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Abstract. W. Zhang showed a higher dimensional version of Rochlin
congruence for 8k+4-dimensional manifolds. We give an equivariant version of
Zhang’s theorem for 8k +4-dimensional compact Spinc-G-manifolds with spin
boundary, where we define equivariant indices with values in R(G)/RSp(G).
We also give a similar congruence relation for 8k-dimensional compact Spinc-
G-manifolds with spin boundary, where we define equivariant indices with
values in R(G)/RO(G).

1. Introduction.

In this note we define equivariant versions of the mod 2 index for Dirac operators
when a compact Lie group G acts on the base manifolds preserving the operators. We
describe some fundamental properties of the equivariant indices including a generalization
of the Rochlin congruences for 8k and 8k+4 dimensional compact G-spinc manifolds with
spin boundary (Theorems 10 and 17). When the group action is trivial, W. Zhang gave
two proofs for the inequivariant version of the congruences ([11], [10]). Our contribution
is to generalize Zhang’s theorem in equivariant settings. It would be possible to extend
Zhang’s arguments to equivariant cases. In this note, however, we give an alternative
proof based on a fundamental excision property of indices. The equivariant indices we
shall define take values in R(G)/RSp(G) or R(G)/RO(G), where R(G), RO(G) and
RSp(G) are the Grothendieck groups of finite dimensional representation spaces over
complex, real, and quaternionic numbers respectively. We define such indices for the
four cases below.

1. When Z is a closed G-spin manifold Z with dimZ ≡ 2 mod 8, we define indR/RSp
G Z ∈

R(G)/RSp(G).
2. When X is a compact G-spinc manifold with dimX ≡ 4 mod 8, and a reduction to a

G-spin structure is given on the boundary ∂X, we define indR/RSp
G X ∈ R(G)/RSp(G).

3. When Z is a closed G-spin manifold Z with dimZ ≡ 6 mod 8, we define indR/RO
G Z ∈

R(G)/RO(G).
4. When X is a compact G-spinc manifold with dimX ≡ 0 mod 8, and a reduction to a

G-spin structure is given on the boundary ∂X, we define indR/RO
G X ∈ R(G)/RO(G).

To show some basic properties of the equivariant indices, we need a sum formula and
a product formula of indices. To formulate these two formulas we use the indices of
Dirac-type operators with the Atiyah-Patodi-Singer boundary condition.
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The definitions and properties of the R(G)/RSp(G)-valued indices and the
R(G)/RO(G)-valued indices are quite parallel. In this note we formulate both, but
give proofs only for the R(G)/RSp(G)-cases because the proofs are parallel as well.

A purpose of this note is to provide proofs for the two statements (Definition-Lemma
7 and Corollary 12) which are used in [8].

Remark 1. 1. When G = 1, the R(G)/RO(G)-valued index is always 0. However
it is not always equal to 0 for non-trivial group actions. An example is given for
G = Z/3 in Section 4.

2. For a real vector bundle E on a closed G-spinc manifold Z with dimZ ≡ 2 mod 8,
we can generalize our definition to obtain indR/RSp

G (X, E) ∈ R(G)/RSp(G) using
the Dirac operator with coefficient E. Similarly for a quaternionic vector bundle F

on a closed G-spinc manifold Z with dimZ ≡ 2 mod 8, we have indR/RO
G (X, E) ∈

RO(G)/RSp(G). Similar parallel generalizations are possible for other cases.

2. R(G)/RSp(G)-valued equivariant indices.

2.1. Definition of indR/RSp
G .

We will define two kinds of equivariant indices with values in R(G)/RSp(G). We
prepare some notations for the definitions.

2.1.1. G-spinc structure and Dirac-type operators.

Let G be a compact Lie group. We write G̃L+
n for the double covering of GL+(n, R)

(n ≥ 2). In this note we use the following definition of spin and spinc-structure.

Definition 2. 1. A G-spinc-structure [resp. G-spin-structure] on a rank-n real
vector bundle E over a topological space M is a pair of G-equivariant principal
G̃L+

n×±1U(1)-bundle P c [resp. principal G̃L+
n -bundle P ] and an isomorphism between

E and the Rn-bundle associated with P c [P ] as G-vector bundles.
2. When a G-spinc-structure is given on E, the associated complex line bundle is the

G-equivariant line bundle induced from the homomorphism

GL+
n ×±1 U(1) → U(1), (g, z) 7→ z2.

We write LE for the associated complex line bundle.
3. When M is a manifold, a G-spinc-structure [resp. G-spin-structure] on M is defined

to be a G-spinc-structure [resp. G-spin-structure] on TM . We write LM for LTM .

Suppose M is a G-spin or G-spinc manifold endowed with a G-invariant Riemannian
metric m. Then it is well known that we have the associated spinor bundle WM which
has the following properties [9]:

1. The Clifford algebra bundle of TM acts on WM so that the action of each element of
TM is skew hermitian.

2. Suppose dimM ≡ 0 mod 2. Then WM has a canonical G-invariant complex linear
hermitian involution γM which anti-commutes with the Clifford multiplication of TM .
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We write WM = W 0
M ⊕W 1

M for the Z/2-graded structure defined by γM .
3. Suppose M is a G-spin manifold satisfying dimM ≡ 2, 3 or 4 mod 8. Then WM has a

canonical G-invariant quaternionic structure JM which preserves the metric on WM

and commutes with the Clifford multiplication.
4. Suppose M is a G-spin manifold.

(a) When dimM ≡ 2 mod 8, JM has degree 1.
(b) When dimM ≡ 4 mod 8, JM has degree 0.

When a U(1)-connection θ on LW is given, making use of Levi-Civita connection as
well, we have the Dirac operator

D : Γ(WM ) → Γ(WM ) (1)

as the composition of the covariant derivative Γ(WM ) → Γ(T ∗M⊗RWM ) and the Clifford
multiplication.

In this note we mainly deal with n-dimensional manifolds with n ≡ 2, 3, 4 mod 8. In
these cases we slightly generalize the definition of the Dirac operator:

Definition 3. Suppose M is a G-spinc-manifold with a G-invariant metric. A first
order G-equivariant differential operator D in (1) is a Dirac-type operator if it satisfies
the following conditions.

1. D is formally self-adjoint.
2. The principal symbol of D coincides with the Clifford multiplication.
3. When dimM ≡ 0 mod 2, we assume that D has degree 1.
4. When M is G-spin and dimM ≡ 2, 3, 4 mod 8, we assume that D commutes with JM .

Remark 4. 1. Two Dirac-type operators are linearly connected through Dirac-
type operators, which implies that they have the same index when M is closed and
even dimensional.

2. The above generalization of the definition of Dirac-type operator makes it easier to
show the product formula later.

2.1.2. indR/RSp
G .

Let RSp(G) be the Grothendieck group of finite dimensional quaternionic rep-
resentations of G. The injective ring homomorphism C → H induces an injection
RSp(G) → R(G) ([1]).

Definition-Lemma 5. Suppose Z is an 8k + 2-dimensional closed G-spin mani-
fold. Fix a G-invariant Riemannian metric on M , and let DZ be a (G-invariant) Dirac-
type operator on M . Then the kernel KerDZ is a Z/2-graded G-module. If we write
(KerDZ)0 ⊕ (KerDZ)1 for the decomposition,

indR/RSp
G Z :≡ (KerDZ)0 mod RSp(G) ∈ R(G)/RSp(G)

is independent of the choice of the metric and DZ .
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When the group action is trivial, the above well-definedness is well known [5].

Proof. Let Eλ = E0
λ ⊕ E1

λ be the eigenspace of D2
Z for the eigenvalue λ. When

λ > 0, we show that E0
λ and E1

λ have G-invariant quaternionic structures. Then the rest
of the proof is parallel to the standard argument for the case of the trivial group action.
Since Z is 8k + 2-dimensional, there exists a degree-1 G-invariant quaternionic structure
JM which commutes with DZ . Hence JM gives a degree-1 quaternionic structure on Eλ.
If we define Jλ by

Jλ := λ−1/2JMDZ : Eλ → Eλ,

then Jλ is a degree-0 anti-linear map on Eλ which satisfies J2
λ = λ−1J2

MD2
Z = −1. It

implies that Jλ is the required degree-0 G-invariant quaternionic structure on Eλ. ¤

Remark 6. If Z is a closed spin manifold with dimZ ≡ 2 mod 4, then (KerDZ)0

and (KerDZ)1 are two representation spaces of G which are complex conjugate to each
other by JM .

Definition-Lemma 7. Suppose X is an 8k+4-dimensional compact G-spinc man-
ifold. We assume that a G-spin reduction of the G-spinc structure is given on a neigh-
borhood of the boundary ∂X of X. Fix a G-invariant Riemannian metric which is of
the product form on a neighborhood of ∂X. Choose a G-equivariant Dirac-type opera-
tor DX such that DX is translation invariant on a neighborhood of ∂X. We define the
G-equivariant index indG DX of a Dirac-type operator DX by using the Atiyah-Patodi-
Singer boundary condition. Then

indR/RSp
G X :≡ indG DX mod RSp(G) ∈ R(G)/RSp(G)

is independent of the choice of the metric and DX .

We will show the above claimed well-definedness in Section 6.

Remark 8. The Atiyah-Patodi-Singer boundary condition is equivalent to that
with the following setting.

1. Let X̂ be the union of X and ∂X × [0,∞) glued along ∂X. Let DX̂ be the natural
extension of DX onto X̂.

2. Let Ker0 DX̂ be the set of elements of Ker DX̂ which are L2-bounded.
3. Let Kerb DX̂ be the set of elements of Ker DX̂ which converge to some limit values at
∞.

4. Then we have indG DX := [(Ker0 DX̂)0]− [(Kerb DX̂)1] ∈ R(G).

In the above formulation indR/RSp
G X is defined by using analytic indices on an open

manifold. Hence it is not straightforward to calculate indR/RSp
G X directly from the

definition. We will use the above setting in the proof of the product formula later.
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2.2. Properties of indR/RSp
G X.

We use the notations in Definition-Lemma 7. We write Y for the boundary ∂X. We
give two practical methods to calculate indR/RSp

G X.

2.2.1. Characteristic submanifold.
Let LX be the G-equivariant complex line bundle associated to the G-spinc structure

on TX. Then on the boundary Y , the reduction to G-spin structure gives a G-invariant
non-vanishing section s of LX . We assume that there exists an extension sX of s to a
section on X which satisfies the following conditions.

• sX is G-invariant.
• sX is transverse to the 0-section.

Let Z be the zero set s−1(0). Then Z has a canonical G-spin structure as follows.
Since the normal bundle of Z is isomorphic to the restriction LX |Z of LX , we have

a decomposition TX|Z = TZ ⊕ LX |Z . Introduce a spinc structure on the line bundle
LX |Z over Z so that its associated line bundle is identified with LX |Z . Then the spinc

structures on LX |Z and TX|Z induce a spinc structure on Z. From the multiplicative
property of the associated line bundles, the associated line bundle of the spinc structure
on Z is canonically isomorphic to the trivial line bundle, which implies Z has a well-
defined spin structure. Since the construction is canonical, if the spinc structure on
X is G-equivariant and the section s is G-invariant, then the spin structure on Z is
G-equivariant.

Definition 9. We call Z a G-characteristic submanifold.

A main theorem of this paper is:

Theorem 10. Suppose Z is a G-characteristic submanifold. Then we have

indR/RSp
G X = indR/RSp

G Z.

Zhang gave two proofs of the above theorem when X is closed and the group action
is trivial. Our proof is given in Section 7, by using a different technique from Zhang’s.

Remark 11. When the group action is trivial, we always have such a transverse
section sX . However this is not the case for general group action.

When G = 1, let us write indZ/2 X for indR/RSp
G X ∈ Z/2. Then we obtain:

Corollary 12. Suppose Z = s−1
X (0) is contained in the fixed point set XG.

1. When the order of G is odd, we have indR/RSp
G X = (indZ/2 X)[1] mod RSp(G), where

[1] is the class of the trivial one-dimensional complex representation.
2. When the order of G is even, and Z is connected, we have indR/RSp

G X = (indZ/2 X)
[Cρ] mod RSp(G), for some class [Cρ] of the one-dimensional complex representation
ρ : G → {±1} ⊂ U(1).

Proof. Since the G-action on TZ is trivial, the G-action on the spin structure
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on Z factors through a representation G → {±1} for each connected component of Z. If
the order of G is odd, then the representation is trivial. If Z is connected, then we have
a single representation ρ. ¤

2.2.2. Excision property.
Suppose X ′ is a compact G-spin manifold with boundary −Y

∐
Y ′. Then X̃ :=

X ′ ∪Y X is a compact G-spinc manifold with boundary Y ′. Then we have the following
excision property.

Proposition 13.

indR/RSp
G X ≡ indR/RSp

G X̃.

We will prove Proposition 13 in Section 6.

Corollary 14. In particular if Y ′ = ∅, then X̃ is a closed G-spinc manifold and
we have

indR/RSp
G X ≡ indG X̃ mod RSp(G).

Note that when X̃ is closed, the index ind X̃ of the spinc Dirac-type operator is
calculated by using the ordinary G-equivariant index theorem ([3], [4]).

3. R(G)/RO(G)-valued equivariant indices.

We will define two variants of equivariant indices with values in R(G)/RO(G). Since
the arguments are parallel to R(G)/RSp(G)-case, we give only the statement, omitting
their proofs.

Let RO(G) be the Grothendieck group of finite dimensional real representations of
G. The complexification induces an injection RO(G) → R(G).

Definition-Lemma 15. Suppose Z is an 8k + 6-dimensional closed G-spin mani-
fold. Fix a G-invariant Riemannian metric on M , and let DZ be a (G-invariant) Dirac-
type operator. Then the kernel KerDZ is Z/2-graded. If we write (Ker DZ)0⊕(KerDZ)1

for the decomposition,

indR/RO
G Z :≡ (KerDZ)0 mod RO(G) ∈ R(G)/RO(G)

is independent of the choice of the metric and DZ .

Definition-Lemma 16. Suppose X is an 8k + 8-dimensional compact G-spinc

manifold. We assume that a G-spin reduction of the G-spinc structure is given on a
neighborhood of the boundary ∂X of X. Fix a G-invariant Riemannian metric which
is of the product form on a neighborhood of ∂X. Choose a G-equivariant Dirac-type
operator DX such that DX is translation invariant on a neighborhood of ∂X. We define
the G-equivariant index indG DX of a Dirac-type operator DX by using the Atiyah-
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Patodi-Singer boundary condition. Then

indR/RO
G X :≡ indG DX mod RO(G) ∈ R(G)/RO(G).

is independent of the choice of the metric and DX .

Theorem 17. Suppose Z is a G-characteristic submanifold. Then we have

indR/RO
G X = indR/RO

G Z.

Suppose X ′ is a compact G-spin manifold with boundary −Y
∐

Y ′. Then X̃ :=
X ′ ∪Y X is a compact G-spinc manifold with boundary Y ′. Then we have the following
excision property.

Proposition 18.

indR/RO
G X ≡ indR/RO

G X̃.

Corollary 19. In particular if Y ′ = ∅, then X̃ is a closed G-spinc manifold and
we have

indR/RO
G X ≡ indG X̃ mod RO(G).

4. Examples.

Let G be the order-3 subgroup of U(1), and t ∈ R(G) the class of standard complex
1-dimensional representation. Then we have

R(G) = Zt⊕Z ⊕Zt−1,

RSp(G) = Z(t + t−1)⊕ 2Z ⊂ R(G),

RO(G) = Z(t + t−1)⊕Z ⊂ R(G),

R(G)/RSp(G)
∼=−→ Z ⊕Z/2, [at + b + ct−1] 7→ (a− c)⊕ (b mod 2),

R(G)/RO(G)
∼=−→ Z, [at + b + ct−1] 7→ a− c.

4.1. R/RSp-cases.
2-dimensional example: T 2. Let ω be e2πi/3 and Z0 the flat torus C/(Z + Zω). The
standard G-action on C induces a G-action on Z0 with three fixed points. Introduce the
translation-invariant spin structure on Z0. Since G is an odd order cyclic group, there is a
unique lift of the G-action to the spin structure. If we use the natural complex structure
on TZ0, then we have a canonical isomorphism (W 0

Z0
)⊗2 ∼= T ∗Z0 and (W 1

Z0
)⊗2 ∼= T ∗Z0

for the spinor bundle WZ0 = W 0
Z0
⊕W 1

Z0
over Z0. For this spin structure WZ has non-
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vanishing flat sections φ0 ∈ Γ(W 0
Z0

) and φ1 ∈ Γ(W 1
Z0

) satisfying φ⊗2
0 = dz and φ⊗2

1 = dz.
Since g · dz = d(g−1z) = g2dz, we obtain g · φ0 = gφ0 and g · φ1 = g−1φ1. The kernel
of the standard Dirac-type operator for the flat metric is spanned by φ0 and φ1, which
implies [(KerDZ0)

0] = t and [(KerDZ0)
1] = t−1. Then [(KerDZ0)

0] mod RSp(G) gives

indR/RSp
G Z0 = 1⊕ 0 ∈ R(G)/RSp(G) ∼= Z ⊕Z/2.

4-dimensional example: T 2 × S2. Endow CP 1 with the Fubini-Study Kähler struc-
ture and the spinc structure associated to its complex structure. Define a G-action
on CP 1 by rotation with two fixed points, and the action preserves these struc-
tures. Since (Ker DCP 1)0 ∼= H0(CP 1,O) and (KerDCP 1)1 ∼= H1(CP 1,O), we have
[(KerDCP 1)0] = 1 and [(KerDCP 1)1] = 0 in R(G). Let X0 be Z0 × CP 1 with the
product spinc structure and the diagonal G-action. Then the multiplicative property of
the kernel of the Dirac-type operators implies [(KerDX0)

0] = t and [(KerDX0)
1] = t−1,

and hence indDX0 = t− t−1. Then indDX0 mod RSp(G) gives

indR/RSp
G X0 = 2⊕ 0 ∈ R(G)/RSp(G) ∼= Z ⊕Z/2.

Example of Theorem 10. We check Theorem 10 for X0. Let {0,∞} be the
fixed point set of the G-action on CP 1. We first show that Z0×{0,∞} is a G-invariant
characteristic submanifold of X0 defined as the transversal zeros of a G-invariant section
s0 of LX0 . Because LX0 is the pullback of LCP 1 with respect to the projection X0 →
CP 1, it suffices to show that {0,∞} is a G-invariant characteristic submanifold of CP 1

defined as the transversal zeros of a G-invariant section s′0 of LCP 1 . Now, by using the
canonical isomorphism LCP 1 ∼= TCP 1, we can take s′0 = zd/dz.

Section 4.1 implies that the contribution of each of the two components of Z0×{0,∞}
to the right hand side of Theorem 10 is 1⊕0, while Section 4.1 implies that the left hand
side is equal to 2⊕ 0, and the equality of Theorem 10 holds.

4.2. R/RO-cases.
6-dimensional example: T 6. Let Z1 be Z0 × Z0 × Z0. Then the product Dirac-type
operator for the product G-spin structure satisfies [KerDZ1 ] = (t+t−1)3 = 1+3t+3t−1+
1. The first and the third terms give [(KerDZ1)

0] and the second and the fourth terms
give [(KerDZ1)

1], and hence we have [(KerDZ1)
0] = 1 + 3t−1 and [(KerDZ1)

1] = 1 + 3t
in R(G). Then (KerDZ1)

0 mod RO(G) gives

indR/RO
G Z1 = −3 ∈ R(G)/RO(G) ∼= Z.

8-dimensional example: T 6 × S2. Let CP 1 be the G-spinc manifold in Section 4.1,
and X1 the product Z1 × CP 1 with the product spinc structure and the diagonal G-
action. Then the multiplicative property of the index of the Dirac-type operators implies
indG X1 = (t− t−1)3 = 3(t−1 − t). Then indG X1 mod RO(G) gives

indR/RO
G X1 = −6 ∈ R(G)/RO(G) ∼= Z.
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Example of Theorem 17. We check Theorem 17 for X1. As in Section 4.1, we
can show that Z1 × {0,∞} is a G-invariant characteristic submanifold of X1 defined as
the transversal zeros of a G-invariant section s1 of LX1 . Section 4.2 implies that the
contribution of each of the two components of Z1 × {0,∞} to the right hand side of
Theorem 17 is −3, while Section 4.2 implies that the left hand side is equal to −6, and
the equality of Theorem 17 holds.

5. Sum formula and product formula.

We prepare a sum formula and a product formula for indices under the Atiyah-
Patodi-Singer boundary condition.

5.1. Sum formula.
1. For i = 0 and 1, let Xi be an even dimensional compact G-spinc manifold.
2. Fix a G-invariant Riemannian metric on Xi of the product form on a neighborhood of

the boundary ∂Xi. Suppose that the boundary ∂Xi is the disjoint union of two closed
G-manifolds Y +

i and Y −
i . We assume that there exists a G-spinc closed Riemannian

manifold Y such that both Y +
0 and −Y −

1 are isomorphic to Y as G-spinc closed
Riemannian manifold Y .

3. Glue X0 and X1 along Y +
0
∼= Y ∼= −Y −

1 to obtain a closed G-spinc manifold X with
a G-invariant Riemannian metric.

Proposition 20 (Sum formula). Under the above setting, we have

indG DX0 + [KerDY ] + indG DX1 = indG DX ∈ R(G),

where DY is the Dirac-type operator on Y .

Proof. A direct proof of the above sum formula is given by “stretching neck”
argument which is standard by now. For the case G = {1}, such a proof is described in
[7, p. 367, Remark 11.33(2)]. The proof there is valid for equivariant case as well. ¤

Remark 21. If the Dirac-type operator is the honest composition of the covariant
derivative and the Clifford multiplication, and moreover if G = {1}, then the sum for-
mula is a direct consequence of the Atiyah-Patodi-Singer index formula: the APS index
formulas for indDX0 and indDX1 are

indDX0 =
∫

X0

ec1(LX0 )/2Â(X0) +
η(DY ) + dim KerDY

2

indDX1 =
∫

X1

ec1(LX1 )/2Â(X1) +
−η(DY ) + dim KerDY

2
.

Adding these two equations, we obtain the required relation. To show the sum formula
along this line, it would be necessary to extend the Atiyah-Patodi-Singer index formula
to a formula [2] for general Dirac-type operators and also to equivariant setting. For
the honest Dirac operator, an equivariant version of the APS index formula is given by
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Donnelly [6], and we can show the sum formula for this case. On the other hand, without
group action, the APS index formula is extended by several people. It would be possible
to show a Donnelly-type formula for equivariant setting. The authors, however, could
not find any reference.

5.2. Product formula.
Let G and H be two compact Lie groups. Suppose we have the data Z, P, F and X

with the next setting.

1. Z is an even dimensional closed G-spinc manifold with a G-invariant Riemannian
metric.

2. P is a G-equivariant principal H-bundle over Z.
3. F is an even dimensional compact (G × H)-spinc manifold with boundary ∂F . We

fix a (G × H)-invariant Riemannian metric on F which is of the product form on a
neighborhood of ∂F .

4. X is the compact G-manifold with boundary Y that is defined by X := P ×H F and
Y := P ×H ∂F .

We endow X with a G-spinc structure as follows. Let π be the projection from X

to Z. Then we have a G-equivariant isomorphism

TX ∼= π∗TZ ⊕ (P ×H TF )

which is well defined up to G-homotopy. Now we fix a G-spinc structure on X as the
direct sum of the next two G-spinc structures:

1. The G-spinc structure on π∗TZ that comes from the G-spinc structure on Z.
2. The G-spinc structure on P ×H TF that comes from the (G×H)-spinc structure on

F .

Let DZ be a (G-invariant) Dirac-type operator on Z, and DF a (G ×H-invariant)
Dirac-type operator on F which is translation invariant on the neighborhood of ∂F .

Proposition 22 (Product formula). There exist a G-invariant Riemannian met-
ric mX on X and a Dirac-type operator DX for mX which have the following properties.

1. mX and DX are translation invariant on a neighborhood of Y .
2. There exists a G-equivariant isometry

TX ∼= π∗TZ ⊕ (P ×H TF ),

and also a G-equivariant isomorphism

WX
∼= π∗WZ ⊗ (P ×H WH)

as Z/2-graded Clifford modules with respect to the identification of the Clifford mul-
tiplication
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c(v ⊕ w) = c(v)⊗ 1 + γZ ⊗ c(w)

for v ∈ TZ and w ∈ P ×H TF , and the relation γX
∼= γZ ⊗ id + id⊗ γF .

3. (a) When the H-action on Ker0 DF is trivial, the above isomorphism induces an
isomorphism Ker0 DX

∼= KerDZ ⊗ Ker0 DF for some appropriate Riemannian
metrics and Dirac-type operators.

(b) When the H-action on Kerb DF and KerD∂F is trivial, the above isomorphism
induces an isomorphism Kerb DX

∼= KerDZ⊗Kerb DF for some appropriate Rie-
mannian metrics and some G-invariant Dirac-type operators DX on X.

To show Proposition 22 we basically follow the argument in [3, Section 9]. There are,
however, two differences. One is to use Dirac-type operators instead of pseudo-differential
operators. The other is to use open manifolds instead of closed manifolds.

Proof of Proposition 22. Since DF : Γ(WF ) → Γ(WF ) is G×H-invariant, it
gives rise to a G-equivariant differential operator

D̃F : Γ(P ×H WF ) → Γ(P ×H WF )

which contains only the derivatives along fibers over Z. Then D̃F gives a differential
operator

γZ ⊗ D̃F : Γ(π∗WZ ⊗ (P ×H WF )) → Γ(π∗WZ ⊗ (P ×H WF )).

Next let {Ui} be an open covering of Z such that the restriction of P on each Ui is
trivial if we forget the G-action: P |Ui

∼= Ui ×H. From this trivialization we have a H-
equivariant diffeomorphism π−1(Ui) ∼= Ui × F . Let πi : π−1(Ui) → F be the projection
map. Then we have

(π∗WZ ⊗ (P ×H WF ))|−1
π (Ui) ∼= π∗(WZ |Ui)⊗ π∗i WF .

By using this tensor product structure, we lift the action of DZ to define a differential
operator D̃Z,i on π∗WZ⊗(P×HWF ) |π−1(Ui). Let {ρ2

i } be a partition of unity for the open
covering {Ui}. Then the sum

∑
ρiD̃Z,iρi is a differential operator on π∗WZ⊗(P×H WF ).

Take the average by using the G-action and the Haar measure of G to obtain a G-invariant
differential operator D̃Z . Then D̃Z anti-commutes with γZ⊗D̃F (see [3]). Now we define

DX := D̃Z + γZ ⊗ D̃F ,

and we have D2
X = D̃2

Z + D̃2
F . We want to check that DX is a Dirac-type operator for a

G-invariant metric on X in the sense of Definition 3. The exact sequence

0 → P ×H TF → TX → π∗TZ → 0
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has a splitting θi : π∗TZ|Ui
→ TX|Ui

on each Ui which corresponds the trivialization of
P over Ui. Then

∑
(π∗ρ2

i )θi gives a global splitting. Take the average by using the G-
action and the Haar measure of G to obtain a G-invariant splitting θ : π∗TZ → TX. We
define a G-invariant Riemannian metric mX on X so that the G-equivariant isomorphism
TX ∼= π∗TZ ⊕ (P ×H TF ) induced from θ is an isometry. Now it is straightforward to
check that the principal symbol of DX coincides with the Clifford product for the metric
mX , which implies that DX is a Dirac-type operator in the sense of Definition 3.

The rest of the proof is quite parallel to [3]. It suffices to show

Ker0 DX = Ker D̃Z ∩Ker0 γZ ⊗ D̃F , Kerb DX = Ker D̃Z ∩Kerb γZ ⊗ D̃F .

It is obvious that the left-hand-side contains the right-hand-side in each equality. The
converse is guaranteed by Lemma 25 which is stated and proved below.

Remark 23. More generalized version of Proposition 22 is explained in Section
6.3 of [7, pp. 181–182], in particular in Lemma 6.10, as well as details of its proof.

We formulate the necessary lemma under a slightly generalized setting. Let X be
a compact Riemannian manifold with a spinc structure, and Y the boundary of X with
the induced spinc structure. Assume that the metric of X is of the product form near
Y . We write X̂ := X ∪Y Y × [0,∞) and Xt := X ∪Y Y × [0, t] for t ≥ 0.

Suppose D is a Dirac-type operator on X̂ which is of the form D = γ∂t + DY on
the cylinder Y × [0,∞) where t is the standard parameter of [0,∞), γ is the Clifford
multiplication of ∂t, and DY is a Dirac-type operator on Y .

Let φ be a section of the associated spinor bundle over X̂.

Lemma 24. Suppose D2φ = 0 and φ is bounded on X̂. Then, as t → ∞, φ|Y×{t}
converges to some element of KerDY , and ∂tφ converges to 0. Both convergences hold
in any Sobolev norm.

Proof. Expand φ as
∑

λ φλ so that DY φλ = λφλ. Since DY γ + γDY = 0, we
have D2 = −∂2

t + D2
Y and hence ∂2

t φλ = λ2φλ. Since φλ is bounded for t ≥ 0, we obtain
φλ = e−|λ|t(φλ|Y×{0}), which implies the lemma. ¤

Suppose we have the decomposition D = D0 +D1 such that D0 and D1 are formally
self-adjoint operators on Y anti-commuting each other, and hence satisfying D2 = D2

0 +
D2

1. We assume that, on the cylinder, D0 and D1 are translation invariant and D1

contains only the derivatives along the fibers Y × {t}. Moreover we assume that D0 has
the decomposition

D0 = γ∂t + D′
0

satisfying DY = D′
0 + D1, where D′

0 is a formally self-adjoint operator on Y anti-
commuting with D1.

Lemma 25. If D2φ = 0 and φ is bounded on X̂, then we have D0φ = D1φ = 0.
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Proof. Stokes’ theorem implies

∫

Xt

(|D0φ|2 + |D1φ|2)−
∫

Xt

(φ,D2φ) =
∫

Y×{t}
(γφ|Y×{t}, (D0φ)|Y×{t}).

We show that the Sobolev norms of (D0φ)|Y×{t} converge to 0 as t →∞. From Lemma
24 the limit of φ|Y×{t} under t →∞ is an element of Ker DY , and the limit of ∂tφ|Y×{t}
is zero. Since D2

Y = (D′
0)

2 + D2
1, we have Ker DY = Ker D′

0 ∩KerD1. Hence we have

(D0φ)|Y×{t} = γ(∂tφ)|Y×{t} + D′
0φ|Y×{t} → 0,

which implies the claim. ¤

6. Well-definedness and the excision property.

We show Definition-Lemma 7 and Proposition 13 using the sum formula.

6.1. Well-definedness of indZ/2
G X.

We show the well-definedness of indR/RSp
G X (Definition-Lemma 7).

Suppose that X is an 8k + 4-dimensional compact G-spinc manifold with boundary
Y = ∂X. Let L = LX be the G-equivariant complex line bundle associated with the
G-spinc-structure. We fix a reduction of the G-spinc structure to a G-spin structure on a
neighborhood of Y . Then L has a canonical G-equivariant trivialization on a neighbor-
hood of Y . In particular L has a trivial G-invariant flat connection on a neighborhood
of Y . Fix a G-invariant connection θ on the whole L which is an extension of the flat
connection. In the following argument we need both Riemannian metrics and such con-
nections as background data to choose Dirac-type operators. We, however, suppress the
notation for the connections.

1. Let m+ and m− be any two G-invariant Riemannian metrics on X which are of the
product form on a neighborhood of Y .

2. Take a G-invariant Riemannian metric m0 on Y ×[−1,+1] which is of the product form
on a neighborhood of the boundaries so that m0 |Y×{−1}= m− |Y and m0 |Y×{+1}=
m+ |Y .

3. Let D(m+), D(m−) be some Dirac-type operators on X for the two Riemannian met-
rics m+ and m−, and D(m0) be a Dirac-type operator on Y × [−1,+1] for the Rie-
mannian metric m0.

4. Let Dm+|Y and Dm−|Y be some Dirac-type operators on Y for the two Riemannian
metrics m+ |Y and m− |Y .

Glue −X ∪ Y × [−1,+1] ∪ X to obtain an oriented closed G-manifold X̃. We define
the Riemannian metric m̃ on X̃ by patching m−,m0 and m+. We endow −X with a
G-spinc-structure which comes from that of X. Then, since we have a reduction of the
G-spinc-structure to G-spin structure on Y , the G-spinc-structures on −X and X can be
glued together with the G-spin structure on Y × [−1,+1] to define a G-spinc-structure
on X̃. Then the index of a Dirac-type operator D(m̃) on X̃ for Riemannian metric m̃ is
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a topological invariant, which depends only on the spinc-structure on X̃. Note that X̃ is
topologically the double of Y × [0, 1] ∪X and that the spinc-structure on X̃ is reversed
by the defining involution on the double. Hence we have indD(m̃) = 0.

On the other hand, from the sum formula, we have the following equality in R(G):

0 = [indG D(m̃)] = −[indG D(m−)] + [KerD(m− |Y )]

+ [indG D(m0)] + [KerD(m+ |Y )] + [indG D(m−)].

Since D(m0) is a Dirac-type operator on an 8k + 4-dimensional spin manifold,
(KerD(m0))0 and (KerD(m0))1 have G-invariant quaternionic structures. Similarly,
since D(m+ |Y ) and D(m− |Y ) are Dirac-type operators on an 8k + 3-dimensional spin
manifold, KerD(m+ |Y ) and KerD(m− |Y ) have G-invariant quaternionic structures.
Hence we have

0 = [indG D(m̃)] ≡ −[indG D(m−)] + [indG D(m+)] mod RSp(G),

which implies our claim.

6.2. Proof of Proposition 13.
Let us recall the assumption of Proposition 13. Suppose that X is a compact 8k+4-

dimensional G-spinc-manifold which is G-spin on the boundary Y = ∂X. When X ′ is a
compact G-spin manifold with the boundary −Y

∐
Y ′, the glued union X̃ := X ′ ∪X is

a G-spinc manifold with the boundary Y ′. Fix a G-invariant Riemannian metric on X̃

which is of the product form on a neighborhood of Y and Y ′. Let DX , DX′ and DY be
some Dirac-type operators on X, X ′ and Y which are defined for the above Riemannian
metrics. The sum formula implies

[indG DX̃ ] = [indG DX′ ] + [(KerDY )1] + [indG DX ].

Since X ′ is an 8k+4-dimensional G-spin manifold and Y is an 8k+3-dimensional G-spin
manifold, [indG DX′ ] and [(KerDY )1] are elements of RSp(G). Hence we have

indR/RSp
G DX ≡ indG DX̃ mod RSp(G).

7. Proof of the main theorem.

Our main theorems are Theorems 10 and 17. Since their proofs are quite parallel,
we state only the proof of Theorem 10. We will reduce our proof to the next calculation.

7.1. 2-dimensional disk.
When X is a 2-dimensional disk, we can directly calculate indX with the Atiyah-

Patodi-Singer boundary condition. We use the following setting.

1. Fix an SO(2)-invariant Riemannian metric on R2 whose restriction on the complement
of the unit disk is isometric to S1×[0,∞) with the product metric. We write D for this
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Riemannian manifold with SO(2)-action. The associated conformal structure gives an
SO(2)-invariant complex structure on D, and hence an SO(2)-spinc structure on D.

2. On the cylinder S1×[0,∞), the translation invariant harmonic spinors are the constant
functions in even degree, and const · dz̄ in odd degree, where z = −t + θi mod 2πi is
the complex coordinate of the point (eiθ, t) ∈ S1 × [0,∞).

3. On S1× [0,∞) the SO(2)-spinc structure coincides with the product of the Lie group
spin structure on S1 and the unique spin structure on [0,∞).

The next lemma and the definition of ind (Remark 8) implies

ind(D) = 0 ∈ R(SO(2)).

The following argument is parallel to the proof of Lemma 4.32 of [7].

Lemma 26. Let ∂̄ be the Dolbeault operator on D. Then we have:

Ker0 ∂̄ = 0, Kerb ∂̄ = 1 ∈ R(SO(2)),

Ker0 ∂̄∗ = 0, Kerb ∂̄∗ = 0.

Proof. Let CP 1 be the one-point compactification of D. If we use the coordinate
z mod 2πi on the cylinder defined before, a coordinate on a neighborhood of the infinity
point is given by w = exp(−z).

1. Note that Kerb ∂̄ is the set of bounded holomorphic functions on D, and hence is
identified with the set of holomorphic functions on CP 1 from Riemann’s removable
singularity theorem. It implies that Kerb ∂̄ is the set of constant functions, and hence
we have Ker0 ∂̄ = 0 and Kerb ∂̄ = 1 in R(SO(2)).

2. Note that the complex conjugation of Kerb ∂̄∗ is the set of bounded holomorphic 1-
forms on D. If we write a bounded holomorphic 1-form as f(z)dz = g(w)dw on the
cylinder, |f(z)| is bounded as the real part of z goes to −∞. It implies that the
singularity of

g(w) =
f(− log w)

w

at w = 0 is at most a pole with degree 1. Since the only meromorphic 1-form on CP 1

that allows at most a pole with degree 1 is 0, we have Ker0 ∂̄∗ = 0 and Kerb ∂̄∗ = 0.
¤

7.2. Complex line bundles.
We can calculate the index of the Dirac-type operator on the total space of some

complex line bundles by using the above calculation for the disk D.
We use the following setting.

1. Let Z be a closed G-spin manifold.
2. Let ν be a G-equivariant complex line bundle over Z. We write Y := S(ν) and
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X := D(ν).
3. By using the projection π : X → Z, we have a decomposition

TX = π∗TZ ⊕ TfiberX

defined only up to homotopy, where TfiberX is the tangent bundle along the fibers of
π.
(a) π∗TZ has a G-spin structure coming from the G-spin structure on Z.
(b) When we fix a G-invariant metric on ν, each fiber of TfiberX is diffeomorphic to

D and the diffeomorphism is well defined up to the SO(2)-action on D. Hence
TfiberX has a G-spinc structure whose restriction on each fiber is isomorphic to
the SO(2)-spinc structure on D.

(c) On a neighborhood of the boundary Y of X, the G-spinc structure has a canonical
reduction to a G-spin structure.

(d) Now we can define a G-spinc structure on TX by taking the direct sum of the
above two G-spinc structures. The G-spinc structure on TX has a reduction to a
G-spin structure on a neighborhood of Y .

The product formula Proposition 22 immediately implies:

Proposition 27.

Ker0 DX0
∼= (KerDZ)0 ⊗Ker0 ∂̄ ⊕ (KerDZ)1 ⊗ ker0 ∂̄∗

Kerb DX0
∼= (KerDZ)0 ⊗Kerb ∂̄∗D ⊕ (KerDZ)1 ⊗ kerb ∂̄D.

Using Proposition 27 we can directly check the next corollary which is a special case
of Theorem 10.

Corollary 28. When Z is 8k + 2-dimensional, we have

indZ/2
G X = indR/RSp

G Z.

Proof. Lemma 26 and Proposition 27 imply indG DX = −[(KerDZ)1] ≡
[(KerDZ)0] mod RSp(G). ¤

7.3. Proof of Theorem 10.
Now we prove Theorem 10 for general cases.
Suppose Z is a closed G-characteristic submanifold of an 8k+4-dimensional compact

G-spinc manifold X with G-spin boundary. Let ν be the normal bundle of Z and D(ν)
the disk bundle of ν. Then D(ν) is identified with a neighborhood of Z. The excision
property (Proposition 13) implies indR/RSp

G X = indR/RSp
G D(ν). On the other hand

Corollary 28 implies indR/RSp
G D(ν) = indR/RSp

G Z. From these two relations we obtain
the required equality indR/RSp

G X = indR/RSp
G Z.
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