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Abstract. Let P be a topological property. We study the relation be-
tween the order structure of the set of all P-extensions of a completely regular
space X with compact remainder (partially ordered by the standard partial
order ≤) and the topology of certain subspaces of the outgrowth βX \X. The
cases when P is either pseudocompactness or realcompactness are studied in
more detail.

1. Introduction.

All spaces under consideration are assumed to be completely regular ; completely reg-
ular spaces are Hausdorff.

A space Y is called an extension of a space X if Y contains X as a dense sub-
space. If Y is an extension of X then the subspace Y \X of Y is called the remainder
of Y . Two extensions of X are said to be equivalent if there exists a homeomorphism
between them which fixes X point-wise. This defines an equivalence relation on the
class of all extensions of X. The equivalence classes will be identified with individuals
when no confusion arises. For any extensions Y and Y ′ of X we let Y ≤ Y ′ if there
exists a continuous mapping of Y ′ to Y which fixes X point-wise. The relation ≤ de-
fines a partial order on the set of all (equivalence classes of) extensions of X. (See
Section 4.1 of [21] for more details.) Let P be a topological property. An extension Y

of X is called a P-extension if it has P. If P is compactness, pseudocompactness or
realcompactness, respectively, then the corresponding P-extensions are called compacti-
fication, pseudocompactification or realcompactification. (Recall that a space is said to be
pseudocompact if every continuous real-valued mapping defined on it is bounded. Also,
a space is called realcompact if it is homeomorphic to a closed subspace of a product
of copies of the real line.) For any partially ordered sets (P,≤) and (Q,≤), a mapping
f : P → Q is called an order-homomorphism (anti-order-homomorphism, respectively), if
f(a) ≤ f(b) (f(b) ≤ f(a), respectively) whenever a ≤ b. An order-homomorphism (anti-
order-homomorphism, respectively) f : P → Q is called an order-isomorphism (anti-
order-isomorphism, respectively), if f−1 : Q → P (exists and) is an order-homomorphism
(anti-order-homomorphism, respectively). Two partially ordered sets (P,≤) and (Q,≤)
are said to be order-isomorphic (anti-order-isomorphic, respectively), if there exists an
order-isomorphism (anti-order-isomorphism, respectively) between them. A zero-set of a
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space X is a set of the form Z(f) = f−1(0), where f : X → [0, 1] is continuous. Any set
of the form X \Z, where Z is a zero-set of X, is called a cozero-set of X. We denote the
set of all zero-sets of X by Z (X), and the set of all cozero-sets of X by Coz(X).

There is a well-known result of K. D. Magill, Jr. which for a locally compact space X

relates the order-structure of the set K (X) of all compactifications of X to the topology
of the space βX \X (where βX is the Stone–Čech compactification of X).

Theorem 1.1 (Magill [18]). Let X and Y be locally compact non-compact spaces.
If K (X) and K (Y ) are order-isomorphic then βX \X and βY \ Y are homeomorphic.

There have been extensive studies to generalize Magill’s theorem in various direc-
tions. (See [19] for a different proof of the theorem; see [23] for generalizations of the
theorem to non-locally compact spaces; see [27] and [4] for a zero-dimensional version of
the theorem, and see [22] for an extension of the theorem to mappings.) One of the most
interesting generalizations is the one obtained by J. Mack, M. Rayburn and R. G. Woods
in [17]. We state some results from [17] below.

Let X be a space and let P be a topological property. A P-extension of X is called
tight if it does not contain properly any other P-extension of X. Suppose that P is closed
hereditary, productive and is such that if a space is the union of a compact space and a
space with P then it has P. Define the P-reflection γPX of X by

γPX =
⋂
{T : T has P and X ⊆ T ⊆ βX}.

If P is compactness then γPX = βX and if P is realcompactness then γPX = υX,
where υX is the Hewitt realcompactification of X. (Recall that for any space X the
Hewitt realcompactification of X is the space υX which contains X as a dense subspace
and is such that every continuous f : X → R is continuously extendible to υX; one may
assume that υX ⊆ βX.) Denote by P(X) the set of all tight P-extensions of X. For
a non-P locally-P space (that is, a space in which every point has a neighborhood with
P) X, there is the largest one-point extension X∗ in P(X). Let

P∗(X) =
{
T ∈ P(X) : X∗ ≤ T

}
,

and for any T ∈ P∗(X), if fT : βX → βT denotes the continuous extension of idX , let

D∗(X) =
{
T ∈ P∗(X) : fT [γPX] = T

}
.

The following main result of [17] generalizes Magill’s theorem.

Theorem 1.2 (Mack, Rayburn and Woods [17]). Let X and Y be locally-P non-
P spaces and suppose that D∗(X) = P∗(X) and D∗(Y ) = P∗(Y ). If γPX \ X and
γPY \ Y are C∗-embedded in γPX and γPY , respectively, then P∗(X) and P∗(Y ) are
lattice-isomorphic if and only if γPX \X and γPY \ Y are homeomorphic.

In particular, when P is realcompactness, Theorem 1.2 gives the following.



Topological extensions with compact remainder 3

Theorem 1.3 (Mack, Rayburn and Woods [17]). Let X and Y be locally real-
compact spaces such that υX and υY are both Lindelöf. Then P∗(X) and P∗(Y ) are
lattice-isomorphic if and only if υX \X and υY \ Y are homeomorphic.

Motivated by the above results and our previous studies [8]–[12] (see also [15] and
[16]) we prove the following analogous results. For a space X we denote by U (X) the
set of all pseudocompactifications of X with compact remainder.

Theorem 1.4 (Theorems 2.20 and 2.32). Let X and Y be locally pseudocompact
non-pseudocompact spaces. If U (X) and U (Y ) are order-isomorphic then

(1) clβX(βX \ υX) and clβY (βY \ υY ) are homeomorphic.
(2) If in addition X and Y are locally compact, then (βX \ X) \ clβX(βX \ υX) and

(βY \ Y ) \ clβY (βY \ υY ) are homeomorphic.

Analogously, if for a space X we denote by R(X) the set of all realcompactifications
of X with compact remainder, we prove the following.

Theorem 1.5 (Theorems 3.9 and 3.12). Let X and Y be locally realcompact non-
realcompact spaces. If R(X) and R(Y ) are order-isomorphic then

(1) clβX(υX \X) and clβY (υY \ Y ) are homeomorphic.
(2) If in addition X and Y are locally compact, then (βX \ X) \ clβX(υX \ X) and

(βY \ Y ) \ clβY (υY \ Y ) are homeomorphic.

We further extend the above two theorems by considering P-extensions with compact
remainder. Let X be a space and let P be a topological property. Define

λPX =
⋃ {

intβXclβXC : C ∈ Coz(X) and clXC has P
}
.

If P is pseudocompactness then

λPX = intβXυX

and if P is realcompactness (and X is normal) then

λPX = βX \ clβX(υX \X).

Denote by EP(X) the set of all P-extensions of X with compact remainder. As in [10],
we call P a compactness-like topological property if P is hereditary with respect to clopen
(simultaneously closed and open) subspaces, is both invariant and inverse invariant under
perfect surjective mappings (recall that a closed continuous mapping f : X → Y is perfect,
if each fiber f−1(y), where y ∈ Y , is a compact subspace of X) and satisfies Mrówka’s
condition (W) (that is, if a space Y contains a point p with an open base B for Y at p

such that Y \B has P for each B ∈ B, then Y has P). Neither pseudocompactness nor
realcompactness is a compactness-like topological property. We prove the following.

Theorem 1.6 (Theorems 4.12 and 4.13). Let X and Y be locally-P non-P spaces,
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where P is a compactness-like topological property. If EP(X) and EP(Y ) are order-
isomorphic then

(1) βX \ λPX and βY \ λPY are homeomorphic.
(2) If in addition X and Y are locally compact, then λPX \X and λPY \ Y are home-

omorphic.

We now briefly review some known facts from the theory of the Stone–Čech com-
pactification. Additional information may be found in [5] and [6].

The Stone–Čech compactification.
The Stone–Čech compactification βX of a space X is the largest (with respect to the

partial order ≤) compactification of X and is characterized among all compactifications
of X by either of the following properties:

• Every continuous f : X → K, where K is a compact space, is continuously ex-
tendable to βX; denote by fβ this continuous extension of f .

• For every Z, S ∈ Z (X) we have

clβX(Z ∩ S) = clβXZ ∩ clβXS.

In what follows use will be made of the following properties of βX.

• X is locally compact if and only if X is open in βX.
• Any clopen subspace of X has clopen closure in βX.
• If X ⊆ T ⊆ βX then βT = βX.
• If X is normal then βT = clβXT for any closed subspace T of X.

The Hewitt realcompactification.
The Hewitt realcompactification υX of a space X is the largest (with respect to the

partial order ≤) realcompactification of X and is characterized among all realcompacti-
fications of X by the following property:

• Every continuous f : X → Y , where Y is a realcompact space, is continuously
extendable to υX.

The Hewitt realcompactification of X may be viewed as the intersection of all cozero-sets
of βX which contain X. Thus, the points of βX \υX are exactly those p ∈ βX for which
there exists a Gδ-set of βX containing p and missing X.

2. Pseudocompactifications with compact remainder.

Pseudocompact extensions are called pseudocompactifications. (Recall that a space
is said to be pseudocompact if every continuous real-valued mapping defined on it is
bounded.) In this section we consider pseudocompactifications with compact remainder.
The section is divided into two parts. The first part consists of some known results which
describe the general form of all pseudocompactifications of a given space X with compact
remainder. The second part deals with the partially ordered set of all pseudocompacti-
fications of a space X with compact remainder. We show that this partially ordered set
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determines the topology of certain subspaces of βX \X.

2.1. Pseudocompactifications with compact remainder; their general
form.

The results of this part are from [13] (for a proof of Lemma 2.2, see [10]); we include
them here for completeness of results and reader’s convenience.

Definition 2.1. For a space X denote by K (X) and U (X) the set of all compact-
ifications of X and the set of all pseudocompactifications of X with compact remainder,
respectively.

Lemma 2.2. Let X be a space, let Y be an extension of X with compact remainder
and let φ : βX → βY continuously extend idX . Then βY coincides with the quotient
space of βX obtained by contracting each fiber φ−1(p), where p ∈ Y \X, to p, and φ is
the quotient mapping.

Lemma 2.3. Let X be a space, let Y be an extension of X with compact remainder,
let ζY be a compactification of Y and let φ : βX → ζY continuously extend idX . The
following are equivalent :

(1) Y ∈ U (X).
(2) clβX(βX \ υX) ⊆ φ−1[Y \X].

Proof. First consider the case when ζY = βY . Note that since φ−1[Y \ X] is
closed in βX, condition (2) is equivalent to the requirement that βX \υX ⊆ φ−1[Y \X].

(1) implies (2). Let x ∈ βX \ υX. Suppose to the contrary that x /∈ φ−1[Y \ X].
Let P ∈ Z (βX) be such that x ∈ P and P ∩X is empty. Now G = P \ φ−1[Y \X] is
non-empty (as it contains x) and it is a countable intersection of open subspaces of βX

each missing φ−1[Y \X]. Thus (using Lemma 2.2) G is a non-empty Gδ-set of βY which
misses Y , contradicting the pseudocompactness of Y .

(2) implies (1). Suppose to the contrary that Y is not pseudocompact. Let p ∈
βY \ υY and let Z ∈ Z (βY ) be such that p ∈ Z and Z ∩ Y is empty. Then φ−1[Z] ∈
Z (βX) misses X, and thus

φ−1[Z] ⊆ βX \ υX ⊆ φ−1[Y \X].

Since p ∈ φ−1[Z] (as φ(p) = p; see Lemma 2.2) we have p ∈ φ−1[Y \X], or equivalently
p = φ(p) ∈ Y \X, which contradicts the choice of Z.

Suppose that ζY is an arbitrary compactification of Y . Denote by ψ : βX → ζY

and γ : βY → ζY the continuous extensions of idX and idY , respectively. Then γψ = φ,
as they agree on X, and γ[βY \ Y ] = ζY \ Y . The lemma now follows, as

ψ−1[Y \X] = ψ−1
[
γ−1[Y \X]

]
= (γψ)−1[Y \X] = φ−1[Y \X]. ¤

Definition 2.4. A space X is called locally pseudocompact if every x ∈ X has an
open neighborhood U in X with pseudocompact closure clXU .
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Note that pseudocompactness is hereditary with respect to regular closed subspaces;
thus, a space with a pseudocompactification with compact remainder is locally pseudo-
compact.

The following lemma may be used in the sequel without explicit reference.

Lemma 2.5 (Comfort [3]). A space X is locally pseudocompact if and only if X ⊆
intβXυX.

Theorem 2.6. Let X be a locally pseudocompact space, let ζX be a compactifica-
tion of X, let φ : βX → ζX continuously extend idX and let E be a compact subspace of
ζX \ X containing φ[clβX(βX \ υX)]. Then Y = X ∪ E ∈ U (X) (considered as a
subspace of ζX). Furthermore, every element of U (X) is of this form.

Proof. This follows from Lemma 2.3 (and Lemma 2.5). ¤

2.2. Pseudocompactifications with compact remainder; their partially
ordered sets.

In this part we prove the first set of main results.
In our first theorem, for a locally pseudocompact space X, we relate the order-

structure of the set U (X) to the topology of the subspace clβX(βX \ υX) of the out-
growth. Here is the proof overview. We define an order-isomorphism ΘX from the set
K (intβXυX) of all compactifications of intβXυX to U (X). We then characterize order-
theoretically the image of ΘX in U (X); for this purpose we need to consider certain types
of co-atoms of U (X). Thus, for any locally pseudocompact spaces X and Y , any order-
isomorphism between U (X) and U (Y ) carries the image of ΘX onto the image of ΘY ,
and therefore, induces an order-isomorphism between K (intβXυX) and K (intβY υY ).
Magill’s theorem (Theorem 1.1) will then imply that βX\intβXυX and βY \intβY υY are
homeomorphic. Now, we proceed with the proof details (in a possibly different order).

Definition 2.7. Let X be a space and let Y be an extension of X. Let Z be a
compactification of Y and let φ : βX → Z be the continuous extension of idX . Define

FX(Y ) =
{
φ−1(p) : p ∈ Y \X

}
.

We may write F (Y ) instead of FX(Y ) when no confusion arises. Note that the definition
is independent of the choice of the compactification Z. To see this, let ψ : βX → βY

and γ : βY → Z denote the continuous extensions of idX and idY , respectively. Then
γψ = φ, as they coincide on X. Also γ[βY \ Y ] = Z \ Y . Thus γ−1(p) = p for each
p ∈ Y \X, and

{
φ−1(p) : p ∈ Y \X

}
=

{
(γψ)−1(p) : p ∈ Y \X

}

=
{
ψ−1

(
γ−1(p)

)
: p ∈ Y \X

}
=

{
ψ−1(p) : p ∈ Y \X

}
.

The following lemma is known (see [10]); we use it very often, mostly without
referring to it.
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Lemma 2.8. Let X be a space and let Y1 and Y2 be extensions of X with compact
remainder. The following are equivalent :

(1) Y1 ≤ Y2.
(2) Each element of F (Y2) is contained in an element of F (Y1).

Definition 2.9. Let (X,≤) be a partially ordered set with the largest element u.
An element a ∈ X is called a co-atom in X if a 6= u and there exists no x ∈ X with
a < x < u.

Co-atoms in U (X) play a crucial role here; but first, we need to know that U (X)
has the largest element. This is shown in [13], however, it can be readily deduced at this
point.

Definition 2.10. For a space X let

ζX = X ∪ clβX(βX \ υX) = X ∪ (βX \ intβXυX),

considered as a subspace of βX.

Lemma 2.11. Let X be a locally pseudocompact space. Then U (X) has the largest
element, namely ζX.

Proof. Note that X ⊆ intβXυX, by Lemma 2.5. Therefore

ζX \X = βX \ intβXυX

is compact. The lemma now follows from Lemmas 2.3 and 2.8; note that

F (ζX) =
{{y} : y ∈ clβX(βX \ υX)

}
. ¤

Next, we identify the co-atoms of U (X).

Definition 2.12. Let X be a locally pseudocompact space and let C1, . . . , Cn be
n pairwise disjoint compact non-empty subspaces of βX \X. Let Z be the quotient space
of βX obtained by contracting C1, . . . , Cn to p1, . . . , pn, respectively, with the quotient
mapping q : βX → Z. Define

eX(C1, . . . , Cn) = X ∪ {p1, . . . , pn} ∪
(
clβX(βX \ υX) \ (C1 ∪ · · · ∪ Cn)

)
,

considered as a subspace of Z. Note that Z is a compactification of Y , thus

eX(C1, . . . , Cn) ∈ U (X)

by Lemma 2.3 (with φ = q in its statement), and
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F
(
eX(C1, . . . , Cn)

)
=

{
q−1(p) : p ∈ eX(C1, . . . , Cn) \X

}

= {C1, . . . , Cn} ∪
{{y} : y ∈ clβX(βX \ υX) \ (C1 ∪ · · · ∪ Cn)

}
.

The following characterizes the co-atoms of U (X); it may be used in the sequel
without explicit reference.

Lemma 2.13. Let X be a locally pseudocompact space and let Y ∈ U (X). Then
Y is a co-atom in U (X) if and only if Y is of either of the following forms.

(1) Y = eX({a}), for some a ∈ (βX \X) \ clβX(βX \ υX).
(2) Y = eX({a, b}), for some distinct a, b ∈ clβX(βX \ υX).

Proof. Let Y be a co-atom in U (X). There exist no distinct F, G ∈ F (Y ) with
|F | > 1 and |G| > 1; as otherwise Y < eX(F ) < ζX. Then either

Case 1: |F | = 1 for each F ∈ F (Y ), or else
Case 2: |F | > 1 for exactly one F ∈ F (Y ).

In the first case, by Lemma 2.3 we have

{{y} : y ∈ clβX(βX \ υX)
}
$ F (Y ),

where the proper inclusion is because Y 6= ζX. Now there exists at least one

a ∈ (βX \X) \ clβX(βX \ υX)

with {a} ∈ F (Y ), and there exists at most one such a; as if {b} ∈ F (Y ), where

b ∈ (βX \X) \ clβX(βX \ υX)

is distinct from a, then Y < eX({b}) < ζX. This shows that in this case Y is of the form
indicated in (1). In the second case, we have |F | = 2; otherwise, choose some distinct
a, b ∈ F and note that Y < eX({a, b}) < ζX. Finally, note that F ⊆ clβX(βX \ υX), as
if a /∈ clβX(βX \ υX) for some a ∈ F , then Y < eX({a}) < ζX. Thus, in this case Y is
of the form indicated in (2).

To prove the converse, let Y be as indicated in (1). Then

F (Y ) =
{{a}} ∪ {{y} : y ∈ clβX(βX \ υX)

}

and for each T ∈ U (X) with Y ≤ T ≤ ζX, depending on whether {a} ∈ F (T ) or not,
we have T = Y or T = ζX. That is, Y is a co-atom in U (X). Now, let Y be as indicated
in (2). Then

F (Y ) =
{{a, b}} ∪ {{y} : y ∈ clβX(βX \ υX) \ {a, b}}.

Let T ∈ U (X) with Y ≤ T ≤ ζX and G ∈ F (T ). Then G ⊆ F for some F ∈ F (Y ). If
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F 6= {a, b}, then G is a singleton, and if F = {a, b}, then either

G = {a}, G = {b}, or G = {a, b}.

In the first two cases T = ζX, and in the latter case T = Y . That is, Y is a co-atom in
U (X). ¤

Definition 2.14. Let X be a locally pseudocompact space. We say that a co-atom
Y of U (X) is of type (I), if Y = eX({a}), where

a ∈ (βX \X) \ clβX(βX \ υX);

otherwise, Y is said to be of type (II).

We now define an order-isomorphism of K (intβXυX) to U (X) and characterize its
image order-theoretically.

Lemma 2.15. Let X be a locally pseudocompact space. Define

Θ : K (intβXυX) → U (X)

by

Θ(T ) = X ∪ (T \ intβXυX)

for any T ∈ K (intβXυX). Then Θ is an order-isomorphism onto its image.

Proof. To show that Θ is well defined, let T ∈ K (intβXυX). Then Θ(T ) is an
extension of X, and the remainder

Θ(T ) \X = T \ intβXυX

is compact; as intβXυX, being open in βX, is locally compact, and thus, open in all of
its compactifications. Let φ : βX → T be continuous and fix the points of intβXυX.
(Observe that β(intβXυX) = βX, as X ⊆ intβXυX ⊆ βX.) Note that T is a compact-
ification of Θ(T ) (as Θ(T ) contains X, and X, being dense in intβXυX, is dense in T )
and

φ[βX \ intβXυX] = T \ intβXυX.

Now since

φ−1
[
Θ(T ) \X

]
= φ−1[T \ intβXυX] = φ−1

[
φ[βX \ intβXυX]

] ⊇ βX \ intβXυX,

by Lemma 2.3 it follows that Θ(T ) is pseudocompact.
Now, we show that Θ is an order-homomorphism. Suppose that S ≤ T for some

S, T ∈ K (intβXυX). Then there exists a continuous f : T → S, fixing intβXυX point-
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wise. Note that

f [T \ intβXυX] = S \ intβXυX,

which yields

Θ(S) = X ∪ (S \ intβXυX)

= f [X] ∪ f [T \ intβXυX] = f
[
X ∪ (T \ intβXυX)

]
= f

[
Θ(T )

]

and therefore

g = f |Θ(T ) : Θ(T ) → Θ(S).

Since g fixes the points of X, this shows that Θ(S) ≤ Θ(T ).
Before we proceed with the remainder of the proof we need to verify the following.

Claim. If T ∈ K (intβXυX) then β(Θ(T )) = T .

Proof of the claim. Let φ : β(Θ(T )) → T be continuous and fix the points of
Θ(T ). To prove the claim it suffices to show that φ is a homeomorphism. But (since φ

is surjective with compact domain) φ is a homeomorphism, if it is injective, and since it
fixes the points of Θ(T ) and

φ
[
β
(
Θ(T )

) \Θ(T )
]

= T \Θ(T ),

the mapping φ is injective provided that it is injective on β(Θ(T )) \ Θ(T ). Let a, b ∈
β(Θ(T )) \ Θ(T ) with φ(a) = φ(b). Note that X, being dense in T , is dense in Θ(T ),
and thus in β(Θ(T )), that is, β(Θ(T )) is also a compactification of X. Denote by
ψ : βX → β(Θ(T )) the continuous extension of idX . Recall that β(Θ(T )) is the quotient
space of βX obtained by contracting each ψ−1(p), where p ∈ Θ(T ) \X, to a point with
the quotient mapping ψ. (See Lemma 2.2.) Since Θ(T ) ∈ U (X) we have

βX \ intβXυX ⊆ ψ−1
[
Θ(T ) \X

]
,

by Lemma 2.3. Thus a, b ∈ intβXυX \ X, as a, b /∈ Θ(T ) \ X, and also ψ(a) = a and
ψ(b) = b. Note that φψ : βX → T fixes the points of intβXυX, as it fixes the points of
its dense subspace X. We have

a = φ
(
ψ(a)

)
= φ(a) = φ(b) = φ

(
ψ(b)

)
= b,

which proves the claim.

Suppose that Θ(S) ≤ Θ(T ) for some S, T ∈ K (intβXυX). We show that S ≤ T .
Let h : Θ(T ) → Θ(S) be continuous and fix the points of X. Using the claim, h can
be continuously extended to a mapping hβ : T → S. Note that hβ fixes the points of
intβXυX, as it fixes the points of its dense subspace X, and therefore S ≤ T . This in
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particular implies that Θ is injective and

Θ−1 : Im(Θ) → K (intβXυX)

is an order-homomorphism. ¤

Definition 2.16. For a locally pseudocompact space X denote by

ΘX : K (intβXυX) → U (X)

the order-isomorphism (onto its image) defined for any T ∈ K (intβXυX) by

ΘX(T ) = X ∪ (T \ intβXυX).

Lemma 2.17. Let X be a locally pseudocompact space and let C and D be compact
non-empty subspaces of βX \X. Then

(1) eX(C) ∧ eX(D) = eX(C ∪D), if C ∩D 6= ∅.
(2) eX(C) ∧ eX(D) = eX(C, D), if C ∩D = ∅.

Proof. (1). By Lemma 2.8 it is clear that

eX(C ∪D) ≤ eX(C) and eX(C ∪D) ≤ eX(D).

Let

T ≤ eX(C) and T ≤ eX(D)

for some T ∈ U (X). Then (again by Lemma 2.8) we have C ⊆ F and D ⊆ G for some
F, G ∈ F (T ). Now F ∩G is non-empty, as C ∩D is so, therefore F = G. Thus C ∪D is
contained in an element of F (T ), showing that T ≤ eX(C ∪D). The proof for part (2)
is analogous. ¤

Next, we characterize order-theoretically those co-atoms of U (X) which are of type
(II) (and thus those which are of type (I) as well).

Lemma 2.18. Let X be a locally pseudocompact non-pseudocompact space and let
T be a co-atom in U (X). The following are equivalent :

(1) T is of type (II).
(2) There exists a co-atom S in U (X) with

∣∣{U ∈ U (X) : U ≥ S ∧ T
}∣∣ = 5.

Proof. (1) implies (2). Let T = eX({a, b}) where a, b ∈ clβX(βX \ υX) are
distinct. Choose some c ∈ clβX(βX \ υX) distinct from both a and b; this is possible
since X is non-pseudocompact. (Indeed
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|βX \ υX| ≥ 22ℵ0 ;

see Problem 5Z of [21].) Let S = eX({b, c}). Then S is a co-atom in U (X) and by
Lemma 2.17 we have

S ∧ T = eX

({b, c}) ∧ eX

({a, b}) = eX

({a, b, c}).

Let U ∈ U (X) be such that U ≥ S ∧ T . Let F ∈ F (U). Then F is contained in an
element of F (S ∧ T ), by Lemma 2.8. If F ∩ {a, b, c} is empty then F is a singleton. If
F ∩ {a, b, c} is non-empty then F ⊆ {a, b, c}, and thus U is either

eX

({a, b, c}), eX

({a, b}), eX

({a, c}), eX

({b, c}) or ζX.

Conversely, if U is either of the above elements then U ≥ S∧T . That the above elements
are all distinct follows from Lemma 2.8.

(2) implies (1). Suppose that T is of type (I). Then T = eX({a}), where

a ∈ (βX \X) \ clβX(βX \ υX).

Now let S be a co-atom in U (X). We have the following cases.

Case 1: Suppose that S is of type (I). Then S = eX({b}) where

b ∈ (βX \X) \ clβX(βX \ υX).

If a = b then S ∧ T = eX({a}) by Lemma 2.17, and thus, since S ∧ T is a co-atom in
U (X), there exist only 2 elements U ∈ U (X) with U ≥ S ∧T , namely, ζX and eX({a})
itself. If a 6= b, then

S ∧ T = eX

({a}, {b})

by Lemma 2.17, and thus for each U ∈ U (X) with U ≥ S ∧ T , depending on whether
{a} ∈ F (U) or {b} ∈ F (U) (or neither), U equals to either

eX

({a}, {b}), eX

({a}), eX

({b}) or ζX.

Case 2: Suppose that S is of type (II). Then S = eX({b, c}) for some distinct b, c ∈
clβX(βX \ υX). We have

S ∧ T = eX

({a}, {b, c})

by Lemma 2.17, and thus, the elements U ∈ U (X) with U ≥ S ∧ T are exactly

eX

({a}, {b, c}), eX

({a}), eX

({b, c}) and ζX.

Therefore, in either case there exist at most 4 elements U ∈ U (X) with U ≥ S ∧ T . ¤
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The next result, together with Lemma 2.18, gives an order-theoretic characterization
of the elements of Im(ΘX).

Lemma 2.19. Let X be a locally pseudocompact space and let T ∈ U (X). The
following are equivalent :

(1) T ∈ Im(ΘX).
(2) There exists no co-atom S in U (X) of type (I) with S ≥ T .

Proof. (1) implies (2). Suppose that T = ΘX(U) for some U ∈ K (intβXυX).
Let φ : βX → U be continuous and fix the points of intβXυX. (Note that β(intβXυX) =
βX.) Then (since U is a compactification of T )

FX(T ) =
{
φ−1(p) : p ∈ T \X

}
.

But

T \X = U \ intβXυX

(by the definition of ΘX), and therefore (since

φ[βX \ intβXυX] = U \ intβXυX,

as φ fixes the points of intβXυX) we have F ⊆ βX \ intβXυX for each F ∈ FX(T ). By
Lemma 2.8 this implies that any co-atom S in U (X) with S ≥ T is of type (II).

(2) implies (1). Let ψ : βX → βT be the continuous extension of idX . Then

clβX(βX \ υX) ⊆ ψ−1[T \X], (2.1)

by Lemma 2.3. Suppose that the inclusion in (2.1) is proper and let

a ∈ ψ−1[T \X] \ clβX(βX \ υX).

Then eX({a}) is a co-atom in U (X) of type (I) with eX({a}) ≥ T . This contradiction
proves the equality in (2.1). Note that βT is the quotient space of βX obtained by
contracting each ψ−1(p), where p ∈ T \X, to a point, with the quotient mapping ψ. (See
Lemma 2.2.) Therefore

βT = intβXυX ∪ (T \X),

and thus βT is a compactification of intβXυX. (Note that X, being dense in T , is dense
in βT , and X ⊆ intβXυX.) We have

T = X ∪ (T \X) = X ∪ (βT \ intβXυX) = ΘX(βT ) ∈ Im(ΘX). ¤

We are now ready to prove our first main result.
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Theorem 2.20. Let X and Y be locally pseudocompact non-pseudocompact spaces.
If U (X) and U (Y ) are order-isomorphic then clβX(βX \ υX) and clβY (βY \ υY ) are
homeomorphic.

Proof. By Lemmas 2.18 and 2.19, if U (X) is order-isomorphic to U (Y ), then
Im(ΘX) is order-isomorphic to Im(ΘY ), and thus K (intβXυX) is order-isomorphic
to K (intβY υY ), by Lemma 2.15. Theorem 1.1 now implies that βX \ intβXυX and
βY \ intβY υY are homeomorphic. ¤

Below, we show that the converse of Theorem 2.20 is not true in general (while the
converse of Magill’s theorem, Theorem 1.1, is indeed true; see [18]).

Example 2.21. Let X = D(ℵ0) (the discrete space of cardinality ℵ0) and let
Y = D(ℵ0)⊕ [0,Ω) (where Ω is the first uncountable ordinal and ⊕ denotes the disjoint
union). Then

βY = β
(
D(ℵ0)

)⊕ [0,Ω] and υY = D(ℵ0)⊕ [0,Ω].

Thus

clβY (βY \ υY ) = clβX(βX \ υX).

However, U (X) and U (Y ) are not order-isomorphic, as U (Y ) contains a co-atom of
type (I) (since Ω /∈ clβY (βY \ υY )), while U (X) does not.

The following question naturally arises in connection with Theorem 2.20.

Question 2.22. For a space X let A (X) denote the set of all pseudocompactifi-
cations of X. For a (locally pseudocompact) space X, does the order structure of A (X)
(partially ordered by ≤) determine the topology of clβX(βX \ υX)?

In our next theorem, for a locally compact space X, we relate the order-structure
of the set U (X) to the topology of the subspace (βX \X) \ clβX(βX \ υX) of the out-
growth. Here is the proof overview. We order-theoretically characterize the elements of
the set of all one-point extensions of X contained in U (X) (denoted by U ∗(X)); for
this purpose we need to introduce certain types of elements of U (X) (called co-atom
covers). Thus, for any locally pseudocompact spaces X and Y , any order-isomorphism
between U (X) and U (Y ) carries U ∗(X) onto U ∗(Y ), and therefore, induces an order-
isomorphism between U ∗(X) and U ∗(Y ). Now it is a known result (see [11]) that any
order-isomorphism between U ∗(X) and U ∗(Y ) induces an order-isomorphism between
the set of all closed subspaces of (βX \X)\clβX(βX \υX) and (βY \Y )\clβY (βY \υY ),
partially ordered by ⊆. Since the topology of any space is determined by the order-
structure of the set of all of its closed subspaces (see Theorem 11.1 of [1]), this will then
prove our result. Now, we proceed with the proof details.

Definition 2.23. Let (X,≤) be a partially ordered set with the largest element
u. An element d ∈ X is called a co-atom cover in X if there exists exactly one x ∈ X
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with d < x < u. If d is a co-atom cover in X, denote by d′ the unique element x ∈ X

such that d < x < u.

In the following we find the general form of the co-atom covers of U (X).

Lemma 2.24. Let X be a locally pseudocompact space and let Y ∈ U (X). The
following are equivalent :

(1) Y is a co-atom cover in U (X).
(2) Y = eX({a, b}) for some a ∈ clβX(βX \ υX) and b ∈ (βX \X) \ clβX(βX \ υX).

Proof. (1) implies (2). First, we show that there exists some F ∈ F (Y ) with
|F | > 1. Suppose otherwise, that is, suppose that the elements of F (X) are all singletons.
Let

A = F (Y ) \ {{y} : y ∈ clβX(βX \ υX)
}
.

Note that by Lemma 2.3 we have

{{y} : y ∈ clβX(βX \ υX)
}
$ F (Y ),

where the proper inclusion is because Y 6= ζX. Thus A is non-empty. Either |A | = 1
or |A | > 1. In the first case, A = {{c}}, where

c ∈ (βX \X) \ clβX(βX \ υX).

But (by Lemma 2.8) this implies that Y = eX({c}), which is not possible, as Y cannot
be a co-atom. In the second case, there exist some distinct

c, d ∈ (βX \X) \ clβX(βX \ υX).

But then

Y < eX

({c}) < ζX and Y < eX

({d}) < ζX,

which is again not possible. Let F ∈ F (Y ) be such that |F | > 1. We show that such an
F is necessarily unique. Otherwise, there exists some G ∈ F (Y ) with |G| > 1 distinct
from F . Then

Y < eX(F ) < ζX and Y < eX(G) < ζX,

which is not possible. This shows that Y = eX(F ). To show (2), we need to show that

F \ clβX(βX \ υX) and F ∩ clβX(βX \ υX)

are both singletons. Suppose that F ⊆ clβX(βX \ υX). Then obviously |F | > 2, as
eX(F ) cannot be a co-atom. Choose some distinct a, b, c ∈ F . Then
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Y < eX

({a, b}) < ζX and Y < eX

({a, c}) < ζX,

which is not possible. Thus F \ clβX(βX \ υX) is non-empty. Now, if there exist some
distinct

e, f ∈ F \ clβX(βX \ υX),

then

Y < eX

({e}) < ζX and Y < eX

({f}) < ζX,

which is not possible. This shows that F \ clβX(βX \ υX) is a singleton. Let

F \ clβX(βX \ υX) = {b}.

Next, we verify that F ∩ clβX(βX \ υX) is a singleton. (It is obviously non-empty, as
|F | > 1). But this is obvious, as if there exist some distinct

c, d ∈ F ∩ clβX(βX \ υX),

then

Y < eX

({c, d}) < ζX and Y < eX

({b}) < ζX,

which is not possible. Let

F \ clβX(βX \ υX) = {a}.

Then F = {a, b} and therefore Y = eX({a, b}).
(2) implies (1). Note that if Y < T < ζX for some T ∈ U (X), then each element

of F (T ) is a singleton. Thus T = eX({b}) and Y is a co-atom cover in U (X). ¤

Lemma 2.25. Let X be a locally pseudocompact space and let Y = eX({a, b}),
where

a ∈ clβX(βX \ υX) and b ∈ (βX \X) \ clβX(βX \ υX).

Then Y ′ = eX({b}).

Proof. That Y is a co-atom cover follows from Lemma 2.24. Also, the proof of
part (2)⇒(1) in Lemma 2.24 shows that Y ′ = eX({b}). ¤

Definition 2.26. For a space X denote by U ∗(X) the set of all one-point pseu-
docompactifications of X.

The next result, together with Lemma 2.18, gives an order-theoretic characterization
of the elements of U ∗(X).
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Lemma 2.27. Let X be a locally pseudocompact space and let Y ∈ U (X). The
following are equivalent :

(1) Y ∈ U ∗(X).
(2) Y satisfies the following :

(a) Y ≤ T for every co-atom T in U (X) of type (II).
(b) Y ≤ D for every co-atom cover D in U (X) such that Y ≤ D′.

Proof. (1) implies (2). Note that Y = eX(F ) for some F containing
clβX(βX \ υX); see Lemma 2.3. To show (2.a), let T be a co-atom in U (X) of type
(II). Then T = eX({a, b}) for some distinct a, b ∈ clβX(βX \ υX). Now {a, b} ⊆ F and
therefore T ≥ Y (by Lemma 2.8). To show (2.b), let D be a co-atom cover in U (X)
with D′ ≥ Y . By Lemma 2.24 we have D = eX({c, d}), where

c ∈ clβX(βX \ υX) and d ∈ (βX \X) \ clβX(βX \ υX).

Then D′ = eX({d}), by Lemma 2.25, and therefore d ∈ F . But also c ∈ F , and thus
{c, d} ⊆ F . Therefore D ≥ Y .

(2) implies (1). To show (1), it suffices to show that F (Y ) contains only one element.
Suppose to the contrary that there exist some distinct F, G ∈ F (Y ). Consider the
following cases.

Case 1: Suppose that

F ∩ clβX(βX \ υX) and G ∩ clβX(βX \ υX)

are both non-empty. Let

a ∈ F ∩ clβX(βX \ υX) and b ∈ G ∩ clβX(βX \ υX).

Now eX({a, b}) is a co-atom in U (X) of type (II), and thus, by our assumption
eX({a, b}) ≥ Y . Therefore {a, b} ⊆ H for some H ∈ F (Y ). Since distinct elements
in F (Y ) are disjoint, this implies that F = H = G, which is a contradiction.

Case 2: Suppose that either

F ∩ clβX(βX \ υX) or G ∩ clβX(βX \ υX),

say the latter, is empty. Let c ∈ G and choose some d ∈ clβX(βX \ υX). Then D =
eX({c, d}) is a co-atom cover in U (X) with D′ = eX({c}) ≥ Y ; see Lemmas 2.24 and
2.25. Therefore by our assumption D ≥ Y . But this implies that {c, d} ⊆ H for some
H ∈ F (Y ). Again, since distinct elements in F (Y ) are disjoint, this implies that H = G,
which is a contradiction, as d /∈ G by the choice of d. ¤

Lemma 2.28. Let X and Y be locally pseudocompact non-pseudocompact spaces.
Let
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Θ : U (X) → U (Y )

be an order-isomorphism. Let T ∈ U (X). Then

(1) If T is a co-atom (of type (I), of type (II), respectively) in U (X) then Θ(T ) is a
co-atom (of type (I), of type (II), respectively) in U (Y ).

(2) If T is a co-atom cover in U (X) then Θ(T ) is a co-atom cover in U (Y ) and Θ(T ′) =
(Θ(T ))′.

(3) If T ∈ U ∗(X) then Θ(T ) ∈ U ∗(Y ).

Proof. The lemma follows from Lemmas 2.18 and 2.27 and the definitions. ¤

Definition 2.29. For a space X denote by C (X) the set of all closed subspaces
of X.

Lemma 2.30. Let X be a locally compact non-pseudocompact space. Then there
exists an anti-order-isomorphism

Λ :
({

C ∈ C (βX \X) : clβX(βX \ υX) ⊆ C
}
,⊆ ) → (

U ∗(X),≤ )
.

Proof. Let C be a closed subspace of βX \X containing clβX(βX \ υX). Note
that C is compact, as it is closed in βX \X and the latter is compact (as X is locally
compact). Let T be the quotient space of βX obtained by contracting C to a point
p. Define Λ(C) = X ∪ {p}, considered as a subspace of T . Then Λ(C) ∈ U ∗(X), by
Lemma 2.3. By Lemma 2.8 the mapping Λ is an order-isomorphism onto its image, as
F (Λ(C)) = {C}. That Λ is surjective is obvious and follows again from Lemma 2.8. ¤

Observe that for a space X we have

(βX \X) \ clβX(βX \ υX) = intβXυX \X.

The following lemma is known (see Theorem 5.3 ((2)⇒(1)) of [11]); the proof is
included here for the sake of completeness.

Lemma 2.31. Let X and Y be locally compact non-pseudocompact spaces.
If U ∗(X) and U ∗(Y ) are order-isomorphic then (βX \ X) \ clβX(βX \ υX) and
(βY \ Y ) \ clβY (βY \ υY ) are homeomorphic.

Proof. By Lemma 2.30 there exists an order-isomorphism F from the set of all
closed subspaces of βX \X containing clβX(βX \υX) to the set of all closed subspaces of
βY \Y containing clβY (βY \υY ), both partially ordered by ⊆. Note that X ⊆ intβXυX

and Y ⊆ intβY υY by Lemma 2.5, as X and Y are both locally compact and therefore
locally pseudocompact. We define an order-isomorphism

f : C (intβXυX \X) → C (intβY υY \ Y );

this will prove the lemma. Let A ∈ C (intβXυX \ X). Let A′ be a closed subspace of
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βX \X with

A = A′ ∩ intβXυX.

Note that A′ is compact, as it is closed in βX \X and the latter is compact, since X is
locally compact. Thus

A ∪ clβX(βX \ υX) = A′ ∪ clβX(βX \ υX)

is compact and non-empty (as X is non-pseudocompact). Define

f(A) = intβY υY ∩ F
(
A ∪ clβX(βX \ υX)

)
.

Clearly, f is well-defined. That f is an order-homomorphism is straightforward. Now,
let

g : C (intβY υY \ Y ) → C (intβXυX \X)

be defined by

g(B) = intβXυX ∩ F−1
(
B ∪ clβY (βY \ υY )

)

for any B ∈ C (intβY υY \ Y ). If A ∈ C (intβXυX \X) then

f(A) ∪ clβY (βY \ υY ) =
(
intβY υY ∩ F

(
A ∪ clβX(βX \ υX)

)) ∪ clβY (βY \ υY )

= F
(
A ∪ clβX(βX \ υX)

)

and therefore

g
(
f(A)

)
= intβXυX ∩ F−1

(
f(A) ∪ clβY (βY \ υY )

)

= intβXυX ∩ F−1
(
F

(
A ∪ clβX(βX \ υX)

))

= intβXυX ∩ (
A ∪ clβX(βX \ υX)

)
= A.

Thus gf is the identity mapping, and similarly, so is fg. Therefore g = f−1. Since g is
an order-homomorphism, f is an order-isomorphism. ¤

We now prove our second main result.

Theorem 2.32. Let X and Y be locally compact non-pseudocompact spaces. If
U (X) and U (Y ) are order-isomorphic then (βX \X) \ clβX(βX \ υX) and (βY \ Y )\
clβY (βY \ υY ) are homeomorphic.

Proof. This follows from Lemmas 2.28 and 2.31, as every order-isomorphism of
U (X) onto U (Y ) restricts to an order-isomorphism of U ∗(X) onto U ∗(Y ). ¤
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Question 2.33. In Theorem 2.32, is it possible to replace local compactness by
local pseudocompactness? Also, if we denote by A (X) the set of all pseudocompactifica-
tions of a space X, is it then possible to replace U (X) and U (Y ) by A (X) and A (Y ),
respectively?

3. Realcompactifications with compact remainder.

Realcompact extensions are called realcompactifications. (Recall that a space is said
to be realcompact if it is homeomorphic to a closed subspace of a product of copies of
the real line.) In this section we consider realcompactifications with compact remainder,
with results dual to those of the previous section. The section is divided into two parts.
In the first part we describe the general form of all realcompactifications of a given
space X with compact remainder. In the second part we deal with the partially ordered
set of all realcompactifications of a space X with compact remainder. As in the case of
pseudocompactifications, we show that this partially ordered set determines the topology
of certain subspaces of βX \X.

3.1. Realcompactifications with compact remainder; their general form.
The results of this part are analogous to those in Part 2.1.

Definition 3.1. For a space X denote by R(X) the set of all realcompactifications
of X with compact remainder.

The following is the counterpart of Lemma 2.3.

Lemma 3.2. Let X be a space, let Y be an extension of X with compact remainder,
let ζY be a compactification of Y and let φ : βX → ζY continuously extend idX . The
following are equivalent :

(1) Y ∈ R(X).
(2) clβX(υX \X) ⊆ φ−1[Y \X].

Proof. As in the proof of Lemma 2.3, it suffices that we consider the case when
ζY = βY and replace condition (2) by the requirement that υX \X ⊆ φ−1[Y \X].

(1) implies (2). Let x ∈ υX \X and suppose to the contrary that x /∈ φ−1[Y \X].
Then x ∈ βY \ Y . (Recall the construction of βY given in Lemma 2.2.) Since Y is
realcompact, there exists some Z ∈ Z (βY ) such that x ∈ Z and Z ∩ Y is empty. Now
φ−1[Z] ∈ Z (βX) misses X and contains x, contradicting the fact that x ∈ υX.

(2) implies (1). Suppose to the contrary that Y is not realcompact. There exists
some p ∈ υY \ Y . Then p ∈ βX \ X and p /∈ φ−1[Y \ X]. (See Lemma 2.2.) Thus
p /∈ υX \ X and therefore p /∈ υX. Let S ∈ Z (βX) be such that p ∈ S and S ∩ X is
empty. Let T ∈ Z (βX) be such that p ∈ T and T ∩ φ−1[Y \X] is empty. Now

G = (S ∩ T ) \ φ−1[Y \X]

contains p and it is a countable intersection of open subspaces of βX each missing
φ−1[Y \ X]. Thus (using Lemma 2.2) G is a non-empty Gδ-set of βY which misses
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Y , contradicting the fact that p ∈ υY . ¤

Definition 3.3. A space X is called locally realcompact if every x ∈ X has an
open neighborhood U in X with realcompact closure clXU .

Recall that realcompactness is hereditary with respect to closed subspaces; thus, a
space with a realcompactification with compact remainder is locally realcompact.

Lemma 3.4 (Mack, Rayburn and Woods [17]). A space X is locally realcompact
if and only if X is open in υX.

The following is the counterpart of Lemma 2.5.

Lemma 3.5. A space X is locally realcompact if and only if

X ⊆ βX \ clβX(υX \X).

Proof. By Lemma 3.4, the space X is locally realcompact if and only if X is
open in υX. Thus, X is locally realcompact if and only if υX \X is closed in υX, if and
only if clυX(υX \X) ⊆ υX \X, if and only if X ∩ clυX(υX \X) is empty, if and only if
X ∩ clβX(υX \X) is empty, if and only if X ⊆ βX \ clβX(υX \X). ¤

The following is the counterpart of Theorem 2.6.

Theorem 3.6. Let X be a locally realcompact space. Let ζX be a compactification
of X, let φ : βX → ζX continuously extend idX and let E be a compact subspace of
ζX \X containing φ[clβX(υX \X)]. Then Y = X ∪E ∈ R(X) (considered as a subspace
of ζX). Furthermore, every element of R(X) is of this form.

3.2. Realcompactifications with compact remainder; their partially or-
dered sets.

The results of this part are analogous to those in Part 2.2. Theorems 3.9 and 3.12
are dual to Theorems 2.20 and 2.32, respectively, with analogous proofs. One should
simply replace clβX(βX \υX) by clβX(υX \X) in all proofs and note the duality between
Lemmas 2.3 and 3.2 and Lemmas 2.5 and 3.5.

Definition 3.7. For a space X let

ρX = X ∪ clβX(υX \X),

considered as a subspace of βX.

Proposition 3.8. Let X be a locally realcompact space. Then R(X) has the largest
element, namely ρX.

Theorem 3.9. Let X and Y be locally realcompact non-realcompact spaces. If
R(X) and R(Y ) are order-isomorphic then clβX(υX \X) and clβY (υY \ Y ) are home-
omorphic.
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In Theorem 3.9, similar to its dual result Theorems 2.20, the converse does not
holds. This is shown by the following example.

Example 3.10. Let X = [0,Ω) and let Y = D(ℵ0)⊕ [0,Ω). (Where D(ℵ0) is the
discrete space of cardinality ℵ0, Ω is the first uncountable ordinal and ⊕ denotes the
disjoint union.) Then

βY = β
(
D(ℵ0)

)⊕ [0,Ω] and υY = D(ℵ0)⊕ [0,Ω].

Thus clβX(υX \ X) = {Ω} and clβY (υY \ Y ) = {Ω} are homeomorphic, while R(X)
and R(Y ) are not order-isomorphic, as R(X) consists of only a single element, whereas
R(Y ) is infinite.

Question 3.11. For a space X let A (X) denote the set of all realcompactifications
of X. For a (locally realcompact) space X, does the order structure of A (X) (partially
ordered by ≤) determine the topology of clβX(υX \X)?

Theorem 3.12. Let X and Y be locally compact non-realcompact spaces. If R(X)
and R(Y ) are order-isomorphic then (βX \X)\clβX(υX \X) and (βY \Y )\clβY (υY \Y )
are homeomorphic.

Question 3.13. In Theorem 3.12, is it possible to replace local compactness by
local realcompactness? Also, if we denote by A (X) the set of all realcompactifications
of a space X, is it then possible to replace R(X) and R(Y ) by A (X) and A (Y ),
respectively?

4. P-extensions with compact remainder.

Let X be a space and let P be a topological property. An extension Y of X is called
a P-extension of X if it has P. In this section we consider the set of all P-extensions
of a space X with compact remainder (where P is subject to ceratin mild requirements)
and study its order structure by relating it to the topologies of certain subspaces of the
outgrowth βX \X.

Definition 4.1. Let X be a space and let P be a topological property. We denote
by EP(X) the set of all P-extensions of X with compact remainder.

Let P be a topological property. Then

• P is closed (open, respectively) hereditary, if any closed (open, respectively) sub-
space of a space with P, has P.

• P is finitely additive, if any space which is expressible as a finite disjoint union of
its closed subspaces each with P, has P.

• P is invariant under perfect mappings (inverse invariant under perfect mappings,
respectively) if for every perfect surjective mapping f : X → Y , the space Y (X,
respectively) has P, provided that X (Y , respectively) has P. If P is both invariant
and inverse invariant under perfect mappings then it is called perfect. (Recall that
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a closed continuous mapping f : X → Y is perfect, if each fiber f−1(y), where
y ∈ Y , is a compact subspace of X.)

• P satisfies Mrówka’s condition (W) if it satisfies the following: If X is a space in
which there exists a point p with an open base B for X at p such that X \B has
P for each B ∈ B, then X has P. (See [20].)

Remark 4.2. If P is a topological property which is closed hereditary and pro-
ductive, then Mrówka’s condition (W) is equivalent to the following condition: If a space
X is the union of a compact space and a space with P, then X has P. (See [17].)

Recall that a subspace of a space is said to be clopen if it is simultaneously closed
and open.

Definition 4.3. We call a topological property a compactness-like topological prop-
erty if it is clopen hereditary, finitely additive, perfect and satisfies Mrówka’s condition
(W).

Example 4.4. The list of compactness-like topological properties is quite long
and includes almost all important covering properties (that is, topological properties de-
scribed in terms of the existence of certain kinds of open subcovers or refinements of
a given open cover of a certain type), among them are: compactness, countable com-
pactness (more generally, [θ, κ]-compactness), the Lindelöf property (more generally, the
µ-Lindelöf property), paracompactness, metacompactness, countable paracompactness,
subparacompactness, submetacompactness (or θ-refinability), the σ-para-Lindelöf prop-
erty and also α-boundedness. (See [10] for the proofs and [2], [24] and [25] for the
definitions.)

Let P be a topological property. Then P is said to be preserved under finite closed
sums, if any space which is expressible as a finite union of its closed subspaces each
having P, also has P. It is known that any finitely additive topological property which
is invariant under perfect mappings is preserved under finite closed sums. (See Theorem
3.7.22 of [5].) Also, it is known that any topological property which is hereditary with
respect to clopen subspaces and is inverse invariant under perfect mappings, is hereditary
with respect to closed subspaces. (See Theorem 3.7.29 of [5].) Thus, in particular, any
compactness-like topological property is closed hereditary and is preserved under finite
closed sums. We may use this fact without explicitly referring to it.

The following subspace of βX, introduced and studied in [10] (see also [11], [13]
and [14]), plays a crucial role in what follows.

Definition 4.5. For a space X and a topological property P, let

λPX =
⋃ {

intβXclβXC : C ∈ Coz(X) and clXC has P
}
.

If X is a space and D is a dense subspace of X, then

clXU = clX(U ∩D)
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for every open subspace U of X. We use the following simple observation in a number
of places.

Lemma 4.6. Let X be a space. If f : X → [0, 1] is continuous and 0 < r < 1 then

f−1
β

[
[0, r)

] ⊆ intβXclβXf−1
[
[0, r)

]
.

Proof. Note that

f−1
β

[
[0, r)

] ⊆ intβXclβXf−1
β

[
[0, r)

]
.

On the other hand, since X is dense in βX, we have

clβXf−1
β

[
[0, r)

]
= clβX

(
X ∩ f−1

β

[
[0, r)

])
= clβXf−1

[
[0, r)

]
. ¤

The following lemma is the counterpart of Lemmas 2.3 and 3.2. It also gives an
alternative simple proof for (a special case of) Lemma 2.8 in [10].

Recall that a space X is called locally-P, when P is a topological property, if each
x ∈ X has an open neighborhood U in X whose closure clXU has P.

Lemma 4.7. Let X be a space and let P be a compactness-like topological property.
Let Y be an extension of X with compact remainder, let ζY be a compactification of Y

and let φ : βX → ζY continuously extend idX . The following are equivalent :

(1) Y ∈ EP(X).
(2) X is locally-P and βX \ λPX ⊆ φ−1[Y \X].

Proof. We only need to prove the lemma in the case when ζY = βY . (See the
proof of Lemma 2.3.)

(1) implies (2). Since P is closed hereditary, the space X, having a P-extension
with compact remainder, is locally-P. Let x ∈ βX \ λPX and suppose to the contrary
that x /∈ φ−1[Y \X]. Let f : βX → [0, 1] be continuous with f(x) = 0 and f(t) = 1 for
any t ∈ φ−1[Y \X]. Then (using Lemma 2.2)

Z = X ∩ f−1
[
[0, 1/2]

]
= Y ∩ φ

[
f−1

[
[0, 1/2]

]]
,

being closed in Y , has P. Let

C = X ∩ f−1
[
[0, 1/2)

]
.

Then C ∈ Coz(X) and clXC has P, as it is closed in Z. Thus

intβXclβXC ⊆ λPX

by the definition of λPX. But x ∈ intβXclβXC, as x ∈ f−1[[0, 1/2)] and
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f−1
[
[0, 1/2)

] ⊆ intβXclβXC

by Lemma 4.6. Therefore x ∈ λPX, which is a contradiction.
(2) implies (1). Let T be the quotient space of βY obtained by contracting Y \X

to a point p and denote by q : βY → T its quotient mapping. Note that T is completely
regular as Y \X is compact. We show that Y ∗ = X ∪ {p} has P, from this and the fact
that q|Y : Y → Y ∗ is perfect (and surjective) it will then follow that Y has P. To show
that Y ∗ has P we verify that Y ∗ \W has P for every open neighborhood W of p in Y ∗.
Let W be an open neighborhood of p in Y ∗ and let W ′ be open in T with W ′ ∩Y ∗ = W .
Then

βX \ λPX ⊆ φ−1[Y \X] ⊆ φ−1
[
q−1[W ′]

]

and thus

βX \ φ−1
[
q−1[W ′]

] ⊆ λPX.

By compactness and the definition of λPX we have

βX \ φ−1
[
q−1[W ′]

] ⊆ intβXclβXC1 ∪ · · · ∪ intβXclβXCn

where Ci ∈ Coz(X) and clXCi has P for each i = 1, . . . , n. Now

Y ∗ \W =
(
βX \ φ−1

[
q−1[W ′]

]) ∩X ⊆ clXC1 ∪ · · · ∪ clXCn

and the latter, being a finite union of its closed subspaces each with P, has P, thus its
closed subspace Y ∗ \W also has P. ¤

The following lemma, which is the counterpart of Lemmas 2.5 and 3.4, is a slight
modification of Lemma 2.10 of [10].

Lemma 4.8. Let X be a space and let P be a compactness-like topological property.
Then X ⊆ λPX if and only if X is locally-P.

Proof. Suppose that X is locally-P. Let x ∈ X and let U be an open neigh-
borhood of x in X whose closure clXU has P. Let f : X → [0, 1] be continuous with
f(x) = 0 and f(t) = 1 for any t ∈ X \ U . Let

C = f−1
[
[0, 1/2)

] ∈ Coz(X).

Then C ⊆ U and thus clXC has P, as it is closed in clXU . Therefore

intβXclβXC ⊆ λPX.

But then x ∈ λPX, as x ∈ f−1
β [[0, 1/2)] and
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f−1
β

[
[0, 1/2)

] ⊆ intβXclβXC

by Lemma 4.6.
For the converse, suppose that X ⊆ λPX. Let x ∈ X. Then x ∈ λPX and therefore

x ∈ intβXclβXC for some C ∈ Coz(X) such that clXC has P. Let

V = X ∩ intβXclβXC.

Then V is an open neighborhood of x in X and since V ⊆ clXC, the set clXV has P, as
it is closed in clXC. ¤

Theorems 4.9, 4.12 and 4.13 are dual to Theorems 2.6, 2.20 and 2.32 (and to Theo-
rems 3.6, 3.9 and 3.12), respectively, with analogous proofs. One should simply replace
intβXυX by λPX in all proofs and note the duality between Lemmas 2.3 and 4.7 and
Lemmas 2.5 and 4.8.

Theorem 4.9. Let X be a locally-P space, where P is a compactness-like topo-
logical property. Let ζX be a compactification of X, let φ : βX → ζX continuously
extend idX and let E be a compact subspace of ζX \X containing φ[βX \ λPX]. Then
Y = X ∪ E ∈ EP(X) (considered as a subspace of ζX). Furthermore, every element of
EP(X) is of this form.

Definition 4.10. For a space X and a topological property P, let

µPX = X ∪ (βX \ λPX),

considered as a subspace of βX.

Proposition 4.11. Let X be a locally-P space, where P is a compactness-like
topological property. Then EP(X) has the largest element, namely µPX.

Theorem 4.12. Let X and Y be locally-P non-P spaces, where P is a
compactness-like topological property. If EP(X) and EP(Y ) are order-isomorphic then
βX \ λPX and βY \ λPY are homeomorphic.

Theorem 4.13. Let X and Y be locally compact locally-P non-P spaces, where
P is a compactness-like topological property. If EP(X) and EP(Y ) are order-isomorphic
then λPX \X and λPY \ Y are homeomorphic.

We have seen through examples (Examples 2.21 and 3.10) that the converses of
Theorems 2.20 and 3.9 do not hold in general. Analogously, we show that the converse of
Theorem 4.12 (the dual result of Theorems 2.20 and 3.9) does not hold either. This will
be done through an example (Example 4.26) for a specific choice of a compactness-like
topological property P. The example (which shares several ideas of the proof of Theorem
4.36 of [10] and certain results from [11]; e.g. Lemmas 2.10, 4.1 and 4.3 of [11]) is very
technical, and requires us to state and prove a series of lemmas preceding it. This we
will do next.
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To avoid ambiguity we restate Definition 2.12 in the new context.

Definition 4.14. Let X be a locally-P space, where P is a compactness-like topo-
logical property, and let C1, . . . , Cn be n pairwise disjoint compact non-empty subspaces
of βX \ X. Let Z be the quotient space of βX obtained by contracting C1, . . . , Cn to
p1, . . . , pn, respectively. Define

eX(C1, . . . , Cn) = X ∪ {p1, . . . , pn} ∪
(
(βX \ λPX) \ (C1 ∪ · · · ∪ Cn)

)
,

considered as a subspace of Z. Note that

eX(C1, . . . , Cn) ∈ EP(X)

by Lemma 4.7, and

F
(
eX(C1, . . . , Cn)

)
= {C1, . . . , Cn} ∪

{{y} : y ∈ (βX \ λPX) \ (C1 ∪ · · · ∪ Cn)
}
.

Definition 4.15. Let X be a locally-P space, where P is a compactness-like
topological property. A co-atom Y in EP(X) is

• of type (I) if Y = eX({a}), for some a ∈ (βX \X) \ (βX \ λPX).
• of type (II) if Y = eX({a, b}), for some distinct a, b ∈ βX \ λPX.

By an argument similar to the one we have given for Lemma 2.13 it follows that every
co-atom in EP(X) (where X is a locally-P space and P is a compactness-like topological
property) actually is either of type (I) or of type (II).

The next lemma characterizes order-theoretically the co-atoms in EP(X) of type (II)
(and consequently, the co-atoms in EP(X) of type (I)). The proof is analogous to its
dual result Lemma 2.18. (One needs to state and prove a lemma dual to Lemma 2.17
first.) Note that in the proof of Lemma 2.18 one needs only that

∣∣clβX(βX \ υX)
∣∣ ≥ 3.

This justifies the inclusion of the extra assumption in the following lemma.

Lemma 4.16. Let X be a locally-P space, where P is a compactness-like topological
property, and let T be a co-atom in EP(X). Suppose that |βX \λPX| ≥ 3. The following
are equivalent :

(1) T is of type (II).
(2) There exists a co-atom S in EP(X) with

∣∣{U ∈ EP(X) : U ≥ S ∧ T
}∣∣ = 5.

The following is dual to Definition 2.26.

Definition 4.17. Let X be a space and let P be a compactness-like topological
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property. Define

E ∗P(X) =
{
Y ∈ EP(X) : Y \X is a singleton

}
.

The following is dual to Lemma 2.27 with an analogous proof; it characterizes order-
theoretically the elements of E ∗P(X) in EP(X).

Lemma 4.18. Let X be a locally-P space, where P is a compactness-like topological
property, and let Y ∈ EP(X). The following are equivalent :

(1) Y ∈ E ∗P(X).
(2) Y satisfies the following :

(a) Y ≤ T for every co-atom T in EP(X) of type (II).
(b) Y ≤ D for every co-atom cover D in EP(X) such that Y ≤ D′.

Recall that a space X is locally compact if and only if X is open in every compacti-
fication ζX of X if and only if X is open in some compactification γX of X. This simple
observation will be used in the proof of the following lemma which characterizes (not yet
order-theoretically) the locally compact elements of E ∗P(X) in E ∗P(X).

Lemma 4.19. Let X be a locally compact locally-P space, where P is a compactness-
like topological property. Let Y ∈ E ∗P(X) and F (Y ) = {F}. The following are equivalent :

(1) Y is locally compact.
(2) F is open in βX \X.

Proof. Since F (eX(F )) = {F} we have Y = eX(F ) by Lemma 2.8. That is, if
Z is the quotient space of βX obtained by contracting F to p, then Y coincides with
the subspace X ∪ {p} of Z. Note that Z is a compactification of Y . Thus, Y is locally
compact if and only if Y is open in Z. Let q : βX → Z denote the natural quotient
mapping.

(1) implies (2). If Y is open in Z then q−1[Y ] is open in βX. Therefore

F = (βX \X) ∩ q−1[Y ]

is open in βX \X.
(2) implies (1). Let W be an open subspace of βX such that W ∩ (βX \X) = F .

Since X is locally compact, X is open in βX. Since

q−1
[
q[X ∪W ]

]
= X ∪W

is open in βX it follows that Y = q[X ∪W ] is open in Z. ¤

Our next purpose is to characterize order-theoretically the locally compact elements
of E ∗P(X) in E ∗P(X). This will be done through the introduction and use of the auxiliary
notion of an ideal element in E ∗P(X) and its order-theoretic characterization in E ∗P(X).

Definition 4.20. Let X be a space and let P be a compactness-like topological
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property. Let Y ∈ E ∗P(X) and F (Y ) = {F}. Then Y is called an ideal if F ∩ λPX is
compact.

Lemma 4.21. Let X be a space and let P be a compactness-like topological property.
Then λPX = βX if and only if X has P.

Proof. If X has P then λPX = βX, as obviously X ∈ Coz(X). To show the
converse, suppose that λPX = βX. By compactness and the definition of λPX we have

βX = intβXclβXC1 ∪ · · · ∪ intβXclβXCn (4.1)

where C1, . . . , Cn ∈ Coz(X) and each clXC1, . . . , clXCn has P. Taking the intersection
of both sides of (4.1) with X, we have

X = clXC1 ∪ · · · ∪ clXCn.

This implies that X has P, as P is preserved under finite closed sums and X is the finite
union of its closed subspaces each having P. ¤

We need the following lemma in the proof of Lemma 4.23.

Lemma 4.22. Let X be a locally compact locally-P non-P space, where P is a
compactness-like topological property. Let Yi ∈ E ∗P(X) for each i ∈ I, where I is a
non-empty index set, and let F (Yi) = {Fi}. Then

∨
i∈I Yi exists in E ∗P(X) and

∨

i∈I

Yi = eX

( ⋂

i∈I

Fi

)
.

Proof. Let

F =
⋂

i∈I

Fi.

Note that F is a closed subspace of βX \X (and thus it is compact, as the latter is so,
since X is locally compact) containing βX \ λPX, as each Fi, where i ∈ I, is closed in
βX and contains βX \λPX by Lemma 4.7. In particular, F is non-empty, as βX \λPX

is so by Lemma 4.21, since X is non-P. Let Y = eX(F ). Then Y ∈ E ∗P(X). Note that
F (Y ) = {F}. For every i ∈ I we have F ⊆ Fi, and thus Yi ≤ Y by Lemma 2.8. Let
Y ′ ∈ E ∗P(X) be such that Yi ≤ Y ′ for every i ∈ I. Let F (Y ′) = {F ′}. Then F ′ ⊆ Fi for
each i ∈ I by Lemma 2.8, and therefore F ′ ⊆ F . Thus Y ≤ Y ′ again by Lemma 2.8. ¤

The following characterizes order-theoretically the ideal elements of E ∗P(X) in
E ∗P(X).

Lemma 4.23. Let X be a locally compact non-P space, where P is a compactness-
like topological property.
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(1) Let X be a locally-P space. Then E ∗P(X) has the largest element, namely

MX
P = eX(βX \ λPX).

(2) Let Y ∈ E ∗P(X). The following are equivalent :
(a) Y is an ideal.
(b) If

Y ∨
∨

i∈I

Yi = MX
P

where Yi ∈ E ∗P(X) for each i ∈ I and I is a non-empty index set, then

Y ∨
n∨

j=1

Yij
= MX

P

for some i1, . . . , in ∈ I.

Proof. (1). This follows from Lemmas 2.8 and 4.7. Note that βX \ λPX is
contained in βX \X, as X ⊆ λPX by Lemma 4.8, since X is locally-P, and βX \ λPX

is non-empty by Lemma 4.21, as X is non-P.
(2). Let F (Y ) = {F}. (2.a) implies (2.b). Let

Y ∨
∨

i∈I

Yi = MX
P , (4.2)

where Yi ∈ E ∗P(X) for each i ∈ I and I is a non-empty index set. Let F (Yi) = {Fi} for
each i ∈ I. Using Lemma 4.22, it follows from (4.2) that

F ∩
⋂

i∈I

Fi = βX \ λPX

and thus

λPX ∩ F ∩
⋂

i∈I

Fi = ∅.

Since λPX ∩ F is compact, as Y is an ideal, we have

λPX ∩ F ∩
k⋂

j=1

Fij
= ∅

or, equivalently
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F ∩
k⋂

j=1

Fij
⊆ βX \ λPX (4.3)

for some i1, . . . , ik ∈ I. But by Lemma 4.7 we know that βX \ λPX is contained in F

and in each Fij
, where j = 1, . . . , k. Therefore, (4.3) yields

F ∩
k⋂

j=1

Fij = βX \ λPX

and thus, again by Lemma 4.22 we have

Y ∨
k∨

j=1

Yij
= MX

P .

(2.b) implies (2.a). We need to show that λPX ∩ F is compact. Let {Ui}i∈I be an
open cover of λPX ∩ F in λPX \X. Let i ∈ I. Define

Fi = (βX \X) \ Ui.

Note that Ui is open in βX \X, as it is open in λPX \X and the latter is open in βX \X.
Thus Fi is closed in βX \X and therefore it is compact, as βX \X is closed in βX, since
X is locally compact. Also, X ⊆ λPX by Lemma 4.8, as X is locally-P by Lemma 4.7,
since EP(X) is non-empty, because I is so. Further,

(βX \X) \ Ui ⊇ (βX \X) \ (λPX \X) = βX \ λPX,

and the latter in non-empty by Lemma 4.21, as X is non-P. That is, Fi is a compact
non-empty subspace of βX \X containing βX \ λPX. Define

Yi = eX(Fi).

Note that Yi ∈ E ∗P(X). Now

F ∩
⋂

i∈I

Fi = F ∩
⋂

i∈I

(
(βX \X) \ Ui

)

= F \
⋃

i∈I

Ui ⊆ F \ (F ∩ λPX) = F ∩ (βX \ λPX) ⊆ βX \ λPX.

By Lemma 4.7 we know that βX \ λPX is contained in F and in each Fi, where i ∈ I.
Thus, from the above, we have

F ∩
⋂

i∈I

Fi = βX \ λPX.
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Therefore, by Lemma 4.22 we have

Y ∨
∨

i∈I

Yi = MX
P .

Using our assumption, it then follows that

Y ∨
k∨

j=1

Yij
= MX

P

for some i1, . . . , ik ∈ I. Again, by Lemmas 2.8 and 4.22 we have

F ∩
k⋂

j=1

Fij
= βX \ λPX.

Thus

(λPX ∩ F ) \
k⋃

j=1

Uij = λPX ∩ F ∩
k⋂

j=1

(
(βX \X) \ Uij

)
= λPX ∩ F ∩

k⋂

j=1

Fij = ∅,

which implies that

λPX ∩ F ⊆
k⋃

j=1

Uij
. ¤

In the following we characterize order-theoretically the locally compact elements of
E ∗P(X) in E ∗P(X).

Lemma 4.24. Let X be a locally compact non-P space, where P is a compactness-
like topological property, and let Y ∈ E ∗P(X). The following are equivalent :

(1) Y is locally compact.
(2) There exists an ideal element T in E ∗P(X) satisfying the following :

(a) For every co-atom A in EP(X) of type (I) either A ≥ Y or A ≥ T .
(b) There exists no co-atom A in EP(X) of type (I) with A ≥ Y and A ≥ T .

Proof. Let F (Y ) = {F} and note that βX \ λPX ⊆ F by Lemma 4.7. Also,
X ⊆ λPX by Lemma 4.8, since X is locally-P by Lemma 4.7, because EP(X) is non-
empty.

(1) implies (2). Let

G =
(
(βX \X) \ F

) ∪ (βX \ λPX).

Note that βX \ λPX is non-empty by Lemma 4.21, as X is non-P, and βX \ λPX is
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contained in βX \ X, as X ⊆ λPX. Since Y is locally compact, F is open in βX \ X

by Lemma 4.19. Therefore (βX \ X) \ F is closed in βX \ X and is thus compact, as
βX \X is closed in βX, since X is locally compact. Therefore, G is compact, as it is the
union of two compact spaces. Further, G is non-empty, it is contained in βX \X, and it
contains βX \ λPX. Let T = eX(G). Note that

G ∩ λPX = (βX \X) \ F

is compact, and thus T is an ideal. That conditions (2.a) and (2.b) hold follow from the
representation given in Definition 4.15 of co-atoms in EP(X) of type (I) and the facts
that

F ∩G = βX \ λPX and F ∪G = βX \X.

(2) implies (1). Let F (T ) = {H}. Note that βX \ λPX ⊆ H by Lemma 4.7. From
conditions (2.a) and (2.b) it follows that

F ∩H = βX \ λPX and F ∪H = βX \X.

Therefore

(βX \X) \ F = H ∩ λPX

is compact, as T is an ideal. Thus (βX \ X) \ F is closed in βX \ X. Therefore, Y is
locally compact by Lemma 4.19. ¤

Lemma 4.25. Let X and Y be locally compact non-P spaces, where P is a
compactness-like topological property, and let

Γ : EP(X) → EP(Y )

be an order-isomorphism. Suppose that |βX \ λPX| ≥ 3 and |βY \ λPY | ≥ 3. Let
T ∈ EP(X).

(1) If T is a co-atom of type (I) (of type (II), respectively) then so is Γ(T ).
(2) If T is a one-point extension then so is Γ(T ).
(3) If T is an ideal then so is Γ(T ).
(4) If T is a locally compact one-point extension then so is Γ(T ).

Proof. Lemma 4.16 proves (1). (Note that X is locally-P by Lemma 4.7, as
EP(X) is non-empty.) Lemma 4.18 and (1) prove (2). Part (3) follows from (2) and
Lemma 4.23. Part (4) follows from (1)–(3) and Lemma 4.24. ¤

We are now ready to give our example. For a space X we write

X =
⊕

i∈I

Xi,
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if X is the disjoint union of its open (and thus clopen) subspaces Xi.

Example 4.26. Let

X = N⊕
⊕

i<Ω

Ri and Y =
⊕

i<Ω

Ri

where Ri = [0,∞) for each i < Ω. (Here Ω is the first uncountable ordinal.) Let P be
the Lindelöf property. Then

λPX = clβXN ∪
⋃ {

clβX

( ⋃

i∈J

Ri

)
: J ⊆ [0,Ω) is countable

}
(4.4)

and

λPY =
⋃ {

clβY

( ⋃

i∈J

Ri

)
: J ⊆ [0,Ω) is countable

}
. (4.5)

To show (4.4), consider some C ∈ Coz(X) with Lindelöf closure clXC. Then

clXC ⊆ N ∪
⋃

i∈J

Ri

for some countable J ⊆ [0,Ω). Therefore

clβXC ⊆ clβXN ∪ clβX

( ⋃

i∈J

Ri

)
.

On the other hand, if J ⊆ [0,Ω) is countable, then

D = N ∪
⋃

i∈J

Ri

is Lindelöf. Since D is clopen in X we have D ∈ Coz(X). Also, the closure clβXD is
clopen in βX. Thus

intβXclβXD = clβXD ⊆ λPX.

This shows (4.4). A similar argument shows (4.5). Note that X contains Y as a closed
subspace. Since X is normal, as each of its summands is so, we have βY = clβXY . Thus,
in particular, for any countable J ⊆ [0,Ω) we have

clβY

( ⋃

i∈J

Ri

)
= clβX

( ⋃

i∈J

Ri

)
∩ clβXY = clβX

( ⋃

i∈J

Ri

)
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and then, comparing (4.4) and (4.5), it yields

λPX = clβXN ∪ λPY.

Note that

βX = clβXN ∪ clβXY,

as X = N∪ Y . Also, since N and Y are disjoint zero-sets in X (as they are clopen in X)
they have disjoint closures in βX. We have

βX \ λPX = (clβXN ∪ clβXY ) \ (clβXN ∪ λPY ) = clβXY \ λPY = βY \ λPY.

In the following, in order to use Lemma 4.25, we need to show that

|βX \ λPX| ≥ 3 and |βY \ λPY | ≥ 3.

We show the latter; the first may be proved analogously. Let J ⊆ [0,Ω) be uncountable.
Suppose that

clβY

( ⋃

i∈J

Ri

)
⊆ λPY.

Note that for any K ⊆ [0,Ω) the closure clβY (
⋃

i∈K Ri) is clopen in βY , as
⋃

i∈K Ri is
clopen in Y . By compactness and the representation given in (4.5) we have

clβY

( ⋃

i∈J

Ri

)
⊆ clβY

( ⋃

i∈K1

Ri

)
∪ · · · ∪ clβY

( ⋃

i∈Kn

Ri

)
(4.6)

for some countable K1, . . . , Kn ⊆ [0,Ω). Intersecting both sides of (4.6) with Y in yields

⋃

i∈J

Ri ⊆
⋃

i∈K1

Ri ∪ · · · ∪
⋃

i∈Kn

Ri

which is not true, as J is uncountable, while K1 ∪ · · · ∪Kn is not. Thus

clβY

( ⋃

i∈J

Ri

)
\ λPY 6= ∅

for any uncountable J ⊆ [0,Ω). Choose some pairwise disjoint uncountable J1, J2, J3 ⊆
[0,Ω). Note that

clβY

( ⋃

i∈J1

Ri

)
\ λPY, clβY

( ⋃

i∈J2

Ri

)
\ λPY and clβY

( ⋃

i∈J3

Ri

)
\ λPY
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are non-empty subsets of βY \ λPY and they are pairwise disjoint, as

⋃

i∈J1

Ri,
⋃

i∈J2

Ri and
⋃

i∈J3

Ri

being pairwise disjoint clopen subspaces (and thus zero-sets) in Y have disjoint closures
in βY .

Now, we show that the partially ordered sets EP(X) and EP(Y ) are not order-
isomorphic. Suppose the contrary, and let

Γ : EP(X) → EP(Y )

be an order-isomorphism. Let

G = (βX \X) \ clβXN.

Since N is clopen in X, its closure clβXN in βX is clopen in βX. Therefore G is clopen
in βX \ X. In particular, G is compact, as βX \ X is closed in βX, since X is locally
compact. Also, G contains βX \ λPX by (4.4). Let S = eX(G) and denote T = Γ(S).
By Lemma 4.25 then T ∈ E ∗P(Y ), as S ∈ E ∗P(X) and T is locally compact, as S is so by
Lemma 4.19, since G is open in βX \ X. Let FY (T ) = {H}. Note that T is not the
smallest element of E ∗P(Y ), as S is not the smallest element of E ∗P(X). (Observe that the
smallest element of E ∗P(X) is the one-point compactification of X.) Thus H is not the
whole βY \ Y . We need to show the following.

Claim. There exists some i < Ω such that

H ∩ clβY Ri = ∅.

Proof of the claim. Since T is locally compact, H is clopen in βY \ Y by
Lemma 4.19. Thus H and (βY \Y )\H are both closed in βY \Y and therefore in βY , as
βY \ Y is closed in βY , since Y is locally compact. By the Urysohn Lemma there exists
a continuous f : βY → [0, 1] such that f(t) = 0 for any t ∈ (βY \ Y ) \H and f(s) = 1
for any s ∈ H. Let

V = Y ∩ f−1
[
[0, 1/2)

]
.

Note that

(βY \ Y ) \H = clβY V \ Y,

as using Lemma 4.6 we have

(βY \ Y ) \H = f−1
[
[0, 1/2)

] \ Y ⊆ clβY V \ Y ⊆ f−1
[
[0, 1/2]

] \ Y = (βY \ Y ) \H.

We have
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bdY V = clY V ∩ clY (Y \ V ) ⊆ clβY V ∩ clβY (Y \ V )

⊆ f−1
[
[0, 1/2]

] ∩ f−1
[
[1/2, 1]

]
= f−1(1/2)

and thus

clβY bdY V ⊆ f−1(1/2) ⊆ Y.

Therefore

bdY V = clβY bdY V ∩ Y = clβY bdY V

is compact, as it is closed in βY . Let

L = {i < Ω : bdY V ∩Ri 6= ∅}.

Note that L is finite, as bdY V is compact (and each Ri, where i < Ω, is open in Y ). To
prove the claim, suppose to the contrary that clβY Ri ∩H is non-empty for each i < Ω.
Let i < Ω. Note that

clβY Ri \ Y = clβY Ri \Ri = βRi \Ri

as clβY Ri and βRi are equivalent compactifications of Ri, because Ri is closed in Y (and
Y is normal). Since βRi \ Ri is connected (see Problem 6L of [6]) and H is clopen in
βY \ Y , we have

clβY Ri \ Y ⊆ H. (4.7)

Now, let i < Ω be such that V ∩Ri is non-empty. If bdRi
(V ∩Ri) is empty, then V ∩Ri

is clopen in Ri, and since Ri is connected we have V ∩ Ri = Ri, that is Ri ⊆ V . But
then

∅ 6= βRi \Ri = clβY Ri \ Y ⊆ clβY V \ Y = (βY \ Y ) \H,

which by (4.7) cannot be true. Thus

bdY V ∩Ri = bdRi
(V ∩Ri) 6= ∅,

that is, i ∈ L. Therefore,

V ⊆
⋃

i∈L

Ri.

Now, using (4.7), we have
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(βY \ Y ) \H = clβY V \ Y ⊆ clβY

( ⋃

i∈L

Ri

)
\ Y

=
( ⋃

i∈L

clβY Ri

)
\ Y =

⋃

i∈L

(clβY Ri \ Y ) ⊆ H,

which implies that H = βY \ Y . This contradiction proves the claim.

Fix some i < Ω such that H ∩ clβY Ri is empty and let

Hi = (βY \ Y ) \ clβY Ri.

Since Ri is clopen in Y , its closure clβY Ri in βY is clopen in βY . Thus Hi is clopen in
βY \Y . In particular, Hi is compact, as βY \Y is closed in βY , since Y is locally compact.
Also, Hi contains βY \ λPY by (4.5). Let Ti = eY (Hi). Note that Ti is locally compact
by Lemma 4.19. We now prove the following; the contradiction will then complete the
proof.

Claim. Ti is a co-atom in the set of locally compact elements of E ∗P(Y ) partially
ordered by the reverse of ≤, while its inverse image Γ−1(Ti) is not a co-atom in the set
of locally compact elements of E ∗P(X), partially ordered in the same way.

Proof of the claim. Suppose to the contrary that ωY < T ′ < Ti for some
locally compact T ′ ∈ E ∗P(Y ). (ωY denotes the one-point compactification of Y .) Let
FY (T ′) = {H ′}. Then Hi $ H ′ $ βY \ Y by Lemma 2.8. Therefore

∅ 6= (βY \ Y ) \H ′ $ (βY \ Y ) \Hi = clβY Ri \ Y = βRi \Ri.

Since T ′ is locally compact, H ′ (and thus (βY \ Y ) \H ′) is clopen in βY \ Y by Lemma
4.19. This contradicts the fact that βRi \Ri is connected. (See Problem 6L of [6].) Thus
Ti is a co-atom in the set of all locally compact elements of E ∗P(Y ) partially ordered by
the reverse of ≤. Let Si = Γ−1(Ti). Note that Si ∈ E ∗P(X) and Si is locally compact by
Lemma 4.25, as Ti is so. Let FX(Si) = {Gi}. Since H ∩ clβY Ri is empty, we have

H ⊆ (βY \ Y ) \ clβY Ri = Hi

and thus Ti ≤ T by Lemma 2.8. Therefore

Si = Γ−1(Ti) ≤ Γ−1(T ) = S

and then G ⊆ Gi again by Lemma 2.8. Note that clβXN and βN are equivalent com-
pactifications of N, as N is closed in X (and X is normal). We have

(βX \X) \Gi ⊆ (βX \X) \G = clβXN \X = clβXN \ N = βN \ N.

Therefore (βX \X)\Gi may be regarded as a clopen subspace of βN\N and thus home-
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omorphic to βN \ N itself. (See Exercise 3.6.A of [5].) By Lemma 4.19 the complement
(in βX \X) of each clopen subspace of (βX \X) \Gi corresponds to a locally compact
element S′ of E ∗P(X) which satisfies S′ ≤ Si by Lemma 2.8. That is Si is not a co-atom
in the set of locally compact elements of E ∗P(X) partially ordered by the reverse of ≤.
This proves the claim.

Our concluding results determine λPX in the cases when P is either pseudocom-
pactness or realcompactness. Note that neither pseudocompactness nor realcompactness
is a compactness-like topological property (indeed, pseudocompactness is not inverse
invariant under perfect mappings and realcompactness is not invariant under perfect
mappings), so the results of our first two sections are not deducible from the results of
this section.

Proposition 4.29 is known (see [11]); it is included here for completeness of results.
The following result is due to A. W. Hager and D. G. Johnson in [7]; a direct proof

may be found in [3]. (See also Theorem 11.24 of [26].)

Lemma 4.27 (Hager and Johnson [7]). Let U be an open subspace of a space X.
If clυXU is compact then clXU is pseudocompact.

Lemma 4.28. Let A be a regular closed subspace of a space X. Then clβXA ⊆ υX

if and only if A is pseudocompact.

Proof. The first half follows from Lemma 4.27. For the second half, note that if A

is pseudocompact then so is clυXA. But clυXA, being closed in υX, is also realcompact,
and thus compact. Therefore clβXA ⊆ clυXA. ¤

Proposition 4.29. Let X be a space and let P be pseudocompactness. Then

λPX = intβXυX.

Proof. If C ∈ Coz(X) has pseudocompact closure in X then clβXC ⊆ υX, by
Lemma 4.28, and then

intβXclβXC ⊆ intβXυX.

For the reverse inclusion, let t ∈ intβXυX. Let f : βX → [0, 1] be continuous with
f(t) = 0 and f(s) = 1 for any s ∈ βX \ intβXυX. Then

C = X ∩ f−1
[
[0, 1/2)

] ∈ Coz(X)

and t ∈ intβXclβXC, as t ∈ f−1[[0, 1/2)] and

f−1
[
[0, 1/2)

] ⊆ intβXclβXC

by Lemma 4.6. Also, clXC is pseudocompact, by Lemma 4.28, as

clβXC ⊆ f−1
[
[0, 1/2]

] ⊆ υX. ¤
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Lemma 4.30 (Gillman and Jerison [6]). If A is a C-embedded subspace of a space
X then clυXA = υA.

Note that in a normal space each closed subspace is C-embedded. (See Theorem
1.10 (g) of [21].)

Proposition 4.31. Let X be a normal space and let P be realcompactness. Then

λPX = βX \ clβX(υX \X).

Proof. Let C ∈ Coz(X) have realcompact closure in X. Then since clXC is
C-embedded in X, as X is normal, by Lemma 4.30 we have

clυXC = υ(clXC) = clXC.

But then

intβXclβXC ∩ (υX \X) = ∅,

as

clβXC ∩ (υX \X) = clυXC ∩ (υX \X) = ∅,

and thus

intβXclβXC ∩ clβX(υX \X) = ∅,

or, equivalently

intβXclβXC ⊆ βX \ clβX(υX \X).

For the reverse inclusion, let t ∈ βX \ clβX(υX \ X). Let f : βX → [0, 1] be
continuous with f(t) = 0 and f(s) = 1 for any s ∈ clβX(υX \X). Then

C = X ∩ f−1
[
[0, 1/2)

] ∈ Coz(X)

and t ∈ intβXclβXC, as t ∈ f−1[[0, 1/2)] and

f−1
[
[0, 1/2)

] ⊆ intβXclβXC

by Lemma 4.6. Also, since clβXC ∩ (υX \X) is empty, the closure

clXC = X ∩ clβXC = υX ∩ clβXC = clυXC,

being closed in υX, is realcompact. ¤
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