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and irregular singularities
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Abstract. The paper considers nonlinear partial differential equations
of the form t(∂u/∂t) = F (t, x, u, ∂u/∂x), with independent variables (t, x) ∈
R×C, and where F (t, x, u, v) is a function continuous in t and holomorphic in
the other variables. It is shown that the equation has a unique solution in a
sectorial domain centered at the origin under the condition that F (0, x, 0, 0) =
0, ReFu(0, 0, 0, 0) < 0, and Fv(0, x, 0, 0) = xp+1γ(x), where γ(0) 6= 0 and p is
any positive integer. In this case, the equation has a Fuchsian singularity at
t = 0 and an irregular singularity at x = 0.

1. Introduction.

Consider first order singular nonlinear partial differential equations of the form

t
∂u

∂t
= F

(
t, x, u,

∂u

∂x

)
, (1.1)

which has a Fuchsian singularity at t = 0.
Suppose F (t, x, u, v) is a function holomorphic in a neighborhood of the origin

(0, 0, 0, 0) ∈ C4 and F (0, x, 0, 0) ≡ 0 near x = 0. Then we can write F as

F

(
t, x, u,

∂u

∂x

)
= a(x)t + λ(x)u + b(x)

∂u

∂x
+

∑

i+j+α≥2

ai,j,α(x)tiuj

(
∂u

∂x

)α

,

where all the coefficients a(x), λ(x), b(x) and ai,j,α(x) are holomorphic at x = 0 ∈ C.
In the case b(0) 6= 0, we can solve (1.1) by writing it in the form

∂u

∂x
= G

(
t, x, u, t

∂u

∂t

)

and then applying the Cauchy-Kowalewski theorem to this equation with data on x = 0.
For the case b(0) = 0, (1.1) can be classified into two types:
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(T1) b(x) ≡ 0;
(T2) b(x) = xp+1γ(x), where γ(0) 6= 0 and p ∈ N := {0, 1, 2, . . .}.

In [5], Gérard and Tahara proved that equations of type (T1) have unique solutions
when λ(0) 6∈ N∗ := {1, 2, 3, . . .}. Afterwards, Yamazawa [14] showed the existence of
solutions to such equations also in the case λ(0) ∈ N∗. Type (T2) equations were studied
in [3], [4], [8] and [12]. For p = 0, the equation (1.1) has a regular singularity at x = 0. In
this case, Chen-Tahara [3] and Tahara [12] established the solvability of (1.1) whenever
γ(0) ∈ C \ [0,∞). On the other hand, the equation (1.1) has an irregular singularity at
x = 0 when p ≥ 1. And in this case, Chen-Luo-Tahara [4] studied Gevrey type estimates
of formal solutions and Luo-Chen-Zhang [8] showed that the equation is solvable in a
sectorial domain by using the Borel summation method.

The study on the equation (1.1) has been extended to the case where the func-
tion F (t, x, u, v) is holomorphic in the variables (x, u, v) but only continuous in t. In
this situation, Baouendi-Goulaouic [2] and Lope-Roque-Tahara [7] showed existence and
uniqueness theorems for equations corresponding to (T1)-type equations. In [1], the au-
thors showed that unique solutions exist also for equations of type (T2) in the regular
singularity case p = 0.

In this paper, we will solve partial differential equations of type (T2) in the irregular
singularity case p ≥ 1, under the assumption that F (t, x, u, v) is holomorphic with respect
to the variables (x, u, v) but only continuous in t.

2. Main Result.

Let (t, x) ∈ R × C, T0 > 0, R0 > 0 and ρ0 > 0. For any s > 0, denote by Ds the
open disk {x ∈ C : |x| < s}. We study the equation (1.1) under the following hypotheses:

(A1) F (t, x, u, v) is continuous on ∆ = [0, T0] × DR0 × Dρ0 × Dρ0 and holomorphic in
the variables (x, u, v) for any fixed t;

(A2) F (0, x, 0, 0) = 0 on DR0 ;
(A3) Fv(0, x, 0, 0) = xp+1γ(x) with γ(0) 6= 0 and p ∈ N∗.
Set a(t, x) = F (t, x, 0, 0), λ(t, x) = Fu(t, x, 0, 0), and b(t, x) = Fv(t, x, 0, 0)−Fv(0, x, 0, 0).
Then the equation (1.1) can be rewritten as

t
∂u

∂t
= a(t, x) + λ(t, x)u + (xp+1γ(x) + b(t, x))

∂u

∂x
+ G2

(
t, x, u,

∂u

∂x

)
(2.1)

where

G2(t, x, u, v) =
∑

i+j≥2

gi,j(t, x)uivj

represents the sum of all the terms in the Taylor expansion of F (t, x, u, v) in (u, v)
whose degrees with respect to (u, v) are at least 2. It is clear from our hypotheses
that the functions a(t, x), λ(t, x) and b(t, x) are continuous functions on [0, T0] × DR0

and holomorphic in x for any fixed t. Moreover, we have a(0, x) ≡ 0, b(0, x) ≡ 0 and
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γ(0) 6= 0.
Let us introduce a weight function to describe the decreasing order that we want

a(t, x) and b(t, x) to satisfy as t tends to 0. We say that a real-valued function µ(t) is a
weight function on (0, T0] if it is positive, continuous, and increasing on (0, T0], and

∫ T0

0

µ(s)
s

ds < +∞.

It follows from this definition that for any given weight function µ(t) we have
limt→0 µ(t) = 0, and the function

ϕ(t) =
∫ t

0

µ(s)
s

ds (2.2)

is well-defined on (0, T0]. Moreover, we have limt→0 ϕ(t) = 0 and ϕ′(t) = µ(t)/t on
(0, T0). Some examples of such weight functions are tη and 1/(− log t)η+1 for any η > 0.

We suppose that there is a weight function µ(t) such that

a(t, x) = O(µ(t)) uniformly on DR0 (as t −→ 0), (2.3)

b(t, x) = O(µ(t)) uniformly on DR0 (as t −→ 0). (2.4)

Set θ0 = arg(−γ(0)). For any R > 0, ε > 0, T > 0, and r > 0, we define a sector S,
a distance function dS(x) on S from the boundary, and a region Wr by

S =
{

x ∈ C : 0 < |x| < R,

∣∣∣∣ arg x +
θ0

p

∣∣∣∣ <
π

2p
− ε

p

}
,

dS(x) = min
{

π

2p
− ε

p
−

∣∣∣∣ arg x +
θ0

p

∣∣∣∣, log R− log |x|
}

for x ∈ S,

Wr =
{

(t, x) ∈ (0, T ]× S :
ϕ(t)
r

< dS(x)
}

.

If 0 < ε < π/2 then we have S 6= ∅.
We also define two spaces on the region W = Wr or (0, T ]× S:

X0(W ) = {w(t, x) ∈ C0(W ): w is holomorphic in x for any fixed t};
X1(W ) = X0(W ) ∩ C1(W ).

Here is our main result.

Theorem 2.1 (Main Theorem). Suppose that (A1)–(A3), (2.3), (2.4), and the
following conditions hold :

( i ) Re λ(0, 0) < 0,
( ii ) a(t, 0) = 0 and ax(t, 0) = 0 on [0, T0],
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(iii) b(t, 0) = 0 on [0, T0].

Then for any 0 < ε < π/16 there exist R > 0, r > 0, M > 0 and T > 0 with R2Mµ(T )
< ρ0 and RMµ(T ) < ρ0 such that (2.1) has a unique solution u(t, x) in X1(Wr) that
satisfies

|u(t, x)| ≤ Mµ(t)|x|2 and
∣∣∣∣
∂u

∂x
(t, x)

∣∣∣∣ ≤ Mµ(t)|x| on Wr. (2.5)

3. Reduction.

Set a1(t, x) = a(t, x)/x2 and b1(t, x) = b(t, x)/x. The assumptions (ii) and (iii) imply
that these functions a1(t, x) and b1(t, x) are continuous on [0, T0]×DR0 and holomorphic
in x for any fixed t. By setting

u(t, x) = x2w(t, x)

we can reduce the equation (2.1) in terms of the unknown function w(t, x) as follows:

t
∂w

∂t
− λ1(t, x)w − xp+1γ(x)

∂w

∂x

= a1(t, x) + xb1(t, x)
∂w

∂x
+ R2

(
t, x, w, x

∂w

∂x

)
, (3.1)

where λ1(t, x) = λ(t, x) + 2xpγ(x) + 2b1(t, x) and

R2(t, x, w,w1) =
∑

i+j≥2

x2i+j−2gi,j(t, x)wi(2w + w1)j .

It is easy to see that λ1(t, x) is continuous on [0, T0]×DR0 and holomorphic in x for any
fixed t, and the function R2(t, x, w,w1) is continuous on ∆1 = [0, T0]×DR0 ×Dρ1 ×Dρ1

with ρ1 = min{ρ0/R0
2, ρ0/(3R0)} and holomorphic in (x,w, w1) for any fixed t. It also

follows from (2.3) and (2.4) that a1(t, x) = O(µ(t)) and b1(t, x) = O(µ(t)) uniformly
on DR0 (as t −→ 0). Since p ≥ 1 and b1(0, x) ≡ 0, we have λ1(0, 0) = λ(0, 0) and so
Re λ1(0, 0) < 0. Evidently, to prove Theorem 2.1 it is enough to show the following
proposition.

Proposition 3.1. For any 0 < ε < π/16, there exist R > 0, r > 0, M > 0 and
T > 0 with Mµ(T ) < ρ1 such that (3.1) has a unique solution w(t, x) in X1(Wr) that
satisfies

|w(t, x)| ≤ Mµ(t) and
∣∣∣∣x

∂w

∂x
(t, x)

∣∣∣∣ ≤ Mµ(t) on Wr. (3.2)

We devote the rest of this paper to prove the above result. In fact, for a slight
generalization, we will prove Proposition 3.1 for the equation
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t
∂w

∂t
− λ1(t, x)w − xp+1c(t, x)

∂w

∂x

= a1(t, x) + xb1(t, x)
∂w

∂x
+ R2

(
t, x, w, x

∂w

∂x

)
, (3.3)

under the condition that c(0, 0) = γ(0). In the next section, we present a Nagumo-
type lemma in a sectorial domain that will play a very important role in the proof of
Proposition 3.1. Then we investigate the behavior of the solution of the equation tdx/dt =
−xp+1c(t, x), which gives an integral curve of the vector field t∂/∂t − xp+1c(t, x)∂/∂x.
After that, we solve the equation

t
∂w

∂t
− λ1(t, x)w − xp+1c(t, x)

∂w

∂x
= g(t, x) (3.4)

on the domains (0, T1] × S and Wr. Finally, in the last section we solve the equation
(3.3) by the method of Nirenberg [10] and Nishida [11] but with modification so that it
also works in a sectorial domain.

4. Nagumo’s lemma in a sector.

Let us recall a refined Nagumo’s lemma by Walter [13]. Let Ω be an open set in the
z-complex plane with a nonempty boundary Γ, and let dist(z, Γ) be the distance from z

to Γ. The following lemma was also called Nagumo’s lemma in [13] (see also Nagumo
[9]).

Lemma 4.1 (Nagumo’s lemma). Let f(z) be a holomorphic function on Ω, and let
a ≥ 0 and C ≥ 0. Then we have

|f(z)| ≤ C

dist(z, Γ)a
on Ω =⇒ ∣∣f ′(z)

∣∣ ≤ γaC

dist(z,Γ)a+1
on Ω,

where γ0 = 1 and γa = (1 + a)(1 + 1/a)a for a > 0.

For an open interval I = (φ1, φ2) and R > 0 we define a sector SI,R in the x-complex
plane by SI,R = {x ∈ C : 0 < |x| < R, φ1 < arg x < φ2}. Under the relation z = log x the
sector SI,R is transformed into the domain H = {z ∈ C : Re z < log R, φ1 < Im z < φ2}.
Let us denote the boundary of H by ∂H and set the distance from log x to ∂H by

dSI,R
(x) = dist(log x, ∂H), x ∈ SI,R.

Clearly, we have

dSI,R
(x) = min{φ2 − arg x, arg x− φ1, log R− log |x|}.

If u(x) is a holomorphic function on SI,R, then the function f(z) := u(ez) is holomorphic
on H, and we have f ′(z) = xu′(x). Therefore, by Lemma 4.1 we get the following result.
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Lemma 4.2 (Nagumo’s lemma in a sector). Let u(x) be a holomorphic function on
the sector SI,R, and let a ≥ 0 and C ≥ 0. Then we have

|u(x)| ≤ C

dSI,R
(x)a

on SI,R =⇒ ∣∣xu′(x)
∣∣ ≤ γaC

dSI,R
(x)a+1

on SI,R.

Let η > 0 satisfy η < (φ2 − φ1)/2. Set S∗ = {x ∈ SI,R : η < dSI,R
(x)}. Then we

have

S∗ = {x ∈ C : 0 < |x| < Re−η, φ1 + η < arg x < φ2 − η},

which is also a sector, and moreover, dSI,R
(x)− η = dS∗(x) for any x ∈ S∗.

Corollary 4.3. Let u(x) be a holomorphic function on S∗, and let a ≥ 0 and
C ≥ 0. Then we have

|u(x)| ≤ C

(dSI,R
(x)− η)a

on S∗ =⇒ ∣∣xu′(x)
∣∣ ≤ γaC

(dSI,R
(x)− η)a+1

on S∗.

The above corollary follows immediately from Lemma 4.2.

5. On the equation tdx/dt = −xp+1c(t, x).

Let c(t, x) be a continuous function on [0, T0]×DR0 that is holomorphic in x for any
fixed t and satisfies c(0, 0) 6= 0. Let 0 < ε1 < π/8. Then we can choose 0 < T1 < T0 and
0 < R1 < R0 so that the following conditions are satisfied:

(B1) c(t, x) 6= 0 on [0, T1]×DR1 ;
(B2) | arg c(t, x)− arg c(0, 0)| < ε1 on [0, T1]×DR1 .

Set θ0 = arg(−c(0, 0)) and

S1 =
{

x ∈ C : 0 < |x| < R1,

∣∣∣∣ arg x +
θ0

p

∣∣∣∣ <
π

2p
− ε1

p

}
.

Lemma 5.1. For any (t0, x0) ∈ (0, T1]× S1 the initial value problem

t
dx

dt
= −xp+1c(t, x), x|t=t0 = x0, (5.1)

has a unique solution x(t) on (0, t0] satisfying the property x(t) ∈ S1 for any t ∈ (0, t0].
Moreover, we have 0 < |x(t)| ≤ |x0| on (0, t0] and

∣∣∣∣ arg x(t) +
θ0

p

∣∣∣∣ ≤ max
{∣∣∣∣ arg x0 +

θ0

p

∣∣∣∣,
3ε1
p

}
on (0, t0].

Proof. Since c(t, x) satisfies a Lipschitz condition on S1, there exists 0 < t1 < t0
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such that (5.1) has a unique local solution x(t) on (t1, t0] satisfying the property x(t) ∈ S1

for any t ∈ (t1, t0]. Since x(t) 6= 0 on (t1, t0], (5.1) can be written as

1
x(t)p+1

dx(t)
dt

= −c(t, x(t))
1
t
,

and integrating this equation from t to t0 shows that the solution satisfies

x(t) =
x0[

1− px0
p

∫ t0

t

c(s, x(s))
ds

s

]1/p
on (t1, t0]. (5.2)

We show that the local solution x(t) can be continued up to the interval (0, t0].
Suppose it can only be extended to a maximal interval of existence (α, t0] for some α > 0
with the property x(t) ∈ S1 on (α, t0].

Set M0 = max{|c(t, x)| : 0 ≤ t ≤ t0, |x| ≤ |x0|}. Let us show that the following
inequalities hold for any t ∈ (α, t0]:

|x(t)| ≤ |x0|, (5.3)

|x(t)| ≥ |x0|
[1 + p|x0|pM0 log(t0/α)]1/p

, (5.4)

∣∣∣∣ arg x(t) +
θ0

p

∣∣∣∣ ≤ max
{∣∣∣∣ arg x0 +

θ0

p

∣∣∣∣,
3ε1
p

}
. (5.5)

Since x(t0) = x0, it is clear that (5.3), (5.4) and (5.5) are satisfied when t = t0.
Let us show that the inequalities are also true on (α, t0). Set

C(t) =
∫ t0

t

−c(s, x(s))ds/s, α < t < t0.

If C(t) = 0 we have x(t) = x0, so in this case the relations (5.3), (5.4) and (5.5) are clear.
Therefore, from now on we suppose that C(t) 6= 0.

Set θ(t) = arg C(t). Since θ0 = arg(−c(0, 0)), by (B2) we have |θ(t)− θ0| ≤ ε1. The
solution satisfies the equation

x(t) =
x0[

1 + pxp
0C(t)

]1/p
on (α, t0]. (5.6)

Since x0 ∈ S1, which means that | arg x0 + θ0/p| < π/2p− ε1/p, and |θ(t)− θ0| ≤ ε1, we
have | arg(px0

pC(t))| < π/2. Therefore, Re(px0
pC(t)) > 0 and consequently,

|1 + px0
pC(t)| ≥ Re

(
1 + pxp

0C(t)
)

= 1 + Re
(
pxp

0C(t)
)

> 1,

which implies that
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|x(t)| = |x0|∣∣1 + pxp
0C(t)

∣∣1/p
< |x0|.

This proves (5.3).
The second inequality (5.4) can be easily obtained from (5.3) and the following

estimate:
∣∣∣∣1− px0

p

∫ t0

t

c(s, x(s))
ds

s

∣∣∣∣ ≤ 1 + p|x0|p
∫ t0

t

|c(s, x(s))|ds

s

≤ 1 + p|x0|p
∫ t0

t

M0
ds

s

≤ 1 + p|x0|pM0 log(t0/α).

Let us now show (5.5) for t ∈ (α, t0). We divide our proof into the following three
cases:

Case 1.
ε1
p

< arg x0 +
θ0

p
<

π

2p
− ε1

p
,

Case 2. −ε1
p
≤ arg x0 +

θ0

p
≤ ε1

p
,

Case 3. − π

2p
+

ε1
p

< arg x0 +
θ0

p
< −ε1

p
.

Since arg(px0
pC(t)) = p arg x0 + θ0 + (θ(t) − θ0) and |θ(t) − θ0| ≤ ε1, it follows that in

Case 1 we have 0 < arg(px0
pC(t)) < π/2, which then yields

0 < arg(1 + px0
pC(t)) < arg(px0

pC(t)).

As a result, we have 0 < arg([1 + px0
pC(t)]1/p) < arg x0 + θ(t)/p, and thus, by (5.6) we

get

−θ(t)
p

< arg x(t) = arg x0 − arg([1 + px0
pC(t)]1/p) < arg x0,

which is equivalent to

θ0

p
− θ(t)

p
< arg x(t) +

θ0

p
< arg x0 +

θ0

p
. (5.7)

Furthermore, we have

−
(

arg x0 +
θ0

p

)
< −ε1

p
≤ θ0

p
− θ(t)

p
(5.8)

because of the inequality in Case 1 and the fact that |θ(t)− θ0| ≤ ε1. By combining (5.8)
with (5.7) we arrive at
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∣∣∣∣ arg x(t) +
θ0

p

∣∣∣∣ <

∣∣∣∣ arg x0 +
θ0

p

∣∣∣∣.

By similar arguments as in Case 1, it is easy to see that in Case 2 we have −2ε1 ≤
arg(px0

pC(t)) ≤ 2ε1, which implies that

−2ε1 ≤ arg(1 + px0
pC(t)) ≤ 2ε1,

or equivalently,

−2ε1
p
≤ arg

(
[1 + px0

pC(t)]1/p
) ≤ 2ε1

p
.

Using again equation (5.6) together with the inequality in Case 2 we obtain

−3ε1
p
≤ arg x(t) +

θ0

p
≤ 3ε1

p
.

In Case 3, we can show that | arg x(t) + θ0/p| < | arg x0 + θ0/p| in the same way as in
Case 1. This concludes our proof for (5.5).

The inequalities (5.3), (5.4), and (5.5), and the assumption 0 < ε1 < π/8 show that
{x(t) : α < t ≤ t0} is contained in a compact subset of S1. Therefore, the solution can
be continued to the left of α (by Theorem 3.1 in Chapter 2 of [6]). This proves that
(5.2) has a unique solution on (0, t0], that is, the continuation of the local solution x(t)
to (0, t0]. This completes our proof for Lemma 5.1. ¤

Let ψ(t) be a positive increasing function on (0, T1] that satisfies ψ(T1) < π/2p−ε1/p.
Set

dS1(x) = min
{

π

2p
− ε1

p
−

∣∣∣∣ arg x +
θ0

p

∣∣∣∣, log R1 − log |x|
}

(5.9)

for x ∈ S1, and

W ∗
1 =

{
(t, x) ∈ (0, T1]× S1 : ψ(t) < dS1(x)

}
.

Then we have the following result, which can be obtained easily from the proof of Lemma
5.1.

Corollary 5.2. Let (t0, x0) ∈ W ∗
1 and let x(t) be the unique solution of (5.1) on

(0, t0]. If 0 < ε1 < π/12 and ψ(T1) ≤ ε1/p then we have

dS1(x(t))− ψ(t) ≥ 2ε1
π

(
dS1(x0)− ψ(t)

)
on (0, t0]. (5.10)

Moreover, we have (t, x(t)) ∈ W ∗
1 for any t ∈ (0, t0].
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Proof. We know that if ε1/p < | arg x0+θ0/p| < π/2p−ε1/p, we have |x(t)| ≤ |x0|
and | arg x(t) + θ0/p| ≤ | arg x0 + θ0/p|. This shows that dS1(x(t)) ≥ dS1(x0). Since
0 < 2ε1/π < 1/6, we obtain

dS1(x(t))− ψ(t) ≥ dS1(x0)− ψ(t) >
2ε1
π

(dS1(x0)− ψ(t)).

On the other hand, if | arg x0 +θ0/p| ≤ ε1/p, we have |x(t)| ≤ |x0| and | arg x(t)+θ0/p| ≤
3ε1/p, which means that

log R1 − log |x(t)| − ψ(t) ≥ log R1 − log |x0| − ψ(t)

>
2ε1
π

(log R1 − log |x0| − ψ(t))

and

π

2p
− ε1

p
−

∣∣∣∣ arg x(t) +
θ0

p

∣∣∣∣− ψ(t) ≥ π

2p
− ε1

p
− 3ε1

p
− ε1

p

≥ ε1
p

=
2ε1
π
× π

2p
≥ 2ε1

π
×

(
π

2p
− ε1

p
−

∣∣∣∣ arg x0 +
θ0

p

∣∣∣∣− ψ(t)
)

.

Therefore, by (5.9) we have dS1(x(t)) − ψ(t) ≥ (2ε1/π)(dS1(x0) − ψ(t)). This proves
(5.10). In additon, since ψ(t) ≤ ψ(t0), we also have dS1(x0)−ψ(t) ≥ dS1(x0)−ψ(t0) > 0.
As a result, we have dS1(x(t))− ψ(t) > 0, that is, (t, x(t)) ∈ W ∗

1 . ¤

Let us denote by χ(t; t0, x0) the unique solution of (5.1) and consider it as a function
on

Ω1 = {(t, t0, x0) : 0 < t ≤ t0 and (t0, x0) ∈ (0, T1]× S1}.

Note that χ(t; t0, x0) ∈ S1 and |χ(t; t0, x0)| ≤ |x0| for any (t, t0, x0) ∈ Ω1. The fact that
χ(t; t0, x0) belongs to C1(Ω1) follows from a result concerning the dependence on initial
data of solutions of ordinary differential equations (see Theorem 3.1 in Chapter 5 of [6]).
Since c(t, x) is holomorphic in x ∈ S1, it is easy to see that χ(t; t0, x0) is holomorphic in
x0 ∈ S1. Moreover, the derivative of χ(t; t0, x0) with respect to x0 can be estimated as
follows.

Lemma 5.3. The following two kinds of estimates hold on Ω1 :

∣∣∣∣x0
∂χ

∂x0
(t; t0, x0)

∣∣∣∣ ≤
R1

dS1(x0)
, (5.11)

∣∣∣∣x0
∂χ

∂x0
(t; t0, x0)

∣∣∣∣ ≤ |χ(t; t0, x0)|
(

1 +
|x0|pC1R1

dS1(x0)
log(t0/t)

)
, (5.12)

where C1 > 0 is a constant satisfying |cx(t, x)| ≤ C1 on [0, T1]×DR1 .
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Proof. The first estimate (5.11) is a consequence of Lemma 4.2 since
|χ(t; t0, x0)| ≤ |x0| ≤ R1 on Ω1. Let us show (5.12). Note that χ(t; t0, x0) satisfies
the equation

χ(t; t0, x0) =
x0[

1− px0
p

∫ t0

t

c(s, χ(s; t0, x0))
ds

s

]1/p
on Ω1.

Differentiating both sides with respect to x0, we get

x0
∂χ

∂x0
(t; t0, x0) = χ(t; t0, x0)× 1[

1− px0
p

∫ t0

t

c(s, χ(s; t0, x0))
ds

s

]

×
(

1 + x0
p

∫ t0

t

∂c

∂x
(s, χ(s; t0, x0))× x0

∂χ

∂x0
(s; t0, x0)

ds

s

)
.

According to the proof of Lemma 5.1 we have

∣∣∣∣1− px0
p

∫ t0

t

c(s, χ(s; t0, x0))
ds

s

∣∣∣∣ ≥ 1 on Ω1,

and so by (5.11) and our choice of C1 we arrive at

∣∣∣∣x0
∂χ

∂x0
(t; t0, x0)

∣∣∣∣ ≤ |χ(t; t0, x0)| ×
(

1 + |x0|p
∫ t0

t

C1
R1

dS1(x0)
ds

s

)

≤ |χ(t; t0, x0)| ×
(

1 + |x0|p C1R1

dS1(x0)
log(t0/t)

)
on Ω1,

which is our second estimate. ¤

If we set y(t; t0, x0) = t0(∂χ/∂t0)(t; t0, x0), z(t; t0, x0) = (∂χ/∂x0)(t; t0, x0) and
h(t, x) = (∂/∂x)(xp+1c(t, x)), it is well known (e.g. see Theorem 3.1 in Chapter 5 of [6])
that y(t) and z(t) satisfy the following initial value problems:

t
∂y

∂t
= −h(t, χ(t; t0, x0))y, y|t=t0 = x0

p+1c(t0, x0); (5.13)

t
∂z

∂t
= −h(t, χ(t; t0, x0))z, z|t=t0 = 1. (5.14)

6. The equation (3.4) on (0, T ] × S.

Let C1, R1, T1, ε1, and c(t, x) be as in Section 5. Suppose λ(t, x) is a continuous
function on [0, T1] × DR1 that is holomorphic in x for any fixed t, and Reλ(0, 0) < 0.
Since R1 > 0 and T1 > 0 can be taken sufficiently small, we may suppose that
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(B3) Re λ(t, x) ≤ −L on [0, T1]×DR1 for some L > 0.

Let 0 < ε1 < ε < π/8, 0 < T < T1 and 0 < R < R1. Consider the equation

t
∂w

∂t
− λ(t, x)w − xp+1c(t, x)

∂w

∂x
= g(t, x) on (0, T ]× S, (6.1)

where

S =
{

x ∈ C : 0 < |x| < R,

∣∣∣∣ arg x +
θ0

p

∣∣∣∣ <
π

2p
− ε

p

}
. (6.2)

We have the following result:

Proposition 6.1. Let g(t, x) ∈ X0((0, T ]×S). If g(t, x) and xgx(t, x) are bounded
on (0, T ] × S, then the equation (6.1) has a unique solution w(t, x) in X1((0, T ] × S),
which is bounded on (0, T ] × S. Moreover, if |g(t, x)| ≤ K and |xgx(t, x)| ≤ K1 on
(0, T ]× S, then we have

|w(t, x)| ≤ K

L
and

∣∣∣∣x
∂w

∂x
(t, x)

∣∣∣∣ ≤
K1

L
+

K1R
pC1R1 + Λ1R1K

δL2

on (0, T ]× S, where δ = min{ε− ε1, log R1 − log R} and Λ1 > 0 is a constant satisfying
|λx(t, x)| ≤ Λ1 on [0, T1]×DR.

Let χ(t; t0, x0) be the unique solution of the equation (5.1), and set

Ω = {(s, t, x) : 0 < s ≤ t and (t, x) ∈ (0, T ]× S},
φ(s, t, x) = χ(s; t, x) on Ω.

We know that φ(s, t, x) is differentiable in s and t, holomorphic in x, and |φ(s, t, x)| ≤ |x|
and φ(s, t, x) ∈ S on Ω. Moreover, from Lemma 5.3 we have

∣∣∣∣x
∂φ

∂x
(s, t, x)

∣∣∣∣ ≤
R1

δ
on Ω, (6.3)

∣∣∣∣x
∂φ

∂x
(s, t, x)

∣∣∣∣ ≤ |φ(s, t, x)|
(

1 +
RpC1R1

δ
log

(
t

s

))
on Ω. (6.4)

Lemma 6.2. The function φ(s, t, x) is the unique solution of





t
∂φ

∂t
− xp+1c(t, x)

∂φ

∂x
= 0 on Ω,

φ(t, t, x) = x on (0, T ]× S.

(6.5)

Proof. We can show this result in the same way as in [1, Lemma 3.3], but here
we give another proof. Set
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W (s, t, x) = t
∂φ

∂t
− xp+1c(t, x)

∂φ

∂x
on Ω.

Then by (5.13) and (5.14) we have

s
∂W

∂s
= −h(s, φ(s, t, x))W, W |s=t = 0.

Since this is nothing but a linear ordinary differential equation in W we can conclude
that W ≡ 0 on Ω. This proves that φ(s, t, x) is a solution of (6.5).

Let us show the uniqueness of the solution of (6.5). It suffices to show that if ψ(s, t, x)
satisfies

t
∂ψ

∂t
− xp+1c(t, x)

∂ψ

∂x
= 0 on Ω, and ψ(t, t, x) = 0 on (0, T ]× S, (6.6)

then we have ψ ≡ 0 on Ω.
Take any (s, t0, x0) ∈ Ω and set ξ0 = χ(s; t0, x0). Since χ(t; t0, x0) is defined on

(0, t0], we may suppose that χ(t; s, ξ0) can be extended to (0, t0]. Consequently, we have
χ(t; s, ξ0) = χ(t; t0, x0) on (0, t0]. In particular, we have χ(t0; s, ξ0) = x0.

Set f(t) = ψ(s, t, χ(t; s, ξ0)) for any t ∈ (0, t0]. Then f(t0) = ψ(s, t0, x0) and f(s) =
ψ(s, s, ξ0) = 0. By taking the derivative of f(t) with respect to t and using the fact that
χ(t; s, ξ0) satisfies (5.1) we get

f ′(t) =
∂ψ

∂t
(s, t, χ(t; s, ξ0)) +

∂ψ

∂x
(s, t, χ(t; s, ξ0))

dχ

dt
(t; s, ξ0)

=
[
∂ψ

∂t
(s, t, x)− xp+1 c(t, x)

t

∂ψ

∂x
(s, t, x)

]∣∣∣∣
x=χ(t;s,ξ0)

= 0. (6.7)

Thus, f(t) is constant, and as a result, we have ψ(s, t0, x0) = f(t0) = f(s) = 0. Since
(s, t0, x0) ∈ Ω is taken arbitrarily, we conclude that ψ ≡ 0 on Ω. ¤

Proof of Proposition 6.1. We set

w(t, x) =
∫ t

0

exp
[ ∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
g(s, φ(s, t, x))

ds

s
. (6.8)

This integral expression makes sense because φ(s, t, x) ∈ S for any (s, t, x) ∈ Ω, which
means that (s, φ(s, t, x)) ∈ (0, T ] × S for any (t, x) ∈ (0, T ] × S and 0 < s ≤ t. If
|g(t, x)| ≤ K on (0, T ]× S, we have

|w(t, x)| ≤
∫ t

0

exp
[ ∫ t

s

Re λ(τ, φ(τ, t, x))
dτ

τ

]
|g(s, φ(s, t, x))|ds

s

≤
∫ t

0

exp
[ ∫ t

s

−L
dτ

τ

]
K

ds

s
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=
∫ t

0

(
s

t

)L

K
ds

s
=

K

L
on (0, T ]× S.

This shows that w(t, x) is a well-defined function in X0((0, T ] × S). Since w(t, x) is
holomorphic in x, it is differentiable with respect to x, and because w(t, x) is given by
the integral (6.8) we also have the differentiability of w(t, x) with respect to t. Thus,
w(t, x) belongs to X1((0, T ]× S).

From (6.8), we get

x
∂w

∂x
(t, x) =

∫ t

0

exp
[ ∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
∂g

∂x
(s, φ(s, t, x)) · x∂φ

∂x
(s, t, x)

ds

s

+
∫ t

0

exp
[ ∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

](∫ t

s

∂λ

∂x
(τ, φ(τ, t, x)) · x∂φ

∂x
(τ, t, x)

dτ

τ

)

× g(s, φ(s, t, x))
ds

s
. (6.9)

If |xgx(t, x)| ≤ K1 on (0, T ]× S, then by (6.4) we have

∣∣∣∣
∂g

∂x
(s, φ(s, t, x)) · x∂φ

∂x
(s, t, x)

∣∣∣∣

≤
∣∣∣∣
∂g

∂x
(s, φ(s, t, x))

∣∣∣∣× |φ(s, t, x)|
(

1 +
RpC1R1

δ
log

(
t

s

))

≤ K1

(
1 +

RpC1R1

δ
log

(
t

s

))
. (6.10)

Therefore, by applying (6.10) and (6.3) to (6.9) we have

∣∣∣∣x
∂w

∂x
(t, x)

∣∣∣∣ ≤
∫ t

0

(
s

t

)L

K1

(
1 +

RpC1R1

δ
log

(
t

s

))
ds

s

+
∫ t

0

(
s

t

)L( ∫ t

s

Λ1R1

δ

dτ

τ

)
K

ds

s

≤ K1

L
+

K1R
pC1R1 + Λ1R1K

δ

∫ t

0

(
s

t

)L

log
(

t

s

)
ds

s

=
K1

L
+

K1R
pC1R1 + Λ1R1K

δL2
on (0, T ]× S. (6.11)

Here we have used the fact that
∫ 1

0
xL log(1/x)dx/x = 1/L2 if L > 0.

Similarly, if we take C0 > 0 and Λ0 > 0 such that |c(t, x)| ≤ C0 and |λ(t, x)| ≤ Λ0

on (0, T1]×DR, we can show that
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∣∣∣∣t
∂w

∂t
(t, x)

∣∣∣∣ ≤ K +
Λ0K

L
+ RpC0

(
K1

L
+

K1R
pC1R1 + Λ1R1K

δL2

)

on (0, T ]× S.
The above estimates guarantee that the formal differentiations of (6.8) make sense,

and therefore, a straightforward calculation together with (6.5) shows that w(t, x) is a
solution to the equation (6.1), which belongs to X1((0, T ]×S) and bounded on (0, T ]×S.

To prove the uniqueness of the solution of (6.1), we show that if w(t, x) ∈ X1((0, T ]×
S) is bounded on (0, T ]× S and

t
∂w

∂t
− λ(t, x)w − xp+1c(t, x)

∂w

∂x
= 0 on (0, T ]× S, (6.12)

then w ≡ 0 on (0, T ]× S.
Choose any (t0, x0) ∈ (0, T ] × S. Let χ(t; t0, x0) be the unique solution of the

equation (5.1) and set w0(t) = w(t, χ(t; t0, x0)) on (0, t0]. Then by the same calculation
as in (6.7) we get

t
dw0

dt
(t) = λ(t, χ(t; t0, x0))w0(t).

Since w0(t0) = w(t0, x0), it follows that

w0(t) = w(t0, x0)× exp
[
−

∫ t0

t

λ(τ, χ(τ ; t0, x0))
dτ

τ

]
, t ∈ (0, t0].

Therefore, by (B3) and the fact that w0(t) = O(1) (as t −→ 0) we obtain

|w(t0, x0)| ≤ |w0(t)| × exp
[ ∫ t0

t

Re λ(τ, χ(τ ; t0, x0))
dτ

τ

]

≤ |w0(t)| × exp
[ ∫ t0

t

−L
dτ

τ

]
= |w0(t)|

(
t

t0

)L

−→ 0 (as t −→ 0).

This shows that w(t0, x0) = 0. Since (t0, x0) ∈ (0, T ] × S is chosen arbitrarily, we have
w ≡ 0 on (0, T ]× S. ¤

7. The equation (3.4) on Wr.

Let 0 < R < R1, L, S, Ω, c(t, x), λ(t, x), and φ(s, t, x) be the same as in Section
6. Let µ(t) be a weight function on (0, T1], and ϕ(t) be the function defined by (2.2) on
(0, T1]. In this section, we require 0 < ε1 < ε < π/16.

For any r > 0 we set

Wr =
{

(t, x) ∈ (0, T ]× S :
ϕ(t)
r

< dS(x)
}

, (7.1)
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where

dS(x) = min
{

π

2p
− ε

p
−

∣∣∣∣ arg x +
θ0

p

∣∣∣∣, log R− log |x|
}

for x ∈ S. (7.2)

Also, we set Sτ = {x ∈ S : (τ, x) ∈ Wr} for any τ > 0. Thus, we have

Sτ =
{

x ∈ C : 0 < |x| < Re−ϕ(τ)/r,

∣∣∣∣ arg x +
θ0

p

∣∣∣∣ <
π

2p
− ε

p
− ϕ(τ)

r

}
.

Obviously, we have Sτ 6= ∅ for any 0 < τ ≤ T whenever ϕ(T )/r < π/2p − ε/p. We
say that S′ is a subsector of Sτ if it can be expressed as S′ = {x ∈ C : 0 < |x| <

η, | arg x + θ0/p| < ω} for some 0 < η < Re−ϕ(τ)/r and 0 < ω < π/2p− ε/p− ϕ(τ)/r.
We define another two spaces on the region Wr. We denote by X0(Wr) the set of

all continuous functions on Wr that are holomorphic in x for any fixed t and bounded
on (0, τ ] × S′ for any τ ∈ (0, T ] and any subsector S′ of Sτ . We then set X1(Wr) =
C1(Wr) ∩X0(Wr).

Choose T > 0 sufficiently small so that ϕ(T )/r ≤ ε/p. Then, by Corollary 5.2 we
have

dS(φ(s, t, x))− ϕ(s)/r ≥ 2ε

π

(
dS(x)− ϕ(s)/r

)
on Ω, (7.3)

(s, φ(s, t, x)) ∈ Wr for any (s, t, x) ∈ Ω. (7.4)

Now, consider the equation

t
∂w

∂t
− λ(t, x)w − xp+1c(t, x)

∂w

∂x
= g(t, x) (7.5)

on the region Wr. Then we have the following result which is similar to Proposition 6.1.

Proposition 7.1. For any given g(t, x) ∈ X0(Wr), the equation (7.5) has a unique
solution w(t, x) in X1(Wr), and it is given by

w(t, x) =
∫ t

0

exp
[ ∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
g(s, φ(s, t, x))

ds

s
. (7.6)

Moreover, the following estimates are true on Wr given any nondecreasing, nonnegative
function ψ(t) :

(a) If |g(t, x)| ≤ Kψ(t)µ(t), then we have |w(t, x)| ≤ Kψ(t)ϕ(t).
(b) If |g(t, x)| ≤ Kψ(t) and |xgx(t, x)| ≤ K1ψ(t), then we have

|w(t, x)| ≤ K

L
ψ(t) and

∣∣∣∣x
∂w

∂x
(t, x)

∣∣∣∣ ≤
(

K1

L
+

K1R
pC1R1 + Λ1R1K

δL2

)
ψ(t).
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(c) If |g(t, x)| ≤ Kψ(t)µ(t)/(dS(x)− ϕ(t)/r), then we have

|w(t, x)| ≤ (π/2p)Kψ(t) r

dS(x)− ϕ(t)/r
and

∣∣∣∣x
∂w

∂x
(t, x)

∣∣∣∣ ≤
(

4
(

1 +
RpC1R1

δeL

)(
π

2ε

)2

+
Λ1R1

δeL

π

2p

)
Kψ(t)r

(dS(x)− ϕ(t)/r)
.

The constants C1, Λ1 and δ are the same as in Proposition 6.1. Note that they are
independent of T .

Proof. Since 0 < ε < π/16 and ϕ(T )/r ≤ ε/p, we have ε+ pϕ(τ)/r < π/8. Thus,
by setting

Σ(τ) =
{
(R2, ε2) : 0 < R2 < Re−ϕ(τ)/r, ε + pϕ(τ)/r < ε2 < π/8

}
,

S(R2, ε2) =
{

x ∈ C : 0 < |x| < R2,

∣∣∣∣ arg x +
θ0

p

∣∣∣∣ <
π

2p
− ε2

p

}
,

we have

Wr =
⋃

0<τ≤T

(0, τ ]× Sτ =
⋃

0<τ≤T

⋃

(R2,ε2)∈Σ(τ)

(0, τ ]× S(R2, ε2).

It follows from Lemma 4.2 and the fact that g(t, x) ∈ X0(Wr) that g(t, x) and xgx(t, x)
are bounded on (0, τ ]× S(R2, ε2) for any 0 < τ ≤ T and (R2, ε2) ∈ Σ(τ). Therefore, by
applying Proposition 6.1 to the equation (7.5) on (0, τ ] × S(R2, ε2), we obtain a unique
solution w(t, x) of (7.5), which is defined by the integral in (7.6) and belongs to X1(Wr).

The estimate (a) is verified as follows:

|w(t, x)| ≤
∫ t

0

(
s

t

)L

Kψ(s)µ(s)
ds

s
≤ Kψ(t)

∫ t

0

µ(s)
ds

s
= Kψ(t)ϕ(t) on Wr.

The estimates in (b) can be proved in the same way as in Proposition 6.1.
Let us prove the estimate (c). The first estimate follows from (7.3) and the fact that

dS(x)− ϕ(s)/r ≥ dS(x)− ϕ(t)/r on Ω and ϕ(t)/r ≤ ε/p on (0, T ]:

|w(t, x)| ≤
∫ t

0

(
s

t

)L
Kψ(s)µ(s)

(dS(φ(s, t, x))− ϕ(s)/r)
ds

s

≤ (π/2ε)Kψ(t)
dS(x)− ϕ(t)/r

∫ t

0

µ(s)
ds

s
=

(π/2ε)Kψ(t)ϕ(t)
dS(x)− ϕ(t)/r

≤ (π/2p)Kψ(t) r

dS(x)− ϕ(t)/r
on Wr.

Let us show the second estimate of (c). By Corollary 4.3 we have
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∣∣∣∣x
∂g

∂x
(t, x)

∣∣∣∣ ≤
4Kψ(t)µ(t)

(dS(x)− ϕ(t)/r)2
on Wr.

Since ϕ′(t) = µ(t)/t and sup(0,1] |xL log(1/x)| = 1/(eL), by the same argument as in
(6.11) we obtain

∣∣∣∣x
∂w

∂x
(t, x)

∣∣∣∣ ≤
∫ t

0

(
s

t

)L 4Kψ(s)µ(s)
(dS(φ(s, t, x))− ϕ(s)/r)2

(
1 +

RpC1R1

δ
log

(
t

s

))
ds

s

+
∫ t

0

(
s

t

)L Λ1R1

δ

Kψ(s)µ(s)
(dS(φ(s, t, x))− ϕ(s)/r)

(
log

(
t

s

))
ds

s

≤ 4Kψ(t)
(

1 +
RpC1R1

δeL

)(
π

2ε

)2 ∫ t

0

ϕ′(s)
(dS(x)− ϕ(s)/r)2

ds

+
Λ1R1

δeL

(π/2ε)Kψ(t)
(dS(x)− ϕ(t)/r)

∫ t

0

µ(s)
ds

s

= 4Kψ(t)
(

1 +
RpC1R1

δeL

)(
π

2ε

)2[
r

(dS(x)− ϕ(s)/r)

]s=t

s=0

+
Λ1R1

δeL

(π/2ε)Kψ(t)ϕ(t)
(dS(x)− ϕ(t)/r)

≤
(

4
(

1 +
RpC1R1

δeL

)(
π

2ε

)2

+
Λ1R1

δeL

π

2p

)
Kψ(t)r

(dS(x)− ϕ(t)/r)
.

In the last inequality we used again the fact that ϕ(t)/r ≤ ε/p on (0, T ]. ¤

8. Proof of Proposition 3.1.

Let 0 < R1 < R0, 0 < T1 < T0, c(t, x) and λ(t, x) be the same as in the previous
section. Consider the equation

t
∂u

∂t
− λ(t, x)u− xp+1c(t, x)

∂u

∂x

= a(t, x) + xb(t, x)
∂u

∂x
+ R2

(
t, x, u, x

∂u

∂x

)
, (8.1)

where

R2(t, x, u, v) =
∑

i+j≥2

ai,j(t, x)uivj .

Here we assume that a(t, x) and b(t, x) are continuous functions on [0, T1] × DR1 that
are holomorphic in x for any fixed t, and R2(t, x, u, v) is a continuous function on ∆1 =
[0, T1]×DR1 ×Dρ1 ×Dρ1 for some ρ1 > 0 that is holomorphic in (x, u, v) for any fixed
t. Because of (2.3) and (2.4), we may assume that
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(B4) |a(t, x)| ≤ Aµ(t) on [0, T1]×DR1 for some A > 0,
(B5) |b(t, x)| ≤ Bµ(t) on [0, T1]×DR1 for some B > 0,

for some weight function µ(t) on (0, T1]. Again, we define the function ϕ(t) by (2.2) on
(0, T1].

In this section, we prove Proposition 3.1 in the following form:

Theorem 8.1. Suppose (B1)–(B5) hold. Then for any ε1 < ε < π/16, 0 < ρ < ρ1

and 0 < R < R1, there exist T > 0, r > 0 and M > 0 with Mµ(T ) ≤ ρ such that the
equation (8.1) has a unique solution u(t, x) in X1(Wr) that satisfies

|u(t, x)| ≤ Mµ(t) and
∣∣∣∣x

∂u

∂x
(t, x)

∣∣∣∣ ≤ Mµ(t) on Wr, (8.2)

where Wr is the region defined in (7.1), which depends on ε, R, T and r.

We write the equation (8.1) as

Pu = a(t, x) + Φ[u], (8.3)

where

P = t
∂

∂t
− λ(t, x)− xp+1c(t, x)

∂

∂x
,

Φ[u] = xb(t, x)
∂u

∂x
+ R2

(
t, x, u, x

∂u

∂x

)
.

We recall that in [7] the equation (8.3), in the case c(t, x) ≡ 0, was solved by the
method of Nirenberg [10] and Nishida [11], while in [1] the case p = 0 was solved by
using a fixed point theorem (or a contraction principle) like in Walter [13]. To prove
Theorem 8.1, we will use similar arguments as in [7]. The difference is that in [7] the
discussion was done on a disk, while in our case the discussion must be done on a sector
S. The use of the distance function dS(x) is essential for our purpose.

Proof of Theorem 8.1. Take any ε1 < ε < π/16, 0 < ρ < ρ1 and 0 < R < R1.
We define the sector S by (6.2) and the function dS(x) by (7.2). Because of (B4), we
may suppose that

|xax(t, x)| ≤ A1µ(t) on [0, T1]×DR for some A1 > 0. (8.4)

We define M > 0 by

M/2 = max
{

A

L
,

(
A1

L
+

A1R
pC1R1 + Λ1R1A

δL2

)}
, (8.5)

where C1, Λ1 and δ are the same as in Proposition 7.1. Note that this M is independent
of T .
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Let ∆ = [0, T1]×DR ×Dρ ×Dρ, and set





B2,0 = sup
∆
|(∂2R2/∂u2)(t, x, u, v)|,

B1,1 = sup
∆
|(∂2R2/∂u∂v)(t, x, u, v)|,

B0,2 = sup
∆
|(∂2R2/∂v2)(t, x, u, v)|.

(8.6)

We also set

α = B + (B2,0 + 2B1,1 + B0,2)M,

β = 4
(

1 +
RpC1R1

δeL

)(
π

2ε

)2

+
Λ1R1

δeL

π

2p
.

Choose r0 > 0 sufficiently small so that 0 < 2αβr0 < 1. Then we define the decreasing
sequence r0 > r1 > r2 > · · · by

rk = r0 ×
k∏

p=1

(
1− (2αβr0)p

)
, k = 1, 2, . . . .

This is a sequence of positive numbers converging to a positive limit r∞. Moreover, we
have

(αβr0)k

1− rk/rk−1
=

(
1
2

)k

, k = 1, 2, . . . . (8.7)

Set r = r∞ and take T > 0 small enough so that Mµ(T ) ≤ ρ and ϕ(T )/r ≤ ε/p.
Clearly, we have

ϕ(T )/rk ≤ ε/p, k = 0, 1, 2, . . . ,∞.

In accordance with our definition in (7.1), we set

Wrk
= {(t, x) ∈ (0, T ]× S : ϕ(t)/rk < dS(x)}, k = 0, 1, 2, . . . ,

Wr∞ = Wr = {(t, x) ∈ (0, T ]× S : ϕ(t)/r < dS(x)}.

Notice that

Wr0 ⊃ Wr1 ⊃ Wr2 ⊃ · · · ⊃ Wrk
⊃ · · · ⊃ Wr∞ .

Lemma 8.2. Let wj(t, x) ∈ X0(Wε) (j = 1, 2) for some 0 < ε ≤ r0. If both
|wj(t, x)| and |x(∂wj/∂x)(t, x)| are bounded by Mµ(t) on Wε, then we have Φ[wj ] ∈
X0(Wε) (j = 1, 2) and
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|Φ[w1]− Φ[w2]| ≤ Bµ(t)
∣∣∣∣x

∂w1

∂x
− x

∂w2

∂x

∣∣∣∣ + (B2,0 + B1,1)Mµ(t)|w1 − w2|

+ (B1,1 + B0,2)Mµ(t)
∣∣∣∣x

∂w1

∂x
− x

∂w2

∂x

∣∣∣∣ on Wε. (8.8)

Proof. By (B5) and the definition of the function Φ, we have

|Φ[w1]− Φ[w2]|

≤ Bµ(t)
∣∣∣∣x

∂w1

∂x
− x

∂w2

∂x

∣∣∣∣ +
∣∣∣∣R2

(
t, x, w1, x

∂w1

∂x

)
−R2

(
t, x, w2, x

∂w2

∂x

)∣∣∣∣.

Recall from Taylor’s theorem that a function f(u, v) that is holomorphic in a neigh-
borhood of (0, 0) ∈ C× C may be expressed as

f(u, v) = f(0, 0) + u

∫ 1

0

∂f

∂u
(su, sv)ds + v

∫ 1

0

∂f

∂v
(su, sv)ds. (8.9)

Since w1 = (w1−w2)+w2 and x(∂w1/∂x) = (x(∂w1/∂x)−x(∂w2/∂x))+x(∂w2/∂x),
by (8.9) we obtain

R2

(
t, x, w1, x

∂w1

∂x

)
−R2

(
t, x, w2, x

∂w2

∂x

)

= (w1 − w2)
∫ 1

0

∂R2

∂u

(
t, x, s(w1 − w2) + w2, s

(
x

∂w1

∂x
− x

∂w2

∂x

)
+ x

∂w2

∂x

)
ds

+
(

x
∂w1

∂x
− x

∂w2

∂x

) ∫ 1

0

∂R2

∂v

(
t, x, s(w1 − w2) + w2, s

(
x

∂w1

∂x
− x

∂w2

∂x

)
+

∂w2

∂x

)
ds.

(8.10)

Again, by applying (8.9) to the first integrand in (8.10) and using the fact that
(∂R2/∂u)(t, x, 0, 0) = 0, we arrive at

∂R2

∂u

(
t, x, s(w1 − w2) + w2, s

(
x

∂w1

∂x
− x

∂w2

∂x

)
+ x

∂w2

∂x

)

= (s(w1 − w2) + w2)

×
∫ 1

0

∂2R2

∂u2

(
t, x, σ(s(w1 − w2) + w2), σ

(
s

(
x

∂w1

∂x
− x

∂w2

∂x

)
+ x

∂w2

∂x

))
dσ

+
(

s

(
x

∂w1

∂x
− x

∂w2

∂x

)
+ x

∂w2

∂x

)

×
∫ 1

0

∂2R2

∂v∂u

(
t, x, σ(s(w1 − w2) + w2), σ

(
s

(
x

∂w1

∂x
− x

∂w2

∂x

)
+ x

∂w2

∂x

))
dσ.

(8.11)
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Clearly, the bounds in (8.6) and the fact that both |wj(t, x)| and |x(∂wj/∂x)(t, x)| are
bounded by Mµ(t) on Wε (for j = 1, 2) imply that (8.11) is bounded on Wε by (B2,0 +
B1,1)Mµ(t). Similar argument shows that the second integrand in (8.10) is bounded
on Wε by (B1,1 + B0,2)Mµ(t). Then, the desired estimate for |Φ[w1 − Φ[w2]| follows
immediately from (8.10). ¤

Now, let us solve the equation (8.3). We define the approximate solutions uk(t, x) ∈
X1(Wrk

) (k = 0, 1, 2, . . .) by

Pu0 = a(t, x) (8.12)

and for k ≥ 1,

Puk = a(t, x) + Φ[uk−1]. (8.13)

By applying Proposition 7.1 to (8.12) and using the estimates (B4) and (8.4), we
obtain a unique solution u0 ∈ X1(Wr0) satisfying

|u0(t, x)| ≤ A

L
µ(t) on Wr0 , and

∣∣∣∣x
∂u0

∂x
(t, x)

∣∣∣∣ ≤
(

A1

L
+

A1R
pC1R1 + Λ1R1A

δL2

)
µ(t) on Wr0 .

Thus, by our choice of M we have

max
{
|u0|,

∣∣∣∣x
∂u0

∂x

∣∣∣∣
}
≤ (M/2)µ(t) on Wr0 . (8.14)

As we proceed, we show that (8.13) (k = 1, 2, 3, . . .) has a unique solution uk(t, x) ∈
X1(Wrk

), and prove that they converge to a solution of (8.3) in Wr.

Proposition 8.3. The following statements hold for k ≥ 1 :

(1)k There exists a unique uk ∈ X1(Wrk−1) satisfying the equation (8.13).
(2)k On Wrk−1 , we have

max
{
|uk − uk−1|,

∣∣∣∣x
∂uk

∂x
− x

∂uk−1

∂x

∣∣∣∣
}
≤ αβ(αβr0)k−1(M/2)ϕ(t)µ(t)

dS(x)− ϕ(t)/rk−1
.

(3)k On Wrk
, we have

max
{
|uk − uk−1|,

∣∣∣∣x
∂uk

∂x
− x

∂uk−1

∂x

∣∣∣∣
}
≤ (M/2)µ(t)

2k
.

(4)k On Wrk
, we have
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max
{
|uk|,

∣∣∣∣x
∂uk

∂x

∣∣∣∣
}
≤

k∑

i=0

(
1
2

)i

× (M/2)µ(t).

Proof. We prove Proposition 8.3 by induction.
By (8.14) and Lemma 8.2 we have Φ[u0] ∈ X0(Wr0). Therefore, the initial case

(1)1 follows immediately from Proposition 7.1. Also from Lemma 8.2, we have |Φ[u0]| ≤
α(M/2)(µ(t))2 on Wr0 . Thus, applying (a) of Proposition 7.1 to

P(u1 − u0) = Φ[u0] on Wr0

gives us |u1 − u0| ≤ α(M/2)µ(t)ϕ(t) on Wr0 , and by Nagumo’s lemma (Corollary 4.3)
we get

∣∣∣∣x
∂u1

∂x
− x

∂u0

∂x

∣∣∣∣ ≤
α(M/2)µ(t)ϕ(t)
dS(x)− ϕ(t)/r0

on Wr0 .

Since dS(x)− ϕ(t)/r0 < dS(x) < π/2p < 2 < β, we obtain

max
{
|u1 − u0|,

∣∣∣∣x
∂u1

∂x
− x

∂u0

∂x

∣∣∣∣
}
≤ αβ(M/2)ϕ(t)µ(t)

dS(x)− ϕ(t)/r0
on Wr0 ,

which proves (2)1. Moreover, on Wr1 we have (dS(x) − ϕ(t)/r0) = (dS(x) − ϕ(t)/r1) +
(ϕ(t)/r1 − ϕ(t)/r0) > (ϕ(t)/r1 − ϕ(t)/r0) and so by (8.7) (k = 1) we have

αβ(M/2)µ(t)ϕ(t)
dS(x)− ϕ(t)/r0

≤ αβ(M/2)µ(t)ϕ(t)
(ϕ(t)/r1 − ϕ(t)/r0)

=
αβ(M/2)µ(t)r1

(1− r1/r0)

≤ (αβr0)(M/2)µ(t)
(1− r1/r0)

≤ 1
2
× (M/2)µ(t) on Wr1 ,

which proves (3)1. Since u1 = (u1 − u0) + u0, by (8.14) and (3)1 we obtain (4)1.
Suppose (1)k − (4)k hold for 0 ≤ k ≤ n. By (4)n and Lemma 8.2 we have Φ[un] ∈

X0(Wrn
). Thus, by Proposition 7.1 we have (1)n+1, and consequently, we have

P(un+1 − un) = Φ[un]− Φ[un−1] on Wrn
. (8.15)

By Lemma 8.2, (2)n and the relation 0 < rn < rn−1, we have

|Φ[un]− Φ[un−1]| ≤ α× αβ(αβr0)n−1(M/2)ϕ(t)(µ(t))2

dS(x)− ϕ(t)/rn
on Wrn .

Therefore, by applying (c) of Proposition 7.1 to (8.15) we get

|un+1 − un| ≤ α× αβ(αβr0)n−1(M/2)ϕ(t)µ(t)rn

dS(x)− ϕ(t)/rn
on Wrn

,
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and

∣∣∣∣x
∂un+1

∂x
− x

∂un

∂x

∣∣∣∣ ≤
(

4
(

1 +
RpC1R1

δeL

)(
π

2ε

)2

+
Λ1R1

δeL

π

2p

)

× α× αβ(αβr0)n−1(M/2)ϕ(t)µ(t)× rn

dS(x)− ϕ(t)/rn
on Wrn

.

Hence, from our definition of β and the fact that rn < r0, we establish (2)n+1.
Since we have (dS(x) − ϕ(t)/rn) = (dS(x) − ϕ(t)/rn+1) + (ϕ(t)/rn+1 − ϕ(t)/rn) >

(ϕ(t)/rn+1 − ϕ(t)/rn) on Wrn+1 , by (2)n+1 and (8.7) (k = n + 1) we obtain

max
{
|un+1 − un|,

∣∣∣∣x
∂un+1

∂x
− x

∂un

∂x

∣∣∣∣
}

≤ αβ(αβr0)n(M/2)ϕ(t)µ(t)
(ϕ(t)/rn+1 − ϕ(t)/rn)

=
αβ(αβr0)n(M/2)µ(t)× rn+1

(1− rn+1/rn)

≤ (αβr0)n+1(M/2)µ(t)
(1− rn+1/rn)

≤
(

1
2

)n+1

× (M/2)µ(t) on Wrn+1 .

This proves (3)n+1. Finally, we obtain (4)n+1 from (4)n and (3)n+1. ¤

The existence of a solution of (8.3) follows from the preceding proposition. Note
that for k ≥ 1, we have

uk(t, x) = u0(t, x) +
k∑

j=1

(uj − uj−1)(t, x)

and thus, it follows from (3)k and (4)k (k = 1, 2, . . .) that our approximate solutions
converge to a function u(t, x) ∈ X0(Wr) satisfying |u(t, x)| ≤ Mµ(t) on Wr. Similarly,
x(∂uk/∂x) converges to x(∂u/∂x) and we have |x(∂u/∂x)| ≤ Mµ(t) on Wr. Since uk(t, x)
may be written in the integral form

uk(t, x) =
∫ t

0

exp
[ ∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

](
a + Φ[uk−1]

)
(s, φ(s, t, x))

ds

s

(with a = a(t, x)), by letting k approach infinity, we get

u(t, x) =
∫ t

0

exp
[ ∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

](
a + Φ[u]

)
(s, φ(s, t, x))

ds

s
,

which shows that u(t, x) belongs to X1(Wr) and it is indeed a solution of (8.3).
Finally, let us show the uniqueness of the solution. Suppose we have another solution

v(t, x) ∈ X1(Wr) satisfying |v(t, x)| ≤ Mµ(t) and |x(∂v/∂x)| ≤ Mµ(t) on Wr. To prove
that u ≡ v on Wr, we show by induction that the following estimate for |u − v| and



Nonlinear PDEs with Fuchsian and irregular singularities 1041

|x(∂u/∂x)− x(∂v/∂x)| holds on Wr for k = 0, 1, 2, . . .:

max
{
|u− v|,

∣∣∣∣x
∂u

∂x
− x

∂v

∂x

∣∣∣∣
}
≤ 4M(αβr)kµ(t)

dS(x)− ϕ(t)/r
. (8.16)

The case k = 0 is clear due to the fact that dS(x) < 2 and both u and v satisfy (8.2).
Assume now that (8.16) holds for k = n. Then, by Lemma 8.2,

|Φ[u]− Φ[v]| ≤ α× 4M(αβr)n(µ(t))2

dS(x)− ϕ(t)/r
on Wr.

Similar to our previous computations, it follows from (c) of Proposition 7.1 that

max
{
|u− v|,

∣∣∣∣x
∂u

∂x
− x

∂v

∂x

∣∣∣∣
}
≤ 4M(αβr)n+1µ(t)

dS(x)− ϕ(t)/r
on Wr,

which is the case k = n + 1. Therefore, (8.16) is true for all k ≥ 0. Since αβr < 1/2, by
letting k approach infinity we obtain u ≡ v on Wr. This completes the proof of Theorem
8.1. ¤
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