. Since [zn, wn] ∈ D∗, we can find z∗ ∈ ` with
wn ∈ ∂D(z∗).

Thus (z∗, wn) ∈ ∂D∗, so that (z∗/zn, 1) ∈ ∂D∗[zn, wn], and hence

dist(∂D[zn, wn], e) ≤ dist((z∗/zn, 1), e) = |z∗/zn − 1| < ε for all n ≥ n0,

which is (4.7). This completes the proof of 2 (b) in Lemma 4.1. ¤

Remark 4.2. We offer a non-pseudoconvex example to explain the subtlety of the
lemma, in particular, in proving (4.7). We encourage the reader to draw a picture to
illustrate the following situation. Let D be a domain in H with smooth boundary but
which is not pseudoconvex. We assume that [z0, 0] ∈ ∂D ∩ Ta where 1 < |z0| < |a|. We
can find a bidisk δ := δ1 × δ2 = {|z − z0| < r1} × {|w| < r2} with r1, r2 sufficiently small
so that D1 := D ∩ δ is of the form D1 =

⋃
z∈δ1

(z, D1(z)) where D1(z) ⊂ δ2 and ∂D1(z)
is a non-empty smooth arc in δ2. We assume that, for each z ∈ δ1

D1(z) ⊃ D1(z0) ⊃ δ2 ∩ {<w > 0} =: δ∗2

and it then follows from Hartogs theorem that D is not pseudoconvex at [z0, 0] ∈ ∂D. We
can find a sequence {(zn, un)}n in D1 with un = <wn > 0 which converges to the point
(z0, 0) ∈ ∂D. Fix r′1 : 0 < r′1 < r1/|z0|. By definition

D[zn, un] = (1/zn, 1/un)D̃∗ ⊃ (1/zn, 1/un)δ1 × δ∗2

and for sufficiently large n, say n ≥ n0,

E := {(z, w) ∈ C∗ × C∗ : |z − 1| < r′1, |w − 1| < 1/2} ⊂ (1/zn, 1/un)δ1 × δ∗2 .

If we let A denote the c-Robin constant for the domain E in C∗ × C∗ and the point
e = (1, 1), it follows that λ[zn, un] > A for n ≥ n0, so that −λ[z, w] is not an exhaustion
function for D.

We next relate the possible absence of strict plurisubharmonicity of the function
−λ[z, w] on a pseudoconvex domain D inH at a point in D∗ with existence of holomorphic
vector fields on H with certain properties. This is in the spirit of, but does not follow
from, Lemma 5.2 of [1]. Recall that if (a, b) ∈ S2 (Case b of Theorem 1.1) we defined
σc in (1.6) to be the integral curve [z0, w0] exp tXu with c = wpl

0 /zql
0 6= 0,∞ of Xu :=

(log |a|)z(∂/∂z) + (log |b|)w(∂/∂w).

Lemma 4.2. Let D be a pseudoconvex domain with Cω-smooth boundary in H and
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let λ[z, w] be the c-Robin function on D. Assume that there exists a point p0 = [z0, w0]
in D∗ at which −λ[z, w] is not strictly plurisubharmonic.

(1) There exists a holomorphic vector field X = αz(∂/∂z)dz + βw(∂/∂w)dw 6= 0 on H
such that if [z, w] ∈ D∗ (resp. ∂D∗), then the integral curve I[z, w] := [z, w] exp tX

in H is contained in D∗ (resp. ∂D∗). We say X is a tangential vector field on ∂D∗.
(2) The form of the vector field X in (1) and the domain D are determined as follows:

(i) If ∂D 6⊃ Ta and ∂D 6⊃ Tb, then X = cXu for some c 6= 0 with Xu in (1.2). If
(a, b) ∈ S1, D is of type (a-1), (a-2′) or (a-2′′) in Theorem 1.1. If (a, b) ∈ S2,
D =

⋃
c∈δ σc where δ is a relatively compact domain in P1 = C ∪ {∞} with

smooth boundary. In all cases, we have ∂D ∩ (Ta ∪ Tb) = ∅.
(ii) If ∂D ⊃ Ta and ∂D 6⊃ Tb, then we have two cases:

(ii-a) X = cXu for some c 6= 0 and D is of Case b: D =
⋃

c∈δ σc where δ is a
domain in P1 with smooth boundary ∂δ which contains 0 but not ∞.

(ii-b) X = cz(∂/∂z) for some c 6= 0. Then D is a domain of “Nemirovskii
type”: b > 1 and D = Cz × {Au + Bv < 0}/ ∼, where A,B ∈ R with
(A,B) 6= (0, 0) (here w = u + iv).

(ii′) If ∂D ⊃ Tb and ∂D 6⊃ Ta, we have the result analogous to (ii).
(iii) If ∂D ⊃ Ta ∪ Tb, then X = cXu for some c and D is of Case b: D =

⋃
c∈δ σc

where δ is a domain in P1 with smooth boundary ∂δ with 0,∞ ∈ ∂δ.

Remark 4.3. With respect to the Nemirovskii-type domain in (ii-b), we recall
Nemiroviskii’s theorem in [6]. Let a > 1 and let H = H(a,a). Then the domain D =
Cz × {<w > 0}/ ∼ ⊂ H is Stein and ∂D is Levi-flat. At the end of Section 4 we will
discuss an explicit example of such a domain which will illustrate some of the ideas used
in the proof of Theorem 1.1.

Proof. Since −λ[z, w] is plurisubharmonic on D and is not strictly plurisubhar-
monic at p0 = [z0, w0] ∈ D∗, we can find a holomorphic vector field X = αz(∂/∂z)dz +
βw(∂/∂w)dw 6= 0 on H such that

∂2λ[p0 exp tX]
∂t∂t

∣∣∣∣
t=0

= 0. (4.9)

We shall show that this X is a tangential vector field on ∂D∗. Since p0 ∈ D∗, we can take
a small disk B = {|t| < r} with p0 exp tX ⊂ D∗ for t ∈ B. We set D(t) = D[p0 exp tX] ⊂
C∗×C∗ so that D(0) = D[p0]. We let g(t, (z, w)) (resp. λ(t)) denote the c-Green function
g([p0 exp tX], (z, w)) (resp. the c-Robin constant λ[p0 exp tX]) for (D(t), e) and t ∈ B.
We set D|B =

⋃
t∈B(t,D(t)) ⊂ B × (C∗ × C∗) which we consider as the variation

D|B : t ∈ B → D(t) = D[p0 exp tX] ⊂ C∗ × C∗.

By (4.2) we have

D(t) = D[p0 exp tX] = D[[z0, w0] exp tX]

= D[z0, w0] exp(−tX) = D[z0, w0]
(
e−αt, e−βt

)
in C∗ × C∗.
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Using the same reasoning as in the first step of the proof of Lemma 4.1 together with
Remark 4.1 we see from (4.9) and the real analyticity of ∂D|B =

⋃
t∈B(t, ∂D(t)) in

B × (C∗ × C∗) that

∂g(t, (z, w))
∂t

∣∣∣∣
t=0

≡ 0 on D[z0, w0] ∪ ∂D[z0, w0]. (4.10)

For a fixed t ∈ B we consider the automorphism

(Z, W ) → (z, w) = F (t, (Z,W ))

of C∗ × C∗ where

F (t, (Z, W )) := (Z, W )
(

1
z0

,
1
w0

)
exp(−tX) =

(
Ze−αt

z0
,
We−βt

w0

)
.

Then

(z, w) → (Z, W ) = F−1(t, (z, w)) =
(
zz0e

αt, ww0e
βt

)
.

By (4.1) we have

D(t) = D̃∗
(

1
z0

,
1
w0

)
exp(−tX) = D̃∗

(
e−αt

z0
,
e−βt

w0

)
in C∗ × C∗,

so that D(t) = F (t, D̃∗). We note that D̃∗ ⊂ C∗ × C∗ is independent of t ∈ B. We set

G(t, (Z, W )) := g(t, (z, w)) where (z, w) = F (t, (Z,W )), (Z, W ) ∈ D̃∗.

Since

g(t, (z, w)) = G(t, F−1(t, (z, w))) = G(t, (zz0e
αt, ww0e

βt)),

we have

∂g

∂t
(t, (z, w)) =

∂G

∂t
(t, (Z,W )) +

∂G

∂Z
(t, (Z, W ))αzz0e

αt +
∂G

∂W
(t, (Z, W ))βww0e

βt

=
∂G

∂t
(t, (Z,W )) + αZ

∂G

∂Z
(t, (Z, W )) + βW

∂G

∂W
(t, (Z, W ))

where (Z, W ) = F−1(t, (z, w)). Since, for each t ∈ B,

G(t, (Z, W )) ≡ 0 on ∂D̃∗, (4.11)

we have



Pseudoconvex domains in the Hopf surface 249

∂G

∂t
(t, (Z, W )) = 0 on ∂D̃∗.

It follows from (4.10) that

αZ
∂G

∂Z
(0, (Z, W )) + βW

∂G

∂W
(0, (Z, W )) = 0 on ∂D̃∗.

Together with (4.11), this says that the holomorphic vector field

X = αZ
∂

∂Z
+ βW

∂

∂W
,

considered as a vector field on C∗ ×C∗, satisfies the property that for any (z, w) ∈ ∂D̃∗,
the integral curve (z, w) exp tX ⊂ ∂D̃∗ for all t ∈ C. It follows that for any (z, w) ∈ D̃∗,
the integral curve (z, w) exp tX is contained in D̃∗:

D̃∗ exp tX = D̃∗, for all t ∈ C.

Hence X is a tangential vector field on ∂D̃∗.
This implies

D[[z, w] exp tX] = D[z, w] ⊂ C∗ × C∗, for all t ∈ C (4.12)

if [z, w] ∈ D∗ since

D[[z, w] exp tX] = D̃∗
(

1
z
,

1
w

)
exp(−tX) = D̃∗

(
1
z
,

1
w

)
= D[z, w].

But for [z, w] ∈ D∗ (resp. ∂D∗) it is clear that

[z, w] exp tX ⊂ D∗ (resp. ∂D∗) in H
if and only if

(z, w) exp tX ⊂ D̃∗(resp. ∂D̃∗) in C∗ × C∗,

which proves that X, as a holomorphic vector field on H, is a tangential vector field on
∂D∗, verifying (1) of Lemma 4.2.

To prove assertion (2) we first observe by (4.12)

λ[z, w] = λ[[z, w] exp tX], for all t ∈ C

for any [z, w] ∈ D∗. In case (2)(i) in Lemma 4.2, from 3 in Lemma 4.1, the Robin function
−λ[z, w] is an exhaustion function on D, and it follows that

{[z, w] exp tX : t ∈ C} b D for [z, w] ∈ D∗. (4.13)
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We now prove (2) (i). First we show that X = cXu for some c 6= 0. If not, i.e., if
X 6∈ {cXu : c ∈ C∗}, we take [z, w] ∈ ∂D∗ and let σ = [z, w] exp tX be the integral curve
of X passing through [z, w]. From Lemma 3.1 part 2, the closure Σ of σ in H contains
Ta or Tb (or both) which contradicts the hypothesis ∂D 6⊃ Ta and ∂D 6⊃ Tb of (2) (i) in
Lemma 4.2. Thus X = cXu for some c 6= 0.

By (4.13), for [z, w] ∈ D∗ the closure of the integral curve I[z, w] := [z, w] exp tXu is
compactly contained in D and hence lies in D∗. It follows from (α) and (β) in Proposition
1.1 that we have

(α∗) D∗ =
⋃

c∈I

Σc, where I is an open interval in (0,∞); or

(β∗) D∗ =
⋃

c∈δ∗
σc, where δ∗ is a domain in C∗.

We next show that if D ∩ Ta 6= ∅ then D ⊃ Ta. Thus let [z0, 0] ∈ D ∩ Ta. Let U, V

be sufficiently small disks such that

(z0, 0) ∈ U × V =: U × {|w| < r} b D ∩ E2

where recall E2 = {1<|z| ≤ |a|} × {|w| ≤ |b|} ⊂ F . We show that there exists r′ with
0 < r′ < r such that

G(r′) := {(z, w) ∈ E2 : 1 < |z| < |a|, 0 < |w| < r′} ⊂ D∗. (4.14)

We prove (4.14) in the case (β∗); the proof in the case (α∗) is similar. We recall the
non-constant meromorphic function f [z, w] = wpl/zql in H from Remark 1.1. Since this
function vanishes on {w = 0}, if we set

∆ := {c = f [z, w] ∈ C∗ : (z, w) ∈ U × {0 < |w| < r}},

there exists m > 0 such that the punctured disk δ′ = {0 < |c| < m} is contained in ∆.
Clearly we can choose r′ > 0 sufficiently small with r′ < r such that the corresponding
set G(r′) satisfies f(G(r′)) ⊂ δ′. Combined with (β∗) this implies (4.14).

Suppose D 6⊃ Ta. Observe that D(0) := D ∩ Ta is a domain in Ta whose boundary
l consists of smooth real one-dimensional curves. For |w| < r′, we let D(w) ⊂ {1 < |z| <
|a|} denote the slice of D over w. Since ∂D is of class Cω, each ∂D(w) is a union of
smooth real one-dimensional curves which approach ` as w → 0. This contradicts (4.14);
hence D ⊃ Ta. A completely similar argument shows that if D ∩ Tb 6= ∅ then D ⊃ Tb.
Thus either D = D∗ as in (α∗) or (β∗) or D is the union of D∗ with Ta, Tb or Ta ∪ Tb.
If D = D∗ as in (α∗) then D is of type (a-1) in Case a; if D = D∗ as in (β∗) then D is
as in Case b with δ ∈ C∗. We let D be the union of D∗ with Ta,Tb or Ta ∪Tb. The case
D = D∗ ∪ Ta corresponds to (a-2′) in Case a and to δ in Case b with 0 ∈ δ and ∞ ∈ ∂δ.
The case D = D∗ ∪ Tb corresponds to (a-2′′) in Case a and to δ in Case b with ∞ ∈ δ

and 0 ∈ ∂δ. For the last case D = D∗ ∪ Ta ∪ Tb, in Case a we have D = H which does
not occur, and in Case b, D corresponds to δ with 0,∞ ∈ δ.
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To prove (2) (ii), we note that under the condition ∂D ⊃ Ta and ∂D 6⊃ Tb, from
(2) of Lemma 3.1 we have either X = cXu with c 6= 0 or X = αz(∂/∂z) with α 6= 0.
Assume that X = cXu with c 6= 0. We conclude from (α∗) that D cannot be of the form
in Case a, so that D∗ is of the form (β∗). Since ∂D ⊃ Ta and ∂D 6⊃ Tb we arrive at the
conclusion in (2) (ii-a). On the other hand, if X = αz(∂/∂z) with α 6= 0, we first observe
from the facts that ∂D ⊃ Ta and ∂D is Cω-smooth, for any z0 ∈ C∗ the slice of ∂D over
z = z0 contains a Cω curve C(z0) ⊂ Cw passing through the origin w = 0. We can find
a sufficiently small disk V := {|w| < r0} so that C(z0) divides V into two parts V ′ and
V ′′ with {z0} × V ′ ⊂ D and {z0} × V ′′ ⊂ D

c
. We set C̃(z0) := C(z0) ∩ V . By (1) in

Lemma 4.2 we conclude that C∗ × V ′ ⊂ D and C∗ × V ′′ ⊂ D
c
. Thus C∗ × C̃(z0) ⊂ ∂D,

which implies ∂D ∩ (C∗ × V ) = C∗ × C̃(z0) and D ∩ (C∗ × V ) = C∗ × V ′.
We use this geometric set-up to show that b must be a positive real number (hence

b > 1). To see this, fix a point w0 ∈ C̃(z0) (resp. V ′) with w0 6= 0. Since (z0, w0) ∈ ∂D

(resp. V ′), we have C∗ × {w0} ⊂ ∂D (resp. D). In particular, (anz0, w0) ∈ ∂D (resp.
D) for any n ∈ Z. Hence (z0, w0/bn) ∈ ∂D (resp. D) for any n ∈ Z. Since |b| > 1 we can
take N sufficiently large so that w0/bN ∈ V . It follows that w0/bn ∈ C̃(z0) (resp. V ′)
for any n ≥ N .

We first show that b is real. If not, let b = |b|eiφ where |b| > 1 and 0 < |φ| < π. We
set w0 = |w0|eiϕ0 . Let n0 = eiθ0 be a unit normal vector to C̃(z0) at w = 0 pointing in
to V ′′. Since C̃(z0) is smooth, we can find r1 sufficiently small with 0 < r1 < r0 so that
the sector e := {reiθ : 0 < r < r1, |θ − θ0| < 2π/3} is contained in V ′′. For any N ′ ∈ Z,
it is clear that there exists n′ > N ′ satisfying

|(ϕ0 − n′φ)− θ0| < 2π/3 modulo 2π. (4.15)

We take N ′ > N so that |w0|/|b|N ′
< r1, and then we choose n′ > N ′ with property

(4.15). Then w0/bn′ ∈ e ⊂ V ′′, which contradicts the fact that w0/bn′ ∈ C̃(z0). Thus b

is real.
We next show b is positive. If not, we have b < −1. We take w1 ∈ V ′ \ {0} close

to 0. Then (z, w1) ∈ D for all z ∈ C∗. In particular, (anz0, w1) ∈ D for any n ∈ Z;
hence (z0, w1/bn) ∈ ({z0}×V )∩D for n sufficiently large. In other words, for n > N we
have w1/bn ∈ V ′. Since b < −1 it follows that {w1/bn : n ≥ N} lies on a line L passing
through w = 0. Moreover, if we take a sufficiently small disk V0 := {|w| < r0} ⊂ V ,
then L ∩ V0 intersects the smooth curve C̃(z0) transversally. At the point w = 0, L ∩ V0

divides into two segments L′ and L′′ with L′ = (L ∩ V0) ∩ V ′ and L′′ = (L ∩ V0) ∩ V ′′.
Since b < −1, for n sufficiently large, if w1/bn ∈ L′ then w1/bn+1 ∈ L′′. This contradicts
the fact that w1/bm ∈ V ′ for all m sufficiently large. Thus b > 1.

Consequently,

w ∈ C̃(z0) (resp. V ′) −→ w/bn ∈ C̃(z0) (resp. V ′) for n = 1, 2, . . ..

It follows from the smoothness of C̃(z0) and the fact that b > 1 that C̃(z0) is a line
Au + Bv = 0 passing through w = 0, proving (2) (ii-b).

To verify (2) (iii), we show
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X ∈ {cXu : c ∈ C} ∪
{

αz
∂

∂z
: α ∈ C

}
∪

{
βw

∂

∂w
: β ∈ C

}
. (4.16)

Once (4.16) is verified, we obtain 2 (iii) by repeating the arguments in 2 (i) and 2 (ii).
Suppose X = αz(∂/∂z) + βw(∂/∂w) 6∈ {cXu : c ∈ C} where α 6= 0, β 6= 0. We set
β/α = A + iB where A,B are real numbers. To get a contradiction, we work in the
case where A is irrational; the other cases are similar. Fix z0 ∈ {1 < |z| < |a|}. Since
∂D ⊃ Ta ∪ Tb and ∂D is smooth, we can find a smooth curve ` in {|w| < |b|} containing
w = 0 such that {z0}× ` ⊂ ∂D. We fix a disk V := {|w| < r} with r sufficiently small so
that ` divides V into two parts V ′ and V ′′ where {z0}×V ′ ⊂ D and {z0}×V ′′ ⊂ D

c
. Let

w0 ∈ V ′ and for c = w0/zA+Bi
0 , we consider the integral curve σc := {w = czA+iB}/ ∼

of X passing through (z0, w0) in H. Using (1) in Lemma 4.2 we see that σc ⊂ D. On
the other hand, by Remark 5.2 in Appendix A there is a point (z0, w(z0)) ∈ σc with
w(z0) ∈ V ′′, which is a contradiction. This proves (4.16) and hence 2 (iii). ¤

Given a pseudoconvex domain D in H with Cω-smooth boundary, under the various
cases of (2) of Lemma 4.2, depending on the relationship between the tori Ta, Tb and
∂D, we want to show that either D is Stein or D is the appropriate type of non-Stein
domain in Theorem 1.1. This will be done in a series of lemmas. Before proceeding, we
recall an important “rigidity” result from [1].

We let D : t ∈ B → D(t) ⊂ M be a smooth variation of domains D(t) ⊂ M over
B ⊂ C where M is a complex Lie group of dimension n ≥ 1. Here D(t) need not be
relatively compact in M but ∂D(t) is assumed to be C∞-smooth. Assume each domain
D(t) contains the identity element e. Let g(t, z) and λ(t) be the c-Green function and
the c-Robin constant for (D(t), e) associated to a Kähler metric and a positive, smooth
function c on M . We have the following from [1]:

(?1) Assume that the total space D =
⋃

t∈B(t,D(t)) is pseudoconvex in B ×M . If
(∂2λ/∂t∂t)(0) = 0, then ∂g(t, z)/∂t|t=0 ≡ 0 on D(0).

Next let ψ(t, z) be a C∞-defining function of D in a neighborhood of ∂D =⋃
t∈B(t, ∂D(t)). Since ∂D(t) is smooth, we have

(
∂ψ

∂z1
(t, z), . . . ,

∂ψ

∂zn
(t, z)

)
6= (0, . . . , 0)

for (t, z) ∈ ∂D = {ψ(t, z) = 0}. We have a type of contrapositive of (?1):

(?2) Assume that D is pseudoconvex in B×M . If there exists a point z0 ∈ ∂D(0)
with

∂ψ

∂t
(0, z0) 6= 0, (4.17)

then (∂2(−λ)/∂t∂t)(0) > 0.

We prove this by contradiction; thus suppose (∂2(−λ)/∂t∂t)(0) = 0. By (?1) we
have ∂g(t, z)/∂t|t=0 ≡ 0 on ∂D(0). Since −g(t, z) is a C∞ defining function of D, it
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follows that ∂ψ(t, z)/∂t|t=0 ≡ 0 on ∂D(0), which contradicts (4.17).
Returning to the case of a pseudoconvex domain D in H with Cω-smooth boundary,

we proved in Lemma 4.1 that under certain hypotheses on ∂D the function −λ[z, w] is
a plurisubharmonic exhaustion function for D. The next lemma shows that if ∂D hits,
but does not contain, one of the tori Ta or Tb, and D does not contain the other one,
then D is Stein.

Lemma 4.3. Let D be a pseudoconvex domain in H with Cω-smooth boundary. If
∅ 6= ∂D∩Ta 6= Ta and D 6⊃ Tb, then D is Stein (and similarly if Ta and Tb are switched).

The condition D 6⊃ Tb separates into the following three cases:

(c1) ∂D ∩ Tb = ∅, (c2) ∅ 6= ∂D ∩ Tb 6= Tb or (c3) ∂D ∩ Tb = Tb.

Proof. We first want to show that if −λ[z, w] is not strictly plurisubharmonic
in D, then there is point p0 = [z0, w0] in D∗ at which −λ[z, w] is not strictly plurisub-
harmonic; then we show this cannot occur so that D is Stein. Let ψ[z, w] be a defining
function for D defined in a neighborhood of ∂D. We divide the proof of the lemma in
five cases related to ψ[z, w] and the subcases (c1), (c2), (c3) of the condition D 6⊃ Tb.

1st case: Assume there exists [z0, 0] ∈ ∂D∩Ta with z0 6= 0 such that neither ∂ψ/∂z

nor ∂ψ/∂w vanishes at (z0, 0) and assume case (c1).

Using (?2), we first prove the following fact in this 1st case. Assume (1, 0) ∈ D∩Ta.
Then −λ[z, w] is strictly subharmonic at [1, 0] in the direction a = (0, 1), i.e.,

∂2(−λ)
∂τ∂τ

[1, τ ]
∣∣∣∣
τ=0

> 0.

To see this, we take a small disk δ := {|τ | < r} ⊂ Cτ and consider the variation of
domains

D : τ ∈ δ → D(τ) := D[1, τ ] ⊂ C∗Z × C∗W .

Note that

D(τ) =

{
D̃∗ · (1, 1/τ) if τ ∈ δ \ {0};
D̃a × C∗W if τ = 0

}

(recall D ∩ Ta = [Da, 0]). We let λ(τ) = λ[1, τ ] denote the c-Robin constant for
(D(τ), (1, 1)). We set D :=

⋃
τ∈δ(τ, D(τ)) and ∂D =

⋃
τ∈δ(τ, ∂D(τ)). For τ ∈ δ \ {0},

we consider the automorphism

Fτ : (z, w) ∈ C∗z × C∗w → (Z, W ) =
(

z,
w

τ

)
∈ C∗Z × C∗W .

From the definition of D(τ), we have D(τ) = Fτ (D̃∗). We let ψ(z, w) be a defining
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function for ∂D in H; to avoid notational issues we also regard ψ(z, w) as a defining
function of ∂D̃. For τ ∈ δ \ {0} we set

Φ(τ, (Z,W )) := ψ(Z, τW )

which is a defining function for ∂D|δ\{0}. Setting Φ[0, (Z,W )] := ψ(Z, 0), we see that
Φ[τ, (Z, W )] becomes a smooth defining function for the entire set ∂D. We focus on the
special point (z0, 1) in ∂D(0). Then

∇(Z,W )Φ
∣∣
(0,(z0,1))

=
(

∂Φ
∂Z

,
∂Φ
∂W

) ∣∣∣∣
(0,(z0,1))

=
(

∂ψ

∂z
,
∂ψ

∂w
τ

) ∣∣∣∣
(0,(z0,1))

=
(

∂ψ

∂z
(z0, 0), 0

)
6= (0, 0) by the condition of the 1st step.

Similarly,

∂Φ
∂τ

∣∣∣∣
(0,(z0,1))

=
∂ψ

∂w
W

∣∣∣∣
(0,(z0,1))

=
∂ψ

∂w
(z0, 0) 6= 0 by the condition of the 1st step.

It follows from (?2) that (∂2(−λ)/∂τ∂τ)[1, τ ]|τ=0 > 0, as desired.
We next prove that −λ[z, w] in D is strictly subharmonic at [1, 0] in any direction

a = (a1, a2) ∈ C2 \ {0} with ‖a‖ = 1 and a1 6= 0, i.e.,

∂2(−λ)
∂τ∂τ

[1 + a1τ, a2τ ]
∣∣∣∣
τ=0

> 0. (4.18)

We use the same notation τ and ψ(z, w) as in the case a = (1, 0). We consider the
variation of domains

G : τ ∈ δ → G(τ) := D[1 + a1τ, a2τ ] ⊂ C∗Z × C∗W .

Note that

G(τ) =

{
D̃∗ · (1/(1 + a1τ), 1/(a2τ)) if τ ∈ δ \ {0};
D̃a × C∗W if τ = 0

}
in case a2 6= 0,

G(τ) = [D̃a · (1/(1 + a1τ))]× C∗W if τ ∈ δ in case a2 = 0.

We let µ(τ) := λ[1 + a1τ, a2τ ] denote the c-Robin constant for (G(τ), (1, 1)). Our claim
(4.18) is that (∂2(−µ)/∂τ∂τ)(0) > 0.

We set G :=
⋃

τ∈δ(τ, G(τ)) and ∂G =
⋃

τ∈δ(τ, ∂G(τ)). Since (∂ψ/∂z)(z0, 0) 6= 0
and a1 6= 0, we can find a point W0 ∈ C∗W such that
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a1z0
∂ψ

∂z
(z0, 0) + a2W0

∂ψ

∂w
(z0, 0) 6= 0.

We note that (z0,W0) ∈ ∂G(0) = (∂D̃a)× C∗W . We consider

Ψ(τ, (Z, W )) := ψ((1 + a1τ)Z, a2τW ),

which is defined in a sufficiently small polydisk V := δ1× (U1×V1) of center (0, (z0,W0))
in δ × C∗Z × C∗W . This is a defining function for ∂G in V. We have

∇(Z,W )Ψ
∣∣
(0,(z0,W0))

=
(

∂ψ

∂z
· (1 + a1τ),

∂ψ

∂w
· a2τ

)∣∣∣∣
(0,(z0,W0))

=
(

∂ψ

∂z
(z0, 0), 0

)
6= (0, 0);

∂Ψ
∂τ

∣∣∣∣
(0,(z0,W0))

=
∂ψ

∂z
· (a1Z) +

∂ψ

∂w
· (a2W )

]

(0,(z0,W0))

= a1z0
∂ψ

∂z
(z0, 0) + a2W0

∂ψ

∂w
(z0, 0) 6= 0.

Using (?2) we conclude that (∂2(−µ)/∂τ∂τ)(0) > 0 which proves our claim.
A similar argument shows that −λ[z, w] in D is strictly plurisubharmonic at any

point [z, 0] ∈ D ∩ Ta. Hence, in case (c1), we conclude that if −λ[z, w] is not strictly
plurisubharmonic in D, there exists a point p′ = [z′, w′] in D∗ at which −λ[z, w] is not
strictly plurisubharmonic. Now since ∂D 6⊃ Ta and ∂D 6⊃ Tb, we are in case (2) (i) of
Lemma 4.2. Hence we have ∂D ∩ (Ta ∪ Tb) = ∅. This contradicts ∂D ∩ Ta 6= ∅; thus D

is Stein. ¤

2nd case: Assume there exists [z0, 0] ∈ ∂D∩Ta with z0 6= 0 such that neither ∂ψ/∂z

nor ∂ψ/∂w vanishes at (z0, 0) and there exists [0, w0] ∈ ∂D ∩ Tb with w0 6= 0 such that
neither ∂ψ/∂z nor ∂ψ/∂w vanishes at (0, w0), and assume case (c2).

Using the same argument as in the 1st case we see that −λ[z, w] is strictly plurisub-
harmonic at any point [0, w] ∈ D∩Tb and at any point [z, 0] ∈ D∩Ta. Thus there again
exists a point p′ = [z′, w′] in D∗ at which −λ[z, w] is not strictly plurisubharmonic; and
we similarly conclude that D is Stein. ¤

3rd case: Assume there exists [z0, 0] ∈ ∂D∩Ta with z0 6= 0 such that neither ∂ψ/∂z

nor ∂ψ/∂w vanishes at (z0, 0) and assume case (c3).

Recall ∂D ⊃ Tb holds in case (c3). Here we need the function U [z, w] on H∗ defined
in Section 2. Using 2 (a) of Lemma 4.1, i.e., for [z0, w0] ∈ ∂D \ Tb,

−λ[z, w] →∞ as [z, w] ∈ D → [z0, w0],

and property (1) of U [z, w] we see that
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s[z, w] := max{−λ[z, w], U [z, w]} (4.19)

is a well-defined plurisubharmonic exhaustion function for D. In order to prove that
D is Stein, we use a result from Section 14 in [7]: it suffices to show that for any
K b D there exists a Stein domain DK with K b DK ⊂ D. To construct DK , we take
m > max[z,w]∈K{| − λ[z, w]|} and consider

v[z, w] := max{−λ[z, w] + 2m, εU [z, w]} (4.20)

where ε > 0 is chosen sufficiently small so that v[z, w] = −λ[z, w]+2m on K. Again from
property (1) of U [z, w], v[z, w] is a well-defined plurisubharmonic exhaustion function for
D. We take M > 1 sufficiently large so that

K b D(M) := {[z, w] ∈ D : v[z, w] < M} and ∅ 6= ∂D(M) ∩ Ta 6= Ta.

Note that D(M) b D; thus ∂D ⊃ Tb implies that Tb ∩ D(M) = ∅; also ∂D(M) is
piecewise smooth. We now have

∂D(M) ∩ Tb = ∅ and ∅ 6= ∂D(M) ∩ Ta 6= Ta. (4.21)

We consider the c-Robin function λM [z, w] for D(M). Although ∂D(M) is not smooth, by
the construction of λM [z, w] and the fact that ∂D(M) 6⊃ Ta,Tb, it follows that −λM [z, w]
is a smooth plurisubharmonic exhaustion function for D(M).

Let D(M, M ′) := {[z, w] ∈ D(M) : −λM [z, w] < M ′} and take M ′ > 1 sufficiently
large so that

D(M, M ′) c K and ∅ 6= ∂D(M, M ′) ∩ Ta 6⊃ Ta.

Now since −λM [z, w] is smooth we have that D(M, M ′) is a pseudoconvex domain in H
with smooth boundary; moreover we have

∂D(M, M ′) ∩ Tb = ∅ and ∅ 6= ∂D(M, M ′) ∩ Ta 6⊃ Ta. (4.22)

We can now apply the 1st case, where we assumed condition (c1), to D(M, M ′) to
conclude that D(M, M ′) is Stein; hence D is Stein.

4th case: Assume one of ∂ψ/∂z, ∂ψ/∂w vanishes identically on ∂D∩Ta and assume
case (c1).

To deal with this case we construct the C-Robin function Λ[z, w] on D with respect to
a positive constant function C on P2 ⊃ C2 and the restriction of the Fubini-Study metric
dS2 on P2 to C∗ × C∗. Note this metric is different than the Euclidean metric ds2 on
C2 restricted to C∗×C∗; accordingly, −Λ[z, w] is a smooth plurisubharmonic exhaustion
function on D which is different from the function −λ[z, w]. Moreover, for any positive
constant k the function uk[z, w] := −(λ[z, w] + kΛ[z, w]) is a smooth plurisubharmonic
exhaustion function for D. We claim that we can find a k and an increasing sequence
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{Mn}n=1,2,... tending to +∞ such that the increasing sequence of pseudoconvex domains
Dn = {[z, w] ∈ D : uk[z, w] < Mn} satisfy the hypotheses of the 1st case. Clearly
∂Dn ∩ Tb = ∅ so that (c1) holds. It remains to select k and then the sequence Mn so
that there exists [zn, 0] ∈ ∂D ∩ Ta with zn 6= 0 such that neither ∂ψn/∂z nor ∂ψn/∂w

vanishes at (zn, 0) where ψn[z, w] := uk[z, w]−Mn. From the 1st case we conclude that
each Dn is Stein and it follows from Section 14 of [7] that D is Stein.

5th case: Assume one of ∂ψ/∂z, ∂ψ/∂w vanishes identically on ∂D∩Ta and assume
case (c2) or (c3).

The type of argument used to show a domain D in the 2nd or 3rd case, where we
assume (c2) or (c3) of the condition D 6⊃ Tb, reduces to the 1st case, where we assume
(c1) of this condition, allows us to deduce the 5th case from the 4th case. We leave the
details to the reader. ¤

We next turn to the situation where ∂D contains one of Ta or Tb but not both.

Lemma 4.4. Let D be a pseudoconvex domain in H with Cω-smooth boundary. If
(i) ∂D ⊃ Ta and (ii) ∂D ∩ Tb 6= Tb, then

(1) D is Stein or
(2) D is of Case b in Theorem 1.1. In fact, D =

⋃
c∈δ σc with 0 ∈ ∂δ and ∞ 6∈ δ ∪ ∂δ

(and similarly if Ta and Tb are switched as well as 0 and ∞).

The condition (ii) separates into the following three cases:

(c̃ 1) ∅ 6= ∂D ∩ Tb 6= Tb, (c̃ 2) D ⊃ Tb or (c̃ 3) (∂D ∪D) ∩ Tb = ∅.

Proof. We first treat the cases (c̃ 1) and (c̃ 3). We assume that D is not of Case
b as in (2) and we show D is Stein. We proceed as in the proof of the 3rd case of Lemma
4.3 where we use the function U [z, w] on H∗ defined in Section 2. However, instead of
(4.19) and (4.20) we use

s[z, w] := max{−λ[z, w],−U [z, w]}

and

v[z, w] := max{−λ[z, w] + 2m, −εU [z, w]}.

We leave the details to the reader.
We next treat the case (c̃ 2) in which ∂D ⊃ Ta and D ⊃ Tb. In this setting we shall

show that conclusion (2) in Lemma 4.4 holds.
Since Tb is compact in D, we can find a neighborhood V of Tb in D such that

Tb b V b D. Since Σc := {|w| = c|z|ρ}/ ∼ (or σc := {w = czρ}/ ∼) approaches Tb

in H as c → ∞, it follows that for c sufficiently large, the Levi-flat hypersurface Σc

satisfies Σc b V b D (or the compact torus σc satisfies σc b V b D). But −λ[z, w]
is a plurisubharmonic function on D (although not necessarily an exhaustion function);
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hence −λ[z, w] is not strictly plurisubharmonic at any point in Σc (or σc). From Lemma
4.2, we conclude that D is given as in case (2) (ii) of that lemma.

For simplicity, we complete the argument if Σc b V b D. We claim that (a, b) is of
Case b in Theorem 1.1 and hence D is of the form in case (2) (ii-a) of Lemma 4.2,
completing our proof. For if (a, b) is of Case a then from the proof of Lemma 4.2, we
have (recall (α∗))

D∗ =
⋃

c∈I

Σc, where I = (r,R) is an open interval in (0,∞),

because D∗ is connected. Since D ⊃ Tb, D =
⋃

c∈(r,∞] Σc. However, since ∂D ⊃ Ta, we
must have r = 0. Thus D = H \ Ta which contradicts the smoothness of ∂D. ¤

Note in particular we have proved that the Nemirovskii-type domains in (2) (ii-b)
of Lemma 4.2 are Stein. An entirely similar proof, which we omit, deals with the case
where ∂D contains both Ta and Tb.

Lemma 4.5. Let D be a pseudoconvex domain in H with Cω-smooth boundary. If
∂D ⊃ Ta ∪ Tb, then

(1) D is Stein or
(2) D is of type b in Theorem 1.1. More precisely, D =

⋃
c∈δ σc with 0,∞ ∈ ∂δ.

We suspect that under the hypotheses of Lemma 4.5 conclusion (2) must always hold,
but we are unable to verify this.

We can now easily conclude with the proof of our main result.

Proof of Theorem 1.1. Let D be a pseudoconvex domain in H with Cω-
smooth boundary which is not Stein. We consider three “symmetric” cases depending
on the nature of ∂D ∩ Ta or ∂D ∩ Tb.

1st case: ∂D ⊃ Ta (or ∂D ⊃ Tb).

If ∂D ⊃ Ta, we can have either ∂D ∩ Tb 6= Tb or ∂D ⊃ Tb. If ∂D ∩ Tb 6= Tb,
from Lemma 4.4, D =

⋃
c∈δ σc with 0 ∈ ∂δ and ∞ 6∈ δ ∪ ∂δ. If ∂D ⊃ Tb, this means

∂D ⊃ Ta ∪ Tb; hence Lemma 4.5 implies D =
⋃

c∈δ σc with 0,∞ ∈ ∂δ.

2nd case: ∂D ∩ Ta = ∅ (or ∂D ∩ Tb = ∅).
If ∂D ∩ Ta = ∅, we can have either ∂D ∩ Tb 6= Tb or ∂D ⊃ Tb. If ∂D ⊃ Tb, we are

done by the 1st case. If ∂D ∩ Tb 6= Tb, either

(I) ∂D ∩ Tb = ∅ or (II) ∅ 6= ∂D ∩ Tb 6= Tb.

Note that if ∂D ∩ Tb = ∅, then in this 2nd case ∂D ∩ (Ta ∪ Tb) = ∅.
Let λ[z, w] be the c-Robin function of D. From Lemma 4.1 we know that −λ[z, w] is

a plurisubharmonic exhaustion function on D. We shall prove that under our assumption
that D is not Stein we can find a point [z0, w0] in D∗ at which −λ[z, w] is not strictly
plurisubharmonic.
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In the setting of the 2nd case with (I) ∂D ∩Tb = ∅ we have three possible situations
for D relative to Ta,Tb: (i) D ∩ (Ta ∪ Tb) = ∅; (ii) D ∩ Ta = ∅ and D ⊃ Tb (or the
symmetric case with Ta,Tb switched); and (iii) D ⊃ Ta ∪ Tb.

In case (i) we are done since D = D∗ so that, by the assumption D is not Stein,
there is a point [z0, w0] in D = D∗ at which −λ[z, w] is not strictly plurisubharmonic.
By (2) (i) of Lemma 4.2, D is a domain of the type in Case (a-1) or Case b of Theorem
1.1 (in the latter situation, we have D =

⋃
c∈δ σc where δ ⊂ C∗). For cases (ii) and

(iii) we only give the proofs under the hypothesis of Case a of Theorem 1.1 ((a, b) ∈ S1)
as the proofs in Case b are similar. In case (ii), since Tb is compact in D, we can find
a neighborhood V of Tb in D such that Tb b V b D. The Levi-flat hypersurface Σc

approaches Tb as c →∞; hence Σc b V b D for c sufficiently large. Since −λ[z, w] is a
plurisubharmonic function on D, −λ[z, w] is not strictly plurisubharmonic at points of
Σc; thus we can find such a point in D∗. Recalling (α∗):

D∗ =
⋃

c∈I

Σc, where I is an open interval in (0,∞),

we see that D is of type (a-2′′) in Theorem 1.1. In case (iii), similar reasoning as in case
(ii) shows that Σc0 ⊂ D for some c0 6= 0,∞. It follows that D =

⋃
c∈I Σc where I is an

interval in [0,∞]. Since D ⊃ Ta ∪ Tb, we have I = [0,∞], i.e., D = H, which is absurd
(note in Case b of case (iii) the conclusion is that D =

⋃
c∈δ σc where 0,∞ ∈ δ ⊂ P1).

This finishes the proof of the 2nd case under situation (I).

To finish the proof of the 2nd case, where ∂D ∩ Ta = ∅, it remains to deal with
situation (II), i.e., ∂D ∩ Ta = ∅ and ∅ 6= ∂D ∩ Tb 6= Tb. Again, we give the proofs under
the hypothesis (a, b) ∈ S1 of Case a of Theorem 1.1 since the proofs in Case b are similar.
Apriori, we separate this into two subcases:

(c1) D ⊃ Ta and (c2) D 6⊃ Ta.

In case (c1), using the argument in case (ii) above we can find a neighborhood V of Ta

in D such that Tb b V b D and hence Σc b V b D for c > 0 sufficiently close to 0.
Thus we obtain points in D∗ at which −λ[z, w] is not strictly plurisubharmonic. We now
appeal to case (2) (i) of Lemma 4.2.

Now we observe that case (c2) cannot occur, for the assumptions ∅ 6= ∂D ∩ Tb 6= Tb

and D 6⊃ Ta imply from Lemma 4.3 that D is Stein.

3rd case: ∅ 6= ∂D ∩ Ta 6= Ta (or ∅ 6= ∂D ∩ Tb 6= Tb).

If ∅ 6= ∂D ∩ Ta 6= Ta, from Lemma 4.3 we must have D ⊃ Tb. Thus ∂D ∩ Tb = ∅
and we are done by the 2nd case.

This completes the proof of Theorem 1.1. ¤

We end with an explicit example of the construction of both D[z, w] and the c-
Robin function λ[z, w] for a specific Nemirovskii-type domain D ⊂ H. We recall the
fundamental domain F = E1 ∪ E2 = (E′

1 ∪ E′′
1 ) ∪ (E′

2 ∪ E′′
2 ) for H defined in (2.2). Let

D be a subdomain of F defined by



260 N. Levenberg and H. Yamaguchi

D := (E′
1 ×K ′′

1 ) ∪ (E′
2 ×K ′′

2 ) ⊂ E1 ∪ E2

where (recall b > 1)

K ′′
1 := {1 < |w| ≤ b} ∩ {<w > 0} and K ′′

2 := {|w| ≤ b} ∩ {<w > 0}.

We note that ∂D, which can be written as

{|z| ≤ |a|} × {<w = 0, 1 ≤ |w| ≤ b} ∪ {1 ≤ |z| ≤ |a|} × {<w = 0, |w| ≤ |b|},

is smooth in H. To see that D is of Nemirovskii-type as in Lemma 4.2 (ii-b), setting

N = Cz × {<w > 0} ⊂ (C2)∗

we will show that

N/ ∼ = D in H, or equivalently, N = D̃ = D · I in (C2)∗ (4.23)

(recall (2.3)). Hence N \ (Cz × {0}) = D̃∗.
To prove (4.23), we show N = D̃. Let (z, w) ∈ N . Then we have z = anz0 and

w = bmw0 for some n,m ∈ Z and (z0, w0) ∈ F . Since b > 1, we have <w0 > 0.

Case 1: n ≥ m.

In this case we have (z, w) ∼ (z/an, w/bn) = (z0, b
m−nw0) ∈ E′

2 ×K ′′
2 ⊂ D.

Case 2: m ≥ n.

In this case we have (z, w) ∼ (z/am, w/bm) = (an−mz0, w0) ∈ E′
1 ×K ′′

1 ⊂ D.
Hence N ⊂ D̃ = D·I. The converse is clear from the relations D ⊂ N and N ·I = N .
We turn to the study of the sets D[z, w] and the c-Robin functions λ[z, w] for

(D[z, w], e) with respect to the metric ds2 on C∗ × C∗ and the function c(z, w) > 0.
Recall e = (1, 1). We put K̃ ′′

1 = {<w > 0}. Let w′ ∈ K ′′
2 . We write w′ = |w′|eiθ where

−π/2 < θ < π/2 and define

δ(w′) := {w = u + iv ∈ Cw : (cos θ)u− (sin θ)v > 0}. (4.24)

We then have

{<w > 0} · 1
w′

= δ(w′) in Cw,

so that dist(1, ∂δ(w′)) = cos θ for |w′| ≤ |b|. Recalling the formulas

D[z, w] =
((

1
z
,

1
w

)
·D∗

)
· I if [z, w] ∈ D∗;

D[z, 0] =
(

1
z
Da,C∗

)
· I =

(
1
z

D̃a

)
× C∗w if [z, 0] ∈ D ∩ Ta;
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D[0, w] =
(
C∗,

1
w

Db

)
· I = C∗z ×

(
1
w

D̃b

)
if [0, w] ∈ D ∩ Tb

where D ∩ Ta = Da × {0}, D ∩ Tb = {0} × Db, D̃a = {anz : z ∈ Da, n ∈ Z} ⊂ C∗z
and D̃b = {bnw : w ∈ Db, n ∈ Z} ⊂ C∗w, in using the equality D̃ = N we obtain the
following:

If (z′, w′) ∈ D∗, then

D[z′, w′] =
(

1
z′

,
1
w′

)
D̃∗ = C∗z × δ(w′),

while if (0, w′) ∈ D, then

D[0, w′] = C∗z ×
1
w′

K̃ ′′
1 = C∗z × δ(w′).

Hence for any [z, w] ∈ D, we have

D[z, w] = C∗z × δ(w)

which is independent of z. It follows that λ[z, w], [z, w] ∈ D is independent of z.
We analyze the boundary behavior of λ[z, w]. We consider different cases:

(1) Let [z0, w0] ∈ ∂D \ Ta; i.e., z0 6= 0, w0 = 0 + iv0 6= 0. We let [z, w] ∈ D approach
[z0, iv0]. If z → z0 and w → iv0, then regarding (4.24) with θ = π/2 we see that

D[z, w] = C∗z × δ(w) approaches D[z0, iv0] = C∗z × {=w < 0}.

In particular e ∈ ∂(C∗z × {=w < 0}); thus as [z, w] approaches [z0, iv0], we have
dist(∂D[z, w], e) tends to 0 and λ[z, w] tends to −∞.

(2) Let [z0, 0] ∈ ∂D∩Ta = Ta where z0 6= 0. We let [z, w] ∈ D approach [z0, 0] in such a
way that z → z0 arbitrarily but w → 0 in an angular sector; i.e., writing w = |w|eiθ,
there exists θ0 with 0 < θ0 < π/2 so that |θ| < θ0 as |w| → 0. As before we have
D[z, w] = C∗z×δ(w). It follows from (4.24) that dist(∂D[z, w], e) ≥ cos θ0 for |w| ≤ 1.
Let A be the c-Robin constant for the region

G(θ0) := {(z, w) ∈ C∗z × C∗w : |z − 1|2 + |w − 1|2 < cos2 θ0}

with pole e. Then A is finite and since G(θ0) ⊂ D[z, w] for |w| ≤ 1, clearly λ[z, w] >

A. Thus −λ[z, w] is not an exhaustion function due to its boundary behavior at Ta.

Finally, we let X := z(∂/∂z) and p0 = [z0, w0] ∈ D∗. Then the integral curve for X

with initial value p0 is given by

σ := p0 exp tX = (C∗z × {w0})/ ∼ ⊂ D̃∗/ ∼ = D∗.

Thus this example does indeed satisfy (1) and (2) (ii-b) of Lemma 4.2.
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5. Appendix A: Proofs of Lemma 3.1 and Proposition 1.1.

We give the proof of Lemma 3.1 and simultaneously that of Proposition 1.1. We
first prove 1. of the lemma; hence we recall that

Xu = (log |a|)z ∂

∂z
+ (log |b|)w ∂

∂w
;

the integral curve of Xu with initial value (1, 1) is

exp tXu =

{
z = e(log |a|)t,

w = e(log |b|)t,
t ∈ C;

we set σ̃u := {exp tXu : t ∈ C}/ ∼ ⊂ H∗ and we denote by Σ̃u the closure of σ̃u in H.
Consider case (1) where we let (a, b) ∈ S1. There are two subcases: ρ = log |b|/ log |a| > 1
is irrational, or ρ = q/p is rational, (p, q) = 1, and τ = (q arg a− p arg b)/2π is irrational.

In the first subcase, taking the closure in C∗z × C∗w we have

Cl[zlog |b| = wlog |a|] = {|z|log |b| = |w|log |a|}

so that

Σ̃u = {|z|log |b| = |w|log |a|}/ ∼ .

One can check that

{|z|log |b| = |w|log |a|}̃ := {|z|log |b| = |w|log |a|} · I = {|z|log |b| = |w|log |a|};

it follows that Σ̃u is an irreducible, compact, Levi-flat hypersurface in H∗.
For any (z0, w0) ∈ C∗z × C∗w, we have

Cl[[z0w0] exp tX] =
{ |z|log |b|
|w|log |a| =

|z0|log |b|
|w0|log |a|

}/
∼ and (5.1)

{ |z|log |b|
|w|log |a| =

|z0|log |b|
|w0|log |a|

}∼
=

{ |z|log |b|
|w|log |a| =

|z0|log |b|
|w0|log |a|

}
. (5.2)

Indeed, since C∗ × C∗ are the group of automorphism of H, letting (ξ, η) ∈ C∗ × C∗ we
have

[ξ, η] ∈ Cl[[z0w0] exp tX] = (z0, w0) · Cl[[1, 1] exp tX] = (z0, w0) · Σ̃u.

Equivalently, [z−1
0 ξ, w−1

0 η] ∈ Σ̃u. By the argument in the previous paragraph, this is
equivalent to |z−1

0 ξ|log|b| = |w−1
0 η|log |a|, proving (5.1). The assertion (5.2) is easily

checked and it yields the validity of the definition of Σc for c ∈ (0,+∞) in (α) of
Proposition 1.1. This proves (α) as well as 1.(1) of Lemma 3.1 in case (a, b) ∈ S1 and ρ
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is irrational.
If (a, b) ∈ S1 and ρ is rational while τ is irrational, setting pr{zq/p} for the principal

q/p-th root, we have

σ̃u = {w = pr{zq/p}}/ ∼

=
⋃

n∈Z
{(anz, (anz)q/p)}/ ∼ (by analytic continuation)

=
⋃

n∈Z
{(z, b−n((anz)q/p))}/ ∼

=
p−1⋃

k=0

⋃

n∈Z
{(z, pr{zq/p}e2πi(nτ/p+qk/p))}/ ∼ . (5.3)

Since τ is irrational, we similarly have

Σ̃u = {|w| = |z|q/p}/ ∼ = {|w|log |a| = |z|log |b|}/ ∼ .

A similar argument as before verifies (5.1) and (5.2), finishing the proof of 1.(1) of Lemma
3.1 and (α) of Proposition 1.1.

We next prove 1.(2). Let (a, b) ∈ S2 so that ρ = log |b|/ log |a| ≥ 1 is rational;
we write ρ := q/p, (p, q) = 1; and τ := (q arg a − p arg b)/2π is also rational; we write
τ := m/l, l ≥ 1, (l, m) = ±1 (l = 1 for τ = 0), where 0 ≤ arg a, arg b < 2π.

We consider the circle A := {eiθ : 0 ≤ θ ≤ 2π} and an arc B : t ∈ [0, 1] → ζ(t) =
r(t)eiθ(t) connecting 1 and a in Cz where r(t), θ(t) are increasing in t. We set

γn := {einθ : 0 ≤ θ ≤ 2π} for n = ±1,±2, . . . ;

ζn = an−1B for n ≥ 1 and ζn = an+1(−B) for n ≤ −1

where −B is the arc with the opposite orientation of B. We define

ζ(n) := ζ1 · ζ2 · · · ζn for n ≥ 1; ζ(n) := ζ−1 · ζ−2 · · · ζ−n for n ≤ −1

so that ζ(n) is an arc connecting 1 and an in C∗z.
Given k, s ∈ Z, we perform an analytic continuation of the principal value pr{zq/p}

of zq/p from z = 1 to as along the curve γk · ζ(s): we have

σ̃u = {(z, zq/p)}/ ∼
= {(z, |z|q/pei(q/p)(Argz+k2π)}/ ∼ (by anal. cont. along γk)

= {(z, pr{zq/p} · e2πikq/p)}/ ∼
= {(asz, |a|sq/p|z|q/pei(q/p)(s arg a+Arg z) · e2πikq/p)}/ ∼ (by anal. cont. along ζ(s))
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= {(z, pr{zq/p}b−s |a|sq/peisq arg a/p · e2πikq/p)}/ ∼
= {(z, pr{zq/p}e2πism/pl · e2πikq/p)} since q arg a− p arg b = 2πm/l.

We set

wks(z) = pr{zq/p}e2πi(sm/pl+kq/p) ∈ {w ∈ C∗ : |w| = |z|q/p}. (5.4)

In particular we have

wks(1) = e2πi(sm/pl+kq/p) ∈ {w ∈ C∗ : |w| = 1}. (5.5)

Setting W(1) := {wks(1) : 0 ≤ k ≤ p− 1, 0 ≤ s ≤ l − 1} ⊂ C∗w, we show

1) (1,W(1)) consists of pl different points in the fundamental domain F , and hence
W(1) = {e2πi(n/pl) : 0 ≤ n ≤ pl − 1};

2) if w ∈ C∗w, then [1, w] ∈ σu if and only if w ∈ W(1);
3) for (z0, w0) ∈ C∗z×C∗w we consider the integral curve [z0, w0] exp tXu of Xu with initial

value at [z0, w0]. Let (z, w) ∈ C∗z × C∗w. Then

[z, w] ∈ [z0, w0] exp tXu ⇐⇒ wpl/zql = wpl
0 /zql

0 in C∗.

To prove 1), assume wk1 s1(1) = wk2 s2(1) with 0 ≤ k1, k2 ≤ p−1, 0 ≤ s1, s2 ≤ l−1.
Then we can find N ∈ Z with

(s1 − s2)m
pl

+
(k1 − k2)q

p
= N.

Using (l, m) = 1 and (p, q) = 1 it follows that k1 = k2 and s1 = s2, which proves 1).
To prove 2), let (1, w0) ∈ σ̃u ∩ F . Then w0 is determined as follows: we can find

S ∈ Z and a (not necessarily simple) curve C connecting 1 and aS in C∗z such that if
we perform an analytic continuation w = wC(z) of pr{zq/p} along C, then the value w∗

of wC(z) at the terminal point of C (which lies over aS) satisfies w0 = b−Sw∗. Since C

is homotopic to the curve γk · ζ(s) for some k, s ∈ Z, it follows from (5.5) and 1) that
w0 = e2πi(sm+kql)/pl ∈ W(1).

To prove 3), we first consider the case where (z0, w0) = (1, 1). Using arguments
similar to 2), and using (5.4), for (z, w) ∈ C∗z × C∗w we have

[z, w] ∈ σ̃u ⇐⇒ w = pr{zq/p}e2πi(n/pl) for some n with 0 ≤ n ≤ pl − 1.

The point (z, w) in the right-hand-side satisfies wpl = zql; conversely, if (z, w) ∈ C∗z×C∗w
satisfies wpl = zql then it satisfies the right-hand-side of the displayed equivalence. Since
σu = [1, 1] exp tXu, this shows that 3) is true for (z0, w0) = (1, 1). For general (z0, w0) ∈
C∗z ×C∗w, fix (z, w) with [z, w] ∈ [z0, w0] exp tXu. Since any (α, β) ∈ C∗ ×C∗ induces an
automorphism in H, we have
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[z, w] ∈ [z0, w0] exp tXu = (z0, w0) · [1, 1] exp tXu,

i.e., [z−1
0 z, w−1

0 w] ∈ [1, 1] exp tXu. From the (1, 1) case we conclude that (w−1
0 w)pl =

(z−1
0 z)ql, so that wpl/zql = wpl

0 /zql
0 .

We note that 3) guarantees the validity of the definition of σc in assertion (β) in
Proposition 1.1 and proves (β). Furthermore 3) proves the equality {wp = zq}/ ∼ =
{wpl = zql}/ ∼ and {wpl = zql}̃ = {wpl = zql} in C∗ × C∗.

We next prove 1.(2) ii) in Lemma 3.1. Here, (a, b) ∈ S2. We show the curve σ̃u, as
a Riemann surface, is equivalent to a torus T(a,b). To construct T(a,b) we begin with the
annulus {1 ≤ |z| ≤ |a|}. Identifying the inner boundary A = {eiθ : 0 ≤ θ ≤ 2π} with
the outer boundary {a eiθ : 0 ≤ θ ≤ 2π}, we get a torus T . Recall that B : t ∈ [0, 1] →
ζ(t) = r(t)eiθ(t) is an arc connecting 1 and a in Cz. Let Tp,l be the covering space of T
which covers the circle A p times and covers the arc B l times. We offer a realization of
the tori T and Tp,l in the following figure:

Since wk0(1) for 0 ≤ k ≤ p− 1 from (5.5) are p distinct points and wp0(1) = 1 = w00(1),
we can form the covering space Tp,0 of T which covers A p times. Now w0s(1) for
0 ≤ s ≤ l − 1 are l distinct points and w0l(1) = e2πim/p. If m/p is an integer, then
w0l(1) = w00(1), in which case the covering space Tp,0 of T covers B l times. Since
wks(1) for 0 ≤ k ≤ p − 1, 0 ≤ s ≤ l − 1 are l distinct points by 1), it follows in this
case that σ̃u is equivalent to the torus Tp,l. If, on the other hand, m/p is not an integer,
there exists k with 1 ≤ k ≤ p − 1 such that wk0(1) = w0l(1). Setting m∗ := p − k, we
have 1 ≤ m∗ ≤ p− 1. We perform an analytic continuation of pr{zq/p} along the closed
curve BlAm∗

which traverses B l times and then A m∗ times. In doing so, we return to
pr{zq/p}. Using 1), we see that σu is equivalent to the torus T(a,b) pictured in the figure.
This proves 1.(2) of Lemma 3.1.

Remark 5.1. As noted in the introduction, if (a, b) ∈ S2 we have the non-constant
meromorphic function f [z, w] = wP /zQ on H with aQ = bP . We see that P = pl and
Q = ql; and for c ∈ C∗ and (z0, w0) ∈ C∗z × C∗w with f(z0, w0) = c, the level curve
f(z, w) = c coincides with ([z0, w0] exp tXu)e.
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We turn to 2. of Lemma 3.1 and we first prove 2.(1). Thus let

X = αz
∂

∂z
+ βw

∂

∂w
6∈ {cXu : c ∈ C}

with α, β 6= 0. Considering X as a vector field in C∗z × C∗w, the integral curve {exp tX :
t ∈ C} of X with initial value e = (1, 1) in C∗z × C∗w is w = zβ/α. Let β/α = A + Bi

where A, B are real. Then

w = zA+Bi = e(A+Bi) log z.

Fix z ∈ C∗ and let Log z = log |z|+ iθ (0 ≤ θ < 2π) be the principal value. By analytic
continuation, over z we have

wn(z) = e(A+Bi)(log |z|+i(θ+2nπ))

= eA(log |z|+iθ)e[−B(θ+2nπ)]ei(A2nπ+B log |z|), n ∈ Z. (5.6)

We first assume B 6= 0, e.g., B > 0. Then |wn(z)| = (|z|Ae−Bθ)e−2nBπ, n ∈ Z.
Hence limn→+∞ |wn(z)| = 0 in Cw; thus

lim
n→+∞

(z, wn(z))/ ∼ = [z, 0] ∈ Ta in H.

Since z ∈ C∗ is arbitrary, we have Ta ⊂ Σ, the closure of σ = {w = zA+Bi}/ ∼ in H.
Since w = zA+Bi can be written as

z = wA′+iB′ where A′ = A/(A2 + B2), B′ = −B/(A2 + B2) < 0,

we similarly have Tb ⊂ Σ. This proves 2.(1) in case B 6= 0.
We next assume B = 0 and A 6= ρ. Since the proof is similar, we shall prove 2.(1)

assuming −∞ < A < ρ. For z ∈ C∗ we have Log z = log |z| + iθ (0 ≤ θ < 2π). By
analytic continuation of w(z) = zA = eA(log |z|+i arg z) along an arbitrary path l from z to
akz where k ∈ Z is arbitrary, we have

w(akz) = (akz)A = |akz|AeiA arg akz = |akz|AeiA(k arg a+θ+2nπ), n ∈ Z.

Thus pk := (akz, w(akz)) ∈ σ. In H∗ the point pk coincides with

(z, w(akz)/bk)/ ∼ = (z, w̃k(z))/ ∼ ∈ σ (5.7)

where w̃k(z) := |aA/b|k|z|Aeik(A arg a−arg b)eiA(θ+2nπ) ∈ C∗z.
Using ρ = log |b|/log |a|,

|w̃k(z)| = |z|A(|a|kA/|b|k) = |z|A(|a|A−ρ)k. (5.8)

Since A < ρ and |a| > 1, it follows that limk→+∞ |w̃k(z)| = 0, so that [z, 0] ∈ Σ. Since
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z ∈ C∗ is arbitrary, we have Σ ⊃ Ta.
Since w = zA can be written as z = w1/A, we have by analytic continuation

qk := ((bk w)1/A, bk w) ∈ σ for any k ∈ Z. In H∗, the point qk coincides with
((bk w)1/A/ak, w)/ ∼ =: (z̃k(w), w)/ ∼. Since |z̃k(w)| = |w|1/A(|a|ρ−A)k/A, we have
limk→−∞ |z̃k(w)| = 0 if A > 0 and limk→+∞ |z̃k(w)| = 0 if A < 0. Since w ∈ C∗ is
arbitrary, we have Σ ⊃ Tb, which proves 2.(1).

Finally, to prove 2.(2), let X = αz(∂/∂z) 6= 0. Then the integral curve σ of X

passing through [1, 1] in H is given by {(eαt, 1) : t ∈ C}/ ∼ = C∗z × {1}/ ∼. In the
fundamental domain F ,

σ = ({0 < |z| ≤ |a|}, 1) ∪ ({1 < |z| ≤ |a|}, 1/b) ∪ ({1 < |z| ≤ |a|}, 1/b2) + · · · ,

so that Σ = ({|z| ≤ 1}, 1)
⋃∞

n=1({1 ≤ |z| ≤ |a|}, 1/bn) ∪ Ta, proving 2.(2). ¤

We end this appendix with a remark. Let X = αz(∂/∂z) + βw(∂/∂w) 6∈ {cXu : c ∈
C} with α 6= 0, β 6= 0 and set β/α = A+Bi as in the proof of 2.(1). Fix (z0, w0) ∈ C∗×C∗
and for c = w0/zA+Bi

0 consider the integral curve σc = {w = czA+Bi}/∼ of X passing
through [z0, w0] in H. For each z′ ∈ {1 < |z| < |a|} we consider the set of all points
wk(z′), k = 1, 2, . . . in {|w| < |b|} with [z′, wk(z′)] ∈ σc. The following fact was used to
prove (2) (iii) in Lemma 4.2.

Remark 5.2. If A is irrational, then there exists a subsequence {wkj
(z′)}j=1,2,...

with the properties that limj→∞ |wkj (z
′)| = 0 and the closure of the set

{arg wkj (z
′)}j=1,2,... modulo 2π is equal to [0, 2π].

Proof. Since σc = {w = czA+Bi}/ ∼ and σ = {w = zA+Bi}/ ∼ where σ is
defined in the proof of 2.(1), it suffices to prove the result using σc = σ. If B 6= 0, we
can assume B > 0. Since A is irrational, formula (5.6) gives the result. If B = 0 we have
A 6= ρ, and we can assume −∞ < A < ρ. In this case, since A is irrational, formulas
(5.7) and (5.8) imply the result. ¤

6. Appendix B: Proof of Lemma 3.2.

We give the proof of Lemma 3.2. The lemma is local, hence we may assume from (i)
and (ii) that the unit outer normal vector of the curve ∂D(0) in ∆2 is (0, 1); i.e., ∂D(0)
is tangent to the u-axis at w = 0 where w = u + iv. Thus, we may assume that ψ(z, w)
has the following Taylor expansion about the origin (z, w) = (z, (u, v)) = (0, (0, 0)):

ψ(z, w) = v + p0(z) + p1(z)u + p2(z)u2 + · · · (6.1)

where each pi(z), i = 0, 1, 2, . . . is a Cω-smooth real-valued function and

p0(0) = 0 and p1(0) = 0.

We may further assume that formula (6.1) holds on (z, u) ∈ ∆1 × (−r2, r2) where ∆2 =
{|w| < r2}. Thus we write
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D = {v + p0(z) + p1(z)u + p2(z)u2 + · · · < 0 : (z, w) ∈ ∆1 ×∆2};
S = ∂D = {v + p0(z) + p1(z)u + p2(z)u2 + · · · = 0 : (z, w) ∈ ∆1 ×∆2},

or equivalently,

D : v < −(p0(z) + p1(z)u + p2(z)u2 + · · · ) in ∆1 ×∆2, (6.2)

and, for each z ∈ ∆1,

S(z) : v = −(p0(z) + p1(z)u + p2(z)u2 + · · · ) in ∆2.

In particular, −ip0(z) ∈ S(z). By condition (iii) we have

p0(z) 6≡ 0 on ∆1. (6.3)

Since ψ(z, w) satisfies the Levi condition (3.1) on ψ(z, w) = 0, using the notation

ψ(z, w) =
w − w

2i
+ p0(z) + p1(z)

w + w

2
+ p2(z)(

w + w

2
)2 + · · · ,

on points (z, w) = (z, u + iv) with ψ(z, u + iv) = 0 we obtain

Lψ(z, w) =
(

∂2p0(z)
∂z∂z

+
∂2p1(z)
∂z∂z

u +
∂p2(z)
∂z∂z

u2 + · · ·
)∣∣∣∣

1
2i

+
1
2
p1(z) + p2(z)u + · · ·

∣∣∣∣
2

− 2<
{(

1
2

∂p1(z)
∂z

+
∂p2(z)

∂z
u + · · ·

)(
∂p0(z)

∂z
+

∂p1(z)
∂z

u +
∂p2(z)

∂z
u2 + · · ·

)

×
(

1
2i

+
1
2
p1(z) + p2(z)u + · · ·

)}

+
(

1
2
p2(z) + 3p3(z)u + · · ·

)∣∣∣∣
∂p0(z)

∂z
+

∂p1(z)
∂z

u +
∂p2(z)

∂z
u2 + · · ·

∣∣∣∣
2

≥ 0.

In particular,

Lψ(z, 0 + iv) =
1
4

(1 + p1(z)2)
∂2p0(z)
∂z∂z

− 1
2
<

{
∂p1(z)

∂z

∂p0(z)
∂z

(−i + p1(z))
}

+
1
2
p2(z)

∣∣∣∣
∂p0(z)

∂z

∣∣∣∣
2

≥ 0

on v + p0(z) = 0 for z ∈ ∆1.

Since this expression for Lψ(z, 0 + iv) is independent of v, we have
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(1 + p1(z)2)
∂2p0(z)
∂z∂z

− 2<
{

∂p1(z)
∂z

∂p0(z)
∂z

(−i + p1(z))
}

+ 2p2(z)
∣∣∣∣
∂p0(z)

∂z

∣∣∣∣
2

≥ 0

for z ∈ ∆1. (6.4)

This formula will be used later on in the proof.

Claim. To prove the lemma, it suffices to show that for r1 > 0 sufficiently small
and δ1 = {|z| < r1},

(♦) there exists z∗ ∈ δ1 such that p0(z∗) > 0.

Indeed, if (♦) is true, consider the segment [0, z∗] in δ1 and the set

s :=
⋃

z∈[0,z∗]

S(z) ⊂ ∆2.

The arc S(z) in ∆2 varies continuously with z ∈ ∆1. Hence it follows from 0 ∈ S(0),
−ip0(z∗) ∈ S(z∗), −p0(z∗) < 0 and (6.2) that there exists a sufficiently small disk
δ2 ⊂ ∆2 centered at w = 0 with D(0) ∩ δ2 ⊂ s.

Thus we turn to the proof of (♦). We have two cases, depending on whether
(∂p0/∂z)(0) vanishes:

Case (i): (∂p0/∂z)(0) 6= 0.

Since p0(0) = 0, we have

p0(x + iy) = ax + by + O(|z|2) near z = 0

with (a, b) 6= (0, 0). It is clear that there exist z∗ ∈ δ1 which satisfies (♦).

Case (ii): (∂p0/∂z)(0) = 0.

In this case, we have the following Taylor expansion of p0(z) about z = 0:

(1) p0(z) = <{a20z
2}+ a11zz + · · ·+ J2n−1 + J2n + O(|z|2n+1) near z = 0,

where

J2n−1 = <
{ n−1∑

k=0

a2n−1−k,k z2n−1−k zk

}
, J2n = <

{ n−1∑

k=0

a2n−k,k z2n−k zk

}
+ ann|z|2n.

Here aij is, in general, a complex number for i 6= j; while aii is real.

1st step: Since (∂p0/∂z)(0) = 0 and p0(0) = p1(0) = 0, inequality (6.4) reduces to

∂2p0

∂z∂z
(0) ≥ 0, i.e., a11 ≥ 0.
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If a11 > 0, (1) implies that

∂2p0

∂z∂z
(z) = a11 + O(|z|) ≥ a11

2
> 0 near z = 0.

Thus p0(z) is strictly subharmonic on a sufficiently small disk δ′1 := {|z| < r′} ⊂ δ1;
hence there exists z∗ with |z∗| = r′/2 and p0(z∗) > p0(0) = 0, proving (♦).

If a11 = 0, then (1) becomes, for z = reiθ,

p0(z) = <{a20z
2}+ O(|z|3) = |z|2<{a20e

2iθ + O(|z|)} near z = 0.

If a20 = |a20|eiθ0 6= 0, then for z∗ ∈ δ1 of the form z∗ = r∗e−iθ0/2 6= 0 with r∗

sufficiently small, we have

p0(z∗) = (r∗)2(|a20|+ O(|z∗|)) ≥ (r∗)2
|a20|

2
> 0,

which proves (♦).
Thus it suffices to prove (♦) in the following two cases when n ≥ 2:

Case (I) : p0(z) = J2n−1(z) + O(|z|2n) near z = 0

where

J2n−1(z) := <{a2n−1z
2n−1 + a2n−2z

2n−2z + · · ·+ anznzn−1} in Cz;

ai is, in general, a complex number; and

(a2n−1, a2n−2, . . . , an) 6= (0, 0, . . . , 0). (6.5)

Case (II) : p0(z) = J2n(z) + O(|z|2n+1) near z = 0

where

J2n(z) := <{a2nz2n + a2n−1z
2n−1z + · · ·+ an+1z

n+1zn−1}+ an|z|2n in Cz;

ai for n + 1 ≤ i ≤ 2n is, in general, a complex number; an is a real number; and

(a2n, a2n−1, . . . , an+1, an) 6= (0, 0, . . . , 0, 0). (6.6)

We first assume Case (I). Setting z = |z|eiθ, we have

J2n−1(z) = |z|2n−1<{a2n−1e
i(2n−1)θ + a2n−2e

i(2n−3)θ + · · ·+ aneiθ} in Cz.

We consider the polynomial in Z defined by

g(Z) := a2n−1Z
2n−1 + a2n−2Z

2n−3 + · · ·+ anZ.
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Note that g(Z) 6≡ 0 by (6.5). Thus g(Z) 6= 0 for all Z with |Z| = r for some 0 < r < 1.
Since g(0) = 0, by the argument principle

∫
|Z|=r

d arg g(Z) ≥ 1, hence there exists

0 ≤ θ′ < 2π such that < g(reiθ′) > 0. By the maximum principle for the harmonic
function < g(Z) on {|Z| ≤ 1}, there exists 0 ≤ θ∗ ≤ 2π such that

A := < g(eiθ∗) ≥ < g(reiθ′) > 0.

Since J2n−1(z) = |z|2n−1g(eiθ), we have

p0(|z|eiθ∗) = |z|2n−1A + O(|z|2n) for 0 < |z| ¿ 1

≥ |z|2n−1A/2 > 0 for 0 < |z| ¿ 1,

showing that (♦) is true in Case (I).
We next assume Case (II). For z = |z|eiθ

∂2p0(z)
∂z∂z

= |z|2n−2
(<{(∗)}+ n2an + O(|z|)) (6.7)

where

(∗) = (2n− 1)a2n−1e
i(2n−2)θ + (2n− 2)2 · a2n−2e

i(2n−4)θ + · · ·+ (n + 1)(n− 1)an+1e
i2θ.

We substitute this in (6.4) to obtain

(1 + O(1)2)|z|2n−2
(<{(∗)}+ n2an + O(|z|))

− 2<{
O(1)O(|z|2n−1)(−i + O(1))

}
+ 2 O(|z|)O(|z|2n−1)2 ≥ 0

for |z| sufficiently small. Dividing both sides by (1 + O(1)2)|z|2n−2 > 0 with |z| > 0 and
then letting |z| → 0, we have

<{(∗)}+ n2 an ≥ 0 for all 0 ≤ θ < 2π. (6.8)

We substitute this in the definition of p0(z) in Case (II) to obtain

p0(z) ≥ |z|2n<
{

a2nei2nθ + a2n−1

(
1− 2n− 1

n2

)
ei(2n−2)θ

+ a2n−2

(
1− (2n− 2)2

n2

)
ei(2n−4)θ

+ · · ·+ an+1

(
1− (n + 1)(n− 1)

n2

)
ei2θ

}
+ O(|z|2n+1)

for |z| sufficiently small.
We divide the proof of Case (II) in two subcases:
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Case (II-1): (a2n, a2n−1, . . . , an+1) 6= (0, 0, . . . , 0);

Case (II-2): (a2n, a2n−1, . . . , an+1) = (0, 0, . . . , 0).

From (6.6), an 6= 0 in Case (II-2). In Case (II-1) we consider the polynomial

g(Z) = a2nZ2n + a2n−1

(
1− 2n− 1

n2

)
Z2n−2 + a2n−2

(
1− (2n− 2)2

n2

)
Z2n−4

+ · · ·+ an+1

(
1− (n + 1)(n− 1)

n2

)
Z2.

Since n ≥ 2, we have (1 − (2n− k)k/n2) 6= 0 for k = 1, 2, . . . , n − 1 so that g(Z) 6≡ 0
on CZ and g(0) = 0. By the same reasoning as in Case (I) we have the existence of
0 ≤ θ∗ < 2π and A > 0 with

p0(|z|eiθ∗) ≥ |z|2nA/2 > 0 for 0 < |z| ¿ 1,

which proves (♦) in Case (II-1).
In Case (II-2) we have (∗) = 0 in (6.7) and hence an ≥ 0 from (6.8); thus an > 0.

Using (6.7) we have

∂2p0(z)
∂z∂z

≥ |z|2n−2an + O(|z|2n−2) ≥ |z|2n−2an/2 ≥ 0

for z in a sufficiently small disk δ centered at z = 0. In other words, p0(z) is subharmonic
on δ and is strictly subharmonic in δ \ {0}. Thus, for a given 0 < r < r0, we can find
0 ≤ θ∗ < 2π with p0(reiθ∗) > 0, which proves (♦) in Case (II-2). This completes the
proof of (♦). ¤
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