Two-cardinal versions of weak compactness: Partitions of triples

By Pierre MATET and Toshimichi USUBA

(Received Feb. 25, 2013)

Abstract. Let κ be a regular uncountable cardinal, and λ be a cardinal greater than κ . Our main result asserts that if $(\lambda^{<\kappa})^{<(\lambda^{<\kappa})} = \lambda^{<\kappa}$, then $(p_{\kappa,\lambda}(\mathrm{NIn}_{\kappa,\lambda^{<\kappa}}))^+ \longrightarrow ((\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, \mathrm{NS}_{\kappa,\lambda}s^+)^3$ and $(p_{\kappa,\lambda}(\mathrm{NAIn}_{\kappa,\lambda^{<\kappa}}))^+ \longrightarrow (\mathrm{NS}_{\kappa,\lambda}s^+)^3$, where $\mathrm{NS}_{\kappa,\lambda}s$ (respectively, $\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}}$) denotes the smallest seminormal (respectively, strongly normal) ideal on $P_{\kappa}(\lambda)$, $\mathrm{NIn}_{\kappa,\lambda^{<\kappa}}$ (respectively, $\mathrm{NAIn}_{\kappa,\lambda^{<\kappa}}$) denotes the ideal of non-ineffable (respectively, non-almost ineffable) subsets of $P_{\kappa}(\lambda^{<\kappa})$, and $p_{\kappa,\lambda}: P_{\kappa}(\lambda^{<\kappa}) \to P_{\kappa}(\lambda)$ is defined by $p_{\kappa,\lambda}(x) = x \cap \lambda$.

0. Introduction.

Let κ be a regular uncountable cardinal, and $\lambda > \kappa$ be a cardinal. In this paper we study $P_{\kappa}(\lambda)$ versions of weak compactness and associated ideals, thus continuing [23] which dealt with partitions of pairs. Here we are mostly concerned with partitions of triples.

This area of research has been started by Jech in a paper [10] published in 1973. Time has elapsed, but it remains unclear which structure we should investigate. What is the right generalization of (κ, \subsetneq) ? Is it $(P_{\kappa}(\lambda), \subsetneq)$ or $(P_{\kappa}(\lambda), <)$ (where a < b means that $a \in P_{|b \cap \kappa|}(b)$)? Whenever we can, we give positive results in terms of the first one, and negative results in terms of the second.

It seems to us that Johnson (see e.g. [12]) was right when he stressed the importance of the notion of seminormality. The point is that any κ -complete ideal J on κ is trivially seminormal (since given $A \in J^+$, $\gamma < \kappa$ and $f : A \to \gamma$, there must be $B \in J^+ \cap P(A)$ such that f is constant on B), and therefore the noncofinal ideal I_{κ} on κ can be seen as the smallest seminormal ideal on κ . So each time we attempt to formulate a twocardinal version of a statement involving I_{κ} , we should ponder whether I_{κ} should be replaced by $I_{\kappa,\lambda}$ (the noncofinal ideal on $P_{\kappa}(\lambda)$) or $NSS_{\kappa,\lambda}$ (the smallest seminormal ideal on $P_{\kappa}(\lambda)$). Consider for example the partition property $\kappa \longrightarrow (\kappa)^2$ expressing that κ is a weakly compact cardinal. By the remarks above, it can be generalized in (at least) four different ways, namely $P_{\kappa}(\lambda) \longrightarrow (I^+_{\kappa,\lambda})^2$, $P_{\kappa}(\lambda) \longrightarrow (I^+_{\kappa,\lambda})^2$, $P_{\kappa}(\lambda) \longrightarrow (NSS^+_{\kappa,\lambda})^2$ and $P_{\kappa}(\lambda) \longrightarrow (NSS^+_{\kappa,\lambda})^2$. We do not have the partitions are constrained as a securities of the statement in the securities of the secur

and $P_{\kappa}(\lambda) \longrightarrow (\text{NSS}^+_{\kappa,\lambda})^2$. We do not know whether these four assertions are equivalent. We just advocated the replacement of (some occurrences of) I_{κ} by $\text{NSS}_{\kappa,\lambda}$. Likewise we plead for the replacement of (many occurrences of) NS_{κ} (the nonstationary ideal on

²⁰¹⁰ Mathematics Subject Classification. Primary 03E02, 03E55.

Key Words and Phrases. $P_{\kappa}(\lambda)$, partition relation, weakly compact cardinal.

 κ) by $\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}}$ (the smallest strongly normal ideal on $P_{\kappa}(\lambda)$) which seems to us more appropriate than $\mathrm{NS}_{\kappa,\lambda}$ (the nonstationary ideal on $P_{\kappa}(\lambda)$). Note that $\mathrm{NS}_{\kappa,\lambda} = \mathrm{NSS}_{\kappa,\lambda}$ in case $\mathrm{cf}(\lambda) < \kappa$.

Take for instance ineffability. By work of Kunen (see [6]) and Baumgartner [6], $\operatorname{NIn}_{\kappa} = \{A \subseteq \kappa : A \not\longrightarrow (\operatorname{NS}^+_{\kappa})^2\}$, where $\operatorname{NIn}_{\kappa}$ denotes the nonineffable ideal on κ . By work of Abe-Usuba [5], Carr [8], and Magidor [14], if $\operatorname{cf}(\lambda) \geq \kappa$, then $\operatorname{NIn}_{\kappa,\lambda} = \{A \subseteq P_{\kappa}(\lambda) : A \not\longrightarrow (\operatorname{NS}^{\{\lambda\}}_{\kappa,\lambda})^2\} = \{A \subseteq P_{\kappa}(\lambda) : A \not\rightarrow ((\operatorname{NS}^{\{\lambda\}}_{\kappa,\lambda})^+)^2\}$. The conclusion as stated is no longer valid in case $\operatorname{cf}(\lambda) < \kappa$. In fact, it is observed in Section 3 that $\operatorname{NIn}^+_{\kappa,\lambda} \not\rightarrow_{\varsigma} (\operatorname{I}^+_{\kappa,\lambda})^2$ if $2^{\lambda} = \lambda^{<\kappa}$.

Baumgartner [6] also showed that $NIn_{\kappa} = \{A \subseteq \kappa : A \not\longrightarrow (NS^+_{\kappa}, \kappa)^3\}$. We establish the following:

THEOREM 0.1 (Theorem 2.14). Assume $\lambda^{<\lambda} = \lambda$. Then $\operatorname{NIn}_{\kappa,\lambda} = \{A \subseteq P_{\kappa}(\lambda) : A \not\longrightarrow ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, \operatorname{NSS}_{\kappa,\lambda}^+)^3\}.$

We also show that $\operatorname{NIn}_{\kappa,\lambda}^+ \longrightarrow (\operatorname{NS}_{\kappa,\lambda}^+)^3$ does not hold in case $\operatorname{cf}(\lambda) \ge \kappa$ (see Proposition 2.19).

Note the cardinality assumption in Theorem 0.1. It entails that λ is regular. In the present paper we have little to say concerning the case where $\kappa \leq \operatorname{cf}(\lambda) < \lambda$ (for some results in this case see [23]). Assuming λ is regular, the cardinality assumption in question is not known to be necessary. However, our guess is that there is some ideal J on $P_{\kappa}(\lambda)$, whose definition is similar to that of $\operatorname{NIn}_{\kappa,\lambda}$, such that $J = \{A \subseteq P_{\kappa}(\lambda) : A \neq_{\prec} ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^{+}, \operatorname{NSS}_{\kappa,\lambda}^{+})^{3}\}$ (with $J = \operatorname{NIn}_{\kappa,\lambda}$ in case $2^{<\lambda} = \lambda$). For examples of such situations see [23].

Put $H = \{A \subseteq \kappa : A \not\longrightarrow (\kappa)^2\}$. If κ is weakly compact, then

- (a) $H = I_{\kappa}$, and
- (b) $H^+ \longrightarrow (H^+)^3$.

In particular, $NS_{\kappa}^{*} \longrightarrow (\kappa)^{2}$ just in case $NS_{\kappa}^{*} \longrightarrow (\kappa)^{3}$. The $P_{\kappa}(\lambda)$ situation is different. Assuming $\lambda^{<\lambda} = \lambda$, $NS_{\kappa,\lambda}^{*} \longrightarrow (I_{\kappa,\lambda}^{+})^{3}$ if and only if κ is almost λ -ineffable (Corollary 5.11), whereas by a result of [23] $NS_{\kappa,\lambda}^{*} \longrightarrow (I_{\kappa,\lambda}^{+})^{2}$ if and only if κ is λ -Shelah.

The following provides a characterization of $NAIn_{\kappa,\lambda}$ in terms of partition relations.

THEOREM 0.2 (Theorem 4.19). Assume that $\lambda^{<\lambda} = \lambda$, but λ is not weakly compact. Then $\operatorname{NAIn}_{\kappa,\lambda} = \{A \subseteq P_{\kappa}(\lambda) : A \cap C \not\longrightarrow (I^+_{\kappa,\lambda})^3\}$ for some $C \in \operatorname{NS}^*_{\kappa,\lambda}$.

The paper grew out of a set of notes by the second author concerning the $\xrightarrow{}$ partition relation. Joint work of the authors led to the present version.

The paper is organized as follows. In Section 1 we review basic material concerning the ideals on $P_{\kappa}(\lambda)$ considered in the paper. Sections 2 and 3 are devoted to the notion of ineffability and concerned with partitions of triples, respectively in the case $cf(\lambda) = \lambda$ and $cf(\lambda) < \kappa$. Sections 4–6 are also concerned with partitions of triples, but this time in connection with the notion of almost ineffability. They deal, respectively, with the following three cases: λ is regular but not weakly compact, λ is weakly compact, $cf(\lambda) < \kappa$.

1. Basic material.

DEFINITION. For a set A and a cardinal μ , let $P_{\mu}(A) = \{a \subseteq A : |a| < \mu\}$.

DEFINITION. $I_{\kappa,\lambda}$ denotes the collection of all $A \subseteq P_{\kappa}(\lambda)$ such that $A \cap \{a \in P_{\kappa}(\lambda) : b \subseteq a\} = \emptyset$ for some $b \in P_{\kappa}(\lambda)$.

DEFINITION. By an *ideal* on $P_{\kappa}(\lambda)$, we mean a collection J of subsets of $P_{\kappa}(\lambda)$ such that

(a) $I_{\kappa,\lambda} \subseteq J$, (b) $P(A) \subseteq J$ for all $A \in J$, and (c) $A \cup B \in J$ for all $A, B \in J$.

J is proper if $P_{\kappa}(\lambda) \notin J$.

For an ideal J on $P_{\kappa}(\lambda)$, let $J^* = \{A \subseteq P_{\kappa}(\lambda) : P_{\kappa}(\lambda) \setminus A \in J\}$, $J^+ = \{A \subseteq P_{\kappa}(\lambda) : A \notin J\}$, and $J|X = \{A \subseteq P_{\kappa}(\lambda) : A \cap X \in J\}$ for every $X \in J^+$. cof(J) (respectively, $\overline{\operatorname{cof}}(J)$) denotes the smallest cardinality of $X \subseteq J$ with the property that for any $A \in J$, there is $Q \subseteq X$ such that |Q| < 2 (respectively, $|Q| < \kappa$) and $A \subseteq \bigcup Q$.

DEFINITION. Let $\xi \leq \lambda$. An ideal J on $P_{\kappa}(\lambda)$ is ξ -normal if given $A \in J^+$ and $f: A \to \xi$ with the property that $f(a) \in a$ for every $a \in A$, there is $B \in J^+ \cap P(A)$ such that f is constant on B. $\mathrm{NS}^{\xi}_{\kappa,\lambda}$ denotes the smallest ξ -normal ideal on $P_{\kappa}(\lambda)$. An ideal J on $P_{\kappa}(\lambda)$ is normal if it is λ -normal. We put $\mathrm{NS}_{\kappa,\lambda} = \mathrm{NS}^{\lambda}_{\kappa,\lambda}$.

Note that $NS_{\kappa,\lambda}^{\xi} = I_{\kappa,\lambda}$ for every $\xi < \kappa$. The following is a generalization of the characterization of $NS_{\kappa,\lambda}$.

LEMMA 1.1. Let $\kappa \leq \xi \leq \lambda$ and $A \subseteq P_{\kappa}(\lambda)$. Then $A \in (NS^{\xi}_{\kappa,\lambda})^*$ if and only if there is $f : \xi \times \xi \to P_{\kappa}(\lambda)$ such that $C^{f}_{\kappa,\lambda} \subseteq A$, where $C^{f}_{\kappa,\lambda}$ is the set of all $a \in P_{\kappa}(\lambda)$ such that

(a) a ∩ ξ ≠ Ø, and
(b) f(α, β) ⊆ a for every (α, β) ∈ (a ∩ ξ) × (a ∩ ξ).

DEFINITION. Given four cardinals τ , ρ , χ and σ , $\operatorname{cov}(\tau, \rho, \chi, \sigma)$ is defined as follows. If one may find $X \subseteq P_{\rho}(\tau)$ with the property that for any $a \in P_{\chi}(\tau)$, there is $Q \in P_{\sigma}(X)$ with $a \subseteq \bigcup Q$, let $\operatorname{cov}(\tau, \rho, \chi, \sigma)$ = the least cardinality of any such X. Otherwise let $\operatorname{cov}(\tau, \rho, \chi, \sigma) = 0$. We set $\operatorname{cov}(\tau, \rho, \chi, \sigma) = u(\tau, \chi)$ in case $\rho = \chi$ and $\sigma = 2$.

Note that $u(\kappa, \lambda) = \operatorname{cov}(\kappa, \lambda, \lambda, 2) = \min\{|X| : X \in I^+_{\kappa, \lambda}\}.$

LEMMA 1.2 (Matet [18]). Let μ be a cardinal with $\kappa \leq \mu < \lambda$. Then the following are equivalent:

(i) $\mathrm{NS}^{\mu}_{\kappa,\lambda}|C = \mathrm{I}_{\kappa,\lambda}|C$ for some $C \in \mathrm{NS}^*_{\kappa,\lambda}$.

(ii) $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\mu}) \leq \lambda = \operatorname{cov}(\lambda,\mu^+,\mu^+,\kappa).$

DEFINITION. An ideal J on $P_{\kappa}(\lambda)$ is *seminormal* if it is ξ -normal for every $\xi < \lambda$. NSS_{κ,λ} denotes the smallest seminormal ideal on $P_{\kappa}(\lambda)$.

LEMMA 1.3 (Abe [2]). Suppose λ is regular. Then $\text{NSS}_{\kappa,\lambda} = \bigcup_{\xi < \lambda} \text{NS}_{\kappa,\lambda}^{\xi}$.

LEMMA 1.4 (Matet-Shelah [22]). Assuming λ is regular, the following are equivalent:

(i) $\mathrm{NSS}_{\kappa,\lambda}|C = \mathrm{I}_{\kappa,\lambda}|C$ for some $C \in \mathrm{NS}_{\kappa,\lambda}^*$.

(ii) $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$.

LEMMA 1.5 (Abe [2]). Suppose $\kappa \leq cf(\lambda) < \lambda$. Then $NS_{\kappa,\lambda} = NSS_{\kappa,\lambda}|C$ for some $C \in NS^*_{\kappa,\lambda}$.

DEFINITION. Let $\delta \leq \lambda$. An ideal J on $P_{\kappa}(\lambda)$ is $[\delta]^{<\kappa}$ -normal if given $A \in J^+$ and $f: A \to P_{\kappa}(\delta)$ with the property that $f(a) \in P_{|a \cap \kappa|}(a \cap \delta)$ for all $a \in A$, there is $B \in J^+ \cap P(A)$ such that f is constant on B. J is strongly normal if it is $[\lambda]^{<\kappa}$ -normal.

The following is a generalization of a result of Carr-Levinski-Pelletier [9].

LEMMA 1.6. Suppose κ is a limit cardinal, and let $\kappa \leq \delta \leq \lambda$. Then there exists a $[\delta]^{<\kappa}$ -normal ideal if and only if κ is Mahlo.

Assuming there exists a $[\delta]^{<\kappa}$ -normal ideal on $P_{\kappa}(\lambda)$, $NS_{\kappa,\lambda}^{[\delta]^{<\kappa}}$ denotes the smallest such ideal.

LEMMA 1.7 (Carr-Levinski-Pelletier [9], Matet [15]). Suppose κ is Mahlo and $\lambda^{<\kappa} = \lambda$. Then there is $E \in \left(NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}} \right)^*$ such that $NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}} = NS_{\kappa,\lambda} | E$.

LEMMA 1.8 (Matet-Péan-Shelah [20]). (i) Suppose κ is Mahlo and $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) \leq \lambda^{<\kappa}$. Then there is $E \in (NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$ such that $NS_{\kappa,\lambda}|E = I_{\kappa,\lambda}|E$. (ii) Suppose $\operatorname{cf}(\lambda) < \kappa$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) \leq \bigcup_{\kappa \leq \tau < \lambda} \overline{\operatorname{cof}}(NS_{\kappa,\tau})$.

Thus if $cf(\lambda) < \kappa$, then $\overline{cof}(NS_{\kappa,\lambda}) \leq 2^{<\lambda}$.

DEFINITION. For $a, b \in P_{\kappa}(\lambda)$, a < b means that $a \in P_{|b \cap \kappa|}(b)$.

DEFINITION. Let $n \in \omega \setminus 2$. For $A \subseteq P_{\kappa}(\lambda)$, let $[A]_{\leq}^{n} = \{(a_{1}, \ldots, a_{n}) \in A^{n} : a_{1} < \cdots < a_{n}\}$ and $[A]^{n} = \{(a_{1}, \ldots, a_{n}) \in A^{n} : a_{1} \subsetneq \cdots \subsetneq a_{n}\}$. Given $\mathcal{A}, \mathcal{B} \subseteq P(P_{\kappa}(\lambda))$ and $\eta \in \text{On}, \mathcal{A} \longrightarrow (\mathcal{B})_{\eta}^{n}$ (respectively, $\mathcal{A} \longrightarrow (\mathcal{B})_{\eta}^{n}$) asserts that for any $A \in \mathcal{A}$ and any $F : [A]^{n} \to \eta$, there is $B \in \mathcal{B} \cap P(A)$ such that F is constant on $[B]_{\leq}^{n}$ (respectively, $[B]^{n}$). For $\mathcal{A}, \mathcal{B}, \mathcal{C} \subseteq P(P_{\kappa}(\lambda)), \mathcal{A} \longrightarrow (\mathcal{B}, \mathcal{C})^{n}$ (respectively, $\mathcal{A} \longrightarrow (\mathcal{B}, \mathcal{C})^{n}$) asserts that for any $A \in \mathcal{A}$ and any $F : [A]^{n} \to 2$, there is either $B \in \mathcal{B} \cap P(A)$ such that F takes the constant value 0 on $[B]_{\leq}^{n}$ (respectively, $[B]^{n}$), or $C \in \mathcal{C} \cap P(A)$ such that F takes the constant value 1 on $[C]_{\leq}^{n}$ (respectively, $[C]^{n}$). $\mathcal{A} \longrightarrow (\mathcal{B})^{n}$ (respectively, $\mathcal{A} \longrightarrow (\mathcal{B})^{n}$)

means that $\mathcal{A} \longrightarrow (\mathcal{B}, \mathcal{B})^n$ (respectively, $\mathcal{A} \longrightarrow (\mathcal{B}, \mathcal{B})^n$). For $A \subseteq P_{\kappa}(\lambda), A \longrightarrow (\mathcal{B}, \mathcal{C})^n$ (respectively, $A \longrightarrow (\mathcal{B}, \mathcal{C})^n$) means that $\{A\} \longrightarrow (\mathcal{B}, \mathcal{C})^n$ (respectively, $\{A\} \longrightarrow (\mathcal{B}, \mathcal{C})^n$). Similarly, $A \longrightarrow (\mathcal{B})^n_\eta$ (respectively, $A \longrightarrow (\mathcal{B})^n_\eta$) means that $\{A\} \longrightarrow (\mathcal{B})^n_\eta$ (respectively, $\{A\} \longrightarrow (\mathcal{B})^n_\eta$). Each of the above partition relations is negated by crossing the arrow.

LEMMA 1.9 (Jech [10]). Suppose $P_{\kappa}(\lambda) \longrightarrow (I^+_{\kappa,\lambda})^2$. Then κ is weakly compact.

DEFINITION. κ is mildly λ -ineffable if given $f_a : a \to 2$ for $a \in P_{\kappa}(\lambda)$, there is $g : \lambda \to 2$ such that for any $a \in P_{\kappa}(\lambda)$, we may find $b \in P_{\kappa}(\lambda)$ such that $a \subseteq b$ and $f_b|a = g|a$.

LEMMA 1.10 (Carr [8], Matet [17]). If $P_{\kappa}(\lambda) \longrightarrow (I^+_{\kappa,\lambda})^3$, then κ is mildly $\lambda^{<\kappa}$ -ineffable.

LEMMA 1.11 (Usuba [27]). Suppose $cf(\lambda) \geq \kappa$ and κ is mildly λ -ineffable. Then $\lambda^{<\kappa} = \lambda$.

DEFINITION. NSJ_{κ,λ} denotes the set of all $A \subseteq P_{\kappa}(\lambda)$ for which one can find $f_a: a \to 2$ for $a \in A$ so that for every $g: \lambda \to 2$, there is $\xi \in \lambda$ such that $\{a \in A : \forall \gamma \in a \cap \xi(f_a(\gamma) = g(\gamma))\} \in \mathrm{NS}^{\xi}_{\kappa,\lambda}$.

It was observed in [23] that if $cf(\lambda) \geq \kappa$ and $P_{\kappa}(\lambda) \notin NSJ_{\kappa,\lambda}$, then κ is mildly λ -ineffable.

DEFINITION. NSh_{κ} is the set of all $B \subseteq \kappa$ for which one may find $k_{\beta} : \beta \to \beta$ for $\beta \in B$ such that for any $t : \kappa \to \kappa$, there is $\delta < \kappa$ with the property that $k_{\beta} | \delta \neq t | \delta$ for all $\beta \in B$ with $\beta \geq \delta$.

 $\operatorname{NSh}_{\kappa,\lambda}$ is the set of all $A \subseteq P_{\kappa}(\lambda)$ with the property that we may find $f_a : a \to a$ for $a \in A$ such that for every $g : \lambda \to \lambda$, there is $b \in P_{\kappa}(\lambda)$ with $\{a \in A : b \subseteq a \text{ and } g | b = f_a | b\} = \emptyset$. κ is λ -Shelah if $P_{\kappa}(\lambda) \notin \operatorname{NSh}_{\kappa,\lambda}$.

DEFINITION. NAIn_{κ,λ} (respectively, NIn_{κ,λ}) is the set of all $A \subseteq P_{\kappa}(\lambda)$ with the property that one may find $f_a : a \to 2$ for $a \in A$ such that there does not exist $g : \lambda \to 2$ and B in $I^+_{\kappa,\lambda} \cap P(A)$ (respectively, $NS^+_{\kappa,\lambda} \cap P(A)$) such that $g|a = f_a$ for any $a \in B$. κ is λ -ineffable (respectively, almost λ -ineffable) if $P_{\kappa}(\lambda)$ does not lie in NIn_{κ,λ} (respectively, NAIn_{κ,λ}).

LEMMA 1.12. (i) (Matet-Usuba [23]) $NSJ_{\kappa,\lambda}$ is a (possibly improper) seminormal ideal on $P_{\kappa}(\lambda)$.

(ii) (Carr [7]) Each of $NSh_{\kappa,\lambda}$, $NAIn_{\kappa,\lambda}$, $NIn_{\kappa,\lambda}$ is a (possibly improper) normal ideal on $P_{\kappa}(\lambda)$. Moreover $NSh_{\kappa,\lambda} \subseteq NAIn_{\kappa,\lambda} \subseteq NIn_{\kappa,\lambda}$.

It is simple to see that if μ is a cardinal with $\kappa < \mu < \lambda$, and $P_{\kappa}(\lambda) \notin \text{NSJ}_{\kappa,\lambda}$ (respectively, κ is λ -Shelah, κ is almost λ -ineffable, κ is λ -ineffable), then $P_{\kappa}(\mu) \notin \text{NSJ}_{\kappa,\mu}$ (respectively, κ is μ -Shelah, κ is almost μ -ineffable, κ is μ -ineffable). LEMMA 1.13 (Carr [8], Magidor [14]). Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \longrightarrow (NS^+_{\kappa,\lambda})^2$. Then $A \in NIn^+_{\kappa,\lambda}$.

DEFINITION. $\operatorname{NAIn}_{\kappa,\lambda}^{[\lambda]^{<\kappa}}$ (respectively, $\operatorname{NIn}_{\kappa,\lambda}^{[\lambda]^{<\kappa}}$) is the set of all $A \subseteq P_{\kappa}(\lambda)$ with the property that one can find $f_a : P_{|a\cap\kappa|}(a) \to 2$ for $a \in A$ so that there does not exist $g : P_{\kappa}(\lambda) \to 2$ and B in $\operatorname{I}_{\kappa,\lambda}^+ \cap P(A)$ (respectively, $(\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+ \cap P(A)$) such that $g|P_{|a\cap\kappa|}(a) = f_a$ whenever $a \in B$.

DEFINITION. $\operatorname{NIn}_{\kappa,\lambda,2}$ is the set of all $A \subseteq P_{\kappa}(\lambda)$ with the property that one can find $f_{a_0a_1}: a_0 \to 2$ for $(a_0, a_1) \in [A]^2_{\leq}$ so that there does not exist $g: \lambda \to 2$ and B in $\operatorname{NS}^+_{\kappa,\lambda} \cap P(A)$ such that $g|a_0 = f_{a_0a_1}$ for every $(a_0, a_1) \in [B]^2_{\leq}$.

LEMMA 1.14 (Kamo [13], Matet [16]). Each of $\operatorname{NAIn}_{\kappa,\lambda}^{[\lambda]^{<\kappa}}$, $\operatorname{NIn}_{\kappa,\lambda}^{[\lambda]^{<\kappa}}$, $\operatorname{NIn}_{\kappa,\lambda,2}$ is a (possibly improper) normal ideal on $P_{\kappa}(\lambda)$.

DEFINITION. We define $p_{\kappa,\lambda}: P_{\kappa}(\lambda^{<\kappa}) \to P_{\kappa}(\lambda)$ by $p_{\kappa,\lambda}(x) = x \cap \lambda$.

DEFINITION. For a regular uncountable cardinal μ , a μ -Aronszajn tree is a tree of height μ with every level of size less than μ and no cofinal branch.

Specker [26] established that for every infinite cardinal ν such that $\nu^{<\nu} = \nu$, there exists a ν^+ -Aronszajn tree.

2. Ineffability 1.

We first show that if $\lambda^{<\lambda} = \lambda$, then $\operatorname{NIn}_{\kappa,\lambda}^+ \longrightarrow ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, \operatorname{NSS}_{\kappa,\lambda}^+)^3$. We need to recall a few facts.

LEMMA 2.1 (Matet-Usuba [23]). Suppose $\lambda^{<\lambda} = \lambda$, and let $A \in \mathrm{NSh}_{\kappa,\lambda}^+$ and $F : [A]_{<}^2 \to \eta$, where $2 \leq \eta < \kappa$. Then there is $Q \subseteq A$ such that either $Q \in \mathrm{NS}_{\kappa,\lambda}^+$ and F takes the constant value 0 on $[Q]_{<}^2$, or $Q \in \mathrm{I}_{\kappa,\lambda}^+$ and F takes the constant value i on $[Q]_{<}^2$ for some i with $0 < i < \eta$.

LEMMA 2.2 (Folklore). Suppose κ is Mahlo. Then $\{a \in P_{\kappa}(\lambda) : a \cap \kappa \text{ is an inaccessible cardinal}\} \in (NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$.

LEMMA 2.3 (Usuba [27]). Suppose κ is λ -Shelah. Then $NSh_{\kappa,\lambda}$ is a strongly normal ideal.

LEMMA 2.4. Suppose κ is λ -Shelah. Then the following hold:

- (i) (Johnson [12]) { $a \in P_{\kappa}(\lambda)$: o. t.(a) is a cardinal} $\in NSh_{\kappa,\lambda}^*$.
- (ii) (Abe [3]) If λ is regular, then $\{a \in P_{\kappa}(\lambda) : |a| \text{ is regular}\} \in NSh_{\kappa,\lambda}^*$.
- (iii) (Abe [3]) If λ is a strong limit cardinal, then $\{a \in P_{\kappa}(\lambda) : |a| \text{ is a strong limit cardinal}\} \in \text{NSh}^*_{\kappa,\lambda}$.
- (iv) (Abe [3]) Let μ be a cardinal such that $\lambda = 2^{\mu}$. Then $\{a \in P_{\kappa}(\lambda) : |a| = 2^{|a \cap \mu|}\} \in NSh_{\kappa,\lambda}^{*}$.

LEMMA 2.5. Suppose κ is λ -Shelah, $\lambda^{<\lambda} = \lambda$ and λ is not inaccessible. Then $\{a \in P_{\kappa}(\lambda) : 2^{<|a|} = |a|\} \in \mathrm{NSh}^*_{\kappa,\lambda}$.

PROOF. Suppose otherwise. Then by Lemmas 2.3 and 2.4(i), we may find $A \in NSh_{\kappa,\lambda}^+$ and $\alpha \in \lambda$ such that $2^{|a \cap \alpha|} > |a|$ for every $a \in A$. Put $C = \{a \in P_{\kappa}(\lambda) : |a \cap \alpha| = |a \cap |\alpha||\}$. Note that $C \in NS_{\kappa,\lambda}^*$. Pick a cardinal $\mu \ge |\alpha|$ with $2^{\mu} = \lambda$. Then for any $a \in A \cap C$, $2^{|a \cap \mu|} \ge 2^{|a \cap |\alpha||} > |a|$, which contradicts Lemma 2.4(iv).

DEFINITION. Let $\mathcal{A}_{\kappa,\lambda}$ be the set of all $a \in P_{\kappa}(\lambda)$ such that

(a) $a \cap \kappa$ is an uncountable inaccessible cardinal, and

(b) o.t.(a) is a cardinal greater than $a \cap \kappa$.

LEMMA 2.6. Suppose κ is λ -Shelah. Then $\mathcal{A}_{\kappa,\lambda} \in \mathrm{NSh}_{\kappa,\lambda}^*$.

PROOF. By Lemmas 2.2, 2.3 and 2.4(i).

LEMMA 2.7. Suppose κ is λ -Shelah and $\lambda^{<\lambda} = \lambda$. Then $\{a \in \mathcal{A}_{\kappa,\lambda} : \text{o.t.}(a)^{<\text{o.t.}(a)} = \text{o.t.}(a)\} \in \text{NSh}^*_{\kappa,\lambda}$.

PROOF. By Lemmas 2.4 ((ii) and (iii)), 2.5 and 2.6.

LEMMA 2.8 (Abe [4]). Suppose $\operatorname{cf}(\lambda) \geq \kappa$, $A \in \operatorname{NAIn}_{\kappa,\lambda}^+ \cap P(\mathcal{A}_{\kappa,\lambda})$, and $s_a \subseteq P_{a\cap\kappa}(a)$ for $a \in A$. Then the set of all $a \in A$ such that $\{b \in A \cap P_{a\cap\kappa}(a) : s_b = s_a \cap P_{b\cap\kappa}(b)\} \in \operatorname{NSh}_{a\cap\kappa,a}$ lies in $\operatorname{NAIn}_{\kappa,\lambda}$.

PROOF. This is immediate from Proposition 3.6, Fact 3.7 and Lemma 3.8 of [4]. $\hfill \Box$

LEMMA 2.9 (Kamo [13]). $\operatorname{NIn}_{\kappa,\lambda}^{[\lambda]^{<\kappa}} = p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}}).$

LEMMA 2.10 (Abe-Usuba [5]). Suppose $A \in \mathrm{NIn}_{\kappa,\lambda}^+$. Then there is $H \in \mathrm{NIn}_{\kappa,\lambda}^+ \cap P(A)$ and $t_a : a \to a$ for $a \in H$ such that a < b for every $(a, b) \in [H]^2$ with $t_a = t_b | a$.

PROPOSITION 2.11. Suppose $\lambda^{<\lambda} = \lambda$, and let $A \in \operatorname{NIn}_{\kappa,\lambda}^+$ and $F : [A]^3 \to \eta$, where $2 \leq \eta < \kappa$. Then there is $Q \subseteq A$ such that either $Q \in (\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+$ and F takes the constant value 0 on $[Q]^3$, or $Q \in \operatorname{NSS}_{\kappa,\lambda}^+$ and F takes the constant value i on $[Q]^3$ for some i with $0 < i < \eta$.

PROOF. By Lemmas 1.4 and 1.7, we may find $C \in \mathrm{NS}_{\kappa,\lambda}^*$ such that $\mathrm{NSS}_{\kappa,\lambda}|C = \mathrm{I}_{\kappa,\lambda}|C$, and $E \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$ such that $\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}} = \mathrm{NS}_{\kappa,\lambda}|E$. By Lemma 2.10, there is $H \in \mathrm{NIn}_{\kappa,\lambda}^+ \cap P(A)$ and $t_a : a \to a$ for $a \in H$ such that a < b for every $(a, b) \in [H]^2$ with $t_a = t_b|a$. Select a bijection $j : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \times (1+\eta) \to P_{\kappa}(\lambda)$. Let B be the set of all $d \in C \cap E \cap H \cap \mathcal{A}_{\kappa,\lambda}$ such that

- (a) $d \cap \kappa \geq 1 + \eta$,
- (b) o. t. $(d)^{< \text{o.t.}(d)} = \text{o. t.}(d)$, and
- (c) j(a,b,i) < d for any $(a,b) \in [P_{d\cap\kappa}(d)]^2_{<}$ and any $i < 1 + \eta$.

Then $B \in \operatorname{NIn}_{\kappa,\lambda}^+$ by Lemmas 2.3 and 2.7. For $d \in B$, define $f_d : [B \cap P_{d \cap \kappa}(d)]_{\leq}^2 \to \eta$ by $f_d(a,b) = F(a,b,d)$, and put

- $v_d = \{j(a, b, 1+i) : (a, b) \in [P_{d \cap \kappa}(d)]^2_{<} \text{ and } f_d(a, b) = i\},$ $w_d = \{j(\{\gamma\}, \{\delta\}, 0) : (\gamma, \delta) \in d \times d \text{ and } t_d(\gamma) = \delta\},$
- $s_d = v_d \cup w_d$, and
- $z_d = \{c \in B \cap P_{d \cap \kappa}(d) : s_c = s_d \cap P_{c \cap \kappa}(c)\}.$

Set $W = \{ d \in B : z_d \in \mathrm{NSh}_{d \cap \kappa, d}^+ \}$. Then $W \in \mathrm{NIn}_{\kappa, \lambda}^+$ by Lemma 2.8. For $d \in W$, we may find by Lemma 2.1 $Q_d \subseteq z_d$ and $i_d < \eta$ such that

- (α) f_d takes the constant value i_d on $[Q_d]^2_{<}$, and
- (β) Q_d lies in NS⁺_{$d\cap\kappa,d$} if $i_d = 0$, and in I⁺_{$d\cap\kappa,d$} otherwise.

There must be $i < \eta$ such that $\{d \in W : i_d = i\} \in \mathrm{NIn}^+_{\kappa,\lambda}$. By Lemma 2.9, $\mathrm{NIn}^{[\lambda]^{<\kappa}}_{\kappa,\lambda} =$ $\operatorname{NIn}_{\kappa,\lambda}$. Hence we may find $Q \subseteq P_{\kappa}(\lambda)$ and $R \in \operatorname{NS}^+_{\kappa,\lambda}$ with $R \subseteq \{d \in W : i_d = i\}$ such that $Q \cap P_{d \cap \kappa}(d) = Q_d$ for every $d \in R$. If i > 0, then clearly $Q \in I^+_{\kappa,\lambda}$, and in fact $Q \in \mathrm{NSS}^+_{\kappa,\lambda}$ since $Q \subseteq C$.

Suppose i = 0. Then $Q \in (NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+$. CLAIM 1.

PROOF OF CLAIM 1. Since $Q \subseteq E$, it suffices to show that $Q \in NS^+_{\kappa,\lambda}$. Fix $D \in$ $NS^*_{\kappa,\lambda}$. Select $G: \lambda \times \lambda \to P_{\kappa}(\lambda)$ so that $\{a \in P_{\kappa}(\lambda) : \forall (\zeta, \xi) \in a \times a(G(\zeta, \xi) \subseteq a)\} \subseteq D$. Since $R \in \mathrm{NS}^+_{\kappa,\lambda}$, we may find $e \in R$ such that $G(\zeta,\xi) < e$ for every $(\zeta,\xi) \in e \times e$. Now $Q_e \in \mathrm{NS}^+_{e \cap \kappa, e}$, so we may find $a \in Q_e$ such that $G(\zeta, \xi) \subseteq a$ for every $(\zeta, \xi) \in a \times a$. Then clearly $a \in Q \cap D$, which completes the proof of the claim.

Finally, let us show that F takes the constant value i on $[Q]^3$. Thus let $(a_0, a_1, a_2) \in$ $[Q]^3$. Pick $d \in R$ with $a_2 < d$. Then $\{a_0, a_1, a_2\} \subseteq Q_d \subseteq z_d$.

CLAIM 2. Let l < 3. Then $t_{a_l} = t_d | a_l$.

PROOF OF CLAIM 2. Fix $\gamma \in a_l$. Then $j(\{\gamma\}, \{t_{a_l}(\gamma)\}, 0) \in s_d$ since $s_{a_l} = s_d \cap$ $P_{a_l\cap\kappa}(a_l)$, and therefore $t_{a_l}(\gamma) = t_d(\gamma)$, which completes the proof of Claim 2.

It follows from Claim 2 that $a_0 < a_1 < a_2$. Then $f_d(a_0, a_1) = i$, so $j(a_0, a_1, 1+i) \in s_d$. Now $s_{a_2} = s_d \cap P_{a_2 \cap \kappa}(a_2)$, and therefore $j(a_0, a_1, 1+i) \in s_{a_2}$. Hence $i = f_{a_2}(a_0, a_1) =$ $F(a_0, a_1, a_2).$

Our next result asserts that $\{A \subseteq P_{\kappa}(\lambda) : A \longrightarrow (NS^+_{\kappa,\lambda}, [P_{\kappa}(\lambda)]^4_{<})^3\} \subseteq NIn^+_{\kappa,\lambda}$

LEMMA 2.12. Let J be an ideal on $P_{\kappa}(\lambda)$, and $A \subseteq P_{\kappa}(\lambda)$ such that for any $g: [A]^3_{\leq} \to 2$, there is either $B \in J^+ \cap P(A)$ such that g takes the constant value 0 on $[B]^3_{\leq}$, or $(a_0, a_1, a_2, a_3) \in [A]^4_{\leq}$ such that $g(a_0, a_1, a_2) = g(a_1, a_2, a_3) = 1$. Then $A \longrightarrow (J^+)^2.$

Fix $f: [A]^2_{\leq} \to 2$. Define $g: [A]^3_{\leq} \to 2$ by: $g(b_0, b_1, b_2) = 1$ just in case Proof. $f(b_0, b_1) = 0$ and $f(b_1, b_2) = 1$. Then clearly there must be $B \in J^+ \cap P(A)$ such that g

takes the constant value 0 on $[B]^3_{<}$. Now suppose there is $(c, d) \in [B]^2_{<}$ with f(c, d) = 0. Put $C = \{a \in B : d < a\}$. We claim that f takes the constant value 0 on $[C]^2_{<}$. Suppose otherwise, and pick $(v, w) \in [C]^2_{<}$ with f(v, w) = 1. Then f(d, v) = 1 since g(c, d, v) = 0, and hence g(c, d, v) = 1. Contradiction.

PROPOSITION 2.13. Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \longrightarrow (NS^+_{\kappa,\lambda}, [P_{\kappa}(\lambda)]^4_{<})^3$. Then $A \in NIn^+_{\kappa,\lambda}$.

PROOF. By Lemmas 1.13 and 2.12.

If $\lambda^{<\lambda} = \lambda$, then by a result of [23], for any $A \subseteq P_{\kappa}(\lambda)$, $A \in \text{NSh}^+_{\kappa,\lambda}$ if and only if $A \longrightarrow ((\text{NS}^{[\lambda]^{<\kappa}}_{\kappa,\lambda})^+, \text{NSS}^+_{\kappa,\lambda})^2$ if and only if $A \longrightarrow (\text{NS}^+_{\kappa,\lambda}, \text{I}^+_{\kappa,\lambda})^2$. Replacing pairs by triples, we obtain the following:

THEOREM 2.14. Suppose $\lambda^{<\lambda} = \lambda$. Then for any $A \subseteq P_{\kappa}(\lambda)$, the following are equivalent:

 $\begin{array}{l} (i) \ A \in \mathrm{NIn}_{\kappa,\lambda}^+. \\ (ii) \ A \longrightarrow ((\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, \mathrm{NSS}_{\kappa,\lambda}^+)^3. \\ (iii) \ A \longrightarrow (\mathrm{NS}_{\kappa,\lambda}^+, \mathrm{I}_{\kappa,\lambda}^+)^3. \end{array}$

PROOF. By Propositions 2.11 and 2.13.

To conclude this section, let us observe that $\operatorname{NIn}_{\kappa,\lambda}^+ \longrightarrow (\operatorname{NS}_{\kappa,\lambda}^+)^3$ does not hold in case $\operatorname{cf}(\lambda) \geq \kappa$.

LEMMA 2.15. Let μ be a cardinal with $\kappa \leq \mu \leq \lambda$, and let J be an ideal on $P_{\kappa}(\lambda)$ that is ξ -normal for every $\xi < \mu$. Further let $A \in J^+$ be such that $A \longrightarrow (J^+)^3$, and let $f_{a_0a_1} : a_0 \cap \mu \to 2$ for $(a_0, a_1) \in [A]^2_{<}$. Then we may find $B \in J^+ \cap P(A)$, $h : \mu \to 2$, and $Q_{\xi} \in J$ for $\xi < \mu$ such that for any $\xi < \mu$ and any $(a_0, a_1) \in [B \setminus Q_{\xi}]^2_{<}$, $h|(a_0 \cap \xi) = f_{a_0a_1}|(a_0 \cap \xi)$.

PROOF. Define $F: [A]_{\leq}^3 \to 2$ by: $F(a_0, a_1, a_2) = 1$ just in case there is $\alpha \in a_0$ such that $f_{a_0a_1}|(a_0 \cap \alpha) = f_{a_1a_2}|(a_0 \cap \alpha), f_{a_0a_1}(\alpha) = 0$, and $f_{a_1a_2}(\alpha) = 1$. We may find $B \in J^+ \cap P(A)$ and i < 2 such that F takes the constant value i on $[B]_{\leq}^3$. We inductively construct $h_{\xi}: \xi \to 2$ and $Q_{\xi} \in J$ for $\xi < \mu$ so that for any $\xi < \mu$ and any $(a_0, a_1) \in [B \setminus Q_{\xi}]_{<}^2$, $h_{\xi}|(a_0 \cap \xi) = f_{a_0a_1}|(a_0 \cap \xi)$. For $\xi = 0$, put $h_{\xi} = \emptyset = Q_{\xi}$. Now suppose $\xi > 0$, and h_{η} and Q_{η} have already been defined for all $\eta < \xi$. In case ξ is a limit ordinal, put $h_{\xi} = \bigcup_{\eta < \xi} h_{\eta}$ and $Q_{\xi} = S \cup T$, where $S = \{a \in P_{\kappa}(\lambda) : \exists \eta \in a \cap \xi(a \in Q_{\eta})\}$ and $T = \{a \in P_{\kappa}(\lambda) : \exists \eta \in a \cap \xi(\eta + 1 \notin a)\}$. Next suppose ξ is a successor ordinal, say $\xi = \zeta + 1$. Put $R = \{a \in P_{\kappa}(\lambda) : \zeta \notin a\}$. If $f_{c_0c_1}(\zeta) = 1 - i$ for every $(c_0, c_1) \in [B \setminus (Q_{\zeta} \cup R)]_{<}^2$, set $h_{\xi} = h_{\zeta} \cup \{(\zeta, 1 - i)\}$ and $Q_{\xi} = Q_{\zeta} \cup R$. Now assume there is $(c_0, c_1) \in [B \setminus (Q_{\zeta} \cup R)]_{<}^2$ such that $f_{c_0c_1}(\zeta) = i$. Let Z be the set of all $a \in P_{\kappa}(\lambda)$ such that $c_1 < a$ does not hold. Then clearly for any $(a_0, a_1) \in [B \setminus (Q_{\zeta} \cup R \cup Z)]_{<}^2$, $f_{c_1a_0}(\zeta) = i$ (since $F(c_0, c_1, a_0) = i$), and therefore $f_{a_0a_1}(\zeta) = i$ (since $F(c_1, a_0, a_1) = i$). Put $h_{\xi} = h_{\zeta} \cup \{(\zeta, i)\}$ and $Q_{\xi} = Q_{\zeta} \cup R \cup Z$. Finally, set $h = \bigcup_{\xi < \mu} h_{\xi}$.

LEMMA 2.16. Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \longrightarrow (NS^+_{\kappa,\lambda})^3$. Then $A \in NIn^+_{\kappa,\lambda,2}$.

PROOF. This easily follows from Lemma 2.15.

LEMMA 2.17 (Abe [4]). Let $A \in \mathrm{NIn}^+_{\kappa,\lambda}$. Then $\{d \in \mathcal{A}_{\kappa,\lambda} : A \cap P_{d\cap\kappa}(d) \in \mathrm{NIn}_{d\cap\kappa,d}\} \in \mathrm{NIn}^+_{\kappa,\lambda}$.

LEMMA 2.18. $\{d \in \mathcal{A}_{\kappa,\lambda} : d \cap \kappa \text{ is not } d\text{-ineffable}\} \in NIn_{\kappa,\lambda,2}.$

PROOF. Suppose otherwise. Pick a bijection $j : \lambda \times \lambda \times \lambda \to \lambda$. Let A be the set of all $d \in \mathcal{A}_{\kappa,\lambda}$ such that $j^{*}(d \times d \times d \times d) = d$ and $d \cap \kappa$ is not d-ineffable. Then by Lemmas 2.3 and 2.6, $A \in \mathrm{NIn}_{\kappa,\lambda,2}^+$. For $d \in A$, select $s_b^d \subseteq b$ for $b \in P_{d\cap\kappa}(d)$ so that for any $s \subseteq d$, $\{b \in P_{d\cap\kappa}(d) : s_b^d = s \cap b\} \in \mathrm{NS}_{d\cap\kappa,d}$. For $(d,e) \in [A]_{<}^2$, put $x_{de} = \{b \in A \cap P_{d\cap\kappa}(d) : s_b^d = s_d^e \cap b\}$. Note that $x_{de} \in \mathrm{NS}_{d\cap\kappa,d}$. Pick $f_{de} : d \times d \to d$ so that $x_{de} \cap \{b \in P_{d\cap\kappa}(d) : f_{de}^{**}(b \times b) \subseteq b\} = \emptyset$. Set $t_{de} = v_{de} \cup w_{de}$, where $v_{de} = \{j(0,0,0,\xi) : \xi \in s_d^e\}$ and $w_{de} = \{j(1,\alpha,\beta,\gamma) : \alpha,\beta,\gamma \in d$ and $f_{de}(\alpha,\beta) = \gamma\}$.

We may find $B \in \mathrm{NS}^+_{\kappa,\lambda} \cap P(A)$ and $t \subseteq \lambda$ such that $t_{de} = t \cap d$, for all $(d, e) \in [B]^2_{<}$. Set $S = \{\xi < \lambda : j(0,0,0,\xi) \in t\}$, and define $f : \lambda \times \lambda \to \lambda$ by $f(\alpha,\beta) =$ the unique γ such that $j(1,\alpha,\beta,\gamma) \in t$. Let C be the set of all $a \in P_{\kappa}(\lambda)$ such that $f^{(\alpha,\beta)}(a \times a) \subseteq a$. Now let $(b,d,e) \in [B \cap C]^3_{<}$. Then $b \in x_{de}$ since $s^d_b = S \cap b = s^e_b \cap b$. Moreover $f_{de} = f|(d \times d)$, so $f_{de}^{(\alpha,\beta)}(b \times b) \subseteq b$. Contradiction.

PROPOSITION 2.19. Assume $cf(\lambda) \ge \kappa$. Then $NIn^+_{\kappa,\lambda} \not\longrightarrow (NS^+_{\kappa,\lambda})^3$.

PROOF. By Lemmas 2.16, 2.17 and 2.18.

Note that by Lemmas 1.5 and 2.3 and Proposition 2.19, $\operatorname{NIn}_{\kappa,\lambda}^+ \not\longrightarrow (\operatorname{NS}_{\kappa,\lambda}^+, \operatorname{NSS}_{\kappa,\lambda}^+)^3$ in case $\kappa \leq \operatorname{cf}(\lambda) < \lambda$.

QUESTION 1. Does $\operatorname{NIn}_{\kappa,\lambda}^+ \xrightarrow{} (\operatorname{NS}_{\kappa,\lambda}^+, \operatorname{I}_{\kappa,\lambda}^+)^3$ hold in case $\kappa \leq \operatorname{cf}(\lambda) < \lambda = 2^{<\lambda}$?

3. Ineffability 2.

In this section we are concerned with the case $\operatorname{cf}(\lambda) < \kappa$. We show that if $2^{\lambda} = \lambda^{<\kappa}$, then $(p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}}))^+ \longrightarrow ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, \operatorname{NS}_{\kappa,\lambda}^+)^3$. Furthermore, we establish that $\{A \subseteq P_{\kappa}(\lambda) : A \longrightarrow ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, [P_{\kappa}(\lambda)]_{<}^4)^3\} \subseteq (p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}}))^+$ in case $\operatorname{cf}(\lambda) < \kappa$.

The reason we work with $p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}})$ is that the ideal $\operatorname{NIn}_{\kappa,\lambda}$ is not large enough. In fact, if $2^{\lambda} = \lambda^{<\kappa}$, then by results of [23] and [27], for any $A \in \operatorname{NIn}_{\kappa,\lambda}^+$, there is $B \in \operatorname{NIn}_{\kappa,\lambda}^+ \cap P(A)$ with $B \not\longrightarrow (\operatorname{I}_{\kappa,\lambda}^+)^2$ (we can take $B = \{a \in A \cap \mathcal{A}_{\kappa,\lambda} \cap E : A \cap \mathcal{A}_{\kappa,\lambda} \cap E \in \operatorname{NIn}_{\kappa,\lambda}^+ \cap P(A) \in \operatorname{NIn}_{a\cap\kappa,a}\}$, where $E \in (\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$ is such that $\operatorname{NS}_{\kappa,\lambda}|E = \operatorname{I}_{\kappa,\lambda}|E)$. On the other hand it can be shown that if $\operatorname{cf}(\lambda) < \kappa$, then $p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}}) = \{A \subseteq P_{\kappa}(\lambda) : A \not\longrightarrow ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+)^2\} = \{A \subseteq P_{\kappa}(\lambda) : A \not\longrightarrow (\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+)^2\}.$

DEFINITION. Suppose κ is inaccessible and $cf(\lambda) < \kappa$. Let $\langle y_{\alpha} : \lambda \leq \alpha < \lambda^{<\kappa} \rangle$ be a one-to-one enumeration of the elements of $P_{\kappa}(\lambda)$. Define $q_{\kappa,\lambda} : P_{\kappa}(\lambda) \to P_{\kappa}(\lambda^{<\kappa})$ by

 $q_{\kappa,\lambda}(a) = a \cup \{ \alpha \in \lambda^{<\kappa} \setminus \lambda : y_{\alpha} < a \}, \text{ and set } \mathcal{X}_{\kappa,\lambda} = \{ x \in P_{\kappa}(\lambda^{<\kappa}) : x = q_{\kappa,\lambda}(x \cap \lambda) \}.$

LEMMA 3.1 (Abe [1]). Suppose κ is Mahlo and $cf(\lambda) < \kappa$. Then the following hold:

 $\begin{array}{l} (i) \ \mathcal{X}_{\kappa,\lambda} \in (\mathrm{NS}_{\kappa,\lambda^{<\kappa}}^{[\lambda^{<\kappa}]^{<\kappa}})^*. \\ (ii) \ q_{\kappa,\lambda} \ is \ an \ isomorphism \ from \ (P_{\kappa}(\lambda), \subsetneq) \ onto \ (\mathcal{X}_{\kappa,\lambda}, \subsetneq). \\ (iii) \ q_{\kappa,\lambda}(\mathrm{I}_{\kappa,\lambda}) = \mathrm{I}_{\kappa,\lambda^{<\kappa}} | \mathcal{X}_{\kappa,\lambda}. \\ (iv) \ q_{\kappa,\lambda}(\mathrm{NS}_{\kappa,\lambda}) = \mathrm{NS}_{\kappa,\lambda^{<\kappa}}^{\lambda} | \mathcal{X}_{\kappa,\lambda}. \\ (v) \ q_{\kappa,\lambda}(\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}}) = \mathrm{NS}_{\kappa,\lambda^{<\kappa}}^{[\lambda^{<\kappa}]^{<\kappa}} = \mathrm{NS}_{\kappa,\lambda^{<\kappa}}^{[\lambda]^{<\kappa}} | \mathcal{X}_{\kappa,\lambda}. \end{array}$

LEMMA 3.2. Suppose κ is inaccessible and $cf(\lambda) < \kappa$, and let $Q \subseteq \mathcal{X}_{\kappa,\lambda}$. Then $q_{\kappa,\lambda}^{-1}(Q) = \{x \cap \lambda : x \in Q\}.$

PROOF.
$$\subseteq$$
: Let $a \in P_{\kappa}(\lambda)$ be such that $q_{\kappa,\lambda}(a) \in Q$. Then $a = \lambda \cap q_{\kappa,\lambda}(a)$.
 \supseteq : Let $x \in Q$. Then $x = q_{\kappa,\lambda}(x) \cap \lambda$, so $x \cap \lambda \in q_{\kappa,\lambda}^{-1}(Q)$

LEMMA 3.3 (Usuba [27]). Suppose κ is λ -Shelah and $cf(\lambda) < \kappa$. Then $\lambda^{<\kappa} = \lambda^+$.

The above lemmas and Proposition 2.11 give:

PROPOSITION 3.4. Suppose $\operatorname{cf}(\lambda) < \kappa$ and $2^{\lambda} = \lambda^{<\kappa}$ and let $A \in (p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}}))^+$. Further let $F : [A]^3 \to \eta$, where $2 \leq \eta < \kappa$. Then there is $B \subseteq A$ such that either $B \in (\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+$ and F takes the constant value 0 on $[B]^3$, or $B \in \operatorname{NS}_{\kappa,\lambda}^+$ and F takes the constant value i on $[B]^3$ for some i with $0 < i < \eta$.

PROOF. Let $X = \{x \in P_{\kappa}(\lambda^{<\kappa}) : x \cap \lambda \in A\}$. Then by Lemmas 2.3 and 3.1, $X \cap \mathcal{X}_{\kappa,\lambda} \in \mathrm{NIn}^+_{\kappa,\lambda^{<\kappa}}$. Define $G : [X \cap \mathcal{X}_{\kappa,\lambda}]^3 \to \eta$ by $G(x_0, x_1, x_2) = F(x_0 \cap \lambda, x_1 \cap \lambda, x_2 \cap \lambda)$. Since $(\lambda^{<\kappa})^{<(\lambda^{<\kappa})} = \lambda^{<\kappa}$ by Lemma 3.3, we may find by Proposition 2.11 $Q \subseteq X \cap \mathcal{X}_{\kappa,\lambda}$ and $i < \eta$ such that

(a) G takes the constant value i on $[Q]^3$, and

(b) $Q \in (NS_{\kappa,\lambda<\kappa}^{[\lambda<\kappa]<\kappa})^+$ if i = 0, and $Q \in NSS_{\kappa,\lambda<\kappa}^+$ otherwise.

Put $B = \{x \cap \lambda : x \in Q\}$. Note that $B \subseteq A$. By Lemma 3.2, $B = q_{\kappa,\lambda}^{-1}(Q)$, so by Lemma 3.1 $Q \in (NS_{\kappa,\lambda}^{[\lambda]^{\leq \kappa}})^+$ if i = 0, and $Q \in NS_{\kappa,\lambda}^+$ otherwise.

Let us show that F takes the constant value i on $[B]^3$. Thus let $(a_0, a_1, a_2) \in [B]^3$. For j < 3, set $x_j = q_{\kappa,\lambda}(a_j)$. Note that $x_j \in Q$ and $x_j \cap \lambda = a_j$. By Lemma 3.1 $(x_0, x_1, x_2) \in [Q]^3$, so $i = G(x_0, x_1, x_2) = F(a_0, a_1, a_2)$.

PROPOSITION 3.5. Suppose $cf(\lambda) < \kappa$, and let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \longrightarrow ((NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, [P_{\kappa}(\lambda)]_{<}^4)^3$. Then $A \in (p_{\kappa,\lambda}(NIn_{\kappa,\lambda^{<\kappa}}))^+$.

PROOF. Set $Z = \{x \in P_{\kappa}(\lambda^{<\kappa}) : x \cap \lambda \in A\}$. By Lemma 1.13 it suffices to show that $Z \xrightarrow{\langle} ((\mathrm{NS}_{\kappa,\lambda^{<\kappa}})^+)^2$. Fix $F : Z \times Z \to 2$. Define $G : [A]^2_{<} \to 2$ by $G(a_0, a_1) = F(q_{\kappa,\lambda}(a_0), q_{\kappa,\lambda}(a_1))$. By Lemma 2.12 we may find $B \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+ \cap P(A)$ and i < 2such that G takes the constant value i on $[B]^2_{<}$. Set $X = q_{\kappa,\lambda}$ "B. Then clearly $X \subseteq Z$. Moreover by Lemma 3.1, $X \in (NS_{\kappa,\lambda^{<\kappa}}^{[\lambda^{<\kappa}]^{<\kappa}})^+$. We claim that F takes the constant value i on $[X]_{<}^2$. Fix $a_0, a_1 \in B$ with $q_{\kappa,\lambda}(a_0) < q_{\kappa,\lambda}(a_1)$. Then $a_0 \subseteq a_1$ since $q_{\kappa,\lambda}(a_0) \subseteq q_{\kappa,\lambda}(a_1)$. Furthermore, $|a_0| \leq |q_{\kappa,\lambda}(a_0)| < |q_{\kappa,\lambda}(a_1) \cap \kappa| = |a_1 \cap \kappa|$. Thus $a_0 < a_1$, and consequently $F(q_{\kappa,\lambda}(a_0), q_{\kappa,\lambda}(a_1)) = G(a_0, a_1) = i$.

4. Almost ineffability 1.

We start this section by showing that if $\lambda^{<\lambda} = \lambda$, then $\text{NAIn}^+_{\kappa,\lambda} \longrightarrow (\text{NSS}^+_{\kappa,\lambda})^3$. The following easily follows from Lemma 3.1:

LEMMA 4.1. $\operatorname{NAIn}_{\kappa,\lambda}^{[\lambda]^{<\kappa}} = p_{\kappa,\lambda}(\operatorname{NAIn}_{\kappa,\lambda^{<\kappa}}).$

LEMMA 4.2. Suppose $\lambda^{<\lambda} = \lambda$. Then $\operatorname{NAIn}^+_{\kappa,\lambda} \longrightarrow (\operatorname{I}^+_{\kappa,\lambda})^3_{\eta}$ for every η with $2 \leq \eta < \kappa$.

PROOF. Fix $A \in \text{NAIn}_{\kappa,\lambda}^+$ and $F : [A]_{<}^3 \to \eta$, where $2 \le \eta < \kappa$. Select a bijection $j : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \times \eta \to P_{\kappa}(\lambda)$. Let B be the set of all $d \in A \cap \mathcal{A}_{\kappa,\lambda}$ such that

(a) $d \cap \kappa \geq \eta$,

(b) $o.t.(d)^{<o.t.(d)} = o.t.(d)$, and

(c) j(a,b,i) < d for any $(a,b) \in [P_{d\cap\kappa}(d)]^2_{<}$ and any $i \in \eta$.

Then $B \in \text{NAIn}_{\kappa,\lambda}^+$ by Lemmas 2.3 and 2.7. For $d \in B$, define $f_d : [B \cap P_{d \cap \kappa}(d)]_{\leq}^2 \to \eta$ by $f_d(a,b) = F(a,b,d)$, and put

•
$$s_d = \{j(a, b, i) : (a, b) \in [P_{d \cap \kappa}(d)]^2_{<} \text{ and } f_d(a, b) = i\}$$
 and
• $z_d = \{c \in B \cap P_{d \cap \kappa}(d) : s_c = s_d \cap P_{c \cap \kappa}(c)\}.$

Set $W = \{d \in B : z_d \in \mathrm{NSh}_{d\cap\kappa,d}^+\}$. Then $W \in \mathrm{NAIn}_{\kappa,\lambda}^+$ by Lemma 2.8. For $d \in W$, we may find by Lemma 2.1 $Q_d \in \mathrm{I}_{d\cap\kappa,d}^+ \cap P(z_d)$ and $i_d < \eta$ such that f_d takes the constant value i_d on $[Q_d]_{<}^2$. There must be $i < \eta$ such that $\{d \in W : i_d = i\} \in \mathrm{NAIn}_{\kappa,\lambda}^+$. By Lemma 4.1, $\mathrm{NAIn}_{\kappa,\lambda}^{[\lambda]^{<\kappa}} = \mathrm{NAIn}_{\kappa,\lambda}$. Hence we may find $Q \subseteq P_{\kappa}(\lambda)$ and $R \in \mathrm{I}_{\kappa,\lambda}^+$ with $R \subseteq \{d \in W : i_d = i\}$ such that $Q \cap P_{d\cap\kappa}(d) = Q_d$ for every $d \in R$. It is simple to see that $Q \in \mathrm{I}_{\kappa,\lambda}^+$.

We claim that F takes the constant value i on $[Q]_{\leq}^3$. Thus let $(a, b, c) \in [Q]_{\leq}^3$. Pick $d \in R$ with c < d. Then $(a, b, c) \in [Q_d]_{\leq}^3$ since $Q \cap P_{d \cap \kappa}(d) = Q_d$. Hence $f_d(a, b) = i$, so $j(a, b, i) \in s_d$. Now $s_c = s_d \cap P_{c \cap \kappa}(c)$ since $c \in z_d$, and consequently $j(a, b, i) \in s_c$. Thus $i = f_c(a, b) = F(a, b, c)$.

LEMMA 4.3. Suppose $u(\kappa, \lambda) = \lambda$ and there is $C \in \mathrm{NS}^*_{\kappa,\lambda}$ such that $\mathrm{NSS}_{\kappa,\lambda}|C = \mathrm{I}_{\kappa,\lambda}|C$. Then for any $A \in \mathrm{I}^+_{\kappa,\lambda} \cap P(C)$, there is $B \in \mathrm{I}^+_{\kappa,\lambda} \cap P(A)$ with $[B]^2_{\leq} = [B]^2$.

PROOF. Select $e_{\alpha} \in P_{\kappa}(\lambda)$ for $\alpha < \lambda$ so that $\{e_{\alpha} : \alpha < \lambda\} \in I^{+}_{\kappa,\lambda}$. Now given $A \in I^{+}_{\kappa,\lambda} \cap P(C)$, define inductively $a_{\alpha} \in A$ for $\alpha < \lambda$ so that

- (a) $\alpha \in a_{\alpha}$ and $e_{\alpha} \subseteq a_{\alpha}$,
- (b) $a_{\beta} < a_{\alpha}$ for every $\beta \in a_{\alpha} \cap \alpha$, and
- (c) $a_{\alpha} \setminus a_{\beta} \neq \emptyset$ for every $\beta < \alpha$.

Then $B = \{a_{\alpha} : \alpha < \lambda\}$ is as desired.

PROPOSITION 4.4. Suppose $\lambda^{<\lambda} = \lambda$. Then $\operatorname{NAIn}^+_{\kappa,\lambda} \longrightarrow (\operatorname{NSS}^+_{\kappa,\lambda})^3_{\eta}$ for every η with $2 \leq \eta < \kappa$.

PROOF. By Lemmas 1.4, 2.3, 4.2 and 4.3.

In the remainder of this section we establish that if $\lambda^{<\lambda} = \lambda$ but λ is not weakly compact, then there is $C \in \mathrm{NS}^*_{\kappa,\lambda}$ such that

(a) $\{A \subseteq C : A \longrightarrow (I^+_{\kappa,\lambda})^3\} \subseteq \text{NAIn}^+_{\kappa,\lambda}$, and (b) for any $A \subseteq C$ such that $A \longrightarrow (I^+_{\kappa,\lambda})^2$, there is $B \subseteq A$ such that $B \longrightarrow (I^+_{\kappa,\lambda})^2$ but

$$B \not\longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^3.$$

LEMMA 4.5 (Johnson [12]). Suppose $cf(\lambda) \geq \kappa$. Then for any $A \subseteq P_{\kappa}(\lambda)$, the following are equivalent:

- (i) $A \in \mathrm{NAIn}_{\kappa,\lambda}^+$.
- (ii) Given $g: [A]^2_{\leq} \to \lambda$ such that $g(a_0, a_1) \in a_0$ for every $(a_0, a_1) \in [A]^2_{\leq}$, there is $B \in I^+_{\kappa,\lambda} \cap P(A)$ such that g is constant on $[B]^2_{\leq}$.

LEMMA 4.6. Assume λ is regular and there is a λ -Aronszajn tree, and let J be a seminormal ideal on $P_{\kappa}(\lambda)$. Then there is $C \in \mathrm{NS}^*_{\kappa,\lambda}$ with the following property: Suppose $A \in J^+ \cap P(C)$ is such that given $f_{a_0a_1} : a_0 \to 2$ for $(a_0, a_1) \in [A]^2_{<}$, there is $B \in J^+ \cap P(A)$, $h : \lambda \to 2$, and $Q_{\xi} \in J$ for $\xi < \lambda$ such that for any $\xi < \lambda$ and any $(a_0, a_1) \in [B \setminus Q_{\xi}]^2_{<}$, $h|(a_0 \cap \xi) = f_{a_0a_1}|(a_0 \cap \xi)$. Suppose further that $g : [A]^2_{<} \to \lambda$ is such that $g(a_0, a_1) \in a_0$ for every $(a_0, a_1) \in [A]^2_{<}$. Then there is $D \in J^+ \cap P(A)$ such that g is constant on $[D]^2_{<}$.

PROOF. Select a λ -Aronszajn tree $T = \langle \lambda, \langle T \rangle$. For $\alpha < \lambda$, let T_{α} denote the α -th level of T. Let C be the set of all $a \in P_{\kappa}(\lambda)$ such that

- (a) $\beta + 1 \in a$ for every $\beta \in a$,
- (b) $a \cap T_{\alpha} \neq \emptyset$ for every $\alpha \in a$, and
- (c) $\{\gamma <_T \xi : \gamma \in \bigcup_{\delta \in a \cap \alpha} T_{\delta}\} \subseteq a \text{ for any } \alpha \in \lambda \text{ and any } \xi \in a \cap T_{\alpha}.$

Let us check that C is as desired. It is immediate that $C \in \mathrm{NS}^*_{\kappa,\lambda}$. Now fix $A \in J^+ \cap P(C)$ with the property that given $f_{a_0a_1} : a_0 \to 2$ for $(a_0, a_1) \in [A]^2_{<}$, we may find $B \in J^+ \cap P(A)$, $h : \lambda \to 2$, and $Q_{\xi} \in J$ for $\xi < \lambda$ such that for any $\xi < \lambda$ and any $(a_0, a_1) \in [B \setminus Q_{\xi}]^2_{<}$, $h|(a_0 \cap \xi) = f_{a_0a_1}|(a_0 \cap \xi)$. Let $g : [A]^2_{<} \to \lambda$ be such that $g(a_0, a_1) \in a_0$ for every $(a_0, a_1) \in [A]^2_{<}$. For $(a_0, a_1) \in [A]^2_{<}$, pick $\xi_{a_0a_1} \in a_0 \cap T_{g(a_0, a_1)}$, and define $f_{a_0a_1} : a_0 \to 2$ by: $f_{a_0a_1}(\gamma) = 1$ just in case $\gamma <_T \xi_{a_0a_1}$. There must be $B \in J^+ \cap P(A)$, $h : \lambda \to 2$ and $Q_{\xi} \in J$ for $\xi < \lambda$ such that for any $\xi < \lambda$ and any $(a_0, a_1) \in [B \setminus Q_{\xi}]^2_{<}$, $h|(a_0 \cap \xi) = f_{a_0a_1}|(a_0 \cap \xi)$. It is simple to see that

- (i) if γ and γ' are any two distinct members of $h^{-1}(\{1\})$, then either $\gamma <_T \gamma'$, or $\gamma' <_T \gamma$, and
- (ii) $\{\gamma' \in \lambda : \gamma' <_T \gamma\} \subseteq h^{-1}(\{1\})$ for every $\gamma \in h^{-1}(\{1\})$.

 \Box

 \Box

Set δ = the least $\alpha < \lambda$ such that $T_{\alpha} \cap h^{-1}(\{1\}) = \emptyset$. Define $k : \delta \to \lambda$ by $k(\alpha)$ = the unique element of $T_{\alpha} \cap h^{-1}(\{1\})$. Pick a limit ordinal $\sigma < \lambda$ with $T_{\delta} \cup \operatorname{ran}(k) \subseteq \sigma$. Let D be the set of all $a \in B$ such that

 $(\alpha) \ \delta \in a,$

- (β) for any $\zeta \in a \cap \sigma$, $a \notin Q_{\zeta}$, and
- (γ) for any $\alpha \in a \cap \delta$, $k(\alpha) \in a$.

Then clearly $D \in J^+$.

We claim that $g(a_0, a_1) = \delta$ for each $(a_0, a_1) \in [D]^2_{<}$. Suppose otherwise, and select $(a_0, a_1) \in [D]^2_{<}$ with $g(a_0, a_1) \neq \delta$. If $g(a_0, a_1) < \delta$, then $h(k(g(a_0, a_1))) = 1$ and $f_{a_0a_1}(k(g(a_0, a_1))) = 0$, which yields a contradiction. Thus $g(a_0, a_1) > \delta$. Put $\gamma =$ the unique element η of T_{δ} such that $\eta <_T \xi_{a_0a_1}$. Then $h(\gamma) = 0$ and $f_{a_0a_1}(\gamma) = 1$. Contradiction.

PROPOSITION 4.7. Suppose that λ is regular, there is a λ -Aronszajn tree, and $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$. Then there is $D \in \operatorname{NS}_{\kappa,\lambda}^*$ such that $\{A \subseteq D : A \longrightarrow (\operatorname{I}_{\kappa,\lambda}^+)^3\} \subseteq \operatorname{NAIn}_{\kappa,\lambda}^+$.

PROOF. By Lemmas 1.4, 4.5, 4.6, and Theorem 2.14. \Box

LEMMA 4.8 (Matet-Usuba [23]). Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \longrightarrow ((\bigcup_{\xi \leq \lambda} \mathrm{NS}^{\xi}_{\kappa,\lambda})^+)^2$. Then $A \in \mathrm{NSJ}^+_{\kappa,\lambda}$.

LEMMA 4.9 (Matet-Usuba [23]). Suppose λ is regular, there is a λ -Aronszajn tree, and $P_{\kappa}(\lambda) \notin \mathrm{NSJ}_{\kappa,\lambda}$. Then $\mathrm{NSh}_{\kappa,\lambda} \subseteq \mathrm{NSJ}_{\kappa,\lambda}|C$ for some $C \in \mathrm{NSJ}_{\kappa,\lambda}^+ \cap \mathrm{NS}_{\kappa,\lambda}^*$.

LEMMA 4.10 (Usuba [27]). Let $A \in NSh^+_{\kappa,\lambda} \cap P(\mathcal{A}_{\kappa,\lambda})$. Then $\{a \in A : A \cap P_{a \cap \kappa}(a) \in NSh_{a \cap \kappa,a}\} \in NSh^+_{\kappa,\lambda}$.

LEMMA 4.11. Suppose $cf(\lambda) \geq \kappa$, and let $A \in NSh^+_{\kappa,\lambda}$. Then there is $B \subseteq A$ with $B \in NSh^+_{\kappa,\lambda} \cap NAIn_{\kappa,\lambda}$.

PROOF. We can assume that $A \in \text{NAIn}^+_{\kappa,\lambda}$ since otherwise the result is trivial. Set $T = A \cap \mathcal{A}_{\kappa,\lambda}$ and $B = \{a \in T : T \cap P_{a\cap\kappa}(a) \in \text{NSh}_{a\cap\kappa,a}\}$. Then by Lemmas 2.6, 2.8 and 4.10, B is as desired.

PROPOSITION 4.12. Suppose that λ is regular, there is a λ -Aronszajn tree, and $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$. Then there is $C \in \operatorname{NS}_{\kappa,\lambda}^*$ with the following property: for any $A \subseteq C$ such that $A \xrightarrow{} (\operatorname{I}_{\kappa,\lambda}^+)^2$, there is $B \in \operatorname{NSh}_{\kappa,\lambda}^+ \cap P(A)$ such that $B \not\longrightarrow (\operatorname{I}_{\kappa,\lambda}^+)^3$.

PROOF. Use Lemma 1.4 to get $C_0 \in \mathrm{NS}_{\kappa,\lambda}^*$ such that $\mathrm{NSS}_{\kappa,\lambda}|C_0 = \mathrm{I}_{\kappa,\lambda}|C_0$, and Proposition 4.7 to get $C_1 \in \mathrm{NS}_{\kappa,\lambda}^*$ such that $\{B \subseteq C_1 : B \longrightarrow (\mathrm{I}_{\kappa,\lambda}^+)^3\} \subseteq \mathrm{NAIn}_{\kappa,\lambda}^+$. We define C_2 as follows. If $P_{\kappa}(\lambda) \in \mathrm{NSJ}_{\kappa,\lambda}$, we set $C_2 = P_{\kappa}(\lambda)$. Otherwise we appeal to Lemma 4.9 and choose C_2 so that $C_2 \in \mathrm{NSJ}_{\kappa,\lambda}^+ \cap \mathrm{NS}_{\kappa,\lambda}^*$ and $\mathrm{NSh}_{\kappa,\lambda} \subseteq \mathrm{NSJ}_{\kappa,\lambda}|C_2$. Put

 $C = C_0 \cap C_1 \cap C_2$. Now fix $A \subseteq C$ with the property that $A \longrightarrow (\mathbf{I}_{\kappa,\lambda}^+)^2$. By Lemmas 1.3 and 4.8, $A \in \mathrm{NSh}_{\kappa,\lambda}^+$. Hence by Lemma 4.11, there is $B \in \mathrm{NSh}_{\kappa,\lambda}^+ \cap P(A)$ such that $B \in \mathrm{NAIn}_{\kappa,\lambda}$. Then clearly $B \not\longrightarrow (\mathbf{I}_{\kappa,\lambda}^+)^3$.

The following lemma shows that the existence of a λ -Aronszajn tree in Lemma 4.6 can be replaced by a certain cardinal arithmetic assumption.

LEMMA 4.13. Assume $\mu < \lambda$ is a cardinal with $2^{\mu} = \lambda$, and let J be a μ -normal ideal on $P_{\kappa}(\lambda)$. Then there is $C \in \mathrm{NS}^*_{\kappa,\lambda}$ with the following property: Suppose $A \in J^+ \cap P(C)$ is such that given $f_{a_0a_1} : a_0 \cap \mu \to 2$ for $(a_0, a_1) \in [A]^2_<$, there is $B \in J^+ \cap P(A)$, $h : \mu \to 2$, and $Q_{\xi} \in J$ for $\xi < \mu$ such that for any $\xi < \mu$ and any $(a_0, a_1) \in [B \setminus Q_{\xi}]^2_<$, $h|(a_0 \cap \xi) = f_{a_0a_1}|(a_0 \cap \xi)$. Suppose further that $g : [A]^2_< \to \lambda$ is such that $g(a_0, a_1) \in a_0$ for every $(a_0, a_1) \in [A]^2_<$. Then there is $D \in J^+ \cap P(A)$ such that g is constant on $[D]^2_<$.

PROOF. Let $\langle e_{\eta} : \eta < \lambda \rangle$ be a one-to-one enumeration of the subsets of μ . Let C be the set of all $a \in P_{\kappa}(\lambda)$ such that $a \cap e_{\zeta} \neq a \cap e_{\eta}$ for any two distinct members ζ, η of a. Let us verify that C is as desired. Clearly, $C \in \mathrm{NS}^*_{\kappa,\lambda}$. Now fix $A \in J^+ \cap P(C)$ with the property that given $f_{a_0a_1} : a_0 \cap \mu \to 2$ for $(a_0, a_1) \in [A]^2_{<}$, we may find $B \in J^+ \cap P(A)$, $h : \mu \to 2$ and $Q_{\xi} \in J$ for $\xi < \mu$ such that for any $\xi < \mu$ and any $(a_0, a_1) \in [B \setminus Q_{\xi}]^2_{<}$, $h|(a_0 \cap \xi) = g_{a_0a_1}|(a_0 \cap \xi)$. Let $g : [A]^2_{<} \to \lambda$ be such that $g(a_0, a_1) \in a_0$ for every $(a_0, a_1) \in [A]^2_{<}$. For $(a_0, a_1) \in [A]^2_{<}$, define $f_{a_0a_1} : a_0 \cap \mu \to 2$ by: $f_{a_0a_1}(\alpha) = 1$ if and only if $\alpha \in e_{g(a_0,a_1)}$. There must be $B \in J^+ \cap P(A)$, $h : \mu \to 2$ and $Q_{\xi} \in J$ for $\xi < \mu$ such that for any $\xi < \mu$ and any $(a_0, a_1) \in [B \setminus Q_{\xi}]^2_{<}$, $h|(a_0 \cap \xi) = f_{a_0a_1}|(a_0 \cap \xi)$. Let $h^{-1}(\{1\}) = e_{\delta}$. Now let D be the set of all $a \in B$ such that

- (a) $\delta \in a$,
- (b) $\alpha + 1 \in a$ for every $\alpha \in a \cap \mu$, and
- (c) $a \notin Q_{\xi}$ for every $\xi \in a \cap \mu$.

Then clearly, $D \in J^+$. We claim that g takes the constant value δ on $[D]^2_{<}$. Suppose otherwise, and pick $(a_0, a_1) \in [D]^2_{<}$ with $g(a_0, a_1) \neq \delta$. There must be $\alpha \in a_0 \cap \mu$ such that $\alpha \in e_{\delta} \triangle e_{g(a_0, a_1)}$. Then $h(\alpha) \neq f_{a_0a_1}(\alpha)$. Contradiction.

PROPOSITION 4.14. Suppose $\lambda = 2^{\mu}$ for some cardinal $\mu < \lambda$. Then there is $D \in \mathrm{NS}^*_{\kappa,\lambda}$ such that $\{A \subseteq D : A \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^3\} \subseteq \mathrm{NAIn}^+_{\kappa,\lambda}$.

PROOF. We can assume that $P_{\kappa}(\lambda) \longrightarrow (I^+_{\kappa,\lambda})^3$ since otherwise the result is trivial. Pick a cardinal $\mu < \lambda$ such that $2^{\mu} = \lambda$. Then by Lemma 1.9, $\mu \ge \kappa$, and consequently $cf(\lambda) \ge \kappa$. Set $J = NS^{\mu}_{\kappa,\lambda}$. Let $C \in NS^*_{\kappa,\lambda}$ be as in the statement of Lemma 4.13. By Lemma 1.2, there is $Z \in NS^*_{\kappa,\lambda}$ such that $J|Z = I_{\kappa,\lambda}|Z$. Then by Theorem 2.14 and Lemma 4.5, $D = C \cap Z$ is as desired.

LEMMA 4.15 (Matet-Usuba [23]). Suppose λ is regular, and let $2 \leq \eta < \kappa$. Then $\mathrm{NSJ}^+_{\kappa,\lambda} \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^2_{\eta}$.

LEMMA 4.16 (Matet-Usuba [23]). Suppose $2^{<\lambda} = \lambda$. Then $\text{NSJ}_{\kappa,\lambda} \subseteq \text{NSh}_{\kappa,\lambda}$.

LEMMA 4.17 (Matet-Usuba [23]). Suppose $\lambda = 2^{\mu}$ for some cardinal μ . Then $\operatorname{NSh}_{\kappa,\lambda} \cap P(C) \subseteq \operatorname{NSJ}_{\kappa,\lambda}$ for some $C \in \operatorname{NS}^*_{\kappa,\lambda}$.

PROPOSITION 4.18. Suppose that $\lambda^{<\lambda} = \lambda$, but λ is not a strong limit cardinal. Then there is $C \in NS^*_{\kappa,\lambda}$ with the following property: For any $A \subseteq C$ such that $A \longrightarrow$ $(\mathrm{I}_{\kappa,\lambda}^+)^2$, there is $B \subseteq A$ such that $B \longrightarrow (\mathrm{I}_{\kappa,\lambda}^+)^2$ but $B \not\longrightarrow (\mathrm{I}_{\kappa,\lambda}^+)^3$.

We proceed as in the proof of Proposition 4.12. There must be a cardinal Proof. $\mu < \lambda$ such that $\lambda = 2^{\mu}$. By Proposition 4.14, and Lemmas 1.4 and 4.17, we may find $C \in \mathrm{NS}^*_{\kappa,\lambda}$ such that $\{B \subseteq C : B \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^3\} \subseteq \mathrm{NAIn}^+_{\kappa,\lambda}, \mathrm{NSS}_{\kappa,\lambda}|C = \mathrm{I}_{\kappa,\lambda}|C$ and $\mathrm{NSh}_{\kappa,\lambda} \cap P(C) \subseteq \mathrm{NSJ}_{\kappa,\lambda}$. Now fix $A \subseteq C$ with $A \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^2$. By Lemma 4.8 $A \in \mathrm{NSh}_{\kappa,\lambda}^+$, so by Lemma 4.11 there is $B \in \mathrm{NSh}_{\kappa,\lambda}^+ \cap P(A)$ with $B \in \mathrm{NAIn}_{\kappa,\lambda}$. Then clearly $B \xrightarrow{}{/}{} (I^+_{\kappa,\lambda})^3$. On the other hand $B \longrightarrow (I^+_{\kappa,\lambda})^2$ by Lemmas 4.15 and 4.16.

Let us observe that by a result of Neeman [24], it is consistent relative to infinitely many supercompact cardinals that there is a cardinal ν such that

- (a) there is no ν^+ -Aronszajn tree, and
- (b) ν is a strong limit cardinal of cofinality ω , and $2^{\nu} = \nu^{++}$ (and therefore $2^{\mu} \neq \nu^{+}$ for every cardinal $\mu < \nu^+$).

If $\lambda^{<\lambda} = \lambda$ but λ is not weakly compact, then by a result of [23] and Lemma 4.3, for any $A \in \mathrm{NS}^+_{\kappa,\lambda}$, $A \in \mathrm{NSh}^+_{\kappa,\lambda}$ if and only if $(\mathrm{NS}_{\kappa,\lambda}|A)^* \longrightarrow (\mathrm{NSS}^+_{\kappa,\lambda})^2$ if and only if $(NS_{\kappa,\lambda}|A)^* \longrightarrow (I^+_{\kappa,\lambda})^2$. For triples, the following holds.

THEOREM 4.19. Suppose that $\lambda^{<\lambda} = \lambda$ and λ is not weakly compact. Then for any $A \in \mathrm{NS}^+_{\kappa,\lambda}$, the following are equivalent:

- (i) $A \in \mathrm{NAIn}^+_{\kappa,\lambda}$.
- (ii) $(NS_{\kappa,\lambda}|A)^* \longrightarrow (NSS^+_{\kappa,\lambda})^3.$ (iii) $(NS_{\kappa,\lambda}|A)^* \longrightarrow (I^+_{\kappa,\lambda})^3.$

PROOF. By Propositions 4.4, 4.7 and 4.14.

Almost ineffability 2. 5.

This section is concerned with the case when λ is weakly compact. We show that if $(\lambda^{<\lambda} = \lambda \text{ and}) \lambda$ is weakly compact, then there is $C \in \mathrm{NS}^*_{\kappa,\lambda}$ such that

- (a) for every $A \subseteq C$ with $A \longrightarrow (I^+_{\kappa,\lambda})^3$, there is $B \subseteq A$ with $B \longrightarrow (I^+_{\kappa,\lambda})^3$ and $B \in \mathrm{NAIn}_{\kappa,\lambda}$, and
- (b) for any $A \subseteq C$, $A \longrightarrow (\mathbf{I}_{\kappa,\lambda}^+)^2$ if and only if $A \longrightarrow (\mathbf{I}_{\kappa,\lambda}^+)^3$.

These results contrast with those in Section 4 concerning the case when $\lambda^{<\lambda} = \lambda$ and λ is not weakly compact.

LEMMA 5.1 (Shelah [25]). Suppose κ is weakly compact. Then NSh_{κ} is a normal ideal on κ . Moreover, { $\mu \in \kappa : \mu$ is a Mahlo cardinal} $\in NSh_{\kappa}^*$.

LEMMA 5.2 (Johnson [11]). Let $A \in \mathrm{NSh}_{\kappa}^+$ and $h_a : \alpha \to \alpha$ for $\alpha \in A$. Then there is $h : \kappa \to \kappa$ such that for any $\eta < \kappa$, $\{\alpha \in A : h_{\alpha} | \eta = h | \eta\} \in \mathrm{NSh}_{\kappa}^+$.

LEMMA 5.3 (Carr [7]). If κ is $2^{(\lambda^{<\kappa})}$ -Shelah, then κ is λ -supercompact.

PROPOSITION 5.4. Suppose λ is weakly compact and κ is λ -Shelah. Then κ is almost λ -ineffable.

PROOF. We use Lemma 4.5. Let $g : [P_{\kappa}(\lambda)]_{<}^{2} \to \lambda$ be such that $g(a_{0}, a_{1}) \in a_{0}$ for every $(a_{0}, a_{1}) \in [P_{\kappa}(\lambda)]_{<}^{2}$. Let W be the set of Mahlo cardinals μ with $\kappa \leq \mu < \lambda$. By Lemma 5.3, κ is almost μ -ineffable for every $\mu \in W$. For each $\mu \in W$, we may find $B_{\mu} \in I_{\kappa,\mu}^{+}$ and $\xi_{\mu} \in \mu$ such that g takes the constant value ξ_{μ} on $[B_{\mu}]_{<}^{2}$. By Lemma 5.1, there must be $A \in NSh_{\lambda}^{+} \cap P(W)$ and $\xi \in \lambda$ such that $\xi_{\mu} = \xi$ for every $\mu \in A$. Let $P_{\kappa}(\lambda) = \{e_{\beta} : \beta < \lambda\}$. Let D be the set of all $\mu \in A$ such that

(a)
$$e_{\beta} \subseteq \mu$$
 for every $\beta \in \mu$, and

(b) for every cardinal ν with $\kappa \leq \nu < \mu$, $P_{\kappa}(\nu) \subseteq \{e_{\beta} : \beta < \mu\}$.

It is simple to see that $D \in \mathrm{NSh}_{\lambda}^+$. Note that for any $\mu \in D$, $\{e_{\beta} : \beta < \mu\} = P_{\kappa}(\mu)$. For $\mu \in D$, define $h_{\mu} : \mu \to \mu$ by $h_{\mu}(\beta) =$ the least γ such that $e_{\beta} \subseteq e_{\gamma}$ and $e_{\gamma} \in B_{\mu}$. By Lemma 5.2, there is $h : \lambda \to \lambda$ such that for any $\eta < \lambda$, $\{\mu \in D : h_{\mu} | \eta = h | \eta\} \in \mathrm{NSh}_{\lambda}^+$. Set $H = \{e_{\delta} : \delta \in \mathrm{ran}(h)\}$. Then clearly $e_{\beta} \subseteq e_{h(\beta)}$ for every $\beta < \lambda$, so $H \in \mathrm{I}_{\kappa,\lambda}^+$. Let us show that g is constant on $[H]_{\leq}^2$. Thus let $\gamma, \sigma < \lambda$ with $e_{h(\gamma)} < e_{h(\sigma)}$. Pick $\eta < \lambda$ with $\{\gamma, \sigma\} \subseteq \eta$. We may find $\mu \in D$ such that $h_{\mu} | \eta = h | \eta$. Then $(e_{h(\gamma)}, e_{h(\sigma)}) \in [B_{\mu}]_{<}^2$, and therefore $g(e_{h(\gamma)}, e_{h(\sigma)}) = \xi$.

LEMMA 5.5 (Matet-Usuba [23]). Suppose λ is weakly compact, and $2 \leq \eta < \kappa$. Then $\mathrm{NSJ}^+_{\kappa,\lambda} \longrightarrow (\mathrm{NSJ}^+_{\kappa,\lambda})^2_{\eta}$.

LEMMA 5.6 (Matet-Usuba [23]). Suppose λ is weakly compact. Then for any $A \in \mathrm{NSJ}^+_{\kappa,\lambda}$, there is $B \in \mathrm{NSJ}^+_{\kappa,\lambda} \cap P(A)$ such that $\mathrm{NSJ}_{\kappa,\lambda}|B = \mathrm{NSS}_{\kappa,\lambda}|B$.

PROPOSITION 5.7. Suppose λ is weakly compact, and let $2 \leq \eta < \kappa$. Then $\mathrm{NSJ}^+_{\kappa,\lambda} \longrightarrow (\mathrm{NSJ}^+_{\kappa,\lambda})^3_{\eta}$.

PROOF. By Lemmas 1.1 and 1.3 we may find $Q_{\zeta} \in \text{NSS}_{\kappa,\lambda}$ for $\zeta < \lambda$ such that $\text{NSS}_{\kappa,\lambda} = \bigcup_{\zeta < \lambda} P(Q_{\zeta})$.

Let $A \in \text{NSJ}^+_{\kappa,\lambda}$ and $F : [P_{\kappa}(\lambda)]^3_{\leq} \to \eta$, where $2 \leq \eta < \kappa$. By Lemma 5.6 there is $B \in \text{NSJ}^+_{\kappa,\lambda} \cap P(A)$ such that $\text{NSJ}_{\kappa,\lambda}|B = \text{NSS}_{\kappa,\lambda}|B$.

Select bijections $\pi : [P_{\kappa}(\lambda)]^2 \to \lambda$ and $\sigma : \lambda \times \eta \to \lambda$. For $c \in B$, define $f_c : c \to 2$ by: $f_c(\beta) = 1$ if and only if one can find a, b such that $a \subsetneq b \subsetneq c$ and $\beta = \sigma(\pi(a, b), F(a, b, c))$. Pick $g : \lambda \to 2$ so that for any $\alpha < \lambda$, $\{c \in B : \forall \gamma \in c \cap \alpha(f_c(\gamma) = g(\gamma))\} \in NSS^+_{\kappa \lambda}$.

Put $h = \{((a, b), j) \in [B]^2 \times \eta : g(\sigma(\pi(a, b), j)) = 1\}$. Let us show that h is a function with domain $[B]^2$. Thus let $(a, b) \in [B]^2$. Set $z = \{\sigma(\pi(a, b), j) : j < \eta\}$. Pick $\alpha \in \lambda$ with $z \subseteq \alpha$. There must be $d \in B$ such that

- $b \subseteq d$.
- $z \subseteq d$.
- $f_d|(d \cap \alpha) = g|(d \cap \alpha).$

Then for each $j < \eta$, $f_d(\sigma(\pi(a, b), j)) = g(\sigma(\pi(a, b), j))$. By induction on $\xi < \lambda$, we define $a_{\xi} \in B$ so that

- $\eta \subseteq a_{\xi}$.
- $\xi \in a_{\xi}$.
- $a_{\xi} \setminus a_{\delta} \neq \emptyset$ for all $\delta < \xi$.
- $a_{\xi} \notin Q_{\xi}$.
- $F(a_{\gamma}, a_{\delta}, a_{\xi}) = h(a_{\gamma}, a_{\delta})$ whenever $\gamma < \delta < \xi$ and $a_{\gamma} \subsetneq a_{\delta} \subsetneq a_{\xi}$.

Suppose a_{ζ} has been constructed for each $\zeta < \xi$. Pick $e \in P_{\kappa}(\lambda)$ so that $\eta \subseteq e$ and $e \setminus a_{\zeta} \neq \emptyset$ for every $\zeta < \xi$. Now select $\theta < \lambda$ so that $\theta = \sigma^{"}(\theta \times \eta)$, and $\pi(a_{\gamma}, a_{\delta}) \in \theta$ whenever $\gamma < \delta < \xi$ and $a_{\gamma} \subsetneq a_{\delta}$. Select $t \in B$ so that

- $\{\xi\} \cup e \subseteq t$.
- $\sigma(\pi(a_{\gamma}, a_{\delta}), j) \in t$ whenever $j < \eta, \{\gamma, \delta\} \subseteq t \cap \xi$ and $a_{\gamma} \subsetneq a_{\delta}$.
- $t \notin Q_{\xi}$.
- $f_t|(t \cap \theta) = g|(t \cap \theta).$

Note that if γ , δ are such that $\gamma < \delta < \xi$ and $a_{\gamma} \subseteq a_{\delta} \subseteq t$, then $F(a_{\gamma}, a_{\delta}, t) = h(a_{\gamma}, a_{\delta})$, since $f_t(\sigma(\pi(a_{\gamma}, a_{\delta}), F(a_{\gamma}, a_{\delta}, t))) = 1 = g(\sigma(\pi(a_{\gamma}, a_{\delta}), F(a_{\gamma}, a_{\delta}, t)))$. We set $a_{\xi} = t$.

Now put $D = \{a_{\zeta} : \zeta < \lambda\}$. Then clearly $D \in \text{NSS}^+_{\kappa,\lambda}$. Hence by Lemma 5.5, we may find $E \in \text{NSJ}^+_{\kappa,\lambda} \cap P(D)$ and $i < \eta$ such that h takes the constant value i on $[E]^2$. It is simple to see that F takes the constant value i on $[E]^3$.

By (the proof of) Theorem 6.2 in [12], it follows that if λ is weakly compact, then $\text{NSJ}^+_{\kappa,\lambda} \longrightarrow (\text{NSJ}^+_{\kappa,\lambda})^n_{\eta}$ whenever $2 \leq n < \omega$ and $2 \leq \eta < \kappa$.

COROLLARY 5.8. Suppose λ is weakly compact. Then there is $C \in \mathrm{NS}^*_{\kappa,\lambda}$ with the property that for any $A \subseteq C$ such that $A \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^3$, we may find $B \subseteq A$ such that $B \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^3$ and $B \in \mathrm{NAIn}_{\kappa,\lambda}$.

PROOF. Let $A \in \operatorname{NAIn}_{\kappa,\lambda}^+$ be such that $A \longrightarrow (\operatorname{I}_{\kappa,\lambda}^+)^3$. By Lemma 4.11, there is $B \subseteq A$ with $B \in \operatorname{NSh}_{\kappa,\lambda}^+ \cap \operatorname{NAIn}_{\kappa,\lambda}$. Then by Lemma 4.16 and Proposition 5.7, $B \longrightarrow (\operatorname{NSJ}_{\kappa,\lambda}^+)^3$.

LEMMA 5.9 (Matet-Usuba [23]). Suppose λ is weakly compact. Then κ is λ -Shelah just in case $P_{\kappa}(\lambda) \notin \text{NSJ}_{\kappa,\lambda}$.

PROPOSITION 5.10. Suppose λ is weakly compact. Then the following are equivalent:

- (i) κ is almost λ -ineffable.
- (ii) $NS^*_{\kappa,\lambda} \longrightarrow (NSS^+_{\kappa,\lambda})^3$.

(iii) $\operatorname{NS}_{\kappa,\lambda}^* \xrightarrow{}_{<} (\operatorname{I}_{\kappa,\lambda}^+)^2.$

PROOF. (i) \rightarrow (ii): By Proposition 5.7 and Lemmas 2.3 and 4.16. (ii) \rightarrow (iii): Trivial. (iii) \rightarrow (i): By Proposition 5.4 and Lemmas 1.4, 4.8 and 5.9.

It was shown in [23] that if $\lambda^{<\lambda} = \lambda$, then κ is λ -Shelah if and only if $(NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^* \longrightarrow (NSS_{\kappa,\lambda}^+)^2$ if and only if $NS_{\kappa,\lambda}^* \longrightarrow (I_{\kappa,\lambda}^+)^2$. Here is the corresponding result for triples:

COROLLARY 5.11. Suppose $\lambda^{<\lambda} = \lambda$. Then the following are equivalent:

- (i) κ is almost λ -ineffable.
- (ii) $(\mathrm{NSS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^* \longrightarrow (\mathrm{NSS}_{\kappa,\lambda}^+)^3.$
- (iii) $\operatorname{NS}_{\kappa,\lambda}^* \longrightarrow (\operatorname{I}_{\kappa,\lambda}^+)^3$.

PROOF. (i) \rightarrow (ii): By Lemmas 1.12 and 2.3, we have $\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}} \subseteq \mathrm{NSh}_{\kappa,\lambda} \subseteq \mathrm{NAIn}_{\kappa,\lambda}$. Now apply Proposition 4.4.

- (ii) \rightarrow (iii): Trivial.
- (iii) \rightarrow (i): By Theorem 4.19 and Proposition 5.10.

PROPOSITION 5.12. Suppose λ is weakly compact. Then there is $C \in NS^*_{\kappa,\lambda}$ such that for any $A \subseteq C$, the following are equivalent:

 $\begin{array}{ll} (\mbox{ i }) & A \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^2. \\ (\mbox{ ii }) & A \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^2. \\ (\mbox{ iii }) & A \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^3. \\ (\mbox{ iv }) & A \longrightarrow (\mathrm{I}^+_{\kappa,\lambda})^3. \end{array}$

PROOF. By Lemma 1.4, we may find $C \in NS^*_{\kappa,\lambda}$ such that $NSS_{\kappa,\lambda}|C = I_{\kappa,\lambda}|C$. Then by Lemma 4.8 and Proposition 5.7, C is as desired.

6. Almost ineffability 3.

This section is concerned with the case $2^{\lambda} = \lambda^{<\kappa}$.

LEMMA 6.1. Suppose $2^{\lambda} = \lambda^{<\kappa}$ and $P_{\kappa}(\lambda) \xrightarrow{} (I^+_{\kappa,\lambda})^3$. Then $cf(\lambda) < \kappa$, and moreover $\lambda^{<\kappa} = \lambda^+$.

PROOF. By Lemmas 1.10 and 1.11.

Let us show that if $2^{\lambda} = \lambda^{<\kappa}$, then $(p_{\kappa,\lambda}(\operatorname{NAIn}_{\kappa,\lambda^{<\kappa}}))^+ \longrightarrow (\operatorname{NS}_{\kappa,\lambda}^+)^3$.

PROPOSITION 6.2. Suppose $2^{\lambda} = \lambda^{<\kappa}$. Then $(p_{\kappa,\lambda}(\operatorname{NAIn}_{\kappa,\lambda^{<\kappa}}))^+ \longrightarrow (\operatorname{NS}^+_{\kappa,\lambda})^3_{\eta}$ for every η with $2 \leq \eta < \kappa$.

PROOF. The proof is a straightforward modification of that of Proposition 3.4. \Box

Next we prove that if κ is Mahlo and $2^{\lambda} = \lambda^{<\kappa}$, then there is $C \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$ such that

- (a) $\{A \subseteq C : A \longrightarrow (\mathbf{I}_{\kappa,\lambda}^+)^3\} \subseteq (p_{\kappa,\lambda}(\mathrm{NAIn}_{\kappa,\lambda^{<\kappa}}))^+$, and
- (b) for any $A \subseteq C$ with $A \xrightarrow{} (I^+_{\kappa,\lambda})^2$, there is $B \subseteq A$ with $B \xrightarrow{} (I^+_{\kappa,\lambda})^2$ and $B \not\xrightarrow{} (I^+_{\kappa,\lambda})^3$.

LEMMA 6.3. Suppose that κ is inaccessible and $cf(\lambda) < \kappa$, and let $2 \le n < \omega$ and $2 \le \eta < \kappa$. Then the following hold:

(i) Let $X \subseteq \{x \in \mathcal{X}_{\kappa,\lambda} : |x \cap \kappa| \text{ is an inaccessible cardinal}\}$ be such that $X \longrightarrow (I^+_{\kappa,\lambda<\kappa})^n_{\eta}$. Then $q^{-1}_{\kappa,\lambda}(X) \longrightarrow (I^+_{\kappa,\lambda})^n_{\eta}$.

(ii) Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \xrightarrow{} (I^+_{\kappa,\lambda})^n_{\eta}$. Then $q_{\kappa,\lambda}$ " $A \xrightarrow{} (I^+_{\kappa,\lambda^{<\kappa}})^n_{\eta}$.

PROOF. Proceed as in the proofs of Propositions 3.4 and 3.5.

PROPOSITION 6.4. Suppose that κ is Mahlo and $2^{\lambda} = \lambda^{<\kappa}$. Then there is $C \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$ such that $\{A \subseteq C : A \longrightarrow (\mathrm{I}_{\kappa,\lambda}^+)^3\} \subseteq (p_{\kappa,\lambda}(\mathrm{NAIn}_{\kappa,\lambda^{<\kappa}}))^+$.

PROOF. We can assume that $(NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^* \longrightarrow (I_{\kappa,\lambda}^+)^3$ since otherwise the result is trivial. Then by Lemma 6.1, $cf(\lambda) < \kappa$ and $\lambda^{<\kappa} = \lambda^+$. Now Proposition 4.14 tells us that there is $E \in NS_{\kappa,\lambda^{<\kappa}}^*$ such that $\{X \subseteq E : X \longrightarrow (I_{\kappa,\lambda^{<\kappa}}^+)^3\} \subseteq NAIn_{\kappa,\lambda^{<\kappa}}^+$. Set $C = q_{\kappa,\lambda}^{-1}(E)$. Note that $C \in (NS_{\kappa,\lambda^{-\kappa}}^{[\lambda]^{<\kappa}})^*$ by Lemma 3.1.

Given $A \subseteq C$ with $A \longrightarrow (I^+_{\kappa,\lambda})^3$, put $X = q_{\kappa,\lambda}$ "A. Then clearly $X \subseteq E$. Moreover by Lemma 6.3, $X \longrightarrow (I^+_{\kappa,\lambda<\kappa})^3$, and therefore $X \in \mathrm{NAIn}^+_{\kappa,\lambda<\kappa}$. It follows that $A \notin p_{\kappa,\lambda}(\mathrm{NAIn}_{\kappa,\lambda<\kappa})$, since by Lemma 3.2 $A = \{x \cap \lambda : x \in X\}$.

PROPOSITION 6.5. Suppose that κ is Mahlo and $2^{\lambda} = \lambda^{<\kappa}$. Then there is $C \in (NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$ with the following property: For any $A \subseteq C$ such that $A \longrightarrow (I_{\kappa,\lambda}^+)^2$, there is $B \subseteq A$ such that $B \longrightarrow (I_{\kappa,\lambda}^+)^2$ but $B \not\longrightarrow (I_{\kappa,\lambda}^+)^3$.

PROOF. Exactly as in the proof of the preceding proposition, we can assume that $(NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^* \longrightarrow (I_{\kappa,\lambda}^+)^3$, which entails that $cf(\lambda) < \kappa$ and $\lambda^{<\kappa} = \lambda^+$. By Proposition 4.18 and Lemmas 2.2 and 3.1 we may find $Z \in (NS_{\kappa,\lambda^{<\kappa}}^{[\lambda^{<\kappa}]^{<\kappa}})^*$ such that

- (a) $Z \subseteq \{x \in \mathcal{X}_{\kappa,\lambda} : x \cap \kappa \text{ is an inaccessible cardinal}\}, and$
- (b) for any $X \subseteq Z$ with $X \longrightarrow (I^+_{\kappa,\lambda < \kappa})^2$, there is $Y \subseteq X$ with $Y \longrightarrow (I^+_{\kappa,\lambda < \kappa})^2$ and $Y \not\longrightarrow (I^+_{\kappa,\lambda < \kappa})^3$.

Put $C = q_{\kappa,\lambda}^{-1}(Z)$. Note that $C \in (NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$ by Lemma 3.1. Now let $A \subseteq C$ be such that $A \longrightarrow (I_{\kappa,\lambda}^+)^2$. Since by Lemma 6.3, $q_{\kappa,\lambda}$ " $A \longrightarrow (I_{\kappa,\lambda^{<\kappa}}^+)^2$, we may find $Y \subseteq q_{\kappa,\lambda}$ "A with $Y \longrightarrow (I_{\kappa,\lambda^{<\kappa}}^+)^2$ and $Y \not\longrightarrow (I_{\kappa,\lambda^{<\kappa}}^+)^3$. Set $B = q_{\kappa,\lambda}^{-1}(Y)$. Then clearly, $B \subseteq A$. Moreover

by Lemma 6.3, $B \longrightarrow (\mathbf{I}_{\kappa,\lambda}^+)^2$ but $B \not\longrightarrow (\mathbf{I}_{\kappa,\lambda}^+)^3$.

LEMMA 6.6. Suppose that κ is Mahlo, $cf(\lambda) < \kappa$, and there is $Z \in NS^*_{\kappa, \lambda < \kappa}$ such that $\mathrm{NSS}_{\kappa,\lambda^{<\kappa}}|Z = \mathrm{I}_{\kappa,\lambda^{<\kappa}}|Z$. Then there is $C \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$ with the property that for any $A \in I^+_{\kappa \lambda} \cap P(C)$, there is $B \in I^+_{\kappa \lambda} \cap P(A)$ with $[B]^2_{\leq} = [B]^2$.

PROOF. Put $C = q_{\kappa,\lambda}^{-1}(Z \cap \mathcal{X}_{\kappa,\lambda})$. Then by Lemma 3.1, $C \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^*$. Let $A \in I^+_{\kappa,\lambda} \cap P(C)$. Set $X = q_{\kappa,\lambda}$ "A. Then by Lemma 3.1, $X \in I^+_{\kappa,\lambda \leq \kappa} \cap P(Z \cap \mathcal{X}_{\kappa,\lambda})$. Hence by Lemma 4.3, we may find $Y \in I^+_{\kappa,\lambda \leq \kappa} \cap P(X)$ with $[Y]^2_{\leq} = [Y]^2$. Put $B = q^{-1}_{\kappa,\lambda}(Y)$. It is simple to see that $B \in I^+_{\kappa,\lambda} \cap P(A)$, and $[B]^2_{\leq} = [B]^2$.

By a result of [23] and Lemma 6.6, if $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) \leq \lambda^{<\kappa}$, then for any $A \subseteq P_{\kappa}(\lambda)$, $A \longrightarrow (\mathrm{NS}^+_{\kappa,\lambda}, \mathrm{I}^+_{\kappa,\lambda})^2$ just in case $A \longrightarrow (\mathrm{NS}^+_{\kappa,\lambda})^2$. We now show that the result remains valid when 3 is substituted for 2.

LEMMA 6.7. $\{A \subseteq P_{\kappa}(\lambda) : A \not\longrightarrow (NS^+_{\kappa,\lambda}, I^+_{\kappa,\lambda})^3\}$ is a (possibly improper) strongly normal ideal on $P_{\kappa}(\lambda)$ extending $\operatorname{NIn}_{\kappa,\lambda}$.

PROOF. Set $J = \{A \subseteq P_{\kappa}(\lambda) : A \not\longrightarrow (NS^+_{\kappa,\lambda}, I^+_{\kappa,\lambda})^3\}$. Clearly, $P(A) \subseteq J$ for all $A \in J$. It is also simple to see that if A_1, A_2 are any two disjoint members of J, then $A_1 \cup A_2 \in J$. It follows that J is a (possibly improper) ideal on $P_{\kappa}(\lambda)$. If $A \in P(P_{\kappa}(\lambda)) \setminus J$, then by Lemma 2.12 $A \longrightarrow (NS^+_{\kappa,\lambda})^2$, so by Lemma 1.13 $A \in NIn^+_{\kappa,\lambda}$. Thus $NIn_{\kappa,\lambda} \subseteq J$. By Lemma 2.3, it follows that $NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}} \subseteq J$.

Now let $A \in J^+$ and $f: A \to P_{\kappa}(\lambda)$ with the property that f(a) < a for every $a \in A$. Let B be the set of all $a \in A$ such that $a \cap \kappa$ is an inaccessible cardinal. Note that by Lemma 2.2, $B \in J^+$. Further note that for any $a \in B$, o.t. $(f(a)) \in a \cap \kappa$. For $a \in B$, let h_a : o.t. $(f(a)) \to f(a)$ be the increasing enumeration of f(a). For $e \in P_{\kappa}(\lambda)$, put $B_e = \{a \in B : f(a) = e\}$. Suppose toward a contradiction that $\{B_e : e \in P_{\kappa}(\lambda)\} \subseteq J$. For $e \in P_{\kappa}(\lambda)$, pick $F_e : [B]^3_{\leq} \to 2$ with the property that

(a) there is no $H \in \mathrm{NS}^+_{\kappa,\lambda} \cap P(B_e)$ such that F_e takes the constant value 0 on $[H]^3_{<}$, and

(b) there is no $Q \in I^+_{\kappa,\lambda} \cap P(B_e)$ such that F_e takes the constant value 1 on $[Q]^3_{<}$.

Now define $F: [B]^3 \to 2$ by: $F(a_0, a_1, a_2) = 0$ if and only if either $f(a_0) = f(a_1)$ and $F_{f(a_0)}(a_0, a_1, a_2) = 0$, or o.t. $(f(a_0)) < o.t.(f(a_1))$, or $f(a_0) \neq f(a_1)$, o.t. $(f(a_0)) = f(a_0) = 0$ o.t. $(f(a_1))$ and $h_{a_0}(\sigma) < h_{a_1}(\sigma)$, where σ = the least ζ such that $h_{a_0}(\zeta) \neq h_{a_1}(\zeta)$. We may find $C \subseteq B$ and i < 2 such that

- (α) F takes the constant value i on $[C]^3_{\leq}$, and
- (β) $C \in \mathrm{NS}^+_{\kappa,\lambda}$, if i = 0, and $C \in \mathrm{I}^+_{\kappa,\lambda}$ otherwise.

Case I: i = 0. There must be $D \in NS^+_{\kappa,\lambda} \cap P(C)$ and $\alpha \in \kappa$ such that o.t. $(f(a)) = \alpha$ for every $a \in D$. We inductively define $\delta_{\sigma} \in \lambda$ and $W_{\sigma} \in NS^*_{\kappa,\lambda}$ for $\sigma < \alpha$ so that $h_a(\sigma) = \delta_{\sigma}$ for each $a \in D \cap W_{\sigma}$. Suppose δ_{ξ} and W_{ξ} have already been constructed for each $\xi < \sigma$. Set $S = \bigcap_{\xi < \sigma} W_{\xi}$ and $y = \{h_a(\sigma) : a \in D \cap S\}$. For $\beta \in y$, pick $d_\beta \in D \cap S$ with $h_{d_{\beta}}(\sigma) = \beta$.

227

CLAIM 1. y has a largest element.

PROOF OF CLAIM 1. Suppose otherwise. Let T be the set of all $a \in D \cap S$ such that

(1) for every $\beta \in a \cap y$, $d_{\beta} < a$, and

(2) o.t. $(a \cap y)$ is an infinite limit ordinal.

Then clearly $T \in \mathrm{NS}^+_{\kappa,\lambda}$. Pick $w \in T$. There must be $\beta \in w \cap y$ with $h_w(\sigma) < \beta$. Now select $x \in D$ with w < x. Then $F(d_\beta, w, x) = 1$. This contradiction completes the proof of Claim 1.

CLAIM 2. $h_a(\sigma) = \max(y)$ for every $a \in D \cap S$ with $d_{\max(y)} < a$.

PROOF OF CLAIM 2. Suppose otherwise, and pick $s \in D \cap S$ with $d_{\max(y)} < s$ and $h_s(\sigma) \neq \max(y)$. Select $s' \in D$ with s < s'. Then $F(d_{\max(y)}, s, s') = 1$. This contradiction completes the proof of Claim 2.

Now set $\delta_{\sigma} = \max(y)$ and $W_{\sigma} = \{a \in S : d_{\max(y)} < a\}$.

Finally, put $e = \{\delta_{\xi} : \xi < \alpha\}$ and $W = \bigcap_{\xi < \alpha} W_{\xi}$. Then $D \cap W \in \mathrm{NS}^+_{\kappa,\lambda} \cap P(B_e)$, and moreover F_e takes the constant value 0 on $[D \cap W]^3_{\leq}$. Contradiction.

Case II: i = 1.

CLAIM 3. There is $z \in C$ such that o.t.(f(a)) = o.t.(f(z)) for every $a \in C$ with z < a.

PROOF OF CLAIM 3. Suppose otherwise. Inductively pick $b_n \in C$ for $n < \omega$ so that $b_n < b_{n+1}$ and $o.t.(f(b_n)) \neq o.t.(f(b_{n+1}))$. For each $n < \omega$, $F(b_n, b_{n+1}, b_{n+2}) = 1$, so $o.t.(f(b_n)) > o.t.(f(b_{n+1}))$. Thus $o.t.(f(b_0)) > o.t.(f(b_1)) > o.t.(f(b_2)) > \cdots$. This contradiction completes the proof of Claim 3.

Put $\beta = \text{o.t.}(f(z))$ and $C' = \{a \in C : z < a\}$. We define inductively $\eta_{\sigma} \in \lambda$ and $t_{\sigma} \in C'$ for $\sigma < \beta$ so that $h_a(\sigma) = \eta_{\sigma}$ for each $a \in C'$ with $t_{\sigma} < a$. Suppose η_{ξ} and t_{ξ} have already been constructed for each $\xi < \sigma$. Set $u = \bigcup_{\xi < \sigma} t_{\xi}$ and $R = \{a \in C' : u < a\}$.

CLAIM 4. There is $v \in R$ such that $h_a(\sigma) = h_v(\sigma)$ for every $a \in R$ with v < a.

PROOF OF CLAIM 4. Suppose otherwise. Inductively select $c_n \in R$ for $n < \omega$ so that $c_n < c_{n+1}$ and $h_{c_n}(\sigma) \neq h_{c_{n+1}}(\sigma)$. For each $n < \omega$, $F(c_n, c_{n+1}, c_{n+2}) = 1$, so $h_{c_n}(\sigma) > h_{c_{n+1}}(\sigma)$. Thus $h_{c_0}(\sigma) > h_{c_1}(\sigma) > h_{c_2}(\sigma) > \cdots$. This contradiction completes the proof of Claim 4.

Now put $\eta_{\sigma} = h_v(\sigma)$ and $t_{\sigma} = v$.

Finally, set $e = \{\eta_{\xi} : \xi < \beta\}$ and $t = \bigcup_{\xi < \beta} t_{\xi}$. Then clearly $\{a \in C' : t < a\} \in I^+_{\kappa,\lambda} \cap P(B_e)$. Moreover F_e takes the constant value 1 on $[\{a \in C' : t < a\}]^3_{<}$. Contradiction.

PROPOSITION 6.8. Suppose $\overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\lambda}) \leq \lambda^{<\kappa}$, and let $A \subseteq P_{\kappa}(\lambda)$ with $A \xrightarrow{<}$

 $(\mathrm{NS}^+_{\kappa,\lambda},\mathrm{I}^+_{\kappa,\lambda})^3. \ Then \ A \longrightarrow (\mathrm{NS}^+_{\kappa,\lambda})^3.$

PROOF. By Lemmas 1.8, 6.6 and 6.7.

If κ is Mahlo and $2^{\lambda} = \lambda^{<\kappa}$, then by a result of [23] and Lemma 6.6, for any $A \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+$, $A \in (p_{\kappa,\lambda}(\mathrm{NSh}_{\kappa,\lambda^{<\kappa}}))^+$ if and only if $A \longrightarrow (\mathrm{NS}_{\kappa,\lambda}^+)^2$ if and only if $A \longrightarrow (\mathrm{NS}_{\kappa,\lambda}^+)^2$ if and only if $(\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}}|A)^* \longrightarrow (\mathrm{I}_{\kappa,\lambda}^+)^2$. The corresponding result for triples reads as follows:

PROPOSITION 6.9. Suppose κ is Mahlo and $2^{\lambda} = \lambda^{<\kappa}$. Then for any $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+$, the following are equivalent:

 $\begin{array}{ll} (\ \mathrm{i} \) & A \in (p_{\kappa,\lambda}(\mathrm{NAIn}_{\kappa,\lambda^{<\kappa}}))^+. \\ (\ \mathrm{ii} \) & A \longrightarrow (\mathrm{NS}^+_{\kappa,\lambda})^3. \\ (\ \mathrm{iii}) & A \underset{<}{\longrightarrow} (\mathrm{NS}^+_{\kappa,\lambda},\mathrm{I}^+_{\kappa,\lambda})^3. \\ (\ \mathrm{iv}) & (\mathrm{NS}^{[\lambda]^{<\kappa}}_{\kappa,\lambda} |A)^* \underset{<}{\longrightarrow} (\mathrm{I}^+_{\kappa,\lambda})^3. \end{array}$

PROOF. By Lemma 6.7 and Propositions 6.2 and 6.4.

If $\lambda^{<\lambda} = \lambda$, then by Lemma 1.13 and Propositions 2.11 and 2.13, $P_{\kappa}(\lambda) \longrightarrow (NS^+_{\kappa,\lambda})^2$ just in case $P_{\kappa}(\lambda) \longrightarrow (NS^+_{\kappa,\lambda}, I^+_{\kappa,\lambda})^3$. In contrast to this, if $2^{\lambda} = \lambda^{<\kappa}$ and κ is $\lambda^{<\kappa}$ -Shelah but not almost $\lambda^{<\kappa}$ -ineffable, then (by a result of [23]) $P_{\kappa}(\lambda) \longrightarrow ((NS^{[\lambda]^{<\kappa}}_{\kappa,\lambda})^+, NS^+_{\kappa,\lambda})^2$ but (by Lemma 6.7 and Propositions 6.4 and 6.8), $P_{\kappa}(\lambda) \not \longrightarrow (NS^+_{\kappa,\lambda}, I^+_{\kappa,\lambda})^3$. (Note that it can be shown that if $2^{\lambda} = \lambda^{<\kappa}$ and κ is almost $\lambda^{<\kappa}$ -ineffable, then the set of all $a \in \mathcal{A}_{\kappa,\lambda}$ such that $2^{\circ.t.(a)} = o.t.(a)^{<(a\cap\kappa)}$ and $a \cap \kappa$ is $o.t.(a)^{<(a\cap\kappa)}$ -Shelah but not almost $o.t.(a)^{<(a\cap\kappa)}$ -ineffable lies in $(p_{\kappa,\lambda}(NAIn_{\kappa,\lambda^{<\kappa}})^+)$. On the other hand, if $2^{\lambda} = \lambda^{<\kappa}$, then by Proposition 3.4 and Lemma 2.12, $P_{\kappa}(\lambda) \longrightarrow ((NS^{[\lambda]^{<\kappa}}_{\kappa,\lambda})^+)^2$ just in case $P_{\kappa}(\lambda) \longrightarrow ((NS^{[\lambda]^{<\kappa}}_{\kappa,\lambda})^+, I^+_{\kappa,\lambda})^3$.

Finally, we combine Propositions 2.11 and 3.4 on the one hand, and Propositions 4.4 and 6.2 on the other hand, thus showing that the two cases $\lambda^{<\lambda} = \lambda$ and $2^{\lambda} = \lambda^{<\kappa}$ can be (at least to some extent) handled simultaneously.

PROPOSITION 6.10. Suppose $(\lambda^{<\kappa})^{<(\lambda^{<\kappa})} = \lambda^{<\kappa}$. Then $(p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}}))^+ \longrightarrow ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, \operatorname{NSS}_{\kappa,\lambda}^+)^3$ and $(p_{\kappa,\lambda}(\operatorname{NAIn}_{\kappa,\lambda^{<\kappa}}))^+ \longrightarrow (\operatorname{NSS}_{\kappa,\lambda}^+)^3$.

PROOF. We prove the first assertion and leave the proof of the second to the reader. Thus let $A \in (p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}}))^+$. If $\operatorname{cf}(\lambda) \geq \kappa$, then by Lemma 1.11 $\lambda^{<\lambda} = \lambda$ and $p_{\kappa,\lambda}(\operatorname{NIn}_{\kappa,\lambda^{<\kappa}}) = \operatorname{NIn}_{\kappa,\lambda}$, so by Proposition 2.11, $A \longrightarrow ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, \operatorname{NSS}_{\kappa,\lambda}^+)^3$. If $\operatorname{cf}(\lambda) < \kappa$, then by Lemma 3.3 $2^{\lambda} = \lambda^{<\kappa} = \lambda^+$ and therefore by Proposition 3.4, $A \longrightarrow ((\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\kappa}})^+, \operatorname{NSS}_{\kappa,\lambda}^+)^3$.

P. MATET and T. USUBA

References

- [1] Y. Abe, Saturation of fundamental ideals on $\mathscr{P}_{\kappa}\lambda$, J. Math. Soc. Japan, 48 (1996), 511–524.
- [2] Y. Abe, A hierarchy of filters smaller than $CF_{\kappa\lambda}$, Arch. Math. Logic, **36** (1997), 385–397.
- [3] Y. Abe, Combinatorial characterization of Π_1^1 -indescribability in $P_{\kappa}\lambda$, Arch. Math. Logic, **37** (1998), 261–272.
- [4] Y. Abe, Notes on subtlety and ineffability in $P_{\kappa}\lambda$, Arch. Math. Logic, 44 (2005), 619–631.
- [5] Y. Abe and T. Usuba, Notes on the partition property of $\mathcal{P}_{\kappa}\lambda$, Arch. Math. Logic, **51** (2012), 575–589.
- [6] J. E. Baumgartner, Ineffability properties of cardinals. I, In: Infinite and Finite Sets, vol. I, Keszthely, 1973, (eds. A. Hajnal, R. Rado and Vera T. Sós), Colloq. Math. Soc. Janos Bolyai, 10, North-Holland, Amsterdam, 1975, pp. 109–130.
- [7] D. M. Carr, The structure of ineffability properties of $P_{\chi}\lambda$, Acta Math. Hungar., 47 (1986), 325–332.
- [8] D. M. Carr, $P_{\kappa}\lambda$ partition relations, Fund. Math., **128** (1987), 181–195.
- [9] D. M. Carr, J.-P. Levinski and D. H. Pelletier, On the existence of strongly normal ideals over P_κλ, Arch. Math. Logic, **30** (1990), 59–72.
- [10] T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic, 5 (1973), 165–198.
- [11] C. A. Johnson, More on distributive ideals, Fund. Math., 128 (1987), 113-130.
- [12] C. A. Johnson, Some partition relations for ideals on $P_{\chi}\lambda$, Acta Math. Hungar., 56 (1990), 269–282.
- [13] S. Kamo, Ineffability and partition property on $\mathscr{P}_{\kappa}\lambda$, J. Math. Soc. Japan, 49 (1997), 125–143.
- [14] M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc., 42 (1974), 279–285.
- [15] P. Matet, Un principe combinatoire en relation avec l'ultranormalité des idéaux, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 61–62.
- [16] P. Matet, $Part(\kappa, \lambda)$ and $Part^*(\kappa, \lambda)$, In: Set Theory, Barcelona, 2003–2004, (eds. J. Bagaria and S. Todorcevic), Trends Math., Birkhäuser, Basel, 2006, 321–344.
- [17] P. Matet, Covering for category and combinatorics on $P_{\kappa}(\lambda)$, J. Math. Soc. Japan, 58 (2006), 153–181.
- [18] P. Matet, Large cardinals and covering numbers, Fund. Math., 205 (2009), 45–75.
- [19] P. Matet, Normal restrictions of the noncofinal ideal on $P_{\kappa}(\lambda)$, Fund. Math., **221** (2013), 1–22.
- [20] P. Matet, C. Péan and S. Shelah, Confinality of normal ideals on $P_{\kappa}(\lambda)$. II, Israel J. Math., 150 (2005), 253–283.
- [21] P. Matet, C. Péan and S. Shelah, Confinality of normal ideals on $P_{\kappa}(\lambda)$. I, preprint, arXiv:math.LO/0404318.
- [22] P. Matet and S. Shelah, The nonstationary ideal on $P_{\kappa}(\lambda)$ for λ singular, preprint, arXiv:math.LO/0612246.
- [23] P. Matet and T. Usuba, Two-cardinal versions of weak compactness: Partitions of pairs, Ann. Pure Appl. Logic, 163 (2012), 1–22.
- [24] I. Neeman, Aronszajn trees and failure of the singular cardinal hypothesis, J. Math. Log., 9 (2009), 139–157.
- [25] S. Shelah, Weakly compact cardinals: a combinatorial proof, J. Symbolic Logic, 44 (1979), 559– 562.
- [26] E. Specker, Sur un problème de Sikorski, Colloquium Math., 2 (1949), 9-12.
- [27] T. Usuba, Ineffability of $\mathscr{P}_{\kappa}\lambda$ for λ with small cofinality, J. Math. Soc. Japan, **60** (2008), 935–954.

Pierre Matet

Université de Caen - CNRS Laboratoire de Mathématiques BP 5186 14032 Caen Cedex, France E-mail: pierre.matet@unicaen.fr Toshimichi USUBA

Organization of Advanced Science and Technology Kobe University Rokko-dai 1-1, Nada Kobe, 657-8501 Japan E-mail: usuba@people.kobe-u.ac.jp