Two-cardinal versions of weak compactness: Partitions of triples

By Pierre Matet and Toshimichi Usuba

(Received Feb. 25, 2013)

Abstract

Let κ be a regular uncountable cardinal, and λ be a cardinal greater than κ. Our main result asserts that if $\left(\lambda^{<\kappa}\right)^{<\left(\lambda^{<\kappa}\right)}=\lambda^{<\kappa}$, then $\left(p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)\right)^{+} \longrightarrow\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}, \mathrm{NS}_{\kappa, \lambda} s^{+}\right)^{3}$ and $\left(p_{\kappa, \lambda}\left(\operatorname{NAIn}_{\kappa, \lambda<\kappa}\right)\right)^{+}$ $\longrightarrow\left(\mathrm{NS}_{\kappa, \lambda} s^{+}\right)^{3}$, where $\mathrm{NS}_{\kappa, \lambda} s$ (respectively, $\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}$) denotes the smallest seminormal (respectively, strongly normal) ideal on $P_{\kappa}(\lambda), \operatorname{NIn}_{\kappa, \lambda<\kappa}$ (respectively, $\operatorname{NAIn}_{\kappa, \lambda}<\kappa$) denotes the ideal of non-ineffable (respectively, non-almost ineffable) subsets of $P_{\kappa}\left(\lambda^{<\kappa}\right)$, and $p_{\kappa, \lambda}: P_{\kappa}\left(\lambda^{<\kappa}\right) \rightarrow P_{\kappa}(\lambda)$ is defined by $p_{\kappa, \lambda}(x)=x \cap \lambda$.

0. Introduction.

Let κ be a regular uncountable cardinal, and $\lambda>\kappa$ be a cardinal. In this paper we study $P_{\kappa}(\lambda)$ versions of weak compactness and associated ideals, thus continuing [23] which dealt with partitions of pairs. Here we are mostly concerned with partitions of triples.

This area of research has been started by Jech in a paper [10] published in 1973. Time has elapsed, but it remains unclear which structure we should investigate. What is the right generalization of (κ, \subsetneq) ? Is it $\left(P_{\kappa}(\lambda), \subsetneq\right)$ or $\left(P_{\kappa}(\lambda),<\right)$ (where $a<b$ means that $\left.a \in P_{|b \cap \kappa|}(b)\right)$? Whenever we can, we give positive results in terms of the first one, and negative results in terms of the second.

It seems to us that Johnson (see e.g. [12]) was right when he stressed the importance of the notion of seminormality. The point is that any κ-complete ideal J on κ is trivially seminormal (since given $A \in J^{+}, \gamma<\kappa$ and $f: A \rightarrow \gamma$, there must be $B \in J^{+} \cap P(A)$ such that f is constant on B), and therefore the noncofinal ideal I_{κ} on κ can be seen as the smallest seminormal ideal on κ. So each time we attempt to formulate a twocardinal version of a statement involving I_{κ}, we should ponder whether I_{κ} should be replaced by $\mathrm{I}_{\kappa, \lambda}$ (the noncofinal ideal on $P_{\kappa}(\lambda)$) or $\mathrm{NSS}_{\kappa, \lambda}$ (the smallest seminormal ideal on $\left.P_{\kappa}(\lambda)\right)$. Consider for example the partition property $\kappa \longrightarrow(\kappa)^{2}$ expressing that κ is a weakly compact cardinal. By the remarks above, it can be generalized in (at least) four different ways, namely $P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}, P_{\kappa}(\lambda) \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}, P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{2}$ and $P_{\kappa}(\lambda) \longrightarrow\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{2}$. We do not know whether these four assertions are equivalent.

We just advocated the replacement of (some occurrences of) I_{κ} by $\mathrm{NSS}_{\kappa, \lambda}$. Likewise we plead for the replacement of (many occurrences of) NS_{κ} (the nonstationary ideal on

[^0]$\kappa)$ by $\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}$ (the smallest strongly normal ideal on $P_{\kappa}(\lambda)$) which seems to us more appropriate than $\mathrm{NS}_{\kappa, \lambda}$ (the nonstationary ideal on $P_{\kappa}(\lambda)$). Note that $\mathrm{NS}_{\kappa, \lambda}=\mathrm{NSS}_{\kappa, \lambda}$ in case $\operatorname{cf}(\lambda)<\kappa$.

Take for instance ineffability. By work of Kunen (see [6]) and Baumgartner [6], $\mathrm{NIn}_{\kappa}=\left\{A \subseteq \kappa: A \nrightarrow\left(\mathrm{NS}_{\kappa}^{+}\right)^{2}\right\}$, where NIn_{κ} denotes the nonineffable ideal on κ. By work of Abe-Usuba [5], Carr [8], and Magidor [14], if $\operatorname{cf}(\lambda) \geq \kappa$, then $\operatorname{NIn}_{\kappa, \lambda}=\{A \subseteq$ $\left.P_{\kappa}(\lambda): A \nprec\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{2}\right\}=\left\{A \subseteq P_{\kappa}(\lambda): A \nrightarrow\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}\right)^{2}\right\}$. The conclusion as stated is no longer valid in case $\operatorname{cf}(\lambda)<\kappa$. In fact, it is observed in Section 3 that $\mathrm{NIn}_{\kappa, \lambda}^{+} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ if $2^{\lambda}=\lambda^{<\kappa}$.

Baumgartner [6] also showed that $\mathrm{NIn}_{\kappa}=\left\{A \subseteq \kappa: A \nrightarrow\left(\mathrm{NS}_{\kappa}^{+}, \kappa\right)^{3}\right\}$. We establish the following:

Theorem 0.1 (Theorem 2.14). Assume $\lambda^{<\lambda}=\lambda$. Then $\operatorname{NIn}_{\kappa, \lambda}=\left\{A \subseteq P_{\kappa}(\lambda)\right.$: $\left.A \nrightarrow\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}\right\}$.

We also show that $\mathrm{NIn}_{\kappa, \lambda}^{+} \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{3}$ does not hold in case $\operatorname{cf}(\lambda) \geq \kappa$ (see Proposition 2.19).

Note the cardinality assumption in Theorem 0.1. It entails that λ is regular. In the present paper we have little to say concerning the case where $\kappa \leq \operatorname{cf}(\lambda)<\lambda$ (for some results in this case see [23]). Assuming λ is regular, the cardinality assumption in question is not known to be necessary. However, our guess is that there is some ideal J on $P_{\kappa}(\lambda)$, whose definition is similar to that of $\operatorname{NIn}_{\kappa, \lambda}$, such that $J=\left\{A \subseteq P_{\kappa}(\lambda)\right.$: $\left.A \not{<} \xrightarrow{\longrightarrow}\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]}\right)^{+\kappa}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}\right\}$ (with $J=\mathrm{NIn}_{\kappa, \lambda}$ in case $2^{<\lambda}=\lambda$). For examples of such situations see [23].

Put $H=\left\{A \subseteq \kappa: A \nrightarrow(\kappa)^{2}\right\}$. If κ is weakly compact, then
(a) $H=\mathrm{I}_{\kappa}$, and
(b) $H^{+} \longrightarrow\left(H^{+}\right)^{3}$.

In particular, $\mathrm{NS}_{\kappa}^{*} \longrightarrow(\kappa)^{2}$ just in case $\mathrm{NS}_{\kappa}^{*} \longrightarrow(\kappa)^{3}$. The $P_{\kappa}(\lambda)$ situation is different. Assuming $\lambda^{<\lambda}=\lambda, \mathrm{NS}_{\kappa, \lambda}^{*} \xrightarrow{<}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$ if and only if κ is almost λ-ineffable (Corollary 5.11), whereas by a result of $[\mathbf{2 3}] \mathrm{NS}_{\kappa, \lambda}^{*} \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ if and only if κ is λ-Shelah.

The following provides a characterization of $\mathrm{NAIn}_{\kappa, \lambda}$ in terms of partition relations.
Theorem 0.2 (Theorem 4.19). Assume that $\lambda^{<\lambda}=\lambda$, but λ is not weakly compact. Then $\operatorname{NAIn}_{\kappa, \lambda}=\left\{A \subseteq P_{\kappa}(\lambda): A \cap C \not{<}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\}$ for some $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$.

The paper grew out of a set of notes by the second author concerning the $\underset{<}{\longrightarrow}$ partition relation. Joint work of the authors led to the present version.

The paper is organized as follows. In Section 1 we review basic material concerning the ideals on $P_{\kappa}(\lambda)$ considered in the paper. Sections 2 and 3 are devoted to the notion of ineffability and concerned with partitions of triples, respectively in the case $\operatorname{cf}(\lambda)=\lambda$ and $\operatorname{cf}(\lambda)<\kappa$. Sections 4-6 are also concerned with partitions of triples, but this time in connection with the notion of almost ineffability. They deal, respectively, with
the following three cases: λ is regular but not weakly compact, λ is weakly compact, $\operatorname{cf}(\lambda)<\kappa$.

1. Basic material.

Definition. For a set A and a cardinal μ, let $P_{\mu}(A)=\{a \subseteq A:|a|<\mu\}$.
Definition. $\quad \mathrm{I}_{\kappa, \lambda}$ denotes the collection of all $A \subseteq P_{\kappa}(\lambda)$ such that $A \cap\left\{a \in P_{\kappa}(\lambda)\right.$: $b \subseteq a\}=\emptyset$ for some $b \in P_{\kappa}(\lambda)$.

Definition. By an ideal on $P_{\kappa}(\lambda)$, we mean a collection J of subsets of $P_{\kappa}(\lambda)$ such that
(a) $\mathrm{I}_{\kappa, \lambda} \subseteq J$,
(b) $P(A) \subseteq J$ for all $A \in J$, and
(c) $A \cup B \in J$ for all $A, B \in J$.
J is proper if $P_{\kappa}(\lambda) \notin J$.
For an ideal J on $P_{\kappa}(\lambda)$, let $J^{*}=\left\{A \subseteq P_{\kappa}(\lambda): P_{\kappa}(\lambda) \backslash A \in J\right\}, J^{+}=\left\{A \subseteq P_{\kappa}(\lambda):\right.$ $A \notin J\}$, and $J \mid X=\left\{A \subseteq P_{\kappa}(\lambda): A \cap X \in J\right\}$ for every $X \in J^{+} . \operatorname{cof}(J)$ (respectively, $\overline{\operatorname{cof}}(J))$ denotes the smallest cardinality of $X \subseteq J$ with the property that for any $A \in J$, there is $Q \subseteq X$ such that $|Q|<2$ (respectively, $|Q|<\kappa$) and $A \subseteq \bigcup Q$.

Definition. Let $\xi \leq \lambda$. An ideal J on $P_{\kappa}(\lambda)$ is ξ-normal if given $A \in J^{+}$and $f: A \rightarrow \xi$ with the property that $f(a) \in a$ for every $a \in A$, there is $B \in J^{+} \cap P(A)$ such that f is constant on B. $\mathrm{NS}_{\kappa, \lambda}^{\xi}$ denotes the smallest ξ-normal ideal on $P_{\kappa}(\lambda)$. An ideal J on $P_{\kappa}(\lambda)$ is normal if it is λ-normal. We put $\mathrm{NS}_{\kappa, \lambda}=\mathrm{NS}_{\kappa, \lambda}^{\lambda}$.

Note that $\mathrm{NS}_{\kappa, \lambda}^{\xi}=\mathrm{I}_{\kappa, \lambda}$ for every $\xi<\kappa$.
The following is a generalization of the characterization of $\mathrm{NS}_{\kappa, \lambda}$.
Lemma 1.1. Let $\kappa \leq \xi \leq \lambda$ and $A \subseteq P_{\kappa}(\lambda)$. Then $A \in\left(\mathrm{NS}_{\kappa, \lambda}^{\xi}\right)^{*}$ if and only if there is $f: \xi \times \xi \rightarrow P_{\kappa}(\lambda)$ such that $C_{\kappa, \lambda}^{f} \subseteq A$, where $C_{\kappa, \lambda}^{f}$ is the set of all $a \in P_{\kappa}(\lambda)$ such that
(a) $a \cap \xi \neq \emptyset$, and
(b) $f(\alpha, \beta) \subseteq a$ for every $(\alpha, \beta) \in(a \cap \xi) \times(a \cap \xi)$.

Definition. Given four cardinals τ, ρ, χ and $\sigma, \operatorname{cov}(\tau, \rho, \chi, \sigma)$ is defined as follows. If one may find $X \subseteq P_{\rho}(\tau)$ with the property that for any $a \in P_{\chi}(\tau)$, there is $Q \in P_{\sigma}(X)$ with $a \subseteq \bigcup Q$, let $\operatorname{cov}(\tau, \rho, \chi, \sigma)=$ the least cardinality of any such X. Otherwise let $\operatorname{cov}(\tau, \rho, \chi, \sigma)=0$. We set $\operatorname{cov}(\tau, \rho, \chi, \sigma)=u(\tau, \chi)$ in case $\rho=\chi$ and $\sigma=2$.

Note that $u(\kappa, \lambda)=\operatorname{cov}(\kappa, \lambda, \lambda, 2)=\min \left\{|X|: X \in \mathrm{I}_{\kappa, \lambda}^{+}\right\}$.
Lemma 1.2 (Matet [18]). Let μ be a cardinal with $\kappa \leq \mu<\lambda$. Then the following are equivalent:
(i) $\mathrm{NS}_{\kappa, \lambda}^{\mu}\left|C=\mathrm{I}_{\kappa, \lambda}\right| C$ for some $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$.
(ii) $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \mu}\right) \leq \lambda=\operatorname{cov}\left(\lambda, \mu^{+}, \mu^{+}, \kappa\right)$.

Definition. An ideal J on $P_{\kappa}(\lambda)$ is seminormal if it is ξ-normal for every $\xi<\lambda$. $\mathrm{NSS}_{\kappa, \lambda}$ denotes the smallest seminormal ideal on $P_{\kappa}(\lambda)$.

Lemma 1.3 (Abe [2]). Suppose λ is regular. Then $\mathrm{NSS}_{\kappa, \lambda}=\bigcup_{\xi<\lambda} \mathrm{NS}_{\kappa, \lambda}^{\xi}$.
Lemma 1.4 (Matet-Shelah [22]). Assuming λ is regular, the following are equivalent:
(i) $\mathrm{NSS}_{\kappa, \lambda}\left|C=\mathrm{I}_{\kappa, \lambda}\right| C$ for some $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$.
(ii) $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \tau}\right) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau<\lambda$.

Lemma 1.5 (Abe [2]). Suppose $\kappa \leq \operatorname{cf}(\lambda)<\lambda$. Then $\mathrm{NS}_{\kappa, \lambda}=\mathrm{NSS}_{\kappa, \lambda} \mid C$ for some $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$.

Definition. Let $\delta \leq \lambda$. An ideal J on $P_{\kappa}(\lambda)$ is $[\delta]^{<\kappa}$-normal if given $A \in J^{+}$ and $f: A \rightarrow P_{\kappa}(\delta)$ with the property that $f(a) \in P_{|a \cap \kappa|}(a \cap \delta)$ for all $a \in A$, there is $B \in J^{+} \cap P(A)$ such that f is constant on $B . J$ is strongly normal if it is $[\lambda]^{<\kappa}$-normal.

The following is a generalization of a result of Carr-Levinski-Pelletier [9].
Lemma 1.6. Suppose κ is a limit cardinal, and let $\kappa \leq \delta \leq \lambda$. Then there exists a $[\delta]^{<\kappa}$-normal ideal if and only if κ is Mahlo.

Assuming there exists a $[\delta]^{<\kappa}$-normal ideal on $P_{\kappa}(\lambda), \mathrm{NS}_{\kappa, \lambda}^{[\delta]^{<\kappa}}$ denotes the smallest such ideal.

Lemma 1.7 (Carr-Levinski-Pelletier [9], Matet [15]). Suppose κ is Mahlo and $\lambda^{<\kappa}$ $=\lambda$. Then there is $E\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{*}$ such that $\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}=\mathrm{NS}_{\kappa, \lambda} \mid E$.

Lemma 1.8 (Matet-Péan-Shelah [20]). (i) Suppose κ is Mahlo and $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \lambda}\right)$ $\leq \lambda^{<\kappa}$. Then there is $E \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{*}$ such that $\mathrm{NS}_{\kappa, \lambda}\left|E=\mathrm{I}_{\kappa, \lambda}\right| E$.
(ii) Suppose $\operatorname{cf}(\lambda)<\kappa$. Then $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \lambda}\right) \leq \bigcup_{\kappa \leq \tau<\lambda} \overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \tau}\right)$.

Thus if $\operatorname{cf}(\lambda)<\kappa$, then $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \lambda}\right) \leq 2^{<\lambda}$.
Definition. For $a, b \in P_{\kappa}(\lambda), a<b$ means that $a \in P_{|b \cap \kappa|}(b)$.
Definition. Let $n \in \omega \backslash 2$. For $A \subseteq P_{\kappa}(\lambda)$, let $[A]_{<}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n}: a_{1}<\right.$ $\left.\cdots<a_{n}\right\}$ and $[A]^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n}: a_{1} \subsetneq \cdots \subsetneq a_{n}\right\}$. Given $\mathcal{A}, \mathcal{B} \subseteq P\left(P_{\kappa}(\lambda)\right)$ and $\eta \in$ On, $\mathcal{A} \longrightarrow(\mathcal{B})_{\eta}^{n}$ (respectively, $\left.\mathcal{A} \longrightarrow(\mathcal{B})_{\eta}^{n}\right)$ asserts that for any $A \in \mathcal{A}$ and any $F:[A]^{n} \rightarrow \eta$, there is $B \in \mathcal{B} \cap P(A)$ such that F is constant on $[B]_{<}^{n}$ (respectively, $\left.[B]^{n}\right)$. For $\mathcal{A}, \mathcal{B}, \mathcal{C} \subseteq P\left(P_{\kappa}(\lambda)\right), \mathcal{A} \longrightarrow(\mathcal{B}, \mathcal{C})^{n}$ (respectively, $\left.\mathcal{A} \longrightarrow(\mathcal{B}, \mathcal{C})^{n}\right)$ asserts that for any $A \in \mathcal{A}$ and any $F:[A]^{n} \rightarrow 2$, there is either $B \in \mathcal{B} \cap P(A)$ such that F takes the constant value 0 on $[B]_{<}^{n}$ (respectively, $[B]^{n}$), or $C \in \mathcal{C} \cap P(A)$ such that F takes the constant value 1 on $[C]_{<}^{n}$ (respectively, $\left.[C]^{n}\right) . \mathcal{A} \underset{<}{\longrightarrow}(\mathcal{B})^{n}$ (respectively, $\left.\mathcal{A} \longrightarrow(\mathcal{B})^{n}\right)$
means that $\mathcal{A} \underset{<}{\longrightarrow}(\mathcal{B}, \mathcal{B})^{n}$ (respectively, $\left.\mathcal{A} \longrightarrow(\mathcal{B}, \mathcal{B})^{n}\right)$. For $A \subseteq P_{\kappa}(\lambda), A \longrightarrow(\mathcal{B}, \mathcal{C})^{n}$ (respectively, $A \underset{<}{\longrightarrow}(\mathcal{B}, \mathcal{C})^{n}$) means that $\{A\} \longrightarrow(\mathcal{B}, \mathcal{C})^{n}$ (respectively, $\left.\{A\} \longrightarrow(\mathcal{B}, \mathcal{C})^{n}\right)$. Similarly, $A \underset{<}{\longrightarrow}(\mathcal{B})_{\eta}^{n}$ (respectively, $\left.A \longrightarrow(\mathcal{B})_{\eta}^{n}\right)$ means that $\{A\} \longrightarrow(\mathcal{B})_{\eta}^{n}$ (respectively, $\left.\{A\} \longrightarrow(\mathcal{B})_{\eta}^{n}\right)$. Each of the above partition relations is negated by crossing the arrow.

Lemma 1.9 (Jech $[\mathbf{1 0}]$). Suppose $P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$. Then κ is weakly compact.
Definition. κ is mildly λ-ineffable if given $f_{a}: a \rightarrow 2$ for $a \in P_{\kappa}(\lambda)$, there is $g: \lambda \rightarrow 2$ such that for any $a \in P_{\kappa}(\lambda)$, we may find $b \in P_{\kappa}(\lambda)$ such that $a \subseteq b$ and $f_{b}|a=g| a$.

Lemma 1.10 (Carr [8], Matet [17]). If $P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$, then κ is mildly $\lambda^{<\kappa_{-}}$ ineffable.

Lemma 1.11 (Usuba [27]). Suppose $\operatorname{cf}(\lambda) \geq \kappa$ and κ is mildly λ-ineffable. Then $\lambda^{<\kappa}=\lambda$.

Definition. $\operatorname{NSJ}_{\kappa, \lambda}$ denotes the set of all $A \subseteq P_{\kappa}(\lambda)$ for which one can find $f_{a}: a \rightarrow 2$ for $a \in A$ so that for every $g: \lambda \rightarrow 2$, there is $\xi \in \lambda$ such that $\{a \in A: \forall \gamma \in$ $\left.a \cap \xi\left(f_{a}(\gamma)=g(\gamma)\right)\right\} \in \mathrm{NS}_{\kappa, \lambda}^{\xi}$.

It was observed in [23] that if $\operatorname{cf}(\lambda) \geq \kappa$ and $P_{\kappa}(\lambda) \notin \operatorname{NSJ}_{\kappa, \lambda}$, then κ is mildly λ-ineffable.

Definition. $\quad \mathrm{NSh}_{\kappa}$ is the set of all $B \subseteq \kappa$ for which one may find $k_{\beta}: \beta \rightarrow \beta$ for $\beta \in B$ such that for any $t: \kappa \rightarrow \kappa$, there is $\delta<\kappa$ with the property that $k_{\beta}|\delta \neq t| \delta$ for all $\beta \in B$ with $\beta \geq \delta$.
$\mathrm{NSh}_{\kappa, \lambda}$ is the set of all $A \subseteq P_{\kappa}(\lambda)$ with the property that we may find $f_{a}: a \rightarrow a$ for $a \in A$ such that for every $g: \lambda \rightarrow \lambda$, there is $b \in P_{\kappa}(\lambda)$ with $\{a \in A: b \subseteq a$ and $\left.g\left|b=f_{a}\right| b\right\}=\emptyset . \kappa$ is λ-Shelah if $P_{\kappa}(\lambda) \notin \mathrm{NSh}_{\kappa, \lambda}$.

Definition. NAIn ${ }_{\kappa, \lambda}\left(\right.$ respectively, $\left.\operatorname{NIn}_{\kappa, \lambda}\right)$ is the set of all $A \subseteq P_{\kappa}(\lambda)$ with the property that one may find $f_{a}: a \rightarrow 2$ for $a \in A$ such that there does not exist $g: \lambda \rightarrow 2$ and B in $\mathrm{I}_{\kappa, \lambda}^{+} \cap P(A)$ (respectively, $\mathrm{NS}_{\kappa, \lambda}^{+} \cap P(A)$) such that $g \mid a=f_{a}$ for any $a \in B$. κ is λ-ineffable (respectively, almost λ-ineffable) if $P_{\kappa}(\lambda)$ does not lie in $\mathrm{NIn}_{\kappa, \lambda}$ (respectively, $\left.\mathrm{NAIn}_{\kappa, \lambda}\right)$.

Lemma 1.12. (i) (Matet-Usuba [23]) NSJ $_{\kappa, \lambda}$ is a (possibly improper) seminormal ideal on $P_{\kappa}(\lambda)$.
(ii) (Carr [7]) Each of $\mathrm{NSh}_{\kappa, \lambda}, \mathrm{NAIn}_{\kappa, \lambda}, \mathrm{NIn}_{\kappa, \lambda}$ is a (possibly improper) normal ideal on $P_{\kappa}(\lambda)$. Moreover $\mathrm{NSh}_{\kappa, \lambda} \subseteq \mathrm{NAIn}_{\kappa, \lambda} \subseteq \operatorname{NIn}_{\kappa, \lambda}$.

It is simple to see that if μ is a cardinal with $\kappa<\mu<\lambda$, and $P_{\kappa}(\lambda) \notin \operatorname{NSJ}_{\kappa, \lambda}$ (respectively, κ is λ-Shelah, κ is almost λ-ineffable, κ is λ-ineffable), then $P_{\kappa}(\mu) \notin \mathrm{NSJ}_{\kappa, \mu}$ (respectively, κ is μ-Shelah, κ is almost μ-ineffable, κ is μ-ineffable).

Lemma 1.13 (Carr [8], Magidor [14]). Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{2}$. Then $A \in \operatorname{NIn}_{\kappa, \lambda}^{+}$.

Definition. NAIn ${ }_{\kappa, \lambda}^{[\lambda]<\kappa}$ (respectively, $\operatorname{NIn}_{\kappa, \lambda}^{[\lambda]<\kappa}$) is the set of all $A \subseteq P_{\kappa}(\lambda)$ with the property that one can find $f_{a}: P_{|a \cap \kappa|}(a) \rightarrow 2$ for $a \in A$ so that there does not exist $g: P_{\kappa}(\lambda) \rightarrow 2$ and B in $\mathrm{I}_{\kappa, \lambda}^{+} \cap P(A)$ (respectively, $\left.\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+} \cap P(A)\right)$ such that $g \mid P_{|a \cap \kappa|}(a)=f_{a}$ whenever $a \in B$.

Definition. $\operatorname{NIn}_{\kappa, \lambda, 2}$ is the set of all $A \subseteq P_{\kappa}(\lambda)$ with the property that one can find $f_{a_{0} a_{1}}: a_{0} \rightarrow 2$ for $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$ so that there does not exist $g: \lambda \rightarrow 2$ and B in $\mathrm{NS}_{\kappa, \lambda}^{+} \cap P(A)$ such that $g \mid a_{0}=f_{a_{0} a_{1}}$ for every $\left(a_{0}, a_{1}\right) \in[B]_{<}^{2}$.

Lemma 1.14 (Kamo [13], Matet [16]). Each of $\operatorname{NAIn}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}, \operatorname{NIn}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}, \operatorname{NIn}_{\kappa, \lambda, 2}$ is a (possibly improper) normal ideal on $P_{\kappa}(\lambda)$.

Definition. We define $p_{\kappa, \lambda}: P_{\kappa}\left(\lambda^{<\kappa}\right) \rightarrow P_{\kappa}(\lambda)$ by $p_{\kappa, \lambda}(x)=x \cap \lambda$.
Definition. For a regular uncountable cardinal μ, a μ-Aronszajn tree is a tree of height μ with every level of size less than μ and no cofinal branch.

Specker [26] established that for every infinite cardinal ν such that $\nu^{<\nu}=\nu$, there exists a ν^{+}-Aronszajn tree.

2. Ineffability 1.

We first show that if $\lambda^{<\lambda}=\lambda$, then $\operatorname{NIn}_{\kappa, \lambda}^{+} \longrightarrow\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$. We need to recall a few facts.

Lemma 2.1 (Matet-Usuba [23]). Suppose $\lambda^{<\lambda}=\lambda$, and let $A \in \mathrm{NSh}_{\kappa, \lambda}^{+}$and $F:[A]_{<}^{2} \rightarrow \eta$, where $2 \leq \eta<\kappa$. Then there is $Q \subseteq A$ such that either $Q \in \mathrm{NS}_{\kappa, \lambda}^{+}$and F takes the constant value 0 on $[Q]_{<}^{2}$, or $Q \in \mathrm{I}_{\kappa, \lambda}^{+}$and F takes the constant value i on $[Q]_{<}^{2}$ for some i with $0<i<\eta$.

Lemma 2.2 (Folklore). Suppose κ is Mahlo. Then $\left\{a \in P_{\kappa}(\lambda): a \cap \kappa\right.$ is an inaccessible cardinal $\} \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{*}$.

Lemma 2.3 (Usuba [27]). Suppose κ is λ-Shelah. Then $\mathrm{NSh}_{\kappa, \lambda}$ is a strongly normal ideal.

Lemma 2.4. Suppose κ is λ-Shelah. Then the following hold:
(i) (Johnson [12]) $\left\{a \in P_{\kappa}(\lambda)\right.$: o.t. (a) is a cardinal $\} \in \mathrm{NSh}_{\kappa, \lambda}^{*}$.
(ii) (Abe [3]) If λ is regular, then $\left\{a \in P_{\kappa}(\lambda):|a|\right.$ is regular $\} \in \mathrm{NSh}_{\kappa, \lambda}^{*}$.
(iii) (Abe [3]) If λ is a strong limit cardinal, then $\left\{a \in P_{\kappa}(\lambda):|a|\right.$ is a strong limit cardinal $\} \in \mathrm{NSh}_{\kappa, \lambda}^{*}$.
(iv) (Abe [3]) Let μ be a cardinal such that $\lambda=2^{\mu}$. Then $\left\{a \in P_{\kappa}(\lambda):|a|=2^{|a \cap \mu|}\right\} \in$ $\mathrm{NSh}_{\kappa, \lambda}^{*}$.

Lemma 2.5. Suppose κ is λ-Shelah, $\lambda^{<\lambda}=\lambda$ and λ is not inaccessible. Then $\left\{a \in P_{\kappa}(\lambda): 2^{<|a|}=|a|\right\} \in \mathrm{NSh}_{\kappa, \lambda}^{*}$.

Proof. Suppose otherwise. Then by Lemmas 2.3 and 2.4(i), we may find $A \in$ $\mathrm{NSh}_{\kappa, \lambda}^{+}$and $\alpha \in \lambda$ such that $2^{|a \cap \alpha|}>|a|$ for every $a \in A$. Put $C=\left\{a \in P_{\kappa}(\lambda):|a \cap \alpha|=\right.$ $|a \cap| \alpha|\mid\}$. Note that $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$. Pick a cardinal $\mu \geq|\alpha|$ with $2^{\mu}=\lambda$. Then for any $a \in A \cap C, 2^{|a \cap \mu|} \geq 2^{|a \cap| \alpha| |}>|a|$, which contradicts Lemma 2.4(iv).

Definition. Let $\mathcal{A}_{\kappa, \lambda}$ be the set of all $a \in P_{\kappa}(\lambda)$ such that
(a) $a \cap \kappa$ is an uncountable inaccessible cardinal, and
(b) o.t.(a) is a cardinal greater than $a \cap \kappa$.

Lemma 2.6. Suppose κ is λ-Shelah. Then $\mathcal{A}_{\kappa, \lambda} \in \mathrm{NSh}_{\kappa, \lambda}^{*}$.
Proof. By Lemmas 2.2, 2.3 and 2.4(i).
Lemma 2.7. Suppose κ is λ-Shelah and $\lambda^{<\lambda}=\lambda$. Then $\left\{a \in \mathcal{A}_{\kappa, \lambda}\right.$: o.t. $(a)^{<0 . t .(a)}$ $=$ o.t. $(a)\} \in \mathrm{NSh}_{\kappa, \lambda}^{*}$.

Proof. By Lemmas 2.4 ((ii) and (iii)), 2.5 and 2.6.
Lemma 2.8 (Abe [4]). Suppose $\operatorname{cf}(\lambda) \geq \kappa, A \in \operatorname{NAIn}_{\kappa, \lambda}^{+} \cap P\left(\mathcal{A}_{\kappa, \lambda}\right)$, and $s_{a} \subseteq$ $P_{a \cap \kappa}(a)$ for $a \in A$. Then the set of all $a \in A$ such that $\left\{b \in A \cap P_{a \cap \kappa}(a): s_{b}=\right.$ $\left.s_{a} \cap P_{b \cap \kappa}(b)\right\} \in \mathrm{NSh}_{a \cap \kappa, a}$ lies in $\operatorname{NAIn}_{\kappa, \lambda}$.

Proof. This is immediate from Proposition 3.6, Fact 3.7 and Lemma 3.8 of [4].

Lemma 2.9 (Kamo [13]). $\quad \operatorname{NIn}_{\kappa, \lambda}^{[\lambda]<\kappa}=p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)$.
Lemma 2.10 (Abe-Usuba [5]). Suppose $A \in \operatorname{Nin}_{\kappa, \lambda}^{+}$. Then there is $H \in \operatorname{Nin}_{\kappa, \lambda}^{+} \cap$ $P(A)$ and $t_{a}: a \rightarrow a$ for $a \in H$ such that $a<b$ for every $(a, b) \in[H]^{2}$ with $t_{a}=t_{b} \mid a$.

Proposition 2.11. Suppose $\lambda^{<\lambda}=\lambda$, and let $A \in \operatorname{NIn}_{\kappa, \lambda}^{+}$and $F:[A]^{3} \rightarrow \eta$, where $2 \leq \eta<\kappa$. Then there is $Q \subseteq A$ such that either $Q \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda \lambda<\kappa}\right)^{+}$and F takes the constant value 0 on $[Q]^{3}$, or $Q \in \mathrm{NSS}_{\kappa, \lambda}^{+}$and F takes the constant value i on $[Q]^{3}$ for some i with $0<i<\eta$.

Proof. By Lemmas 1.4 and 1.7, we may find $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $\mathrm{NSS}_{\kappa, \lambda} \mid C=$ $\mathrm{I}_{\kappa, \lambda} \mid C$, and $E \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{*}$ such that $\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}=\mathrm{NS}_{\kappa, \lambda} \mid E$. By Lemma 2.10, there is $H \in \operatorname{Nin}_{\kappa, \lambda}^{+} \cap P(A)$ and $t_{a}: a \rightarrow a$ for $a \in H$ such that $a<b$ for every $(a, b) \in[H]^{2}$ with $t_{a}=t_{b} \mid a$. Select a bijection $j: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \times(1+\eta) \rightarrow P_{\kappa}(\lambda)$. Let B be the set of all $d \in C \cap E \cap H \cap \mathcal{A}_{\kappa, \lambda}$ such that
(a) $d \cap \kappa \geq 1+\eta$,
(b) o.t.(d) ${ }^{<\text {o.t.(d) }}=$ o.t.(d), and
(c) $j(a, b, i)<d$ for any $(a, b) \in\left[P_{d \cap \kappa}(d)\right]_{<}^{2}$ and any $i<1+\eta$.

Then $B \in \operatorname{NIn}_{\kappa, \lambda}^{+}$by Lemmas 2.3 and 2.7. For $d \in B$, define $f_{d}:\left[B \cap P_{d \cap \kappa}(d)\right]_{<}^{2} \rightarrow \eta$ by $f_{d}(a, b)=F(a, b, d)$, and put

- $v_{d}=\left\{j(a, b, 1+i):(a, b) \in\left[P_{d \cap \kappa}(d)\right]_{<}^{2}\right.$ and $\left.f_{d}(a, b)=i\right\}$,
- $w_{d}=\left\{j(\{\gamma\},\{\delta\}, 0):(\gamma, \delta) \in d \times d\right.$ and $\left.t_{d}(\gamma)=\delta\right\}$,
- $s_{d}=v_{d} \cup w_{d}$, and
- $z_{d}=\left\{c \in B \cap P_{d \cap \kappa}(d): s_{c}=s_{d} \cap P_{c \cap \kappa}(c)\right\}$.

Set $W=\left\{d \in B: z_{d} \in \operatorname{NSh}_{d \cap \kappa, d}^{+}\right\}$. Then $W \in \operatorname{NIn}_{\kappa, \lambda}^{+}$by Lemma 2.8. For $d \in W$, we may find by Lemma $2.1 Q_{d} \subseteq z_{d}$ and $i_{d}<\eta$ such that
(α) f_{d} takes the constant value i_{d} on $\left[Q_{d}\right]_{<}^{2}$, and
(β) Q_{d} lies in $\mathrm{NS}_{d \cap \kappa, d}^{+}$if $i_{d}=0$, and in $\mathrm{I}_{d \cap \kappa, d}^{+}$otherwise.
There must be $i<\eta$ such that $\left\{d \in W: i_{d}=i\right\} \in \operatorname{NIn}_{\kappa, \lambda}^{+}$. By Lemma 2.9, $\operatorname{NIn}_{\kappa, \lambda}^{[\lambda]<\kappa}=$ $\operatorname{NIn}_{\kappa, \lambda}$. Hence we may find $Q \subseteq P_{\kappa}(\lambda)$ and $R \in \mathrm{NS}_{\kappa, \lambda}^{+}$with $R \subseteq\left\{d \in W: i_{d}=i\right\}$ such that $Q \cap P_{d \cap \kappa}(d)=Q_{d}$ for every $d \in R$. If $i>0$, then clearly $Q \in \mathrm{I}_{\kappa, \lambda}^{+}$, and in fact $Q \in \mathrm{NSS}_{\kappa, \lambda}^{+}$since $Q \subseteq C$.

Claim 1. Suppose $i=0$. Then $Q \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+}$.
Proof of Claim 1. Since $Q \subseteq E$, it suffices to show that $Q \in \mathrm{NS}_{\kappa, \lambda}^{+}$. Fix $D \in$ $\mathrm{NS}_{\kappa, \lambda}^{*}$. Select $G: \lambda \times \lambda \rightarrow P_{\kappa}(\lambda)$ so that $\left\{a \in P_{\kappa}(\lambda): \forall(\zeta, \xi) \in a \times a(G(\zeta, \xi) \subseteq a)\right\} \subseteq D$. Since $R \in \mathrm{NS}_{\kappa, \lambda}^{+}$, we may find $e \in R$ such that $G(\zeta, \xi)<e$ for every $(\zeta, \xi) \in e \times e$. Now $Q_{e} \in \mathrm{NS}_{e \cap \kappa, e}^{+}$, so we may find $a \in Q_{e}$ such that $G(\zeta, \xi) \subseteq a$ for every $(\zeta, \xi) \in a \times a$. Then clearly $a \in Q \cap D$, which completes the proof of the claim.

Finally, let us show that F takes the constant value i on $[Q]^{3}$. Thus let $\left(a_{0}, a_{1}, a_{2}\right) \in$ $[Q]^{3}$. Pick $d \in R$ with $a_{2}<d$. Then $\left\{a_{0}, a_{1}, a_{2}\right\} \subseteq Q_{d} \subseteq z_{d}$.

Claim 2. Let $l<3$. Then $t_{a_{l}}=t_{d} \mid a_{l}$.
Proof of Claim 2. Fix $\gamma \in a_{l}$. Then $j\left(\{\gamma\},\left\{t_{a_{l}}(\gamma)\right\}, 0\right) \in s_{d}$ since $s_{a_{l}}=s_{d} \cap$ $P_{a_{l} \cap \kappa}\left(a_{l}\right)$, and therefore $t_{a_{l}}(\gamma)=t_{d}(\gamma)$, which completes the proof of Claim 2.

It follows from Claim 2 that $a_{0}<a_{1}<a_{2}$. Then $f_{d}\left(a_{0}, a_{1}\right)=i$, so $j\left(a_{0}, a_{1}, 1+i\right) \in s_{d}$. Now $s_{a_{2}}=s_{d} \cap P_{a_{2} \cap \kappa}\left(a_{2}\right)$, and therefore $j\left(a_{0}, a_{1}, 1+i\right) \in s_{a_{2}}$. Hence $i=f_{a_{2}}\left(a_{0}, a_{1}\right)=$ $F\left(a_{0}, a_{1}, a_{2}\right)$.

Our next result asserts that $\left\{A \subseteq P_{\kappa}(\lambda): A \underset{<}{\longrightarrow}\left(\operatorname{NS}_{\kappa, \lambda}^{+},\left[P_{\kappa}(\lambda)\right]_{<}^{4}\right)^{3}\right\} \subseteq \operatorname{NIn}_{\kappa, \lambda}^{+}$.
Lemma 2.12. Let J be an ideal on $P_{\kappa}(\lambda)$, and $A \subseteq P_{\kappa}(\lambda)$ such that for any $g:[A]_{<}^{3} \rightarrow 2$, there is either $B \in J^{+} \cap P(A)$ such that g takes the constant value 0 on $[B]_{<}^{3}$, or $\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in[A]_{<}^{4}$ such that $g\left(a_{0}, a_{1}, a_{2}\right)=g\left(a_{1}, a_{2}, a_{3}\right)=1$. Then $A \underset{<}{\longrightarrow}\left(J^{+}\right)^{2}$.

Proof. Fix $f:[A]_{<}^{2} \rightarrow 2$. Define $g:[A]_{<}^{3} \rightarrow 2$ by: $g\left(b_{0}, b_{1}, b_{2}\right)=1$ just in case $f\left(b_{0}, b_{1}\right)=0$ and $f\left(b_{1}, b_{2}\right)=1$. Then clearly there must be $B \in J^{+} \cap P(A)$ such that g
takes the constant value 0 on $[B]_{<}^{3}$. Now suppose there is $(c, d) \in[B]_{<}^{2}$ with $f(c, d)=0$. Put $C=\{a \in B: d<a\}$. We claim that f takes the constant value 0 on $[C]_{<}^{2}$. Suppose otherwise, and pick $(v, w) \in[C]_{<}^{2}$ with $f(v, w)=1$. Then $f(d, v)=1$ since $g(c, d, v)=0$, and hence $g(c, d, v)=1$. Contradiction.

Proposition 2.13. Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+},\left[P_{\kappa}(\lambda)\right]_{<}^{4}\right)^{3}$. Then $A \in \mathrm{NIn}_{\kappa, \lambda}^{+}$.

Proof. By Lemmas 1.13 and 2.12.
If $\lambda^{<\lambda}=\lambda$, then by a result of [23], for any $A \subseteq P_{\kappa}(\lambda), A \in \mathrm{NSh}_{\kappa, \lambda}^{+}$if and only if $A \underset{<}{\longrightarrow}\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]}\right)^{+\kappa}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{2}$ if and only if $A \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$. Replacing pairs by triples, we obtain the following:

Theorem 2.14. Suppose $\lambda^{<\lambda}=\lambda$. Then for any $A \subseteq P_{\kappa}(\lambda)$, the following are equivalent:
(i) $A \in \mathrm{NIn}_{\kappa, \lambda}^{+}$.
(ii) $A \longrightarrow\left(\left(\mathrm{NS}_{\kappa, \lambda}^{\left[\lambda<^{<\kappa}\right.}\right)^{+}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$.
(iii) $A \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. By Propositions 2.11 and 2.13 .
To conclude this section, let us observe that $\mathrm{NIn}_{\kappa, \lambda}^{+} \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{3}$ does not hold in case $\operatorname{cf}(\lambda) \geq \kappa$.

Lemma 2.15. Let μ be a cardinal with $\kappa \leq \mu \leq \lambda$, and let J be an ideal on $P_{\kappa}(\lambda)$ that is ξ-normal for every $\xi<\mu$. Further let $A \in J^{+}$be such that $A \underset{<}{\longrightarrow}\left(J^{+}\right)^{3}$, and let $f_{a_{0} a_{1}}: a_{0} \cap \mu \rightarrow 2$ for $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$. Then we may find $B \in J^{+} \cap P(A)$, $h: \mu \rightarrow 2$, and $Q_{\xi} \in J$ for $\xi<\mu$ such that for any $\xi<\mu$ and any $\left(a_{0}, a_{1}\right) \in\left[B \backslash Q_{\xi}\right]^{2}$, $h\left|\left(a_{0} \cap \xi\right)=f_{a_{0} a_{1}}\right|\left(a_{0} \cap \xi\right)$.

Proof. Define $F:[A]_{<}^{3} \rightarrow 2$ by: $F\left(a_{0}, a_{1}, a_{2}\right)=1$ just in case there is $\alpha \in a_{0}$ such that $f_{a_{0} a_{1}}\left|\left(a_{0} \cap \alpha\right)=f_{a_{1} a_{2}}\right|\left(a_{0} \cap \alpha\right), f_{a_{0} a_{1}}(\alpha)=0$, and $f_{a_{1} a_{2}}(\alpha)=1$. We may find $B \in J^{+} \cap P(A)$ and $i<2$ such that F takes the constant value i on $[B]_{<}^{3}$. We inductively construct $h_{\xi}: \xi \rightarrow 2$ and $Q_{\xi} \in J$ for $\xi<\mu$ so that for any $\xi<\mu$ and any $\left(a_{0}, a_{1}\right) \in\left[B \backslash Q_{\xi}\right]_{<}^{2}, h_{\xi}\left|\left(a_{0} \cap \xi\right)=f_{a_{0} a_{1}}\right|\left(a_{0} \cap \xi\right)$. For $\xi=0$, put $h_{\xi}=\emptyset=Q_{\xi}$. Now suppose $\xi>0$, and h_{η} and Q_{η} have already been defined for all $\eta<\xi$. In case ξ is a limit ordinal, put $h_{\xi}=\bigcup_{\eta<\xi} h_{\eta}$ and $Q_{\xi}=S \cup T$, where $S=\left\{a \in P_{\kappa}(\lambda): \exists \eta \in a \cap \xi(a \in\right.$ $\left.\left.Q_{\eta}\right)\right\}$ and $T=\left\{a \in P_{\kappa}(\lambda): \exists \eta \in a \cap \xi(\eta+1 \notin a)\right\}$. Next suppose ξ is a successor ordinal, say $\xi=\zeta+1$. Put $R=\left\{a \in P_{\kappa}(\lambda): \zeta \notin a\right\}$. If $f_{c_{0} c_{1}}(\zeta)=1-i$ for every $\left(c_{0}, c_{1}\right) \in\left[B \backslash\left(Q_{\zeta} \cup R\right)\right]_{<}^{2}$, set $h_{\xi}=h_{\zeta} \cup\{(\zeta, 1-i)\}$ and $Q_{\xi}=Q_{\zeta} \cup R$. Now assume there is $\left(c_{0}, c_{1}\right) \in\left[B \backslash\left(Q_{\zeta} \cup R\right)\right]_{<}^{2}$ such that $f_{c_{0} c_{1}}(\zeta)=i$. Let Z be the set of all $a \in P_{\kappa}(\lambda)$ such that $c_{1}<a$ does not hold. Then clearly for any $\left(a_{0}, a_{1}\right) \in\left[B \backslash\left(Q_{\zeta} \cup R \cup Z\right)\right]_{<}^{2}$, $f_{c_{1} a_{0}}(\zeta)=i$ (since $F\left(c_{0}, c_{1}, a_{0}\right)=i$), and therefore $f_{a_{0} a_{1}}(\zeta)=i$ (since $\left.F\left(c_{1}, a_{0}, a_{1}\right)=i\right)$. Put $h_{\xi}=h_{\zeta} \cup\{(\zeta, i)\}$ and $Q_{\xi}=Q_{\zeta} \cup R \cup Z$. Finally, set $h=\bigcup_{\xi<\mu} h_{\xi}$.

Lemma 2.16. Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{3}$. Then $A \in \operatorname{NIn}_{\kappa, \lambda, 2}^{+}$.
Proof. This easily follows from Lemma 2.15.
Lemma 2.17 (Abe [4]). Let $A \in \operatorname{Nin}_{\kappa, \lambda}^{+}$. Then $\left\{d \in \mathcal{A}_{\kappa, \lambda}: A \cap P_{d \cap \kappa}(d) \in\right.$ $\left.\operatorname{NIn}_{d \cap \kappa, d}\right\} \in \operatorname{NIn}_{\kappa, \lambda}^{+}$.

Lemma 2.18. $\left\{d \in \mathcal{A}_{\kappa, \lambda}: d \cap \kappa\right.$ is not d-ineffable $\} \in \operatorname{Nin}_{\kappa, \lambda, 2}$.
Proof. Suppose otherwise. Pick a bijection $j: \lambda \times \lambda \times \lambda \times \lambda \rightarrow \lambda$. Let A be the set of all $d \in \mathcal{A}_{\kappa, \lambda}$ such that j " $(d \times d \times d \times d)=d$ and $d \cap \kappa$ is not d-ineffable. Then by Lemmas 2.3 and 2.6, $A \in \operatorname{NIn}_{\kappa, \lambda, 2}^{+}$. For $d \in A$, select $s_{b}^{d} \subseteq b$ for $b \in P_{d \cap \kappa}(d)$ so that for any $s \subseteq d$, $\left\{b \in P_{d \cap \kappa}(d): s_{b}^{d}=s \cap b\right\} \in \mathrm{NS}_{d \cap \kappa, d}$. For $(d, e) \in[A]_{<}^{2}$, put $x_{d e}=\left\{b \in A \cap P_{d \cap \kappa}(d): s_{b}^{d}=s_{d}^{e} \cap b\right\}$. Note that $x_{d e} \in \mathrm{NS}_{d \cap_{\kappa, d}}$. Pick $f_{d e}: d \times d \rightarrow d$ so that $x_{d e} \cap\left\{b \in P_{d \cap \kappa}(d): f_{d e} "(b \times b) \subseteq b\right\}=\emptyset$. Set $t_{d e}=v_{d e} \cup w_{d e}$, where $v_{d e}=$ $\left\{j(0,0,0, \xi): \xi \in s_{d}^{e}\right\}$ and $w_{d e}=\left\{j(1, \alpha, \beta, \gamma): \alpha, \beta, \gamma \in d\right.$ and $\left.f_{d e}(\alpha, \beta)=\gamma\right\}$.

We may find $B \in \mathrm{NS}_{\kappa, \lambda}^{+} \cap P(A)$ and $t \subseteq \lambda$ such that $t_{d e}=t \cap d$, for all $(d, e) \in[B]_{<}^{2}$. Set $S=\{\xi<\lambda: j(0,0,0, \xi) \in t\}$, and define $f: \lambda \times \lambda \rightarrow \lambda$ by $f(\alpha, \beta)=$ the unique γ such that $j(1, \alpha, \beta, \gamma) \in t$. Let C be the set of all $a \in P_{\kappa}(\lambda)$ such that $f^{\prime \prime}(a \times a) \subseteq a$. Now let $(b, d, e) \in[B \cap C]_{<}^{3}$. Then $b \in x_{d e}$ since $s_{b}^{d}=S \cap b=s_{b}^{e} \cap b$. Moreover $f_{d e}=f \mid(d \times d)$, so $f_{d e}$ " $(b \times b) \subseteq b$. Contradiction.

Proposition 2.19. Assume $\operatorname{cf}(\lambda) \geq \kappa$. Then $\mathrm{NIn}_{\kappa, \lambda}^{+} \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{3}$.
Proof. By Lemmas 2.16, 2.17 and 2.18.
Note that by Lemmas 1.5 and 2.3 and Proposition 2.19, $\mathrm{NIn}_{\kappa, \lambda}^{+} \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$ in case $\kappa \leq \operatorname{cf}(\lambda)<\lambda$.

Question 1. Does $\mathrm{NIn}_{\kappa, \lambda}^{+} \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$ hold in case $\kappa \leq \operatorname{cf}(\lambda)<\lambda=2^{<\lambda}$?

3. Ineffability 2.

In this section we are concerned with the case $\operatorname{cf}(\lambda)<\kappa$. We show that if $2^{\lambda}=\lambda^{<\kappa}$, then $\left(p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)\right)^{+} \longrightarrow\left(\left(\operatorname{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+}, \mathrm{NS}_{\kappa, \lambda}^{+}\right)^{3}$. Furthermore, we establish that $\{A \subseteq$ $\left.P_{\kappa}(\lambda): A \underset{<}{\longrightarrow}\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+},\left[P_{\kappa}(\lambda)\right]_{<}^{4}\right)^{3}\right\} \subseteq\left(p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)\right)^{+}$in case $\operatorname{cf}(\lambda)<\kappa$.

The reason we work with $p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)$ is that the ideal $\operatorname{NIn}_{\kappa, \lambda}$ is not large enough. In fact, if $2^{\lambda}=\lambda^{<\kappa}$, then by results of [23] and [27], for any $A \in \operatorname{NIn}_{\kappa, \lambda}^{+}$, there is $B \in \operatorname{NIn}_{\kappa, \lambda}^{+} \cap P(A)$ with $B \underset{<}{\not}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ (we can take $B=\left\{a \in A \cap \mathcal{A}_{\kappa, \lambda} \cap E: A \cap \mathcal{A}_{\kappa, \lambda} \cap\right.$ $\left.E \cap P_{a \cap \kappa}(a) \in \operatorname{Nin}_{a \cap \kappa, a}\right\}$, where $E \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{*}$ is such that $\left.\mathrm{NS}_{\kappa, \lambda}\left|E=\mathrm{I}_{\kappa, \lambda}\right| E\right)$. On the other hand it can be shown that if $\operatorname{cf}(\lambda)<\kappa$, then $p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)=\left\{A \subseteq P_{\kappa}(\lambda): A \nrightarrow\right.$ $\left.\left.\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}\right)^{2}\right\}=\left\{A \subseteq P_{\kappa}(\lambda): A \nless<\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+}\right)^{2}\right\}$.

Definition. Suppose κ is inaccessible and $\operatorname{cf}(\lambda)<\kappa$. Let $\left\langle y_{\alpha}: \lambda \leq \alpha<\lambda^{<\kappa}\right\rangle$ be a one-to-one enumeration of the elements of $P_{\kappa}(\lambda)$. Define $q_{\kappa, \lambda}: P_{\kappa}(\lambda) \rightarrow P_{\kappa}\left(\lambda^{<\kappa}\right)$ by
$q_{\kappa, \lambda}(a)=a \cup\left\{\alpha \in \lambda^{<\kappa} \backslash \lambda: y_{\alpha}<a\right\}$, and set $\mathcal{X}_{\kappa, \lambda}=\left\{x \in P_{\kappa}\left(\lambda^{<\kappa}\right): x=q_{\kappa, \lambda}(x \cap \lambda)\right\}$.
Lemma 3.1 (Abe [1]). Suppose κ is Mahlo and $\operatorname{cf}(\lambda)<\kappa$. Then the following hold:
(i) $\mathcal{X}_{\kappa, \lambda} \in\left(\mathrm{NS}_{\kappa, \lambda<\kappa}^{\left[\lambda^{<\kappa}<\kappa\right.}\right)^{*}$.
(ii) $q_{\kappa, \lambda}$ is an isomorphism from $\left(P_{\kappa}(\lambda), \subsetneq\right)$ onto $\left(\mathcal{X}_{\kappa, \lambda}, \subsetneq\right)$.
(iii) $q_{\kappa, \lambda}\left(\mathrm{I}_{\kappa, \lambda}\right)=\mathrm{I}_{\kappa, \lambda<\kappa} \mid \mathcal{X}_{\kappa, \lambda}$.
(iv) $q_{\kappa, \lambda}\left(\mathrm{NS}_{\kappa, \lambda}\right)=\mathrm{NS}_{\kappa, \lambda<\kappa}^{\lambda} \mid \mathcal{X}_{\kappa, \lambda}$.
(v) $q_{\kappa, \lambda}\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)=\mathrm{NS}_{\kappa, \lambda<\kappa}^{\left[\lambda^{<\kappa}\right]^{<\kappa}}=\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}} \mid \mathcal{X}_{\kappa, \lambda}$.

Lemma 3.2. Suppose κ is inaccessible and $\operatorname{cf}(\lambda)<\kappa$, and let $Q \subseteq \mathcal{X}_{\kappa, \lambda}$. Then $q_{\kappa, \lambda}^{-1}(Q)=\{x \cap \lambda: x \in Q\}$.

Proof. \subseteq : Let $a \in P_{\kappa}(\lambda)$ be such that $q_{\kappa, \lambda}(a) \in Q$. Then $a=\lambda \cap q_{\kappa, \lambda}(a)$.
\supseteq : Let $x \in Q$. Then $x=q_{\kappa, \lambda}(x) \cap \lambda$, so $x \cap \lambda \in q_{\kappa, \lambda}^{-1}(Q)$
Lemma 3.3 (Usuba [27]). Suppose κ is λ-Shelah and $\operatorname{cf}(\lambda)<\kappa$. Then $\lambda^{<\kappa}=\lambda^{+}$.
The above lemmas and Proposition 2.11 give:
Proposition 3.4. Suppose $\operatorname{cf}(\lambda)<\kappa$ and $2^{\lambda}=\lambda^{<\kappa}$ and let $A \in$ $\left(p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)\right)^{+}$. Further let $F:[A]^{3} \rightarrow \eta$, where $2 \leq \eta<\kappa$. Then there is $B \subseteq A$ such that either $B \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}$and F takes the constant value 0 on $[B]^{3}$, or $B \in \mathrm{NS}_{\kappa, \lambda}^{+}$ and F takes the constant value i on $[B]^{3}$ for some i with $0<i<\eta$.

Proof. Let $X=\left\{x \in P_{\kappa}\left(\lambda^{<\kappa}\right): x \cap \lambda \in A\right\}$. Then by Lemmas 2.3 and 3.1, $X \cap$ $\mathcal{X}_{\kappa, \lambda} \in \operatorname{Nin}_{\kappa, \lambda<\kappa}^{+}$. Define $G:\left[X \cap \mathcal{X}_{\kappa, \lambda}\right]^{3} \rightarrow \eta$ by $G\left(x_{0}, x_{1}, x_{2}\right)=F\left(x_{0} \cap \lambda, x_{1} \cap \lambda, x_{2} \cap \lambda\right)$. Since $\left(\lambda^{<\kappa}\right)^{<\left(\lambda^{<\kappa}\right)}=\lambda^{<\kappa}$ by Lemma 3.3, we may find by Proposition $2.11 Q \subseteq X \cap \mathcal{X}_{\kappa, \lambda}$ and $i<\eta$ such that
(a) G takes the constant value i on $[Q]^{3}$, and
(b) $Q \in\left(\mathrm{NS}_{\kappa, \lambda<\kappa}^{\left[\lambda^{<\kappa}<\kappa\right.}\right)^{+}$if $i=0$, and $Q \in \mathrm{NSS}_{\kappa, \lambda<\kappa}^{+}$otherwise.

Put $B=\{x \cap \lambda: x \in Q\}$. Note that $B \subseteq A$. By Lemma 3.2, $B=q_{\kappa, \lambda}^{-1}(Q)$, so by Lemma $3.1 Q \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+}$if $i=0$, and $Q \in \mathrm{NS}_{\kappa, \lambda}^{+}$otherwise.

Let us show that F takes the constant value i on $[B]^{3}$. Thus let $\left(a_{0}, a_{1}, a_{2}\right) \in[B]^{3}$. For $j<3$, set $x_{j}=q_{\kappa, \lambda}\left(a_{j}\right)$. Note that $x_{j} \in Q$ and $x_{j} \cap \lambda=a_{j}$. By Lemma 3.1 $\left(x_{0}, x_{1}, x_{2}\right) \in[Q]^{3}$, so $i=G\left(x_{0}, x_{1}, x_{2}\right)=F\left(a_{0}, a_{1}, a_{2}\right)$.

Proposition 3.5. Suppose $\operatorname{cf}(\lambda)<\kappa$, and let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \longrightarrow$ $\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+},\left[P_{\kappa}(\lambda)\right]_{<}^{4}\right)^{3}$. Then $A \in\left(p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)\right)^{+}$.

Proof. Set $Z=\left\{x \in P_{\kappa}\left(\lambda^{<\kappa}\right): x \cap \lambda \in A\right\}$. By Lemma 1.13 it suffices to show that $Z \underset{<}{\longrightarrow}\left(\left(\mathrm{NS}_{\kappa, \lambda<\kappa}\right)^{+}\right)^{2}$. Fix $F: Z \times Z \rightarrow 2$. Define $G:[A]_{<}^{2} \rightarrow 2$ by $G\left(a_{0}, a_{1}\right)=$ $F\left(q_{\kappa, \lambda}\left(a_{0}\right), q_{\kappa, \lambda}\left(a_{1}\right)\right)$. By Lemma 2.12 we may find $B \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+} \cap P(A)$ and $i<2$ such that G takes the constant value i on $[B]_{<}^{2}$. Set $X=q_{\kappa, \lambda}$ " B. Then clearly $X \subseteq Z$.

Moreover by Lemma 3.1, $X \in\left(\mathrm{NS}_{\kappa, \lambda<\kappa}^{\left[\lambda^{<\kappa}\right]^{<\kappa}}\right)^{+}$. We claim that F takes the constant value i on $[X]_{<}^{2}$. Fix $a_{0}, a_{1} \in B$ with $q_{\kappa, \lambda}\left(a_{0}\right)<q_{\kappa, \lambda}\left(a_{1}\right)$. Then $a_{0} \subseteq a_{1}$ since $q_{\kappa, \lambda}\left(a_{0}\right) \subseteq$ $q_{\kappa, \lambda}\left(a_{1}\right)$. Furthermore, $\left|a_{0}\right| \leq\left|q_{\kappa, \lambda}\left(a_{0}\right)\right|<\left|q_{\kappa, \lambda}\left(a_{1}\right) \cap \kappa\right|=\left|a_{1} \cap \kappa\right|$. Thus $a_{0}<a_{1}$, and consequently $F\left(q_{\kappa, \lambda}\left(a_{0}\right), q_{\kappa, \lambda}\left(a_{1}\right)\right)=G\left(a_{0}, a_{1}\right)=i$.

4. Almost ineffability 1.

We start this section by showing that if $\lambda^{<\lambda}=\lambda$, then $\mathrm{NAIn}_{\kappa, \lambda}^{+} \longrightarrow\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$.
The following easily follows from Lemma 3.1:
Lemma 4.1. $\operatorname{NAIn}_{\kappa, \lambda}^{[\lambda]<\kappa}=p_{\kappa, \lambda}\left(\operatorname{NAIn}_{\kappa, \lambda<\kappa}\right)$.
Lemma 4.2. Suppose $\lambda^{<\lambda}=\lambda$. Then NAIn $_{\kappa, \lambda}^{+} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)_{\eta}^{3}$ for every η with $2 \leq$ $\eta<\kappa$.

Proof. Fix $A \in \operatorname{NAIn}_{\kappa, \lambda}^{+}$and $F:[A]_{<}^{3} \rightarrow \eta$, where $2 \leq \eta<\kappa$. Select a bijection $j: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \times \eta \rightarrow P_{\kappa}(\lambda)$. Let B be the set of all $d \in A \cap \mathcal{A}_{\kappa, \lambda}$ such that
(a) $d \cap \kappa \geq \eta$,
(b) o.t.(d)<o.t.(d) $=$ o.t.(d), and
(c) $j(a, b, i)<d$ for any $(a, b) \in\left[P_{d \cap \kappa}(d)\right]_{<}^{2}$ and any $i \in \eta$.

Then $B \in \operatorname{NAIn}_{\kappa, \lambda}^{+}$by Lemmas 2.3 and 2.7. For $d \in B$, define $f_{d}:\left[B \cap P_{d \cap \kappa}(d)\right]_{<}^{2} \rightarrow \eta$ by $f_{d}(a, b)=F(a, b, d)$, and put

- $s_{d}=\left\{j(a, b, i):(a, b) \in\left[P_{d \cap \kappa}(d)\right]_{<}^{2}\right.$ and $\left.f_{d}(a, b)=i\right\}$ and
- $z_{d}=\left\{c \in B \cap P_{d \cap \kappa}(d): s_{c}=s_{d} \cap P_{c \cap \kappa}(c)\right\}$.

Set $W=\left\{d \in B: z_{d} \in \mathrm{NSh}_{d \cap \kappa, d}^{+}\right\}$. Then $W \in \operatorname{NAIn}_{\kappa, \lambda}^{+}$by Lemma 2.8. For $d \in W$, we may find by Lemma $2.1 Q_{d} \in \mathrm{I}_{d \cap \kappa, d}^{+} \cap P\left(z_{d}\right)$ and $i_{d}<\eta$ such that f_{d} takes the constant value i_{d} on $\left[Q_{d}\right]_{<}^{2}$. There must be $i<\eta$ such that $\left\{d \in W: i_{d}=i\right\} \in \operatorname{NAIn}_{\kappa, \lambda}^{+}$. By Lemma 4.1, $\operatorname{NAIn}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}=\operatorname{NAIn}_{\kappa, \lambda}$. Hence we may find $Q \subseteq P_{\kappa}(\lambda)$ and $R \in \mathrm{I}_{\kappa, \lambda}^{+}$with $R \subseteq\left\{d \in W: i_{d}=i\right\}$ such that $Q \cap P_{d \cap \kappa}(d)=Q_{d}$ for every $d \in R$. It is simple to see that $Q \in \mathrm{I}_{\kappa, \lambda}^{+}$.

We claim that F takes the constant value i on $[Q]_{<}^{3}$. Thus let $(a, b, c) \in[Q]_{<}^{3}$. Pick $d \in R$ with $c<d$. Then $(a, b, c) \in\left[Q_{d}\right]_{<}^{3}$ since $Q \cap P_{d \cap \kappa}(d)=Q_{d}$. Hence $f_{d}(a, b)=i$, so $j(a, b, i) \in s_{d}$. Now $s_{c}=s_{d} \cap P_{c \cap \kappa}(c)$ since $c \in z_{d}$, and consequently $j(a, b, i) \in s_{c}$. Thus $i=f_{c}(a, b)=F(a, b, c)$.

Lemma 4.3. Suppose $u(\kappa, \lambda)=\lambda$ and there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $\mathrm{NSS}_{\kappa, \lambda} \mid C=$ $\mathrm{I}_{\kappa, \lambda} \mid C$. Then for any $A \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P(C)$, there is $B \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P(A)$ with $[B]_{<}^{2}=[B]^{2}$.

Proof. Select $e_{\alpha} \in P_{\kappa}(\lambda)$ for $\alpha<\lambda$ so that $\left\{e_{\alpha}: \alpha<\lambda\right\} \in \mathrm{I}_{\kappa, \lambda}^{+}$. Now given $A \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P(C)$, define inductively $a_{\alpha} \in A$ for $\alpha<\lambda$ so that
(a) $\alpha \in a_{\alpha}$ and $e_{\alpha} \subseteq a_{\alpha}$,
(b) $a_{\beta}<a_{\alpha}$ for every $\beta \in a_{\alpha} \cap \alpha$, and
(c) $a_{\alpha} \backslash a_{\beta} \neq \emptyset$ for every $\beta<\alpha$.

Then $B=\left\{a_{\alpha}: \alpha<\lambda\right\}$ is as desired.
Proposition 4.4. Suppose $\lambda^{<\lambda}=\lambda$. Then $\operatorname{NAIn}_{\kappa, \lambda}^{+} \longrightarrow\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)_{\eta}^{3}$ for every η with $2 \leq \eta<\kappa$.

Proof. By Lemmas 1.4, 2.3, 4.2 and 4.3.
In the remainder of this section we establish that if $\lambda^{<\lambda}=\lambda$ but λ is not weakly compact, then there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that
(a) $\left\{A \subseteq C: A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\} \subseteq \mathrm{NAIn}_{\kappa, \lambda}^{+}$, and
(b) for any $A \subseteq C$ such that $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$, there is $B \subseteq A$ such that $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ but $B \underset{<}{\underset{<}{\longrightarrow}}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Lemma 4.5 (Johnson [12]). Suppose $\operatorname{cf}(\lambda) \geq \kappa$. Then for any $A \subseteq P_{\kappa}(\lambda)$, the following are equivalent:
(i) $A \in \operatorname{NAIn}_{\kappa, \lambda}^{+}$.
(ii) Given $g:[A]_{<}^{2} \rightarrow \lambda$ such that $g\left(a_{0}, a_{1}\right) \in a_{0}$ for every $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$, there is $B \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P(A)$ such that g is constant on $[B]_{<}^{2}$.

Lemma 4.6. Assume λ is regular and there is a λ-Aronszajn tree, and let J be a seminormal ideal on $P_{\kappa}(\lambda)$. Then there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ with the following property: Suppose $A \in J^{+} \cap P(C)$ is such that given $f_{a_{0} a_{1}}: a_{0} \rightarrow 2$ for $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$, there is $B \in J^{+} \cap P(A), h: \lambda \rightarrow 2$, and $Q_{\xi} \in J$ for $\xi<\lambda$ such that for any $\xi<\lambda$ and any $\left(a_{0}, a_{1}\right) \in\left[B \backslash Q_{\xi}\right]_{<}^{2}, h\left|\left(a_{0} \cap \xi\right)=f_{a_{0} a_{1}}\right|\left(a_{0} \cap \xi\right)$. Suppose further that $g:[A]_{<}^{2} \rightarrow \lambda$ is such that $g\left(a_{0}, a_{1}\right) \in a_{0}$ for every $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$. Then there is $D \in J^{+} \cap P(A)$ such that g is constant on $[D]_{<}^{2}$.

Proof. Select a λ-Aronszajn tree $T=\left\langle\lambda,<_{T}\right\rangle$. For $\alpha<\lambda$, let T_{α} denote the α-th level of T. Let C be the set of all $a \in P_{\kappa}(\lambda)$ such that
(a) $\beta+1 \in a$ for every $\beta \in a$,
(b) $a \cap T_{\alpha} \neq \emptyset$ for every $\alpha \in a$, and
(c) $\left\{\gamma<_{T} \xi: \gamma \in \bigcup_{\delta \in a \cap \alpha} T_{\delta}\right\} \subseteq a$ for any $\alpha \in \lambda$ and any $\xi \in a \cap T_{\alpha}$.

Let us check that C is as desired. It is immediate that $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$. Now fix $A \in$ $J^{+} \cap P(C)$ with the property that given $f_{a_{0} a_{1}}: a_{0} \rightarrow 2$ for $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$, we may find $B \in J^{+} \cap P(A), h: \lambda \rightarrow 2$, and $Q_{\xi} \in J$ for $\xi<\lambda$ such that for any $\xi<\lambda$ and any $\left(a_{0}, a_{1}\right) \in\left[B \backslash Q_{\xi}\right]_{<}^{2}, h\left|\left(a_{0} \cap \xi\right)=f_{a_{0} a_{1}}\right|\left(a_{0} \cap \xi\right)$. Let $g:[A]_{<}^{2} \rightarrow \lambda$ be such that $g\left(a_{0}, a_{1}\right) \in a_{0}$ for every $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$. For $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$, pick $\xi_{a_{0} a_{1}} \in a_{0} \cap T_{g\left(a_{0}, a_{1}\right)}$, and define $f_{a_{0} a_{1}}: a_{0} \rightarrow 2$ by: $f_{a_{0} a_{1}}(\gamma)=1$ just in case $\gamma<_{T} \xi_{a_{0} a_{1}}$. There must be $B \in J^{+} \cap P(A), h: \lambda \rightarrow 2$ and $Q_{\xi} \in J$ for $\xi<\lambda$ such that for any $\xi<\lambda$ and any $\left(a_{0}, a_{1}\right) \in\left[B \backslash Q_{\xi}\right]_{<}^{2}, h\left|\left(a_{0} \cap \xi\right)=f_{a_{0} a_{1}}\right|\left(a_{0} \cap \xi\right)$. It is simple to see that
(i) if γ and γ^{\prime} are any two distinct members of $h^{-1}(\{1\})$, then either $\gamma<_{T} \gamma^{\prime}$, or $\gamma^{\prime}<_{T} \gamma$, and
(ii) $\left\{\gamma^{\prime} \in \lambda: \gamma^{\prime}<_{T} \gamma\right\} \subseteq h^{-1}(\{1\})$ for every $\gamma \in h^{-1}(\{1\})$.

Set $\delta=$ the least $\alpha<\lambda$ such that $T_{\alpha} \cap h^{-1}(\{1\})=\emptyset$. Define $k: \delta \rightarrow \lambda$ by $k(\alpha)=$ the unique element of $T_{\alpha} \cap h^{-1}(\{1\})$. Pick a limit ordinal $\sigma<\lambda$ with $T_{\delta} \cup \operatorname{ran}(k) \subseteq \sigma$. Let D be the set of all $a \in B$ such that
($\alpha) \delta \in a$,
(β) for any $\zeta \in a \cap \sigma, a \notin Q_{\zeta}$, and
(γ) for any $\alpha \in a \cap \delta, k(\alpha) \in a$.
Then clearly $D \in J^{+}$.
We claim that $g\left(a_{0}, a_{1}\right)=\delta$ for each $\left(a_{0}, a_{1}\right) \in[D]_{<}^{2}$. Suppose otherwise, and select $\left(a_{0}, a_{1}\right) \in[D]_{<}^{2}$ with $g\left(a_{0}, a_{1}\right) \neq \delta$. If $g\left(a_{0}, a_{1}\right)<\delta$, then $h\left(k\left(g\left(a_{0}, a_{1}\right)\right)\right)=1$ and $f_{a_{0} a_{1}}\left(k\left(g\left(a_{0}, a_{1}\right)\right)\right)=0$, which yields a contradiction. Thus $g\left(a_{0}, a_{1}\right)>\delta$. Put $\gamma=$ the unique element η of T_{δ} such that $\eta<_{T} \xi_{a_{0} a_{1}}$. Then $h(\gamma)=0$ and $f_{a_{0} a_{1}}(\gamma)=1$. Contradiction.

Proposition 4.7. Suppose that λ is regular, there is a λ-Aronszajn tree, and $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \tau}\right) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau<\lambda$. Then there is $D \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $\left\{A \subseteq D: A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\} \subseteq \mathrm{NAIn}_{\kappa, \lambda}^{+}$.

Proof. By Lemmas 1.4, 4.5, 4.6, and Theorem 2.14.
Lemma 4.8 (Matet-Usuba [23]). Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \underset{<}{\longrightarrow}$ $\left(\left(\bigcup_{\xi<\lambda} \mathrm{NS}_{\kappa, \lambda}^{\xi}\right)^{+}\right)^{2}$. Then $A \in \mathrm{NSJ}_{\kappa, \lambda}^{+}$.

Lemma 4.9 (Matet-Usuba [23]). Suppose λ is regular, there is a λ-Aronszajn tree, and $P_{\kappa}(\lambda) \notin \mathrm{NSJ}_{\kappa, \lambda}$. Then $\mathrm{NSh}_{\kappa, \lambda} \subseteq \mathrm{NSJ}_{\kappa, \lambda} \mid C$ for some $C \in \mathrm{NSJ}_{\kappa, \lambda}^{+} \cap \mathrm{NS}_{\kappa, \lambda}^{*}$.

Lemma 4.10 (Usuba [27]). Let $A \in \operatorname{NSh}_{\kappa, \lambda}^{+} \cap P\left(\mathcal{A}_{\kappa, \lambda}\right)$. Then $\left\{a \in A: A \cap P_{a \cap \kappa}(a) \in\right.$ $\left.\mathrm{NSh}_{a \cap \kappa, a}\right\} \in \mathrm{NSh}_{\kappa, \lambda}^{+}$.

Lemma 4.11. Suppose $\operatorname{cf}(\lambda) \geq \kappa$, and let $A \in \mathrm{NSh}_{\kappa, \lambda}^{+}$. Then there is $B \subseteq A$ with $B \in \mathrm{NSh}_{\kappa, \lambda}^{+} \cap \mathrm{NAIn}_{\kappa, \lambda}$.

Proof. We can assume that $A \in \operatorname{NAIn}_{\kappa, \lambda}^{+}$since otherwise the result is trivial. Set $T=A \cap \mathcal{A}_{\kappa, \lambda}$ and $B=\left\{a \in T: T \cap P_{a \cap \kappa}(a) \in \mathrm{NSh}_{a \cap \kappa, a}\right\}$. Then by Lemmas 2.6, 2.8 and $4.10, B$ is as desired.

Proposition 4.12. Suppose that λ is regular, there is a λ-Aronszajn tree, and $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \tau}\right) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau<\lambda$. Then there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ with the following property: for any $A \subseteq C$ such that $A \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$, there is $B \in \mathrm{NSh}_{\kappa, \lambda}^{+} \cap P(A)$ such that $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. Use Lemma 1.4 to get $C_{0} \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $\mathrm{NSS}_{\kappa, \lambda}\left|C_{0}=\mathrm{I}_{\kappa, \lambda}\right| C_{0}$, and Proposition 4.7 to get $C_{1} \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $\left\{B \subseteq C_{1}: B \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\} \subseteq \mathrm{NAIn}_{\kappa, \lambda}^{+}$. We define C_{2} as follows. If $P_{\kappa}(\lambda) \in \operatorname{NSJ}_{\kappa, \lambda}$, we set $C_{2}=P_{\kappa}(\lambda)$. Otherwise we appeal to Lemma 4.9 and choose C_{2} so that $C_{2} \in \operatorname{NSJ}_{\kappa, \lambda}^{+} \cap \mathrm{NS}_{\kappa, \lambda}^{*}$ and $\mathrm{NSh}_{\kappa, \lambda} \subseteq \mathrm{NSJ}_{\kappa, \lambda} \mid C_{2}$. Put
$C=C_{0} \cap C_{1} \cap C_{2}$. Now fix $A \subseteq C$ with the property that $A \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$. By Lemmas 1.3 and 4.8, $A \in \mathrm{NSh}_{\kappa, \lambda}^{+}$. Hence by Lemma 4.11, there is $B \in \mathrm{NSh}_{\kappa, \lambda}^{+} \cap P(A)$ such that $B \in \operatorname{NAIn}_{\kappa, \lambda}$. Then clearly $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

The following lemma shows that the existence of a λ-Aronszajn tree in Lemma 4.6 can be replaced by a certain cardinal arithmetic assumption.

Lemma 4.13. Assume $\mu<\lambda$ is a cardinal with $2^{\mu}=\lambda$, and let J be a μ-normal ideal on $P_{\kappa}(\lambda)$. Then there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ with the following property: Suppose $A \in$ $J^{+} \cap P(C)$ is such that given $f_{a_{0} a_{1}}: a_{0} \cap \mu \rightarrow 2$ for $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$, there is $B \in J^{+} \cap P(A)$, $h: \mu \rightarrow 2$, and $Q_{\xi} \in J$ for $\xi<\mu$ such that for any $\xi<\mu$ and any $\left(a_{0}, a_{1}\right) \in\left[B \backslash Q_{\xi}\right]_{<}^{2}$, $h\left|\left(a_{0} \cap \xi\right)=f_{a_{0} a_{1}}\right|\left(a_{0} \cap \xi\right)$. Suppose further that $g:[A]_{<}^{2} \rightarrow \lambda$ is such that $g\left(a_{0}, a_{1}\right) \in a_{0}$ for every $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$. Then there is $D \in J^{+} \cap P(A)$ such that g is constant on $[D]_{<}^{2}$.

Proof. Let $\left\langle e_{\eta}: \eta<\lambda\right\rangle$ be a one-to-one enumeration of the subsets of μ. Let C be the set of all $a \in P_{\kappa}(\lambda)$ such that $a \cap e_{\zeta} \neq a \cap e_{\eta}$ for any two distinct members ζ, η of a. Let us verify that C is as desired. Clearly, $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$. Now fix $A \in J^{+} \cap P(C)$ with the property that given $f_{a_{0} a_{1}}: a_{0} \cap \mu \rightarrow 2$ for $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$, we may find $B \in J^{+} \cap P(A)$, $h: \mu \rightarrow 2$ and $Q_{\xi} \in J$ for $\xi<\mu$ such that for any $\xi<\mu$ and any $\left(a_{0}, a_{1}\right) \in\left[B \backslash Q_{\xi}\right]_{<}^{2}$, $h\left|\left(a_{0} \cap \xi\right)=g_{a_{0} a_{1}}\right|\left(a_{0} \cap \xi\right)$. Let $g:[A]_{<}^{2} \rightarrow \lambda$ be such that $g\left(a_{0}, a_{1}\right) \in a_{0}$ for every $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$. For $\left(a_{0}, a_{1}\right) \in[A]_{<}^{2}$, define $f_{a_{0} a_{1}}: a_{0} \cap \mu \rightarrow 2$ by: $f_{a_{0} a_{1}}(\alpha)=1$ if and only if $\alpha \in e_{g\left(a_{0}, a_{1}\right)}$. There must be $B \in J^{+} \cap P(A), h: \mu \rightarrow 2$ and $Q_{\xi} \in J$ for $\xi<\mu$ such that for any $\xi<\mu$ and any $\left(a_{0}, a_{1}\right) \in\left[B \backslash Q_{\xi}\right]_{<}^{2}, h\left|\left(a_{0} \cap \xi\right)=f_{a_{0} a_{1}}\right|\left(a_{0} \cap \xi\right)$. Let $h^{-1}(\{1\})=e_{\delta}$. Now let D be the set of all $a \in B$ such that
(a) $\delta \in a$,
(b) $\alpha+1 \in a$ for every $\alpha \in a \cap \mu$, and
(c) $a \notin Q_{\xi}$ for every $\xi \in a \cap \mu$.

Then clearly, $D \in J^{+}$. We claim that g takes the constant value δ on $[D]_{<}^{2}$. Suppose otherwise, and pick $\left(a_{0}, a_{1}\right) \in[D]_{<}^{2}$ with $g\left(a_{0}, a_{1}\right) \neq \delta$. There must be $\alpha \in a_{0} \cap \mu$ such that $\alpha \in e_{\delta} \triangle e_{g\left(a_{0}, a_{1}\right)}$. Then $h(\alpha) \neq f_{a_{0} a_{1}}(\alpha)$. Contradiction.

Proposition 4.14. Suppose $\lambda=2^{\mu}$ for some cardinal $\mu<\lambda$. Then there is $D \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $\left\{A \subseteq D: A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\} \subseteq \operatorname{NAIn}_{\kappa, \lambda}^{+}$.

Proof. We can assume that $P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$ since otherwise the result is trivial. Pick a cardinal $\mu<\lambda$ such that $2^{\mu}=\lambda$. Then by Lemma $1.9, \mu \geq \kappa$, and consequently $\operatorname{cf}(\lambda) \geq \kappa$. Set $J=\mathrm{NS}_{\kappa, \lambda}^{\mu}$. Let $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ be as in the statement of Lemma 4.13. By Lemma 1.2, there is $Z \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $J\left|Z=\mathrm{I}_{\kappa, \lambda}\right| Z$. Then by Theorem 2.14 and Lemma 4.5, $D=C \cap Z$ is as desired.

Lemma 4.15 (Matet-Usuba [23]). Suppose λ is regular, and let $2 \leq \eta<\kappa$. Then $\mathrm{NSJ}_{\kappa, \lambda}^{+} \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)_{\eta}^{2}$.

Lemma 4.16 (Matet-Usuba [23]). Suppose $2^{<\lambda}=\lambda$. Then $\mathrm{NSJ}_{\kappa, \lambda} \subseteq \mathrm{NSh}_{\kappa, \lambda}$.

Lemma 4.17 (Matet-Usuba [23]). Suppose $\lambda=2^{\mu}$ for some cardinal μ. Then $\mathrm{NSh}_{\kappa, \lambda} \cap P(C) \subseteq \mathrm{NSJ}_{\kappa, \lambda}$ for some $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$.

Proposition 4.18. Suppose that $\lambda^{<\lambda}=\lambda$, but λ is not a strong limit cardinal. Then there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ with the following property: For any $A \subseteq C$ such that $A \longrightarrow$ $\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$, there is $B \subseteq A$ such that $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ but $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. We proceed as in the proof of Proposition 4.12. There must be a cardinal $\mu<\lambda$ such that $\lambda=2^{\mu}$. By Proposition 4.14, and Lemmas 1.4 and 4.17, we may find $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $\left\{B \subseteq C: B \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\} \subseteq \mathrm{NAIn}_{\kappa, \lambda}^{+}, \mathrm{NSS}_{\kappa, \lambda}\left|C=\mathrm{I}_{\kappa, \lambda}\right| C$, and $\mathrm{NSh}_{\kappa, \lambda} \cap P(C) \subseteq \mathrm{NSJ}_{\kappa, \lambda}$. Now fix $A \subseteq C$ with $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$. By Lemma 4.8 $A \in \mathrm{NSh}_{\kappa, \lambda}^{+}$, so by Lemma 4.11 there is $B \in \mathrm{NSh}_{\kappa, \lambda}^{+} \cap P(A)$ with $B \in \mathrm{NAIn}_{\kappa, \lambda}$. Then clearly $B \underset{<}{\nrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$. On the other hand $B \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ by Lemmas 4.15 and 4.16.

Let us observe that by a result of Neeman [24], it is consistent relative to infinitely many supercompact cardinals that there is a cardinal ν such that
(a) there is no ν^{+}-Aronszajn tree, and
(b) ν is a strong limit cardinal of cofinality ω, and $2^{\nu}=\nu^{++}$(and therefore $2^{\mu} \neq \nu^{+}$for every cardinal $\mu<\nu^{+}$).

If $\lambda^{<\lambda}=\lambda$ but λ is not weakly compact, then by a result of [23] and Lemma 4.3, for any $A \in \mathrm{NS}_{\kappa, \lambda}^{+}, A \in \mathrm{NSh}_{\kappa, \lambda}^{+}$if and only if $\left(\mathrm{NS}_{\kappa, \lambda} \mid A\right)^{*} \longrightarrow\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{2}$ if and only if $\left(\mathrm{NS}_{\kappa, \lambda} \mid A\right)^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$. For triples, the following holds.

Theorem 4.19. Suppose that $\lambda^{<\lambda}=\lambda$ and λ is not weakly compact. Then for any $A \in \mathrm{NS}_{\kappa, \lambda}^{+}$, the following are equivalent:
(i) $A \in \operatorname{NAIn}_{\kappa, \lambda}^{+}$.
(ii) $\left(\mathrm{NS}_{\kappa, \lambda} \mid A\right)^{*} \longrightarrow\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$.
(iii) $\left(\mathrm{NS}_{\kappa, \lambda} \mid A\right)^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. By Propositions 4.4, 4.7 and 4.14.

5. Almost ineffability 2.

This section is concerned with the case when λ is weakly compact. We show that if ($\lambda^{<\lambda}=\lambda$ and) λ is weakly compact, then there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that
(a) for every $A \subseteq C$ with $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$, there is $B \subseteq A$ with $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$ and $B \in \operatorname{NAIn}_{\kappa, \lambda}$, and
(b) for any $A \subseteq C, A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ if and only if $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

These results contrast with those in Section 4 concerning the case when $\lambda^{<\lambda}=\lambda$ and λ is not weakly compact.

Lemma 5.1 (Shelah [25]). Suppose κ is weakly compact. Then NSh_{κ} is a normal ideal on κ. Moreover, $\{\mu \in \kappa: \mu$ is a Mahlo cardinal $\} \in \mathrm{NSh}_{\kappa}^{*}$.

Lemma 5.2 (Johnson [11]). Let $A \in \mathrm{NSh}_{\kappa}^{+}$and $h_{a}: \alpha \rightarrow \alpha$ for $\alpha \in A$. Then there is $h: \kappa \rightarrow \kappa$ such that for any $\eta<\kappa$, $\left\{\alpha \in A: h_{\alpha}|\eta=h| \eta\right\} \in \mathrm{NSh}_{\kappa}^{+}$.

Lemma 5.3 (Carr [7]). If κ is $2^{\left(\lambda^{<\kappa}\right)}$-Shelah, then κ is λ-supercompact.
Proposition 5.4. Suppose λ is weakly compact and κ is λ-Shelah. Then κ is almost λ-ineffable.

Proof. We use Lemma 4.5. Let $g:\left[P_{\kappa}(\lambda)\right]_{<}^{2} \rightarrow \lambda$ be such that $g\left(a_{0}, a_{1}\right) \in a_{0}$ for every $\left(a_{0}, a_{1}\right) \in\left[P_{\kappa}(\lambda)\right]_{<}^{2}$. Let W be the set of Mahlo cardinals μ with $\kappa \leq \mu<\lambda$. By Lemma $5.3, \kappa$ is almost μ-ineffable for every $\mu \in W$. For each $\mu \in W$, we may find $B_{\mu} \in \mathrm{I}_{\kappa, \mu}^{+}$and $\xi_{\mu} \in \mu$ such that g takes the constant value ξ_{μ} on $\left[B_{\mu}\right]_{<}^{2}$. By Lemma 5.1, there must be $A \in \mathrm{NSh}_{\lambda}^{+} \cap P(W)$ and $\xi \in \lambda$ such that $\xi_{\mu}=\xi$ for every $\mu \in A$. Let $P_{\kappa}(\lambda)=\left\{e_{\beta}: \beta<\lambda\right\}$. Let D be the set of all $\mu \in A$ such that
(a) $e_{\beta} \subseteq \mu$ for every $\beta \in \mu$, and
(b) for every cardinal ν with $\kappa \leq \nu<\mu, P_{\kappa}(\nu) \subseteq\left\{e_{\beta}: \beta<\mu\right\}$.

It is simple to see that $D \in \operatorname{NSh}_{\lambda}^{+}$. Note that for any $\mu \in D,\left\{e_{\beta}: \beta<\mu\right\}=P_{\kappa}(\mu)$. For $\mu \in D$, define $h_{\mu}: \mu \rightarrow \mu$ by $h_{\mu}(\beta)=$ the least γ such that $e_{\beta} \subseteq e_{\gamma}$ and $e_{\gamma} \in B_{\mu}$. By Lemma 5.2, there is $h: \lambda \rightarrow \lambda$ such that for any $\eta<\lambda,\left\{\mu \in D: h_{\mu}|\eta=h| \eta\right\} \in \operatorname{NSh}_{\lambda}^{+}$. Set $H=\left\{e_{\delta}: \delta \in \operatorname{ran}(h)\right\}$. Then clearly $e_{\beta} \subseteq e_{h(\beta)}$ for every $\beta<\lambda$, so $H \in \mathrm{I}_{\kappa, \lambda}^{+}$. Let us show that g is constant on $[H]_{<}^{2}$. Thus let $\gamma, \sigma<\lambda$ with $e_{h(\gamma)}<e_{h(\sigma)}$. Pick $\eta<\lambda$ with $\{\gamma, \sigma\} \subseteq \eta$. We may find $\mu \in D$ such that $h_{\mu}|\eta=h| \eta$. Then $\left(e_{h(\gamma)}, e_{h(\sigma)}\right) \in\left[B_{\mu}\right]_{<}^{2}$, and therefore $g\left(e_{h(\gamma)}, e_{h(\sigma)}\right)=\xi$.

Lemma 5.5 (Matet-Usuba [23]). Suppose λ is weakly compact, and $2 \leq \eta<\kappa$. Then $\mathrm{NSJ}_{\kappa, \lambda}^{+} \longrightarrow\left(\mathrm{NSJ}_{\kappa, \lambda}^{+}\right)_{\eta}^{2}$.

Lemma 5.6 (Matet-Usuba [23]). Suppose λ is weakly compact. Then for any $A \in \mathrm{NSJ}_{\kappa, \lambda}^{+}$, there is $B \in \mathrm{NSJ}_{\kappa, \lambda}^{+} \cap P(A)$ such that $\mathrm{NSJ}_{\kappa, \lambda}\left|B=\mathrm{NSS}_{\kappa, \lambda}\right| B$.

Proposition 5.7. Suppose λ is weakly compact, and let $2 \leq \eta<\kappa$. Then $\mathrm{NSJ}_{\kappa, \lambda}^{+} \longrightarrow\left(\mathrm{NSJ}_{\kappa, \lambda}^{+}\right)_{\eta}^{3}$.

Proof. By Lemmas 1.1 and 1.3 we may find $Q_{\zeta} \in \operatorname{NSS}_{\kappa, \lambda}$ for $\zeta<\lambda$ such that $\mathrm{NSS}_{\kappa, \lambda}=\bigcup_{\zeta<\lambda} P\left(Q_{\zeta}\right)$.

Let $A \in \operatorname{NSJ}_{\kappa, \lambda}^{+}$and $F:\left[P_{\kappa}(\lambda)\right]_{<}^{3} \rightarrow \eta$, where $2 \leq \eta<\kappa$. By Lemma 5.6 there is $B \in \mathrm{NSJ}_{\kappa, \lambda}^{+} \cap P(A)$ such that $\mathrm{NSJ}_{\kappa, \lambda}\left|B=\mathrm{NSS}_{\kappa, \lambda}\right| B$.

Select bijections $\pi:\left[P_{\kappa}(\lambda)\right]^{2} \rightarrow \lambda$ and $\sigma: \lambda \times \eta \rightarrow \lambda$. For $c \in B$, define $f_{c}: c \rightarrow 2$ by: $f_{c}(\beta)=1$ if and only if one can find a, b such that $a \subsetneq b \subsetneq c$ and $\beta=\sigma(\pi(a, b), F(a, b, c))$. Pick $g: \lambda \rightarrow 2$ so that for any $\alpha<\lambda,\left\{c \in B: \forall \gamma \in c \cap \alpha\left(f_{c}(\gamma)=g(\gamma)\right)\right\} \in \operatorname{NSS}_{\kappa, \lambda}^{+}$.

Put $h=\left\{((a, b), j) \in[B]^{2} \times \eta: g(\sigma(\pi(a, b), j))=1\right\}$. Let us show that h is a function with domain $[B]^{2}$. Thus let $(a, b) \in[B]^{2}$. Set $z=\{\sigma(\pi(a, b), j): j<\eta\}$. Pick $\alpha \in \lambda$ with $z \subseteq \alpha$. There must be $d \in B$ such that

- $b \subseteq d$.
- $z \subseteq d$.
- $f_{d}|(d \cap \alpha)=g|(d \cap \alpha)$.

Then for each $j<\eta, f_{d}(\sigma(\pi(a, b), j))=g(\sigma(\pi(a, b), j))$.
By induction on $\xi<\lambda$, we define $a_{\xi} \in B$ so that

- $\eta \subseteq a_{\xi}$.
- $\xi \in a_{\xi}$.
- $a_{\xi} \backslash a_{\delta} \neq \emptyset$ for all $\delta<\xi$.
- $a_{\xi} \notin Q_{\xi}$.
- $F\left(a_{\gamma}, a_{\delta}, a_{\xi}\right)=h\left(a_{\gamma}, a_{\delta}\right)$ whenever $\gamma<\delta<\xi$ and $a_{\gamma} \subsetneq a_{\delta} \subsetneq a_{\xi}$.

Suppose a_{ζ} has been constructed for each $\zeta<\xi$. Pick $e \in P_{\kappa}(\lambda)$ so that $\eta \subseteq e$ and $e \backslash a_{\zeta} \neq \emptyset$ for every $\zeta<\xi$. Now select $\theta<\lambda$ so that $\theta=\sigma^{" \prime}(\theta \times \eta)$, and $\pi\left(a_{\gamma}, a_{\delta}\right) \in \theta$ whenever $\gamma<\delta<\xi$ and $a_{\gamma} \subsetneq a_{\delta}$. Select $t \in B$ so that

- $\{\xi\} \cup e \subseteq t$.
- $\sigma\left(\pi\left(a_{\gamma}, a_{\delta}\right), j\right) \in t$ whenever $j<\eta,\{\gamma, \delta\} \subseteq t \cap \xi$ and $a_{\gamma} \subsetneq a_{\delta}$.
- $t \notin Q_{\xi}$.
- $f_{t}|(t \cap \theta)=g|(t \cap \theta)$.

Note that if γ, δ are such that $\gamma<\delta<\xi$ and $a_{\gamma} \subsetneq a_{\delta} \subsetneq t$, then $F\left(a_{\gamma}, a_{\delta}, t\right)=$ $h\left(a_{\gamma}, a_{\delta}\right)$, since $f_{t}\left(\sigma\left(\pi\left(a_{\gamma}, a_{\delta}\right), F\left(a_{\gamma}, a_{\delta}, t\right)\right)\right)=1=g\left(\sigma\left(\pi\left(a_{\gamma}, a_{\delta}\right), F\left(a_{\gamma}, a_{\delta}, t\right)\right)\right)$. We set $a_{\xi}=t$.

Now put $D=\left\{a_{\zeta}: \zeta<\lambda\right\}$. Then clearly $D \in \operatorname{NSS}_{\kappa, \lambda}^{+}$. Hence by Lemma 5.5, we may find $E \in \mathrm{NSJ}_{\kappa, \lambda}^{+} \cap P(D)$ and $i<\eta$ such that h takes the constant value i on $[E]^{2}$. It is simple to see that F takes the constant value i on $[E]^{3}$.

By (the proof of) Theorem 6.2 in [12], it follows that if λ is weakly compact, then $\mathrm{NSJ}_{\kappa, \lambda}^{+} \longrightarrow\left(\mathrm{NSJ}_{\kappa, \lambda}^{+}\right)_{\eta}^{n}$ whenever $2 \leq n<\omega$ and $2 \leq \eta<\kappa$.

Corollary 5.8. Suppose λ is weakly compact. Then there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ with the property that for any $A \subseteq C$ such that $A \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$, we may find $B \subseteq A$ such that $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$ and $B \in \operatorname{NAIn}_{\kappa, \lambda}$.

Proof. Let $A \in \operatorname{NAIn}_{\kappa, \lambda}^{+}$be such that $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$. By Lemma 4.11, there is $B \subseteq A$ with $B \in \operatorname{NSh}_{\kappa, \lambda}^{+} \cap \operatorname{NAIn}_{\kappa, \lambda}$. Then by Lemma 4.16 and Proposition 5.7, $B \longrightarrow\left(\mathrm{NSJ}_{\kappa, \lambda}^{+}\right)^{3}$.

Lemma 5.9 (Matet-Usuba [23]). Suppose λ is weakly compact. Then κ is λ-Shelah just in case $P_{\kappa}(\lambda) \notin \operatorname{NSJ}_{\kappa, \lambda}$.

Proposition 5.10. Suppose λ is weakly compact. Then the following are equivalent:
(i) κ is almost λ-ineffable.
(ii) $\mathrm{NS}_{\kappa, \lambda}^{*} \longrightarrow\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$.
(iii) $\mathrm{NS}_{\kappa, \lambda}^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$.

Proof. (i) \rightarrow (ii): By Proposition 5.7 and Lemmas 2.3 and 4.16.
(ii) \rightarrow (iii): Trivial.
(iii) \rightarrow (i): By Proposition 5.4 and Lemmas 1.4, 4.8 and 5.9.

It was shown in [23] that if $\lambda^{<\lambda}=\lambda$, then κ is λ-Shelah if and only if $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda])^{<\kappa}}\right)^{*} \longrightarrow$ $\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{2}$ if and only if $\mathrm{NS}_{\kappa, \lambda}^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$. Here is the corresponding result for triples:

Corollary 5.11. Suppose $\lambda^{<\lambda}=\lambda$. Then the following are equivalent:
(i) κ is almost λ-ineffable.
(ii) $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{*} \longrightarrow\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$.
(iii) $\mathrm{NS}_{\kappa, \lambda}^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. (i) \rightarrow (ii): By Lemmas 1.12 and 2.3, we have $\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}} \subseteq \mathrm{NSh}_{\kappa, \lambda} \subseteq$ NAIn $_{\kappa, \lambda}$. Now apply Proposition 4.4.
(ii) \rightarrow (iii): Trivial.
(iii) \rightarrow (i): By Theorem 4.19 and Proposition 5.10.

Proposition 5.12. Suppose λ is weakly compact. Then there is $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that for any $A \subseteq C$, the following are equivalent:
(i) $A \longrightarrow\left(I_{\kappa, \lambda}^{+}\right)^{2}$.
(ii) $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$.
(iii) $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.
(iv) $A \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. By Lemma 1.4, we may find $C \in \mathrm{NS}_{\kappa, \lambda}^{*}$ such that $\mathrm{NSS}_{\kappa, \lambda}\left|C=\mathrm{I}_{\kappa, \lambda}\right| C$. Then by Lemma 4.8 and Proposition 5.7, C is as desired.

6. Almost ineffability 3.

This section is concerned with the case $2^{\lambda}=\lambda^{<\kappa}$.
Lemma 6.1. Suppose $2^{\lambda}=\lambda^{<\kappa}$ and $P_{\kappa}(\lambda) \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$. Then $\operatorname{cf}(\lambda)<\kappa$, and moreover $\lambda^{<\kappa}=\lambda^{+}$.

Proof. By Lemmas 1.10 and 1.11.
Let us show that if $2^{\lambda}=\lambda^{<\kappa}$, then $\left(p_{\kappa, \lambda}\left(\operatorname{NAIn}_{\kappa, \lambda<\kappa}\right)\right)^{+} \longrightarrow\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{3}$.
Proposition 6.2. Suppose $2^{\lambda}=\lambda^{<\kappa}$. Then $\left(p_{\kappa, \lambda}\left(\operatorname{NAIn}_{\kappa, \lambda<\kappa}\right)\right)^{+} \longrightarrow\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)_{\eta}^{3}$ for every η with $2 \leq \eta<\kappa$.

Proof. The proof is a straightforward modification of that of Proposition 3.4.

Next we prove that if κ is Mahlo and $2^{\lambda}=\lambda^{<\kappa}$, then there is $C \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{*}$ such that
(a) $\left\{A \subseteq C: A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\} \subseteq\left(p_{\kappa, \lambda}\left(\mathrm{NAIn}_{\kappa, \lambda<\kappa}\right)\right)^{+}$, and
(b) for any $A \subseteq C$ with $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$, there is $B \subseteq A$ with $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ and $B \underset{<}{\longrightarrow}$ $\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Lemma 6.3. Suppose that κ is inaccessible and $\operatorname{cf}(\lambda)<\kappa$, and let $2 \leq n<\omega$ and $2 \leq \eta<\kappa$. Then the following hold:
(i) Let $X \subseteq\left\{x \in \mathcal{X}_{\kappa, \lambda}:|x \cap \kappa|\right.$ is an inaccessible cardinal $\}$ be such that $X \underset{<}{\longrightarrow}$ $\left(I_{\kappa, \lambda<\kappa}^{+}\right)_{\eta}^{n}$. Then $q_{\kappa, \lambda}^{-1}(X) \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)_{\eta}^{n}$.
(ii) Let $A \subseteq P_{\kappa}(\lambda)$ be such that $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)_{\eta}^{n}$. Then $q_{\kappa, \lambda}$ " $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda<\kappa}^{+}\right)_{\eta}^{n}$.

Proof. Proceed as in the proofs of Propositions 3.4 and 3.5.
Proposition 6.4. Suppose that κ is Mahlo and $2^{\lambda}=\lambda^{<\kappa}$. Then there is $C \in$ $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{*}$ such that $\left\{A \subseteq C: A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\} \subseteq\left(p_{\kappa, \lambda}\left(\operatorname{NAIn}_{\kappa, \lambda<\kappa}\right)\right)^{+}$.

Proof. We can assume that $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$ since otherwise the result is trivial. Then by Lemma 6.1, $\operatorname{cf}(\lambda)<\kappa$ and $\lambda^{<\kappa}=\lambda^{+}$. Now Proposition 4.14 tells us that there is $E \in \mathrm{NS}_{\kappa, \lambda<\kappa}^{*}$ such that $\left\{X \subseteq E: X \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda<\kappa}^{+}\right)^{3}\right\} \subseteq \mathrm{NAIn}_{\kappa, \lambda<\kappa}^{+}$. Set $C=q_{\kappa, \lambda}^{-1}(E)$. Note that $C \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{*}$ by Lemma 3.1.

Given $A \subseteq C$ with $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$, put $X=q_{\kappa, \lambda}$ " A. Then clearly $X \subseteq E$. Moreover by Lemma 6.3, $X \underset{<}{\longrightarrow}\left(I_{\kappa, \lambda<\kappa}^{+}\right)^{3}$, and therefore $X \in \operatorname{NAIn}_{\kappa, \lambda<\kappa}^{+}$. It follows that $A \notin$ $p_{\kappa, \lambda}\left(\operatorname{NAIn}_{\kappa, \lambda<\kappa}\right)$, since by Lemma 3.2 $A=\{x \cap \lambda: x \in X\}$.

Proposition 6.5. Suppose that κ is Mahlo and $2^{\lambda}=\lambda^{<\kappa}$. Then there is $C \in$ $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{*}$ with the following property: For any $A \subseteq C$ such that $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$, there is $B \subseteq A$ such that $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ but $B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. Exactly as in the proof of the preceding proposition, we can assume that $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$, which entails that $\mathrm{cf}(\lambda)<\kappa$ and $\lambda^{<\kappa}=\lambda^{+}$. By Proposition 4.18 and Lemmas 2.2 and 3.1 we may find $Z \in\left(\mathrm{NS}_{\kappa, \lambda<\kappa}^{[\lambda<\kappa<\kappa}\right)^{*}$ such that
(a) $Z \subseteq\left\{x \in \mathcal{X}_{\kappa, \lambda}: x \cap \kappa\right.$ is an inaccessible cardinal $\}$, and
(b) for any $X \subseteq Z$ with $X \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda<\kappa}^{+}\right)^{2}$, there is $Y \subseteq X$ with $Y \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda<\kappa}^{+}\right)^{2}$ and $Y \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda<\kappa}^{+}\right)^{3}$.

Put $C=q_{\kappa, \lambda}^{-1}(Z)$. Note that $C \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{*}$ by Lemma 3.1. Now let $A \subseteq C$ be such that $A \longrightarrow\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$. Since by Lemma 6.3, $q_{\kappa, \lambda}$ " $A \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda<\kappa}^{+}\right)^{2}$, we may find $Y \subseteq q_{\kappa, \lambda}$ " A with $Y \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda<\kappa}^{+}\right)^{2}$ and $Y \underset{<}{\not}\left(\mathrm{I}_{\kappa, \lambda<\kappa}^{+}\right)^{3}$. Set $B=q_{\kappa, \lambda}^{-1}(Y)$. Then clearly, $B \subseteq A$. Moreover
by Lemma $6.3, B \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ but $B \underset{<}{\not}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.
Lemma 6.6. Suppose that κ is Mahlo, $\operatorname{cf}(\lambda)<\kappa$, and there is $Z \in \mathrm{NS}_{\kappa, \lambda<\kappa}^{*}$ such that $\mathrm{NSS}_{\kappa, \lambda<\kappa}\left|Z=\mathrm{I}_{\kappa, \lambda<\kappa}\right| Z$. Then there is $C \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{*}$ with the property that for any $A \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P(C)$, there is $B \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P(A)$ with $[B]_{<}^{2}=[B]^{2}$.

Proof. Put $C=q_{\kappa, \lambda}^{-1}\left(Z \cap \mathcal{X}_{\kappa, \lambda}\right)$. Then by Lemma 3.1, $C \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{*}$. Let $A \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P(C)$. Set $X=q_{\kappa, \lambda}$ " A. Then by Lemma 3.1, $X \in I_{\kappa, \lambda<\kappa}^{+} \cap P\left(Z \cap \mathcal{X}_{\kappa, \lambda}\right)$. Hence by Lemma 4.3, we may find $Y \in \mathrm{I}_{\kappa, \lambda<\kappa}^{+} \cap P(X)$ with $[Y]_{<}^{2}=[Y]^{2}$. Put $B=q_{\kappa, \lambda}^{-1}(Y)$. It is simple to see that $B \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P(A)$, and $[B]_{<}^{2}=[B]^{2}$.

By a result of [23] and Lemma 6.6, if $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \lambda}\right) \leq \lambda^{<\kappa}$, then for any $A \subseteq P_{\kappa}(\lambda)$, $A \longrightarrow\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ just in case $A \longrightarrow\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{2}$. We now show that the result remains valid when 3 is substituted for 2 .

Lemma 6.7. $\left\{A \subseteq P_{\kappa}(\lambda): A \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\}$ is a (possibly improper) strongly normal ideal on $P_{\kappa}(\lambda)$ extending $\mathrm{NIn}_{\kappa, \lambda}$.

Proof. Set $J=\left\{A \subseteq P_{\kappa}(\lambda): A \not{<}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}\right\}$. Clearly, $P(A) \subseteq J$ for all $A \in J$. It is also simple to see that if A_{1}, A_{2} are any two disjoint members of J, then $A_{1} \cup A_{2} \in J$. It follows that J is a (possibly improper) ideal on $P_{\kappa}(\lambda)$. If $A \in P\left(P_{\kappa}(\lambda)\right) \backslash J$, then by Lemma $2.12 A \xrightarrow[<]{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{2}$, so by Lemma $1.13 A \in \mathrm{NIn}_{\kappa, \lambda}^{+}$. Thus $\mathrm{NIn}_{\kappa, \lambda} \subseteq J$. By Lemma 2.3, it follows that $\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}} \subseteq J$.

Now let $A \in J^{+}$and $f: A \rightarrow P_{\kappa}(\lambda)$ with the property that $f(a)<a$ for every $a \in A$. Let B be the set of all $a \in A$ such that $a \cap \kappa$ is an inaccessible cardinal. Note that by Lemma 2.2, $B \in J^{+}$. Further note that for any $a \in B$, o.t. $(f(a)) \in a \cap \kappa$. For $a \in B$, let h_{a} : o.t. $(f(a)) \rightarrow f(a)$ be the increasing enumeration of $f(a)$. For $e \in P_{\kappa}(\lambda)$, put $B_{e}=\{a \in B: f(a)=e\}$. Suppose toward a contradiction that $\left\{B_{e}: e \in P_{\kappa}(\lambda)\right\} \subseteq J$. For $e \in P_{\kappa}(\lambda)$, pick $F_{e}:[B]_{<}^{3} \rightarrow 2$ with the property that
(a) there is no $H \in \mathrm{NS}_{\kappa, \lambda}^{+} \cap P\left(B_{e}\right)$ such that F_{e} takes the constant value 0 on $[H]_{<}^{3}$, and
(b) there is no $Q \in \mathrm{I}_{\kappa, \lambda}^{+} \cap P\left(B_{e}\right)$ such that F_{e} takes the constant value 1 on $[Q]_{<}^{3}$.

Now define $F:[B]^{3} \rightarrow 2$ by: $F\left(a_{0}, a_{1}, a_{2}\right)=0$ if and only if either $f\left(a_{0}\right)=f\left(a_{1}\right)$ and $F_{f\left(a_{0}\right)}\left(a_{0}, a_{1}, a_{2}\right)=0$, or o. t. $\left(f\left(a_{0}\right)\right)<$ o.t. $\left(f\left(a_{1}\right)\right)$, or $f\left(a_{0}\right) \neq f\left(a_{1}\right)$, o.t. $\left(f\left(a_{0}\right)\right)=$ o. t. $\left(f\left(a_{1}\right)\right)$ and $h_{a_{0}}(\sigma)<h_{a_{1}}(\sigma)$, where $\sigma=$ the least ζ such that $h_{a_{0}}(\zeta) \neq h_{a_{1}}(\zeta)$.

We may find $C \subseteq B$ and $i<2$ such that
(α) F takes the constant value i on $[C]_{<}^{3}$, and
(β) $C \in \mathrm{NS}_{\kappa, \lambda}^{+}$, if $i=0$, and $C \in \mathrm{I}_{\kappa, \lambda}^{+}$otherwise.
Case I: $i=0$. There must be $D \in \mathrm{NS}_{\kappa, \lambda}^{+} \cap P(C)$ and $\alpha \in \kappa$ such that o. t. $(f(a))=\alpha$ for every $a \in D$. We inductively define $\delta_{\sigma} \in \lambda$ and $W_{\sigma} \in \mathrm{NS}_{\kappa, \lambda}^{*}$ for $\sigma<\alpha$ so that $h_{a}(\sigma)=\delta_{\sigma}$ for each $a \in D \cap W_{\sigma}$. Suppose δ_{ξ} and W_{ξ} have already been constructed for each $\xi<\sigma$. Set $S=\bigcap_{\xi<\sigma} W_{\xi}$ and $y=\left\{h_{a}(\sigma): a \in D \cap S\right\}$. For $\beta \in y$, pick $d_{\beta} \in D \cap S$ with $h_{d_{\beta}}(\sigma)=\beta$.

Claim 1. y has a largest element.
Proof of Claim 1. Suppose otherwise. Let T be the set of all $a \in D \cap S$ such that
(1) for every $\beta \in a \cap y, d_{\beta}<a$, and
(2) o. t. $(a \cap y)$ is an infinite limit ordinal.

Then clearly $T \in \mathrm{NS}_{\kappa, \lambda}^{+}$. Pick $w \in T$. There must be $\beta \in w \cap y$ with $h_{w}(\sigma)<\beta$. Now select $x \in D$ with $w<x$. Then $F\left(d_{\beta}, w, x\right)=1$. This contradiction completes the proof of Claim 1.

Claim 2. $\quad h_{a}(\sigma)=\max (y)$ for every $a \in D \cap S$ with $d_{\max (y)}<a$.
Proof of Claim 2. Suppose otherwise, and pick $s \in D \cap S$ with $d_{\max (y)}<s$ and $h_{s}(\sigma) \neq \max (y)$. Select $s^{\prime} \in D$ with $s<s^{\prime}$. Then $F\left(d_{\max (y)}, s, s^{\prime}\right)=1$. This contradiction completes the proof of Claim 2.

Now set $\delta_{\sigma}=\max (y)$ and $W_{\sigma}=\left\{a \in S: d_{\max (y)}<a\right\}$.
Finally, put $e=\left\{\delta_{\xi}: \xi<\alpha\right\}$ and $W=\bigcap_{\xi<\alpha} W_{\xi}$. Then $D \cap W \in \mathrm{NS}_{\kappa, \lambda}^{+} \cap P\left(B_{e}\right)$, and moreover F_{e} takes the constant value 0 on $[D \cap W]_{<}^{3}$. Contradiction.

Case II: $i=1$.
Claim 3. There is $z \in C$ such that o.t. $(f(a))=$ o.t. $(f(z))$ for every $a \in C$ with $z<a$.

Proof of Claim 3. Suppose otherwise. Inductively pick $b_{n} \in C$ for $n<\omega$ so that $b_{n}<b_{n+1}$ and o.t. $\left(f\left(b_{n}\right)\right) \neq$ o.t. $\left(f\left(b_{n+1}\right)\right)$. For each $n<\omega, F\left(b_{n}, b_{n+1}, b_{n+2}\right)=1$, so o.t. $\left(f\left(b_{n}\right)\right)>$ o.t. $\left(f\left(b_{n+1}\right)\right)$. Thus o.t. $\left(f\left(b_{0}\right)\right)>$ o.t. $\left(f\left(b_{1}\right)\right)>$ o.t. $\left(f\left(b_{2}\right)\right)>\cdots$. This contradiction completes the proof of Claim 3.

Put $\beta=$ o.t. $(f(z))$ and $C^{\prime}=\{a \in C: z<a\}$. We define inductively $\eta_{\sigma} \in \lambda$ and $t_{\sigma} \in C^{\prime}$ for $\sigma<\beta$ so that $h_{a}(\sigma)=\eta_{\sigma}$ for each $a \in C^{\prime}$ with $t_{\sigma}<a$. Suppose η_{ξ} and t_{ξ} have already been constructed for each $\xi<\sigma$. Set $u=\bigcup_{\xi<\sigma} t_{\xi}$ and $R=\left\{a \in C^{\prime}: u<a\right\}$.

Claim 4. There is $v \in R$ such that $h_{a}(\sigma)=h_{v}(\sigma)$ for every $a \in R$ with $v<a$.
Proof of Claim 4. Suppose otherwise. Inductively select $c_{n} \in R$ for $n<\omega$ so that $c_{n}<c_{n+1}$ and $h_{c_{n}}(\sigma) \neq h_{c_{n+1}}(\sigma)$. For each $n<\omega, F\left(c_{n}, c_{n+1}, c_{n+2}\right)=1$, so $h_{c_{n}}(\sigma)>h_{c_{n+1}}(\sigma)$. Thus $h_{c_{0}}(\sigma)>h_{c_{1}}(\sigma)>h_{c_{2}}(\sigma)>\cdots$. This contradiction completes the proof of Claim 4.

Now put $\eta_{\sigma}=h_{v}(\sigma)$ and $t_{\sigma}=v$.
Finally, set $e=\left\{\eta_{\xi}: \xi<\beta\right\}$ and $t=\bigcup_{\xi<\beta} t_{\xi}$. Then clearly $\left\{a \in C^{\prime}: t<a\right\} \in$ $\mathrm{I}_{\kappa, \lambda}^{+} \cap P\left(B_{e}\right)$. Moreover F_{e} takes the constant value 1 on $\left[\left\{a \in C^{\prime}: t<a\right\}\right]_{<}^{3}$. Contradiction.

Proposition 6.8. Suppose $\overline{\operatorname{cof}}\left(\mathrm{NS}_{\kappa, \lambda}\right) \leq \lambda^{<\kappa}$, and let $A \subseteq P_{\kappa}(\lambda)$ with $A \underset{<}{\longrightarrow}$
$\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$. Then $A \longrightarrow\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{3}$.
Proof. By Lemmas 1.8, 6.6 and 6.7.
If κ is Mahlo and $2^{\lambda}=\lambda^{<\kappa}$, then by a result of [23] and Lemma 6.6, for any $A \in\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}, A \in\left(p_{\kappa, \lambda}\left(\mathrm{NSh}_{\kappa, \lambda<\kappa}\right)\right)^{+}$if and only if $A \longrightarrow\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{2}$ if and only if $A \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$ if and only if $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa} \mid A\right)^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{2}$. The corresponding result for triples reads as follows:

Proposition 6.9. Suppose κ is Mahlo and $2^{\lambda}=\lambda^{<\kappa}$. Then for any $A \in$ $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+}$, the following are equivalent:
(i) $A \in\left(p_{\kappa, \lambda}\left(\operatorname{NAIn}_{\kappa, \lambda<\kappa}\right)\right)^{+}$.
(ii) $A \longrightarrow\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{3}$.
(iii) $A \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.
(iv) $\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa} \mid A\right)^{*} \underset{<}{\longrightarrow}\left(\mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. By Lemma 6.7 and Propositions 6.2 and 6.4.
If $\lambda^{<\lambda}=\lambda$, then by Lemma 1.13 and Propositions 2.11 and $2.13, P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\mathrm{NS}_{\kappa, \lambda}^{+}\right)^{2}$ just in case $P_{\kappa}(\lambda) \longrightarrow\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$. In contrast to this, if $2^{\lambda}=\lambda^{<\kappa}$ and κ is $\lambda^{<\kappa}$-Shelah but not almost $\lambda^{<\kappa}$-ineffable, then (by a result of $[\mathbf{2 3]}) P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]}\right)^{<\kappa}, \mathrm{NS}_{\kappa, \lambda}^{+}\right)^{2}$ but (by Lemma 6.7 and Propositions 6.4 and 6.8), $P_{\kappa}(\lambda) \underset{<}{\rightleftarrows}\left(\mathrm{NS}_{\kappa, \lambda}^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$. (Note that it can be shown that if $2^{\lambda}=\lambda^{<\kappa}$ and κ is almost $\lambda^{<\kappa}$-ineffable, then the set of all $a \in \mathcal{A}_{\kappa, \lambda}$ such that $2^{\text {o.t. }(a)}=$ o.t. $(a)^{<(a \cap \kappa)}$ and $a \cap \kappa$ is o.t. $(a)^{<(a \cap \kappa)}$-Shelah but not almost o.t. $(a)^{<(a \cap \kappa)}$-ineffable lies in $\left(p_{\kappa, \lambda}\left(\operatorname{NAIn}_{\kappa, \lambda<\kappa}\right)^{+}\right)$. On the other hand, if $2^{\lambda}=\lambda^{<\kappa}$, then by Proposition 3.4 and Lemma 2.12, $P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}\right)^{2}$ just in case $P_{\kappa}(\lambda) \underset{<}{\longrightarrow}\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}, \mathrm{I}_{\kappa, \lambda}^{+}\right)^{3}$.

Finally, we combine Propositions 2.11 and 3.4 on the one hand, and Propositions 4.4 and 6.2 on the other hand, thus showing that the two cases $\lambda^{<\lambda}=\lambda$ and $2^{\lambda}=\lambda^{<\kappa}$ can be (at least to some extent) handled simultaneously.

Proposition 6.10. Suppose $\left(\lambda^{<\kappa}\right)^{<\left(\lambda^{<\kappa}\right)}=\lambda^{<\kappa}$. Then $\left(p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)\right)^{+} \longrightarrow$ $\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$ and $\left(p_{\kappa, \lambda}\left(\mathrm{NAIn}_{\kappa, \lambda<\kappa}\right)\right)^{+} \longrightarrow\left(\mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$.

Proof. We prove the first assertion and leave the proof of the second to the reader. Thus let $A \in\left(p_{\kappa, \lambda}\left(\operatorname{Nin}_{\kappa, \lambda<\kappa}\right)\right)^{+}$. If $\operatorname{cf}(\lambda) \geq \kappa$, then by Lemma $1.11 \lambda^{<\lambda}=\lambda$ and $p_{\kappa, \lambda}\left(\operatorname{NIn}_{\kappa, \lambda<\kappa}\right)=\operatorname{NIn}_{\kappa, \lambda}$, so by Proposition 2.11, $A \longrightarrow\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]<\kappa}\right)^{+}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$. If $\operatorname{cf}(\lambda)<\kappa$, then by Lemma $3.32^{\lambda}=\lambda^{<\kappa}=\lambda^{+}$and therefore by Proposition 3.4, $A \longrightarrow\left(\left(\mathrm{NS}_{\kappa, \lambda}^{[\lambda]^{<\kappa}}\right)^{+}, \mathrm{NSS}_{\kappa, \lambda}^{+}\right)^{3}$.

References

[1] Y. Abe, Saturation of fundamental ideals on $\mathscr{P}_{\kappa} \lambda$, J. Math. Soc. Japan, 48 (1996), 511-524.
[2] Y. Abe, A hierarchy of filters smaller than $\mathrm{CF}_{\kappa \lambda}$, Arch. Math. Logic, 36 (1997), 385-397.
[3] Y. Abe, Combinatorial characterization of Π_{1}^{1}-indescribability in $P_{\kappa} \lambda$, Arch. Math. Logic, 37 (1998), 261-272.
[4] Y. Abe, Notes on subtlety and ineffability in $P_{\kappa} \lambda$, Arch. Math. Logic, 44 (2005), 619-631.
[5] Y. Abe and T. Usuba, Notes on the partition property of $\mathcal{P}_{\kappa} \lambda$, Arch. Math. Logic, 51 (2012), 575-589.
[6] J. E. Baumgartner, Ineffability properties of cardinals. I, In: Infinite and Finite Sets, vol. I, Keszthely, 1973, (eds. A. Hajnal, R. Rado and Vera T. Sós), Colloq. Math. Soc. Janos Bolyai, 10, North-Holland, Amsterdam, 1975, pp. 109-130.
[7] D. M. Carr, The structure of ineffability properties of $P_{\chi} \lambda$, Acta Math. Hungar., 47 (1986), 325-332.
[8] D. M. Carr, $P_{\kappa} \lambda$ partition relations, Fund. Math., 128 (1987), 181-195.
[9] D. M. Carr, J.-P. Levinski and D. H. Pelletier, On the existence of strongly normal ideals over $P_{\kappa} \lambda$, Arch. Math. Logic, 30 (1990), 59-72.
[10] T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic, 5 (1973), 165-198.
[11] C. A. Johnson, More on distributive ideals, Fund. Math., 128 (1987), 113-130.
[12] C. A. Johnson, Some partition relations for ideals on $P_{\chi} \lambda$, Acta Math. Hungar., 56 (1990), 269-282.
[13] S. Kamo, Ineffability and partition property on $\mathscr{P}_{\kappa} \lambda$, J. Math. Soc. Japan, 49 (1997), 125-143.
[14] M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc., 42 (1974), 279-285.
[15] P. Matet, Un principe combinatoire en relation avec l'ultranormalité des idéaux, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 61-62.
[16] P. Matet, Part (κ, λ) and Part* (κ, λ), In: Set Theory, Barcelona, 2003-2004, (eds. J. Bagaria and S. Todorcevic), Trends Math., Birkhäuser, Basel, 2006, 321-344.
[17] P. Matet, Covering for category and combinatorics on $P_{\kappa}(\lambda)$, J. Math. Soc. Japan, 58 (2006), 153-181.
[18] P. Matet, Large cardinals and covering numbers, Fund. Math., 205 (2009), 45-75.
[19] P. Matet, Normal restrictions of the noncofinal ideal on $P_{\kappa}(\lambda)$, Fund. Math., 221 (2013), 1-22.
[20] P. Matet, C. Péan and S. Shelah, Confinality of normal ideals on $P_{\kappa}(\lambda)$. II, Israel J. Math., 150 (2005), 253-283.
[21] P. Matet, C. Péan and S. Shelah, Confinality of normal ideals on $P_{\kappa}(\lambda)$. I, preprint, arXiv:math.LO/0404318.
[22] P. Matet and S. Shelah, The nonstationary ideal on $P_{\kappa}(\lambda)$ for λ singular, preprint, arXiv:math.LO/0612246.
[23] P. Matet and T. Usuba, Two-cardinal versions of weak compactness: Partitions of pairs, Ann. Pure Appl. Logic, 163 (2012), 1-22.
[24] I. Neeman, Aronszajn trees and failure of the singular cardinal hypothesis, J. Math. Log., 9 (2009), 139-157.
[25] S. Shelah, Weakly compact cardinals: a combinatorial proof, J. Symbolic Logic, 44 (1979), 559562.
[26] E. Specker, Sur un problème de Sikorski, Colloquium Math., 2 (1949), 9-12.
[27] T. Usuba, Ineffability of $\mathscr{P}_{\kappa} \lambda$ for λ with small cofinality, J. Math. Soc. Japan, 60 (2008), 935-954.

Pierre Matet
Université de Caen - CNRS
Laboratoire de Mathématiques BP 5186
14032 Caen Cedex, France
E-mail: pierre.matet@unicaen.fr

Toshimichi UsUBA

Organization of Advanced Science and Technology Kobe University
Rokko-dai 1-1, Nada
Kobe, 657-8501 Japan
E-mail: usuba@people.kobe-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 03E02, 03E55.
 Key Words and Phrases. $P_{\kappa}(\lambda)$, partition relation, weakly compact cardinal.

