
c©2015 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 67, No. 1 (2015) pp. 159–182
doi: 10.2969/jmsj/06710159

Low-dimensional surgery and the Yamabe invariant

By Bernd Ammann, Mattias Dahl and Emmanuel Humbert

(Received Nov. 20, 2012)
(Revised Jan. 23, 2013)

Abstract. Assume that M is a compact n-dimensional manifold and
that N is obtained by surgery along a k-dimensional sphere, k ≤ n − 3.
The smooth Yamabe invariants σ(M) and σ(N) satisfy σ(N) ≥ min(σ(M), Λ)
for a constant Λ > 0 depending only on n and k. We derive explicit positive
lower bounds for Λ in dimensions where previous methods failed, namely for
(n, k) ∈ {(4, 1), (5, 1), (5, 2), (6, 3), (9, 1), (10, 1)}. With methods from surgery
theory and bordism theory several gap phenomena for smooth Yamabe invari-
ants can be deduced.

1. Introduction and results.

Let (M, g) be a Riemannian manifold of dimension n ≥ 3. Its scalar curvature will
be denoted by sg. We define the Yamabe functional by

Fg(u) :=

∫
M

(an|du|2g + sgu2)dvg

( ∫
M
|u|pn dvg

)2/pn
,

where u ∈ C∞c (M) does not vanish identically, and where an := 4(n− 1)/(n − 2) and
pn := 2n/(n− 2). The conformal Yamabe constant µ(M, g) of (M, g) is then defined by

µ(M, g) := inf
u∈C∞c (M),u 6≡0

Fg(u).

This functional played a crucial role in the solution of the Yamabe problem which consists
in finding a metric of constant scalar curvature in a given conformal class. For a compact
manifold M the Yamabe invariant is defined by

σ(M) := supµ(M, g),

where the supremum runs over all the metrics on M , or equivalently over all conformal
classes on M . In order to stress that the Yamabe invariant only depends on the differ-
entiable structure of M , it is often called the “smooth Yamabe invariant of M”. One
motivation for studying such an invariant is given by the following well-known result

Proposition 1.1. A compact differentiable manifold of dimension n ≥ 3 admits
a metric with positive scalar curvature if and only if σ(M) > 0.
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Note that all manifolds in this article are manifolds without boundary.
We recall that classification of all compact manifolds of dimension n ≥ 3 admitting

a positive scalar curvature metric is a challenging open problem solved only in dimension
3 by using Hamilton’s Ricci flow and Perelman’s methods. This is one reason why much
work has been devoted to the study of σ(M).

One of the first goals should be to compute σ(M) explicitly for some standard
manifolds M . This is unfortunately a problem out of range even for what could be
considered the simplest examples. For example, the value of the Yamabe invariant is not
known for quotients of spheres except for RP 3 (and the spheres themselves), for products
of spheres of dimension at least 2 and for hyperbolic spaces of dimension at least 4.

One also could ask for general bounds for σ(M). The fundamental one is due to
Aubin,

σ(M) ≤ σ(Sn) = µ(Sn) = n(n− 1)ω2/n
n .

Here Sn is the standard sphere in Rn+1, and its volume is denoted by ωn.
Unfortunately, in dimension n ≥ 5, not much more is known. Even the basic question

whether there exists a compact manifold M of dimension n ≥ 5 satisfying σ(M) 6= 0 and
σ(M) 6= σ(Sn) is still open. It would also be interesting to see whether the set

Sn(0) := {σ(M) | M is a compact connected manifold of dimension n}

is finite or countably infinite, and whether Sn(0) is dense in (−∞, σ(Sn)]. Much more is
known now about

Sn(i) := {σ(M) | M is a compact i-connected manifold of dimension n}

for i ≥ 1, as we will see below.
A useful tool for understanding the Yamabe invariant is to study its change under

surgery type modifications of the manifold. The main results obtained this way are the
following.

• In 1979, Gromov-Lawson and Schoen-Yau independently proved that the positivity of
σ(M) is preserved under surgery of dimension k ≤ n − 3. One important corollary is
that any compact simply connected non-spin manifold of dimension n ≥ 5 admits a
positive scalar curvature metric. Together with results by Stephan Stolz (1992) this
implies Sn(1) ⊂ (0, σ(Sn)] for n ≡ 3, 5, 6, 7 modulo 8, n ≥ 5.

• In 1987, Kobayashi proved that 0-dimensional surgeries do not decrease σ(M).
• In 2000, Petean and Yun proved that if N is obtained by a k-dimensional surgery

(k ≤ n − 3) from M then σ(N) ≥ min(0, σ(M)). This implies in particular that if
M is simply connected and has dimension n ≥ 5 then σ(M) ≥ 0. In other words
Sn(1) ⊂ [0, σ(Sn)] for all n ≥ 5.

In [2] we proved a generalization of these three results.

Theorem 1.2 ([2, Corollary 1.4]). If N is obtained from a compact n-dimensional
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manifold M by a k-dimensional surgery, k ≤ n− 3, then

σ(N) ≥ min(Λn,k, σ(M))

where Λn,k > 0 depends only on n and k. In addition, Λn,0 = σ(Sn).

As a corollary we see that 0 is not an accumulation point of Sn(1), n ≥ 5, in other
words we find that for any simply connected compact manifold M of dimension n ≥ 5

• σ(M) = 0 if M is spin and if its index in KOn does not vanish,
• σ(M) ≥ αn, otherwise, where αn > 0 depends only on n.

Many other consequences can be deduced, see [2, Section 1.4], but one could find these
results unsatisfactory, since the constant Λn,k were not computed in [2] unless for k = 0.
This effect was then reflected in the applications. For example, no explicit positive lower
bound for the constant αn above was known. The results in [4] and [3] yield explicit
positive lower bounds for Λn,k in the cases 2 ≤ k ≤ n − 4. In order to apply standard
surgery techniques, it would be helpful to have lower bounds in the cases k = 1 and
k = n− 3.

The method established in the present article yields explicit positive lower bounds
for all cases k = 1 ≤ n − 4 and in the cases (n, k) = (6, 3), (n, k) = (5, 2) and
(n, k) = (4, 1). However it requires as input data a lower bound on the conformal
Yamabe constant µ(Rk+1×Sn−k−1). Such input data is provided in [17] and [18] in the
cases (n, k) ∈ {(4, 1), (5, 1), (5, 2), (9, 1), (10, 1)}. Unfortunately their method has to be
strongly modified for each pair of dimensions, and as a courtesy to us, Petean and Ruiz
provided the above cases, as these are the ones which will lead to interesting applications
in Section 5.

We obtain in Corollary 5.3 that S5(1) ⊂ (45.1, σ(S5)], in other words: any compact
simply connected manifold of dimension 5 satisfies

45.1 < σ(M) ≤ µ(S5) < 79.

In the same way, Corollary 5.4 says that S6(1) ⊂ (49.9, σ(S6)].
In dimensions n ≥ 7 an unsolved problem persists for surgeries of codimension 3,

i.e. for n = k − 3, see [3] for details about this problem.
This problem can be avoided by restricting to 2-connected manifolds. Together

with results from [3] we obtain an explicit positive number tn such that any compact
n-dimensional 2-connected manifold M with vanishing index, n 6= 4, satisfies σ(M) ≥ tn,
see Table 2 and Proposition 5.7. We thus see Sn(2) ⊂ {0} ∪ [tn, σ(Sn)] for all n 6= 4.
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partially supported by ANR-10-BLAN 0105.
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2. Preliminaries.

2.1. Notation and model spaces.
We denote the standard flat metric on Rv by ξv. On the sphere Sw ⊂ Rw+1 the

standard round metric is denoted by ρw. The volume of (Sw, ρw) is

ωw =
2π(w+1)/2

Γ((w + 1)/2)
.

Let Hv
c be the v-dimensional complete 1-connected Riemannian manifold with sec-

tional curvature −c2. The Riemannian metric on Hv
c is denoted by ηv

c . We fix a point
x0 in Hv

c .
Next, we define the model spaces Mc through Mc := Hv

c × Sw, which has the Rie-
mannian metric Gc := ηv

c + ρw. Note that in our previous articles [2], [4] we used the
notation Mv+w,v−1

c for Mc. Set n := v + w.
Let (N, h) be a Riemannian manifold of dimension n. Let ∆h denote the non-

negative Laplacian on (N, h). For i = 1, 2 we let Ω(i)(N, h) be the set of non-negative
C2 functions u solving the Yamabe equation

an∆hu + shu = µupn−1 (1)

for some µ = µ(u) ∈ R and satisfying

• u 6≡ 0,
• ‖u‖Lpn (N) ≤ 1,
• u ∈ L∞(N),

and

• u ∈ L2(N), for i = 1,

or

• µ(u)‖u‖pn−2
L∞(N) ≥ (n− k − 2)2(n− 1)/8(n− 2), for i = 2.

For i = 1, 2 we set

µ(i)(N, h) := inf
u∈Ω(i)(N,h)

µ(u).

In particular, if Ω(i)(N, h) is empty then µ(i)(N, h) = ∞.
Finally, the constants in the surgery theorem are defined as follows. For integers

n ≥ 3 and 0 ≤ k ≤ n− 3 set

Λ(i)
n,k := inf

c∈[0,1]
µ(i)(Mc)

and

Λn,k := min
{
Λ(1)

n,k,Λ(2)
n,k

}
.
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where v = k + 1 and w = n− k − 1.

2.2. Strategy of proof.
The strategy we have used to find lower bounds of Λn,k is the following.

• First prove that Λ(2)
n,k ≥ Λ(1)

n,k. This was the main result in [3] which holds in the cases
k ≤ n − 4 and n = k + 3 ∈ {4, 5}. For n = 6, k = 3, the results in [3] do not apply
directly and just allow to prove that

inf
c∈[0,1)

µ(2)(Mc) ≥ Λ(1)
6,3.

The case c = 1 is treated separately: we exploit the fact that M1 is conformally
equivalent to the standard sphere S6 \ S3 with a totally geodesic 3-sphere removed to
show that µ(2)(M1) ≥ µ(S6) ≥ Λ(1)

6,3. We obtain again that Λ(2)
6,3 ≥ Λ(1)

6,3 (see Appendix
B). It remains open whether the same holds for n = k + 3 ≥ 7.

• Find lower bounds for Λ(1)
n,k. For this purpose, we show that µ(1)(Mc) can be estimated

by the conformal Yamabe constant of the non-compact manifold Mc, see Section 2.3.
We are reduced to find a lower bound for conformal Yamabe constant of the product
manifold Mc. As mentioned before, there exists results in this direction; our paper [4]
gives such a bound if v ≥ 3 and w ≥ 3. Also, the work of Petean and Ruiz apply if
w = 1. In this paper, we develop a method which completes the remaining cases.

The technical aspects of the argument in the present paper involve symmetrization
and stretching maps to relate the the conformal Yamabe constants of Mc for different
values of c. This is done in Section 3.

Remark 2.1. Our methods also apply to find explicit lower bounds for the confor-
mal Yamabe constant of Hv

c×(W,h), where (W,h) is any compact Riemannian manifold,
i.e. if we replace the round sphere by (W,h). The case (W,h) = Sw is the only case for
which we see applications, so for simplicity of presentation we restricted to this case.

2.3. The generalized Yamabe functional of the model spaces.
For u ∈ C∞(Mc), u 6≡ 0, we define the generalized Yamabe functional

Fb
c (u) :=

∫
Mc

(an|du|2 + bu2)dv

‖u‖2Lpn (Mc)

.

Clearly Fb
c (u) ≥ Fb′

c (u) if b ≥ b′ and Fb
c (u) ≥ (b/b′)Fb′

c (u) if 0 < b ≤ b′.
The scalar curvature of Mc is sc := sGc = w(w − 1) − c2v(v − 1). The conformal

Yamabe constant µc of Mc satisfies

µc := µ(Mc) = inf Fsc
c (u),

where the infimum is taken over all smooth functions u of compact support which do not
vanish identically.

If u is a solution of (1) as in the definition of Ω(1)(Mc), then u is L2 by assumption
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and thus also in the Sobolev space H1,2. An integration by parts
∫

u∆u dv =
∫ |du|2 dv

may then be performed in the integral defining Fb
c (u), and we conclude that

µ(1)(Mc) ≥ µc.

Using Λ(2)
n,k ≥ Λ(1)

n,k and the definition of Λ(1)
n,k this implies positive lower bounds for

Λn,k for certain pairs (n, k), see Table 1.

2.4. Symmetrization.
The group Stabx0(Isom(Hv

c )) of isometries of Hv
c fixing x0 ∈ Hv

c is isomorphic to
O(v) and we will fix such an isomorphism to identify Stabx0(Isom(Hv

c )) with O(v). A
function on Hv

c is O(v)-invariant if and only if it depends only on the distance d(·, x0)
to the point x0. A function on Mc is O(v)-invariant if and only if it depends only on
d(·, x0) and the point in Sw.

Lemma 2.2. For each c ∈ [0, 1]

µc = inf Fsc
c (f̃)

where the infimum is taken over all O(v)-invariant functions on Mc which do not vanish
identically.

Proof. The proof uses standard arguments and we just give a sketch. We must
show that for any non-negative compactly supported smooth function u : Mc → R
there is a O(v)-invariant non-negative compactly supported smooth function ũ :Mc → R
satisfying Fsc

c (ũ) ≤ Fsc
c (u). If ϕ is a non-negative function on Hv

c , there is a non-negative
O(v)-invariant function ϕ∗ defined on the same space called the hyperbolic rearrangement
of ϕ, see [7]. This has the properties that for p ≥ 1

‖ϕ∗‖Lp(Hv
c ) = ‖ϕ‖Lp(Hv

c ), (2a)

‖ϕ∗1 − ϕ∗2‖Lp(Hv
c ) ≤ ‖ϕ1 − ϕ2‖Lp(Hv

c ), (2b)

‖dϕ∗‖Lp(Hv
c ) ≤ ‖dϕ‖Lp(Hv

c ), (2c)

see [7, Section 4, Corollaries 1 and 3].
Let u be a non-negative function on Mc. We set ũ(·, y) := (u(·, y))∗. From (2a)

and (2c) we have ‖ũ‖Lpn (Mc) = ‖u‖Lpn (Mc) and ‖dHv
c
ũ‖L2(Mc) ≤ ‖dHv

c
u‖L2(Mc). Let

γ : (−ε, ε) → Sw be a curve. We apply (2b) with ϕ1 = u(·, γ(t)), ϕ2 = u(·, γ(0)), divide
by |t|, and let t tend to 0. From this we conclude

‖dSw ũ(γ′(0))‖L2(Hv
c×{γ(0)}) ≤ ‖dSwu(γ′(0))‖L2(Hv

c×{γ(0)})

and ‖dSw ũ‖L2(Mc) ≤ ‖dSwu‖L2(Mc). It follows that Fsc
c (ũ) ≤ Fsc

c (u) which ends the proof
of Lemma 2.2. ¤



Low-dimensional surgery and the Yamabe invariant 165

3. Comparing Fb
c to Fb′

c′ .

We want to estimate Fb
c from below in terms of Fb

0 and Fb1
1 for b1 as large as possible.

3.1. Comparing Fb
c to Fb

0.
For c 6= 0 define shc(t) := c−1 sinh(ct). In polar coordinates we have

Hv
0 = Rv = ((0,∞)× Sv−1, dt2 + t2ρv−1),

and

Hv
c = ((0,∞)× Sv−1, dt2 + shc(t)2ρv−1).

Lemma 3.1. For c > 0 there is a unique diffeomorphism fc : [0,∞) → [0,∞) for
which the map Fc : Rv → Hv

c defined in polar coordinates as

Fc : (t, θ) 7→ (fc(t), θ).

is volume preserving. Further f ′c(t) ≤ 1 for all 0 ≤ t < ∞.

The map Fc squeezes the radial coordinate, so we will call Fc the radial squeezing
map from Rv to Hv

c .

Proof. The function

ϕc(r) :=
(

v

ωv−1
vol

(
B
Hv

c
x0 (r)

))1/v

=
(

v

∫ r

0

shc(t)v−1 dt

)1/v

is a smooth function [0,∞) → [0,∞). Since ϕ′c(0) = 1, ϕ′c(r) > 0 for r ≥ 0, and
limr→∞ ϕc(r) = vol(Hv

c ) = ∞ it is a diffeomorphism. We set fc := ϕ−1
c . Let B0(r) be

the ball of radius r around 0 in Rv. Since Fc is assumed to be volume preserving we have

volR
v

(B0(r)) = volH
v
c (Fc(B0(r))),

or

ωv−1

v
rv = ωv−1

∫ fc(r)

0

shc(t)v−1 dt. (3)

Differentiating (3) we get

rv−1 = f ′c(r) shc(fc(r))v−1.

From (3) together with sh′c(t) = cosh(ct) ≥ 1 we find
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rv =
∫ fc(r)

0

v shc(t)v−1 dt

=
∫ fc(r)

0

(shc(t)v)′
1

sh′c(t)
dt

≤
∫ fc(r)

0

(shc(t)v)′ dt

= shc(f(r))v,

so r ≤ shc(fc(r)) and we conclude that f ′c(r) ≤ 1. ¤

We extend the radial squeezing map to a volume preserving map F̂c : M0 → Mc by
setting

F̂c := Fc × IdSw : Rv × Sw → Hv
c × Sw.

Proposition 3.2. For O(v)-invariant functions u :Mc → R we have

Fb
c (u) ≥ Fb

0(u ◦ F̂c).

Proof. The differential d(u ◦ F̂c) decomposes orthogonally in a Rv-component
dRv (u ◦ F̂c) and a Sw-component dSw(u ◦ F̂c). Similarly, du splits orthogonally in a
Hv

c -component dHv
c
u and a Sw-component dSwu. Then dRv (u ◦ F̂c) = dHv

c
u ◦ dF̂c and

dSw(u ◦ F̂c) = dSwu ◦ dF̂c = dSwu. Thus

|dRv (u ◦ F̂c)| = |dHv
c
u ◦ dF̂c| = |dHv

c
u|f ′(t) ≤ |dHv

c
u|

and

|dSw(u ◦ F̂c)| = |dSwu|.

It follows that |d(u ◦ F̂c)| ≤ |du|. Further the volume form is preserved by the map F̂c

and the Proposition follows. ¤

Corollary 3.3. If sc > 0 then µc ≥ (sc/s0)µ0.

This corollary gives good estimates if c is sufficiently small, as then sc > 0. However
in case v > w the corollary can no longer be applied for c close to 1.

3.2. Comparing Fb
c to Fb1

1 .
For c > 0 we define a diffeomorphism Rc : Hv

c → Hv
1 by Rc(t, θ) = (ct, θ). The map

Rc is a c-homothety in the sense that the Riemannian metric of Hv
c is ηv

c = c−2R∗cη
v
1

where ηv
1 is the Riemannian metric of Hv

1. Taking the product with the identity map on
the round sphere we obtain a map R̂c : Mc → M1. The metric Gc on Mc is then given
by Gc = R̂∗c(c

−2ηv
1 + ρw).
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The following Proposition is an extension of [2, Lemma 3.7].

Proposition 3.4. If c ∈ (0, 1), then Fc2s1
c (u◦ R̂c) ≥ c2w/nFs1

1 (u) for all functions
u ∈ C∞c (M1).

Proof. We have

|d(u ◦ R̂c)|2Gc
= |R∗c(du)|2Gc

= |du|2c−2ηv
1+ρw

= c2|dHv
c
u|2ηv

1
+ |dSwu|2ρw

≥ c2
(|dHv

c
u|2ηv

1
+ |dSwu|2ρw

)

= c2|du|2g1
.

In addition, dvGc = c−vR̂∗cdvg1 . From this we find that

Fc2s1
c (u ◦ R̂c) =

∫
Mc

(
an|d(u ◦ R̂c)|2Gc

+ c2s1(u ◦ R̂c)2
)
dvGc

( ∫
Rv×Sw(u ◦ R̂c)pn dvGc

)2/pn

≥
∫
M1

(
anc2|du|2g1

+ c2s1u
2
)
c−v dvg1

( ∫
Rv×Sw upnc−v dvg1

)2/pn

= c2w/nFs1
1 (u),

which is the statement of the Proposition. ¤

To apply the proposition, note that

sc = w(w − 1)− c2v(v − 1) ≥ c2(w(w − 1)− v(v − 1)) = c2s1.

This implies

Fsc
c (u ◦ R̂c) ≥ Fc2s1

c (u).

By taking the infimum over all non-vanishing smooth functions u ∈ C∞c (M1) with com-
pact support we obtain the following.

Corollary 3.5. For c ∈ (0, 1) we have

µc ≥ c2w/nµ1.

This estimate gives uniform estimates for µc if c is bounded away from 0. Because
of µ1 = µ(Sn) we obtain explicit bounds in any dimension. However these bounds tend
to 0 as c → 0.
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4. Conclusions.

4.1. Interpolation of the previous inequalities.
We now improve the bounds obtained in Corollaries 3.3 and 3.5 by combining Propo-

sitions 3.2 and 3.4 in an interpolation argument.

Theorem 4.1. For all c ∈ (0, 1) we have

µc ≥
(

µ0

µ1
− c2v(v − 1)

(1− c2)w(w − 1) + c2v(v − 1)

(
µ0

µ1
− c2w/n

))
µ1 (4)

and

µc ≥ c2w/nµ1. (5)

As discussed in Appendix A, Inequality (4) is stronger than Inequality (5) for c2w/n <

µ0/µ1 and Inequality (5) is stronger for c2w/n > µ0/µ1.

Proof. Inequality (5) is the statement of Corollary 3.5. Assume that λ ≥ 0 and
τ ≥ 0 satisfy

λ + τ ≤ 1, (6)

λc2s1 + τs0 ≤ sc. (7)

Then we get

Fsc
c (u) ≥ λFc2s1

c (u ◦ R̂−1
c ) + τFs0

c (u ◦ F̂c)

≥ λc2w/nFs1
1 (u ◦ R̂−1

c ) + τFs0
0 (u ◦ F̂c)

≥ λc2w/nµ1 + τµ0, (8)

where we used Proposition 3.4 for the second inequality. It follows that

µc ≥ λc2w/nµ1 + τµ0. (9)

The lines described by λ + τ = 1 and λc2s1 + τs0 = sc intersect in (λ0, τ0) where

λ0 =
v(v − 1)

(c−2 − 1)w(w − 1) + v(v − 1)
∈ (0, 1), τ0 = 1− λ0, (10)

see Appendix A. Setting λ := λ0 and τ := τ0 in (9) yields Inequality (4). ¤

The estimates obtained by the theorem rely on explicit lower bounds for µ0. Such
lower bounds can be found in the literature in the following cases.

( i ) v = 1, w ≥ 2. Then µ0 = µ1 = µc = µ(Sn) for all c ∈ (0, 1). This case is trivial
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as R× Sw is conformal to a round sphere of dimension n = w + 1 with two points
removed.

( ii ) (v, w) ∈ {(2, 2), (2, 3), (2, 7), (2, 8), (3, 2)}. In these cases bounds have been derived
in [17], [18] using isoperimetric profiles.

(iii) v ≥ 3 and w ≥ 3. See [4] where an explicit lower bound of the Yamabe functional
of Rv × Sw in terms of the Yamabe functionals of Rv and Sw is used.

(iv) v ≥ 4 and w = 2. This case is not explicitly written in [4] but can be deduced
from the main result of that paper. We just observe that this result implies that

µ0 ≥ nan

(3a3)3/n((n− 3)an−3)(n−3)/n
µ(Rn−3)(n−3)/nµ(R× S2)3/n

where ak := 4(k − 1)/(k − 2) for k ≥ 3. Next, note that µ(Rn−3) = µ(Sn−3) and
since R × S2 is conformally equivalent to S3 with two points removed we have
µ(R× S2) = µ(S3). Hence, we get

µ0 ≥ nan

243/n((n− 3)an−3)(n−3)/n
µ(Sn−3)(n−3)/nµ(S3)3/n.

In the case (v, w) = (4, 2) this leads to

µ0 ≥ 0.56885µ1 > 54.77. (11)

A similar argument also yields lower bounds for µ0 in the cases v − 2 ≥ w ≥ 3.
These bounds on µ0 are slightly stronger than the ones in (iii).

The estimate is optimal in Case (i). In this case nothing remains to be proven, and
we will not discuss it further. In Cases (ii) and (iii) the bound is not likely to be optimal.
Any improvement of the lower bound for µ0 would improve the bounds obtained in
Theorem 4.1. In [4] a lower bound on µc is derived which is uniform in c. Thus Theorem
4.1 does not currently yield improved estimates in Case (iii). However, if a better lower
bound for µ0 is available, it might be relevant as well, and will be also considered in the
following. The most important applications thus come in Case (ii).

4.2. Analytical Conclusions.
We now want to derive concrete bounds on Λv+w,v−1 for special values of v and w.

Corollary 4.2. For all c ∈ [0, 1] and all v ≥ 2 and w ≥ 2 we obtain

µc ≥
(

1− v(v − 1)
(
√

v(v − 1) +
√

w(w − 1))2

)
µ0. (12)

Proof. Using (4) and the facts that µ1 > µ0 and c2w/n ≥ c2 we deduce

µc ≥
(

1− (1− c2)c2v(v − 1)
(1− c2)w(w − 1) + c2v(v − 1)

)
µ0 (13)
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for general values of v and w. The right hand side attains its minimum over c ∈ [0, 1] for

c2 =

√
w(w − 1)√

v(v − 1) +
√

w(w − 1)
,

from which (12) follows. ¤

Example 4.3. v = 2, w = 3: In [18, Theorem 1.4] Petean and Ruiz have obtained
µ(R2 × S3) ≥ 0.75µ(S5), that is µ0 ≥ 0.75µ1. Using (12) we obtain

µc ≥
√

3
2

µ0 ≥ 0.649µ1 ≥ 51.2

Thus Λ5,1 ≥ 51.2.
Compare this value with µ(S5) = 78.996 . . .

Example 4.4. v = 2, w = 7: In [18, Theorem 1.6] Petean and Ruiz have obtained
µ(R2 × S7) ≥ 0.747µ(S9), that is µ0 ≥ 0.747µ1. Using (12) we obtain

µc ≥
(

1− 2
(
√

2 +
√

42)2

)
µ0 ≥ 0.723µ1 ≥ 106.9

Thus Λ9,1 ≥ 106.9.
Compare this value with µ(S9) = 147.87 . . .

Example 4.5. v = 2, w = 8: In [18, Theorem 1.6] Petean and Ruiz have obtained
µ(R2 × S8) ≥ 0.626µ(S10), that is µ0 ≥ 0.626µ1. Using (12) we obtain

µc ≥
(

1− 2
(
√

2 +
√

56)2

)
µ0 ≥ 0.610µ1 ≥ 100.69

Thus Λ10,1 ≥ 100.69.
Compare this value with µ(S10) = 165.02 . . .

In the case v = w we find better estimates for the right hand side of (4).

Corollary 4.6. Assume v = w ≥ 2 and µ0/µ1 ≥ γ > 0. Then

inf
c∈[0,1]

µc ≥
(

γ − 4
27

γ3

)
µ1

Proof. Using v = w we obtain directly from (4):

µc ≥
((

c− µ0

µ1

)
1

c−2
+

µ0

µ1

)
µ1 =

(
c3 − c2 µ0

µ1
+

µ0

µ1

)
µ1 ≥ (c3 − c2γ + γ)µ1

for any γ ∈ (0, µ0/µ1]. On the interval [0, 1] the right hand side attains its minimum in



Low-dimensional surgery and the Yamabe invariant 171

Table 1. Lower estimates for inf µc = Λn,k. The fourth column
shows the analytic estimates from Corollary 4.2 and 4.6. The fifth
column shows the numerical estimates from Subsection 4.3. The value
for µ1 is approximate, whereas the lower bounds are rounded down.

(v, w) (n, k) µ0/µ1 Analytic Numeric µ1 = µ(Sn)

(2, 2) (4, 1) 0.68 38.9 38.9 61.56

(2, 3) (5, 1) 0.75 51.2 56.6 79.00

(2, 7) (9, 1) 0.747 106.9 109.2 147.87

(2, 8) (10, 1) 0.626 100.6 102.6 165.02

(3, 2) (5, 2) 0.63 29.7 45.1 79.00

(4, 2) (6, 3) 0.568 36.4 49.9 96.30

c = (2/3)γ. This yields the statement of the corollary. ¤

Example 4.7. For v = w = 2 Petean and Ruiz [17, Theorem 1.2] have derived
the bound γ = 0.68. This yields

Λ4,1 ≥ 0.63µ1 ≥ 38.9.

In the case v > w one can use c2w/n ≥ c which improves inequality (13) to

µc ≥
(

1− (1− c)c2v(v − 1)
(1− c2)w(w − 1) + c2v(v − 1)

)
µ0

which again yields better estimates for the right hand side of (4).
Obviously in the case (v, w) = (4, 2) the determination of the value c for which µc

is minimal, gives the equation 5c3 + 3c = 2 which has as only real solution

c =
1
5

3
√

25 + 5
√

30 +
1

3
√

25 + 5
√

30
≈ 0.48108.

Example 4.8. For (v, w) = (4, 2) we have derived the bound γ = 0.56885, see
equation (11). This yields

Λ6,3 ≥ 0.3788µ1 ≥ 36.4

The explicit values deduced from the above corollaries are summarized in Table 1.

4.3. Numerical Conclusions.
Numerical computations yield better bounds. Such improved bounds are important

for applications, especially for some particular values, as for example the case v = 3,
w = 2.
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Using the procedure “Minimize” from the “Optimization” package of the program
Maple 13.0 we numerically minimized the right hand side of (4). The results of this
calculation provided the bounds given in the column “Numeric” of Table 1.

Example 4.9. Assume v = 3 and w = 2. In [18, Theorem 1.4] Petean and Ruiz
have obtained µ(R3 × S2) ≥ 0.63µ(S5), that is µ0 ≥ 0.63µ1. A numerical evaluation of
(4) yields

inf
c∈[−1,1]

µc ≥ 0.571µ1 > 45.1,

and we conclude that Λ5,2 > 45.1.

Example 4.10. Assume v = 2 and w = 7. In [18, Theorem 1.6] Petean and Ruiz
have obtained µ(R2× S7) ≥ 0.747µ(S9), that is µ0 ≥ 0.747µ1. A numerical evaluation of
(4) yields

inf
c∈[−1,1]

µc ≥ 0.739µ1 > 109.2,

and we conclude that Λ9,1 > 109.2.

Example 4.11. Assume v = 2 and w = 8. In [18, Theorem 1.6] Petean and Ruiz
have obtained µ(R2 × S8) ≥ 0.626µ(S10), that is µ0 ≥ 0.626µ1. A numerical evaluation
of (4) yields

inf
c∈[−1,1]

µc ≥ 0.622µ1 > 102.6

and we conclude that Λ10,1 > 102.6.

Example 4.12. Assume v = 4 and w = 2. In (11) we have seen that µ(R4×S2) ≥
0.56885µ(S6), that is µ0 ≥ 0.56885µ1. A numerical evaluation of (4) yields

inf
c∈[−1,1]

µc ≥ 0.51909µ1 > 49.98

and we conclude that Λ10,1 > 102.6.

Similar bounds for other dimensions could also be obtained using the same method.
We will see that the cases derived as examples above have interesting topological appli-
cations.

4.4. Bibliographic remark.
At the time when this article went into press, there was important progress connected

to the Yamabe constant µc = µ(Mc): Solutions of the Yamabe equation on Mc which
are constant on the sphere component, were studied systematically in [10].
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5. Topological applications.

The lower bounds for Λn,1, n ∈ {4, 5, 9, 10}, and Λ5,2 and Λ6,3 lead to estimates of
the Yamabe invariant for certain classes of manifolds.

5.1. Applications of the lower bound for Λ5,2.
The following two propositions are standard consequences of the methods developed

for the proof of the h-cobordism theorem. A proof for a similar statement can be found
in [13, Theorem IV.4.4, pages 299–300]. As we do not know of a reference for the
formulations given here we include their proofs.

Proposition 5.1. Let M0 and M1 be non-empty, compact, connected, and simply
connected spin manifolds of dimension n ≥ 5. Assume that M0 and M1 are spin bordant.
Then one can obtain M1 from M0 by a sequence of surgeries of dimensions ` where
2 ≤ ` ≤ n− 3.

Proof. Let W be a spin bordism from M0 to M1. By surgeries in the interior
we simplify W to be connected, simply connected, and have π2(W ) = 0 (one then says
W is 2-connected). Then Hi(W,Mj) = 0 for i = 0, 1, 2. We apply [12, VIII Theorem
4.1] for k = 3 and m = n + 1. One obtains that there is a handle presentation of the
bordism such that for any i < 3 and any i > n − 2 the number of i-handles is given by
bi(W,M0). Any i-handle corresponds to a surgery of dimension i−1. It remains to show
that bi(W,M0) = 0 for i ∈ {0, 1, 2, n + 1, n, n − 1}. This is trivial for i ∈ {0, 1, 2}. By
Poincaré duality Hn+1−i(W,M0) is dual to Hi(W,M1) which vanishes for i = 0, 1, 2. On
the other hand the universal coefficient theorem tells us that the free parts of Hi(W,M0)
and Hi(W,M0) are isomorphic. Thus bi(W,M0) which is by definition the rank of (the
free part of) Hi(W,M0) vanishes for i ∈ {n + 1, n, n− 1}. ¤

Proposition 5.2. Let M0 and M1 be non-empty compact connected and simply
connected non-spin manifolds of dimension n ≥ 5, and assume that these manifolds
are oriented bordant. Then one can obtain M1 from M0 by a sequence of surgeries of
dimensions `, 2 ≤ ` ≤ n− 3.

Proof. The proof is similar to the proof in the spin case. However the bordism
W cannot be simplified to π2(W ) = 0, but only to π2(W ) = Z/2Z with surjective maps
π2(Mj) → π2(W ). This implies again that Hi(W,Mj) = 0 for i = 0, 1, 2, and j = 1, 2.
The proof continues exactly as in the spin case. ¤

Corollary 5.3. Let M be a compact simply connected manifold of dimension 5,
then

45.1 < σ(M) ≤ µ(S5) < 79.

Proof. The upper bound for σ(M) is standard.
To prove the lower bound we consider first the case when M is spin. As the 5-

dimensional spin bordism group ΩSpin
5 is trivial, M is the boundary of a compact 6-

dimensional spin manifold. By removing a ball we obtain a spin bordism from S5 to M .
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Using Proposition 5.1 we see that M can be obtained by 2-dimensional surgeries from
S5. As a consequence σ(M) ≥ Λ5,2 > 45.1.

Next we consider the case when M is not spin. The oriented bordism group ΩSO
5 is

isomorphic to Z/2Z, and the Wu manifold SU (3)/SO(3) represents a non-trivial element
in ΩSO

5 . Thus M is either oriented bordant to the empty set or to SU (3)/SO(3).
We consider now the case that M is oriented bordant to SU (3)/SO(3). By Appendix

C we see that σ(SU (3)/SO(3)) > 64. Since SU (3)/SO(3) is not spin Proposition 5.2
implies that we can obtain M from SU (3)/SO(3) by a finite number of 2-dimensional
surgeries. Thus

σ(M) ≥ min(Λ5,2, σ(SU (3)/SO(3))) > 45.1.

It remains to consider the case that M is oriented bordant to the empty set, or
equivalently to S5. However, S5 is spin and cannot be used to apply Proposition 5.2.
Instead we use the space SU (3)/SO(3)#SU (3)/SO(3) which is simply connected, non-
spin and an oriented boundary. By [11, Theorem 2] we know that σ(SU (3)/SO(3)#
SU (3)/SO(3)) ≥ σ(SU (3)/SO(3)). We apply Proposition 5.2 with M0 = SU (3)/SO(3)
#SU (3)/SO(3) and M1 = M and thus we obtain M from M0 by a finite number of
2-dimensional surgeries. From this we find

σ(M) ≥ min(Λ5,2, σ(SU (3)/SO(3))) > 45.1

which concludes the proof of the corollary. ¤

Let us compare the lower bound 45.1 for simply connected 5-manifolds to the ex-
pected values for the smooth Yamabe invariant on non-simply-connected spherical space
forms in dimension 5. Assume that M = S5/Γ where the finite group Γ ⊂ SO(6) acts
freely on S5. It was conjectured by Schoen [19, Page 10, lines 6–11] that on such man-
ifolds the supremum in the definition of the smooth Yamabe number is attained by the
standard conformal structure. If this is true, then σ(RP 5) would be equal to 45.371 . . . .
Except S5 and RP 5 all 5-dimensional space forms would have σ-invariant below 45.1.

5.2. Applications of the lower bound for Λ6,3.
Corollary 5.4. Let M be a compact simply connected manifold of dimension 6,

then

49.9 < σ(M) ≤ µ(S6) < 96.30.

Proof. The proof of this corollary is a straightforward adaptation of the proof
of previous corollary, using the fact that both the spin bordism group and the oriented
bordism group are trivial in dimension 6. We obtain

σ(M) ≥ min(Λ6,2,Λ6,3) ≥ 49.9. ¤

5.3. Applications of the lower bound for Λ9,1 and Λ10,1 to spin manifolds.
For a compact spin manifold M of dimension n the alpha-genus α(M) ∈ KOn is
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equal to the index of the Clifford-linear Dirac operator on M . It depends only on the
spin bordism class of M .

Lemma 5.5. Let M be a compact 2-connected spin manifold of dimension n ∈
{9, 10} which has α(M) = 0. Then M is obtained from S9 or HP 2 × S1 (for n = 9) or
from S10 or HP 2 × S1 × S1 (for n = 10) by a sequence of surgeries of dimensions k ∈
{0, 1, . . . , n− 4}. All these surgeries are compatible with orientation and spin structure.

Note that S1 carries two spin structure. One spin structure is obtained from the spin
structure on D2 by restriction to the boundary S1 = ∂D2, and it is called the bounding
spin structure. In the above lemma we assume that all manifolds S1 are equipped with
the other spin structure, the non-bounding spin structure.

Proof. From the description of the Spin bordism group in [5] and [6] we know
that M is spin bordant to P = ∅ or to P = HP 2 × S1 (if n = 9) and M is spin bordant
to P = ∅ or to P = HP 2 × S1 × S1 (if n = 10).

Now let W be a spin bordism from P to M . By performing surgeries of dimension
0, 1, 2, and 3 one can find a spin bordism W ′ from P to M which is 3-connected, that
is W ′ is connected and π1(W ′) = π2(W ′) = π3(W ′) = 0. The inclusion i : M → W is
thus 3-connected, that is bijective on πi for i ≤ 2 and surjective on π3. This implies that
W ′ can be decomposed into handles each of which corresponds to a surgery of dimension
≤ n− 4. ¤

The following corollary extends similar results from [3] which hold in dimension
n = 7, n = 8 and n ≥ 11. We define s1 := σ(HP 2 × S1) and s2 := σ(HP 2 × S1 × S1).

Corollary 5.6. Let M be a 2-connected compact spin manifold of dimension
n = 9 or n = 10 with α(M) = 0. Then

σ(M) ≥
{

min{Λ9,1,Λ9,2,Λ9,3,Λ9,4,Λ9,5, s1} > 109.2 for n = 9,

min{Λ10,1,Λ10,2,Λ10,3,Λ10,4,Λ10,5,Λ10,6, s2} ≥ 97.3 for n = 10.

Proof. Lemma 5.5 implies

σ(M) ≥ min{Λ9,1,Λ9,2,Λ9,3,Λ9,4,Λ9,5, s1}

if n = 9 and

σ(M) ≥ min{Λ10,1,Λ10,2,Λ10,3,Λ10,4,Λ10,5,Λ10,6, s2}

if n = 10. The relations Λ9,1 > 109.2 and Λ10,1 > 102.6 follow from Examples 4.10 and
4.11. The relations

min{Λ9,2,Λ9,3,Λ9,4,Λ9,5} > 109.4 > 109.2

and
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min{Λ10,2,Λ10,3,Λ10,4,Λ10,5,Λ10,6} > 126.4 > 102.6

follow from the product formula, see [4, Corollary 3.3]. From [1, Theorem 1.1] it follows
that sk ≥ µ(HP 2×Rk). To estimate s1 for n = 9 we apply results of [16]. The quantities
V and V8 in that paper satisfy

(
V

V8

)2/9

= 0.9370 . . . ,

see Appendix D. Thus, [16, Theorem 1.2] tells us that

s1 ≥ µ(HP 2 × R) ≥ 0.9370µ(S9) = 138.57 . . . > 109.2.

An estimate for s2 when n = 10 is provided by [18, Example after Theorem 1.7], namely

s2 ≥ µ(HP 2 × R2) ≥ 0.59µ(S10) > 97.3 < Λ10,1. ¤

In the case that α(M) 6= 0 for 2-connected M it was shown in [15, Theorem 1] that
σ(M) = 0.

In dimensions n ≤ 6, n 6= 4, there are only a few 2-connected compact manifolds,
namely S3, S5, S6, and connected sums of S3 × S3, all with their standard smooth
structures. The conformal Yamabe constant for the product metric on S3 × S3,

µ(S3 × S3, ρ3 + ρ3) = 12(2π2)2/3 = 87.64646 . . . ,

follows from Obata’s theorem [14, Proposition 6.2]. Using Theorem C or more precisely
the third conclusion in the following unnumbered corollary of [8] we find

σ(S3 × S3) > 12(2π2)2/3 = 87.64646 . . .

In all dimensions 6= 4 we thus obtain lower bounds for the smooth Yamabe invariant.
In dimensions n = 7, n = 8, and n ≥ 11 an explicit lower bound for the smooth
Yamabe invariant of 2-connected compact manifolds with vanishing index was obtained
in Corollaries 6.6, 6.7 and Proposition 6.9 of [3, Corollary 6.6]. Summarizing we have
the following proposition.

Proposition 5.7. Let M is a 2-connected compact manifold of dimension n 6= 4.
If α(M) 6= 0, then σ(M) = 0. If α(M) = 0, then σ(M) ≥ tn, where tn is an explicit
positive number only depending on n.

Some values of tn are collected in Table 2.
The situation for n = 4 is still unclear as it is unknown whether exotic 4-spheres, i.e.

manifolds homeomorphic but not diffeomorphic to S4, do exist. The smooth Poincaré
conjecture in dimension 4 claims that exotic 4-spheres do not exist. This would imply
that S4 is the only 2-connected 4-manifold and thus t4 = σ(S4).
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Table 2. Lower estimates for the smooth Yamabe invariant of 2-connected manifolds with
vanishing index. Values of σ(Sn), rounded down, for comparison.

n = 3 4 5 6 7 8 9 10 11

σ(M) ≥ tn = 43.8 ? 78.9 87.6 74.5 92.2 109.2 97.3 135.9

σ(Sn) = 43.8 61.5 78.9 96.2 113.5 130.7 147.8 165.0 182.1

Appendix A. Optimal values of λ and τ .

We now optimize λ and τ for the inequality (8). We define the convex polygon Pc

of admissible pairs (λ, τ) as

Pc := {(λ, τ) | satisfying (6), (7), λ ≥ 0, τ ≥ 0}.

For λ = 1, τ = 0, one has λc2s1 + τs0 < sc so (1, 0) is a corner of Pc. Similarly one sees
that (0, 1) is never a corner of Pc unless c = 0. Because of c2s1/s0 < 1, the equations
λ + τ = 1 and λc2s1 + τs0 = sc have a common solution (λ0, τ0) with λ0 ∈ (0, 1) for
c ∈ (0, 1). From

c2w/nµ1

µ0
≥ c2w/n >

c2s1

s0

one easily sees that the optimal estimate is obtained in the point (1, 0) for c2w/n ≥ µ0/µ1,
and in the point (λ0, τ0) for c2w/n ≤ µ0/µ1.

Next we compute λ0.

−λ0c
2v(v − 1) + λ0c

2w(w − 1) + (1− λ0)w(w − 1) ≤ −c2v(v − 1)

Factoring out, removing w(w − 1) on both sides, then dividing by λ0c
2w(w − 1) one

obtains the equivalent equation

− v(v − 1)
w(w − 1)

+ 1− 1
c2
≤ − 1

λ0

v(v − 1)
w(w − 1)

,

which is further equivalent to

(
1− 1

c2

)
≤

(
1− 1

λ0

)
v(v − 1)
w(w − 1)

.

This yields (10).

Appendix B. The constant Λ6,3.

All explicitly known positive lower bounds for Λn,k are obtained in the following
way: at first, we show that Λ(2)

n,k ≥ Λ(1)
n,k and then, we apply Theorem 4.1 or the estimates
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obtained in [4]. Recall that by definition Λn,k = min(Λ(1)
n,k,Λ(2)

n,k). For 0 ≤ k ≤ n − 2 or

(n, k) ∈ {(4, 1), (5, 2)}, the inequality Λ(2)
n,k ≥ Λ(1)

n,k is a direct consequence of the main
result in [3]. For (n, k) = (6, 3), this result does not apply directly, but a modified version
which will be presented in this appendix still allows to conclude Λ(2)

n,k ≥ Λ(1)
n,k.

Proposition B.1. We have Λ(2)
6,3 ≥ Λ(1)

6,3 and hence Λ6,3 = Λ(1)
6,3.

Proof. The main result in [3] implies that

inf
c∈[0,1)

µ(2)(Mc) ≥ Λ(1)
6,3

and as a consequence, Λ(2)
6,3 ≥ min(Λ(1)

6,3, µ
(2)(M1)). We now estimate µ(2)(M1). If we

spell out the definition of µ(2)(M1) recalled in Section 2.1, and using a6 = 5, and p5 = 3,
we see that µ(2)(M1) is the infimum of all µ ∈ R for which there is a solution of

5∆G1u + sG1u = µu2 (14)

satisfying

• u 6≡ 0,
• ‖u‖L3(M1) ≤ 1,
• u ∈ L∞(M1),
• µ(u)‖u‖L∞(M1) ≥ 5/32.

We prove in [2] that there is a conformal diffeomorphism Θ : S6 \ S3 → M1 where
S3 denotes a totally geodesic 3-sphere in the standard sphere S6. Let f ∈ C∞(S6 \ S3),
f > 0, be the conformal factor of Θ, i.e. Θ∗G1 = fρ6. We define v := fΘ∗u. By
conformal covariance of the Yamabe operator and since the scalar curvature of S6 is 30,
we get from (14) that the function v is a solution of

5∆ρ6
v + 30v = µv2 (15)

on S6 \ S3. Moreover, one checks that

‖v‖L3(S6\S3) = ‖u‖L3(M1)

and hence, v ∈ L3(S6) and

‖v‖L3(S6) ≤ 1. (16)

We now use a standard argument to show that the function v can be extended to a
smooth solution of equation (15) on all S6. In other words, we remove the singularity at
S3. Let us choose a smooth function ϕ on S6. We are going to show that
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∫

S6
v(Lϕ)− µv2ϕdv = 0 (17)

where, to simplify notations, we set L := 5∆ρ6 + 30 and where dv := dvρ6
.

For all a ≥ 0, let us denote by Wa the set of points of S6 whose distance to the
removed S3 is smaller than a. For this goal, consider for ε ∈ (0, 1/2) a cut-off function
ηε such that

( i ) 0 ≤ ηε ≤ 1;
( ii ) ηε(S6 \W2ε) = {0};
(iii) ηε(Wε) = {1};
(iv) |∇ηε| ≤ 2/ε.
( v ) |∇2ηε| ≤ c/ε2.

We then write, for ε > 0 small

∫

S6
v(Lϕ)dv =

∫

S6
vL(ηεϕ + (1− ηε)ϕ)dv. (18)

Since v satisfies Equation 15 and since the function 1 − ηε is compactly supported
in S6 \ S3, we have

∫

S6
vL((1− ηε)ϕ)dv =

∫

S6
(Lv)((1− ηε)ϕ)dv

=
∫

S6
µv2((1− ηε)ϕ)dv.

Since 1 − ηε is bounded and tends to 1 almost everywhere, Lebesgue’s theorem
implies

lim
ε→0

vL((1− ηε)ϕ)dv =
∫

S6
µv2ϕdv. (19)

Now, we use the fact that there exists some C > 0 independent of ε, but depending
on ϕ, such that

L(ηεϕ) ≤ C

(
χε

ε2
+ ηε

)

where χε is the characteristic function of the set W2ε \Wε.
Then, using Hölder inequality and the fact that ηε is compactly supported in W2ε

and bounded by 1 on this set,

∫

S6
vL(ηεϕ)dv ≤ C

(
1
ε2

∫

W2ε

v dv +
∫

S6
vηε dv

)
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≤ C

(
1
ε2

( ∫

W2ε

v3 dv

)1/3

vol(W2ε)2/3 +
( ∫

W2ε

v3 dv

)1/3

vol(W2ε)2/3

)

≤ C
1
ε2

( ∫

W2ε

v3 dv

)1/3

vol(W2ε)2/3.

Since W2ε is a 2ε-neighborhood of S3, vol(W2ε) ≤ Cε3. Moreover, since v ∈ L3(S6),

lim
ε→0

∫

W2ε

v3 dv = 0.

We then obtain that

lim
ε→0

∫

S6
vL(ηεϕ)dv = 0.

Together with (19) and (18), we obtain (17) which means that in the sense of distribu-
tions, equation (15) is satisfied on all of S6. By standard elliptic theory, v is C2 (and
even smooth outside its zero set). Using v as a test function in the Yamabe function of
S6, we get from (15) and (16) that µ ≥ µ(S6) ≥ Λ(1)

6,3, which ends the proof. ¤

Appendix C. The Wu manifold SU(3)/SO(3).

We equip SU (3) with the bi-invariant metric such that the matrix




0 −1 0
1 0 0
0 0 0


 ∈ su(3)

has length 1. Then (SU (3),SO(3)) is a symmetric pair, and the associated involution
of su(3) is complex conjugation. Let M be SU (3)/SO(3) equipped with the quotient
metric g. The manifold M is orientable, but not spin. Complex conjugation of SU (3)
induces an orientation reversing isometry of M . Thus M q M is (up to orientation-
preserving diffeomorphisms) the oriented boundary of M × [0, 1]. It follows that M#M

is an oriented boundary as well.
An elementary calculation on the Lie algebra level shows that g is an Einstein met-

ric, Ricg = 6g. Obata’s theorem [14, Proposition 6.2] then tells us that µ(M, g) =
30 vol(M, g)2/n. The volume vol(M, g) is calculated in [9], and we conclude the following
Lemma.

Lemma C.1. The conformal Yamabe constant of SU (3)/SO(3) is

µ(SU (3)/SO(3), g) = 30 ·
(√

3
8

π3

)2/5

= 64.252401 . . .
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Appendix D. Quaternionic projective spaces HP n.

Let gn be the metric on HPn such that the Hopf map S4n+3 → HPn is a Riemannian
submersion. With O’Neill’s formula one easily calculates that the scalar curvature of gn

is sgn = 4n(4n + 8), and the volume is vol(HPn, gn) = ω4n+3/ω3.
As a consequence

g̃n :=
sgn

sρ4n gn =
4n(4n + 8)
4n(4n− 1)

gn

is a metric whose scalar curvature is equal to 4n(4n− 1) = sρ4n

. Its volume is

V4n := vol(HPn, g̃n) =
(

4n + 8
4n− 1

)2n
ω4n+3

ω3
.

In the special case n = 2 this yields V8 = 213π4/(74 · 5 · 3) where we used ω11 = π6/60
and ω3 = 2π2. Using ω8 = 32π4/(7 · 5 · 3) we obtain V8/ω8 = 28/73 = 0.74635569 . . ..
These numbers play a crucial role for the lower bounds of µ(HP 2×R) and µ(HP 2×R2).
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