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Abstract. Exact critical values of symmetric fourth L function of the
Ramanujan Delta function ∆ were conjectured by Don Zagier in 1977. They
are given as products of explicit rational numbers, powers of π, and the cube of
the inner product of ∆. In this paper, we prove that the ratio of these critical
values are as conjectured by showing that the critical values are products of the
same explicit rational numbers, powers of π, and the inner product of some
vector valued Siegel modular form of degree two. Our method is based on
the Kim-Ramakrishnan-Shahidi lifting, the pullback formulas, and differential
operators which preserve automorphy under restriction of domains. We also
show a congruence between a lift and a non-lift. Furthermore, we show the
algebraicity of the critical values of the symmetric fourth L function of any
elliptic modular form and give some conjectures in general case.

1. Introduction.

The critical values of the symmetric j-th L functions L(s, f, Sym(j)) of an elliptic
modular form f are interesting objects in number theory in various respects. The alge-
braicity of such values was conjectured by Deligne [5] and has been proved in the case
j ≤ 3 (cf. Shimura [19], Sturm [21], Orloff [16], Satoh [18].) On the other hand, it is
also interesting to compute such values exactly. Let ∆ be the Ramanujan delta function,
the unique primitive cusp of weight 12 of level 1, and L(s,∆, Sym(j)) the symmetric j-th
L function of ∆. In 1977, D. Zagier gave the critical values of L(s,∆, Sym(j)) for j = 1,
2 and proposed a conjecture on exact critical values for j = 3, 4 (cf. [25].) Mizumoto
solved the conjecture for j = 3 in [14]. The topic of this paper is the case j = 4. We
define the norm of ∆ by

(∆,∆) =
∫

SL2(Z)\H
|∆(τ)|2y10dx dy.

Then Zagier’s conjecture is given as follows.

Conjecture 1.1 (Zagier [25]). We have

((2π)−3s+33Γ(11)−1Γ(s)Γ(s− 11)L(s,∆, Sym(4)) = c(s)233(∆,∆)3
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for s = 24, 26, 28, 30, 32 where c(s) are given in the following table.

s c(s)
24 25 × 32

26 25 × 3× 5
28 22 × 23× 691/72

30 23 × 653
32 2× 3× 34981∗/7

(∗ He stated 34891 instead of the above prime 34981, but this is an obvious typo
since 34891 = 23× 37× 41.) Our main theorem in this paper is as follows.

Theorem 1.2. For a certain explicitly defined holomorphic vector valued Siegel
modular form F of degree two of weight det13 Sym(10), we have

(2π)−3r−33Γ(11)−1Γ(r + 11)Γ(r + 22)L(r, F, St) = c(r + 22)(F, F )

for r = 2, 4, 6, 8, 10, where c(∗) is as in Zagier’s conjecture above. Here F does not
depend on r and (F, F ) is an explicitly defined inner metric of F .

The definition of F and details of the above theorem will be explained in the next
section and in Theorem 2.2. The proof of Theorem 2.2 is obtained inside the theory
of Siegel modular forms and has nothing to do with anything related with ∆. But we
considered a vector valued Siegel modular form here since by virtue of [17] there exists a
lifting from ∆ to F such that L(s,∆, Sym(4)) = L(s− 22, F, St) where the latter is the
standard L function of F . So the above theorem means

Corollary 1.3. We have

(2π)33−3sΓ(11)−1Γ(s)Γ(s− 11)L(s,∆, Sym(4)) = c(s)(F, F )

for any s = 24, 26, 28, 30, 32. In particular, five critical values of the left hand side are
exactly as conjectured by Zagier up to a common non-zero constant.

The existence of this type of lifting from modular forms of one variable to Siegel
modular forms appeared first in [13] for generic Siegel modular forms and then was proved
for holomorphic vector valued Siegel modular forms by [17]. The first named author had
also written a preprint [9] on conjectures on these liftings with numerical experiments
on ∆ and F as cited in [17] and the present article is partly a continuation of that
preprint. Since we do not know the relation between (∆,∆)3 and (F, F ), we cannot say
that we proved Zagier’s conjecture completely, but his conjecture is now interpreted into
a conjecture on a relation between (∆,∆)3 and (F, F ) (cf. Conjecture 2.3). We also give
a certain congruence between eigenvalues of the above lift and non-lift (cf. Theorem 2.4).
Furthermore, we will make a remark that for any elliptic modular form f , the algebraicity
of critical values of L(s, f, Sym(4)) up to a constant is obtained as an easy corollary of
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the theorem of Ramakrishnan-Shahidi and the pullback formula of Siegel modular forms.
We state this as Theorem 3.2, since we have never seen this in the literature before.
The content of each section is as follows. In Section 2, we give precise definitions and
main theorems. In Section 3, we review a result of Kozima on critical values using a
pullback formula and differential operators, and give some technical details. In Section
4, we explain another formulation and concrete definitions of differential operators we
use. In Section 5, we complete the proof of Theorem 2.2. In the appendix, we give tables
of Fourier coefficients of Siegel modular forms we use.

Acknowledgements. The first author would like to thank Henry H. Kim for the
discussion at Hakuba conference in 2002. This was a starting point of the consideration
of this article.

2. Main theorems.

2.1. Definitions and Notation.
We prepare notation and definitions. For any natural number n, we denote by Hn

the Siegel upper half space of degree n.

Hn = {Z ∈ Mn(C);Z = tZ = X +
√−1Y, X, Y ∈ Mn(R), Y > 0}.

For any ring R and any natural integer n, we define the symplectic group of size 2n over
R by

Sp(n,R) = {g ∈ M2n(R); gJn
tg = Jn},

where Jn =
(

0n −1n
1n 0n

)
. We put Γn = Sp(n,Z) for the sake of simplicity. Now we define

vector valued Siegel modular forms of Γn. For any irreducible representation (ρ, V ) of
GL(n,C), for any V -valued function F on Hn, and for any g =

(
A B
C D

) ∈ Sp(n,R), we
write

F |ρ[g] = ρ(CZ + D)−1F (gZ).

We say that F is a holomorphic Siegel modular form of weight ρ with respect to Γn if
F is holomorphic on H and F |ρ[γ] = F for any γ ∈ Γn (with the extra condition of
holomorphy at the cusp

√−1∞ if n = 1). We describe ρ more precisely when n = 2. We
denote by C[u1, u2]m the vector space of homogeneous polynomials of degree m in u1,
u2. Then the m-th symmetric tensor representation Symm of GL(2,C) is defined by

Symm(A)(P (u1, u2)) = P ((u1, u2))A)

for any A ∈ GL(2,C) and P ∈ C[u1, u2]m. For any integer k, we denote by detk the
representation of GL(2,C) given by detk(A) = (det(A))k for any A ∈ GL(2,C). We put
ρk,m = detk ⊗Symm. Then these exhaust all the rational irreducible representations of
GL(2,C). We denote by Ak,m(Γ2) the vector space of holomorphic Siegel modular forms
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of weight ρk,m with respect to Γ2. The Siegel Φ operator is defined for any element
F ∈ Ak,m(Γ2) as usual and Φ(Ak,m(Γ2)) is identified with a subspace of the space
Sk+m(Γ1) of cusp forms of weight k + m with respect to Γ1 (cf. [1]). We say that F is
a cusp form if Φ(F ) = 0 and denote by Sk,m(Γ2) the space of cusp forms in Ak,m(Γ2).
In particular, we have Ak,m(Γ2) = 0 if m is odd and Ak,m(Γ2) = Sk,m(Γ2) if k is odd.
We denote by Hn(Z)≥0 the set of positive semi-definite n × n half-integral symmetric
matrices and by Hn(Z)>0 the subset of positive definite matrices. Any element F of
Ak,m(Γ2) has the following Fourier expansion.

F (Z) =
∑

A∈H2(Z)≥0

cF (A;u) exp(2π
√−1tr(AZ)),

where cF (A;u) is a homogeneous polynomial of degree m in u = (u1, u2) with coefficients
in C for any A ∈ H2(Z)≥0, and in particular, if F is a cusp form, then cF (A;u) = 0
unless A ∈ H2(Z)>0. For any ring R ⊂ C, we denote by Ak,m(Γ2)(R) the subspace of
F ∈ Ak,m(Γ2) such that cF (A, u) ∈ R[u1, u2]m for all A ∈ H2(Z)≥0.

2.2. A lifting and vector valued Siegel modular forms.
For any primitive Hecke eigenform f =

∑∞
n=1 a(n)e2π

√−1nz ∈ Sk(Γ1), we write
1− a(p)x + pk−1x2 = (1− αpx)(1− βpx) for any prime p and define the symmetric j-th
L function of f by

L(s, f, Sym(j)) =
∏

p:prime

j∏

i=0

(1− αi
pβ

j−i
p p−s)−1.

It is proved that this L function is continued meromorphically to the whole s plane and
that for small j it satisfies the functional equation for s → (k − 1)j + 1− s (cf. [23] for
example). For any F ∈ Sk,j(Γ2), we denote by L(s, F, St) the standard L function of F

normalized so that this satisfies the functional equation for s → 1−s. We write L(s, F, Sp)
the spinor L function which satisfies the functional equation for s → 2k + j− 2− s. Now
we quote a part of the theorem in [17] we need.

Theorem 2.1 (Ramakrishnan-Shahidi [17]). For any primitive Hecke eigenform
f ∈ Sk(Γ1), there exists a holomorphic Siegel modular form F ∈ Sk+1,k−2(Γ2) which is
a Hecke eigenform such that

L(s, f, Sym(3)) = L(s, F, Sp).

We can easily see that for the same f and F above, we have also

L(s− 2k + 2, f, Sym(4)) = L(s, F, St)

by checking the relation between Satake parameters.
Their theorem is a kind of existence theorem, and we do not know how to give F

explicitly in general when f is given. Also this theorem is a correspondence between
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automorphic representations, so even if multiplicity one theorem holds, F is defined only
up to constants and there is no canonical way to choose normalization of F at moment.

Now we would like to construct F ∈ S13,10(Γ2) corresponding to ∆ ∈ S12(Γ1)
predicted by the above theorem. The dimension of Sk,m(Γ2) is known for k > 4 by
Tsushima [24]. In particular we have dimA13,10(Γ2) = dimS13,10(Γ2) = 2. We denote by
E8 ⊂ 2−1Z8 ⊂ R8 the positive definite even unimodular integral lattice of rank 8 which is
unique up to isometry. We write (x, y) =

∑8
i=1 xiyi for x = (xi), y = (yi) ∈ C8. For any

natural number k, m, and for any a1, a2 ∈ C8 such that (a1, a1) = (a1, a2) = (a2, a2) = 0
and i with 0 ≤ i ≤ m, define

P̃i(x, y, a1, a2) = (x, a1)m−i(y, a1)i

∣∣∣∣
(x, a1) (x, a2)
(y, a1) (y, a2)

∣∣∣∣
k

.

We may write P̃i = Pi(x, y, a1, a2) +
√−1Ri(x, y, a1, a2) by polynomials Pi and Ri in x,

y with real coefficients. We define

θa1,a2,(k,m),i(Z) =
∑

x,y∈E8

Pi(x, y, a1, a2)eπ
√−1((x,x)τ+2(x,y)z+(y,y)ω),

where we write Z =
(

τ z
z ω

) ∈ H2. We put

θa1,a2,(k,m)(Z) =
m∑

i=0

(
m

i

)
θa1,a2,(k,m),i(Z)um−i

1 ui
2.

Then it is well known and easy to see that θa1,a2,(k,m)(Z) ∈ Ak+4,m(Γ2), though θa,b

might be zero for many choices of a, b. (We can use P̃i instead of Pi here, but we use
real valued polynomials for computational simplicity.) Now put

a1 = (2, 1, i, i, i, i, i, 0)

a2 = (1,−1, i, i, 1,−1,−i, i)

b1 = (3, 2i, i, i, i, i, i, 0)

b2 = (1, i,−1, i, 1, i,−i, 1)

and define

f13,10a = θa1,a2,(9,10)/(233 × 33 × 53 × 72),

f13,10b = θb1,b2,(9,10)/(233 × 38 × 54 × 7).

Then these span A13,10(Γ2). To pick up among these a form corresponding to the lifting
of ∆, we calculate the action of the Hecke operators. For any natural number n, we put
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T (n) = {g ∈ M4(Z); gJ2
tg = nJ2}.

This is a union of double cosets with respect to Γ2. If we regard T (p), T (p2) and p±1Γ2

for all primes p as formal sums of such Γ2-double cosets, these give the generators of the
Hecke ring with respect to the pair (GSp(2,Q), Γ2). For a Hecke eigenform F ∈ Ak,j(Γ2),
we write T (n)F = λ(n, F )F . Then the Euler p-factor of the spinor L function of F is
given by

Hp(s, F ) = 1− λ(p, F )T + (λ(p, F )2 − λ(p2, F )− pµ−1)T 2 − λ(p, F )pµT 3 + p2µT 4,

where µ = 2k + m− 3 and T = p−s (cf. Arakawa [1]).
For a Hecke operator T (n) and a vector valued Siegel modular form F of degree

two, the Fourier coefficients of T (n)F is written by using the Fourier coefficients of F

as given in Arakawa [1]. So if we have enough Fourier coefficients, we can calculate the
eigenvalues for each Hecke operator. In our case we can show that the Hecke eigenforms
are given by

F13,10a = (3677f13,10a + 120147f13,10b)/(22 × 23× 21800833),

F13,10b = (−107841f13,10a + 21791f13,10b)/(2× 19× 23× 21800833).

We omit the details of the calculation since examples of this sort of numerical calculation
are found in [8] and we can do in the same way. Instead, in the appendix, we give explicit
Fourier coefficients we need. The Euler factors at 2 and 3 of the spinor L functions of
F13,10a and F13,10b are given as follows.

H2(s, F13,10a) = 1− 84480T + 10611589120T 2 − 84480 · 233T 3 + 266T 4

= (1 + 49152T + 233T 2)(1− 133632T + 233T 2),

H2(s, F13,10b) = 1 + 52800T − 889978880T 2 + 52800 · 233T 3 + 266T 4,

H3(s, F13,10a) = 1 + 73279080T + 5854043689141590T 2 + 73279080 · 333T 3 + 366T 4

= (1− 44641044T + 333T 2)(1 + 117920124T + 333T 2),

H3(s, F13,10b) = 1− 20395800T + 488975882715990T 2 − 20395800 · 333T 3 + 366T 4.

Comparing these with ∆(τ) = q − 24q + 252q3 + · · · , and taking the result in [17] into
account, we see that L(s, F13,10a, Sp) = L(s,∆, Sym(3)) and L(s − 22, F13,10a, St) =
L(s,∆, Sym(4)).

2.3. Main theorems.
For any non-negative integers a, b, c, d with a + b = c + d, we put

〈
ua

1ub
2, u

c
1u

d
2

〉
=

a!c!
m!

δac
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and define the hermitian inner product on C[u1, u2]m by extending this linearly. Then
we have 〈ρk,m(A)x, y〉 = 〈x, ρk,m(tA)y〉 for any x, y ∈ C[u1, u2]m and A ∈ GL2(C). For
any vector valued Siegel modular form F ∈ Ak,m(Γ2), we define the inner product (F, F )
of F by

(F, F ) =
∫

Γ2\H2

〈
ρk,m(

√
Y )f(Z), ρk,m(

√
Y )g(Z)

〉
det(Y )−3 dX dY

where Z = X +
√−1Y and dX = dx11dx12dx22, dY = dy11dy12dy22 for X = (xij),

Y = (yij) ∈ M2(R).

Theorem 2.2. For r = 2, 4, 6, 8, 10, we have

(2π)−3r−33Γ(11)−1Γ(r + 11)Γ(r + 22)L(r + 22,∆, Sym(4))

= (2π)−3r−33Γ(11)−1Γ(r + 11)Γ(r + 22)L(r, F13,10a, St)

= 218 · 3−6 · 5−5 · 13−1 × c(r + 22)(F13,10a, F13,10a)

where c(r + 22) is given as in the introduction.

By the above theorem, Zagier’s conjecture is equivalent to the following conjecture.

Conjecture 2.3. We should have

(F13,10a, F13,10a) = 215 × 36 × 55 × 13× (∆,∆)3.

We will discuss problems on more general modular forms in Section 3 (cf. Theorem
3.2 and Conjecture 3.3).

All the proofs of the above theorems will be given in Section 5. By the way, by the
numerical data above, we see that λ(n, F13,10a) ≡ λ(n, F13,10b) mod 13 for n = 2, 4, 3, 9.
We can show that this is always the case for any n.

Theorem 2.4. For any natural number n, we have

λ(n, F13,10a) ≡ λ(n, F13,10b) mod 13.

Proof. Since E8 is an integral lattice, we see that the coefficients of θa1,a2,(9,10)

and θb1,b2,(9,10) are contained in Z. Hence the prime divisors of denominators of coeffi-
cients of f13,10a and f13,10b are at most 2, 3, 5, 7 (and it is plausible that denominators
are always one). We have

F13,10a − F13,10b = 13× (5× 191f13,10a + 7489f13,10b)/(22 × 19× 21800833).

So all the Fourier coefficients of F13,10a−F13,10b are divisible by 13 at least in the ring of
13-adic integers Z13. Now we see in the table of the Fourier coefficients that the Fourier
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coefficient at T1 =
( 1 1/2

1/2 1

)
at u6

1u
4
2 is −(

10
4

)
= −2 · 3 · 5 · 7 for each F13,10a or F13,10b.

For any Hecke operator T (n) and any form F , the Fourier coefficient of T (n)F is a linear
combination of Fourier coefficients of F . So for F = F13,10a or F13,10b, the eigenvalues
are given by −(

10
4

)−1
times the coefficients of T (n)F at T1 at u6

1u
4
2. Hence the difference

is 13-integral. ¤

This can also be proved by the same argument as in the proof of [11, Theorem 5.2],
using the pullback formula, but we omit the details here. This type of congruence is often
found between a lift and a non-lift. It would be interesting to ask if there always exist
congruences between lifts of Kim-Ramakrishnan-Shahidi type and non-lift in general.

3. Siegel Eisenstein series and critical values.

3.1. Pullback formula.
In this section, we quote a general theoretical formula in Kozima [15] to give critical

values of the standard L function of vector valued Siegel modular forms, restricting the
situation to our cases (cf. also [6, Section 7].) The method is roughly as follows. We
prepare an Eisenstein series E4,l of degree 4 of weight l and differential operators D such
that the restriction of (DE4,l) to the diagonal block H2×H2 ⊂ H4 is a tensor of two vector
valued Siegel modular forms in Ak,m(Γ2). Then the inner product of this restriction with
a Hecke eigenform F ∈ Ak,m(Γ2) gives the value L(l − 2, F, St) up to (F, F ), powers of
π, and elementary gamma factors, depending on l, k, m and D. Here the differential
operator is needed to evaluate L(s, F, St) at various s starting from various l. For this
purpose, Kozima used differential operators defined in Böcherer [2] or Böcherer, Satoh
and Yamazaki [3], imitating their results for scalar valued cases. Put V

(m)
1 = C[u1, u2]m

and V
(m)
2 = C[u3, u4]m. Denote by Hol(H2, V

(m)
i ) the space of V

(m)
i -valued holomorphic

functions. Then we have Ak,m(Γ2) ⊗ Ak,m(Γ2) ⊂ Hol(H2, V
(m)
1 ) ⊗ Hol(H2, V

(m)
2 ). We

naturally identify elements in V
(m)
1 ⊗ V

(m)
2 with polynomials in u1, u2, u3, u4. The

differential operator we need is described as a product L̃k,mDl,(k,m) of Hol(H4, V
(m)
1 ⊗

V
(m)
2 )- valued operator L̃k,m and a scalar-valued operator D̃k−l

l = D̃k−1 ◦ · · · D̃l+1 ◦ D̃l,
both acting on holomorphic scalar valued functions on H4. The definition of D̃α is fairly
complicated, and we do not use this operator in the actual calculation except for a
comparison of normalization with other operators we use. So we refer to section 7 of [6]
for the definitions of D̃α and L(k,m) and do not repeat them here. (Note that there are
typos in [2] or [4] and this is corrected in the paper quoted above.) For any scalar valued
holomorphic function f on H4, we write

Dl,(k,m)(f) =
(
L̃k,mD̃k−l

l (f)
)∣∣

H2×H2
,

where |H2×H2 means the restriction of functions of Z =
(

Z1 Z12
Z12 Z2

) ∈ H4 to the set
H2 × H2

∼=
{(

Z1 0
0 Z2

)
;Zi ∈ H2

}
. Then Dl,(k,m) maps holomorphic functions on H4 to

Hol(H2, V
(m)
1 ) ⊗ Hol(H2, V

(m)
2 ). In particular, it preserves automorphy after restriction

and maps Al(Γ4) to Ak,m(Γ2)⊗Ak,m(Γ2). The image is contained in Sk,m(Γ2)⊗Sk,m(Γ2)
if k− l > 0. For an even positive integer l, we define the Siegel Eisenstein series E4,l(Z, s)
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of degree 4 by

E4,l(Z, s) = ζ(1− l − 2s)ζ(3− 2l − 4s)ζ(5− 2l − 4s)

×
∑

g=( A B
C D )∈Γ4,∞\Γ4

det(CZ + D)−l(det(Im(g(Z))))s

(Z ∈ H4, s ∈ C), where ζ(∗) is Riemann’s zeta function, and Γ4∞ =
{( ∗ ∗

04 ∗
) ∈ Γ4

}
. This

series converges for 2Re(s) + l > 5 and is continued meromorphically to the whole plane
as a function of s. Furthermore, for l ≥ 4, E4,l(Z, 0) is a holomorphic Siegel modular
form of weight l as a function of Z (cf. [20]). From now on we assume that E4,l(Z, 0) is
holomorphic as a function of Z, and write E4,l(Z) = E4,l(Z, 0). For an integer k ≥ l put

Fl,(k,m)(Z1, Z2) = (2π
√−1)−2(k−l)−mDl,(k,m)(E4,l)

∣∣
H2×H2

For F ∈ Sk,m(Γ4), we define Λ(r, F, St) by

Λ(r, F, St) = 214−6k−r−2m(−1)r/2 × Γ(r + 1)Γ(2r)Γ(2k + m− 3)
(k − 2)(k)mm!

× L(r, F, St)
π2k+m+3r−3(F, F )

,

where (k)m = k(k + 1) · · · (k + m− 1). (This is the same as the definition in [15] or [6]
for n = 2, though apparently different looking.) Then the following result is a special
case of the pullback formula for the Siegel Eisenstein series in [2], [3] and [15].

Proposition 3.1. Let k be an odd positive integer and let F1, . . . , Fd be an orthog-
onal basis of Sk,m(Γ2) consisting of Hecke eigenforms. Assume that F1, . . . , Fd belong to
Sk,m(Γ2)(R). Let l be an even integer such that 4 ≤ l ≤ k. Then we have

Fl,(k,m)(Z1, Z2) =
d∑

i=1

Λ(Fi, l − 2, St)Fi(Z1)⊗ Fi(Z2).

Here note that each product term depending on i in the above sum does not change
even if we replace Fi by a constant multiple. Also we can take a basis F1, . . . , Fd of
Sk,m(Γ2) so that F1, . . . , Fd satisfy the condition in the above proposition.

For a Hecke eigenform f ∈ Sk(SL2(Z)) or a Hecke eigenform F ∈ Sk,j(Γ2), we
denote by Q(f) or Q(F ), the field generated over Q by all the Hecke eigenvalues of f or
F , respectively.

Theorem 3.2. For any primitive form f ∈ Sk(Γ1), there exists a constant c(f)
depending only on f such that L(l, f, Sym(4))/π−3k+3l+3c(f) belongs to Q(f) for any
even integer l such that 2k ≤ l ≤ 3k − 4.
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Proof. Let F ∈ Sk+1,k−2(Γ2) be a Siegel modular form obtained as a lifting from
f by Ramakrishnan-Shahidi’s theorem such that

L(s, f, Sym(3)) = L(s, F, Sp).

Then as we stated before, we have L(s, f, Sym(4)) = L(s− 2k +2, F, St). By Takei [22],
we have a Hecke eigenform G ∈ Sk+1,k−2(Γ2)(Q(F )) such that eigenvalues of G are the
same as those of F . Moreover, we have Q(G) = Q(F ) = Q(f). So by Theorem of Kozima
[15], we can prove

L(r, F, St)/(π3k+3r−3(G,G)) ∈ Q(f)

for any even integer r such that 2 ≤ r ≤ k − 2. This proves the assertion. ¤

According to a part of Deligne’s general conjecture in [5], the critical values
L(l, f, Sym(4))/π3l−3k+3(f, f)3 should belong to Q(f) for any even integer l such that
2k ≤ l ≤ 3k − 4. Hence, taking Theorem 3.2 into account, we propose the following
conjecture.

Conjecture 3.3. For a primitive form f ∈ Sk(Γ1), there should exist a Hecke
eigenform G ∈ Sk+1,k−2(Γ2)(Q(f)) such that L(s,G, Sp) = L(s, f, Sym(3)) and that
(G,G)/(f, f)3 ∈ Q(f).

3.2. Calculation of critical values.
The above differential operators are convenient to see the concrete relation between

actions and values of L functions, but the operators themselves are sometimes very com-
plicated for practical use since coefficients are not constant and too many terms appear
after iterations which should become much simpler under the restriction to H2 × H2.
More direct characterization of linear holomorphic differential operators with constant
coefficients which preserve automorphy after a restriction of the domain has been given
in [7] and we use them here. We extract the necessary part from [7]. We define 2 × 2
matrices R = (rij), S = (sij), T = (tij), and assume that R, S are symmetric. Here rij ,
sij (1 ≤ i ≤ j ≤ 2) and tij (1 ≤ i, j ≤ 2) are independent variables. As before, we put
V

(m)
1 = C[u1, u2]m and V

(m)
2 = C[u3, u4]m. For any non-negative integers k, l, m with

l ≤ k, we denote by Pl,(k,m) the linear space of V
(m)
1 ⊗ V

(m)
2 valued polynomials P in

rij , sij and tij satisfying the following conditions (1) and (2).
(1) P (AR tA,BS tB,AT tB) = det(AB)k−lSymm(A) ⊗ Symm(B)P (R, S, T ). (2) For
any 2 × 2l matrices X = (xij), Y = (yij) with variable components, put P ∗(X, Y ) =
P (X tX, Y tY, X tY ). Then P ∗ is pluriharmonic with respect to each X or Y , i.e.

2l∑
µ=1

∂2P ∗

∂xiµ∂xjµ
=

2l∑
µ=1

∂2P ∗

∂yiµ∂yjµ
= 0.

for any i, j with 1 ≤ i, j ≤ 2.
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When l ≥ 4, we have dimCPl,(k,m) = 1 for any (l, k, m). We write Z4 = (zij) ∈ H4

and put ∂ij = ((1 + δij)/2)× (∂/∂zij). Define a differential operator associated with P

by

DP = P

((
∂11 ∂12

∂12 ∂22

)
,

(
∂33 ∂34

∂34 ∂44

)
,

(
∂13 ∂14

∂23 ∂24

))
.

Now we explain how DP behaves well on Siegel modular forms. For any V
(m)
1 ⊗ V

(m)
2 -

valued holomorphic function G(Z1, Z2) on H2 × H2, and any gi =
(

Ai Bi

Ci Di

) ∈ Sp(2,R)
(matrix size 4), we define

(G|k,m[g1, g2])(Z1, Z2) = ρk,m(C1Z1 + D1)−1 ⊗ ρk,m(C2Z2 + D2)−1G(g1Z1, g2Z2).

We identify Sp(2,R)× Sp(2,R) with a subgroup of Sp(4,R) (size 8) by embedding

ι(g1, g2) =




A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2


 .

Let D be a V
(m)
1 ⊗ V

(m)
2 valued linear holomorphic homogeneous differential operator

with constant coefficients on functions on H4. We consider the following condition for D.

Condition 3.4. For any scalar valued holomorphic function F (Z) of H4, we have

(
D(F |detl [ι(g1, g2)])

)∣∣
H2×H2

=
(
(DF )

∣∣
H2×H2

|k,m[(g1, g2)]
)
.

Then an operator D which satisfies Condition 3.4 is equal to DP for some P ∈ Pl,(k,m)

given above. For each (l, (k, m)) and for a fixed non-zero φ = φl,(k,m) ∈ Pl,(k,m), we write
(Φl,(k,m)F )(Z1, Z2) = (DφF )|H2×H2 . (A concrete suitable choice of φl,(k,m) will be given
later for special cases in next section.) Since Böcherer’s operator Dl,(k,m) gives an oper-
ator of the above type, it differs from Φl,(k,m) only by a constant. So we can use Φl,(k,m)

instead. We define the constant C(l, (k, m)) by Φl,(k,m) = C(l, (k, m))Dl,(k,m). We
also put F̃l,(k,m)(Z1, Z2) = Φl,(k,m)(E4,l)

∣∣
H2×H2

= C(l, (k, m))Fl,(k,m) and Λ̃(r, F, St) =
C(l, (k, m))Λ(r, F, St) for any F ∈ Ak,m(Γ2). Then the same pullback formula in 3.1
holds for F̃ and Λ̃. We explain shortly in a general setting how to obtain Λ̃(r, F, St) from
Fourier coefficients. We write the Fourier expansion of F̃ by

F̃l,(k,m)(Z1, Z2) =
∑

R,S∈H2(Z)>0

εl,(k,m)(R, S;U) exp
(
2π
√−1tr(AZ1 + BZ2)

)
,

where εl,(k,m)(R, S;U) is a polynomial in U = (u1, u2, u3, u4). Then for fixed R and S,
we have
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εl,(k,m)(R, S;U) =
∑

T∈M2(Z)
c4,l

((
R T/2

tT/2 S

))
φl,(k,m)(R, S, T/2),

where c4,l(T ) denotes the Fourier coefficient of E4,l at T ∈ H4(Z)≥0 and is regarded as
zero if T is not positive semi-definite. For a fixed S ∈ H2(Z)>0, we write

Gl,(k,m),S(Z1) =
∑

R∈H2(Z)>0

εl,(k,m)(R, S;U) exp(2π
√−1tr(RZ1)).

Then we have

F̃l,(k,m)(Z1, Z2) =
∑

S∈H2(Z)>0

Gl,(k,m),S(Z1) exp(2π
√−1tr(SZ2)).

Assume that Ak,m(Γ2) is spanned by orthogonal Hecke eigenforms Fi ∈ Ak,m(Γ2)(R)
(1 ≤ i ≤ d). For each S ∈ H2(Z)>0, we denote by ci(S, v) the Fourier coefficient of
Fi(Z2) at S ∈ H2(Z)>0, which is a polynomial in v = (u3, u4). Then comparing the
Fourier expansions of both sides of the pullback formula, for any S ∈ H2(Z)>0 we have

Gl,(k,m),S(Z1) =
d∑

i=1

cFi
(S; v)Λ̃(l − n, Fi, St)Fi(Z1), (1)

where v = (u3, u4). We assume that cFi(S; v) 6= 0 for any 1 ≤ i ≤ d. Then by comparing
enough Fourier coefficients of both sides of (1) at exp(2π

√−1tr(AZ1)) for various A, we
have a simultaneous equation which has the unique solution, regarding Λ̃(l − n, Fi, St)
as unknowns. Indeed take matrices A1, . . . , Ad ∈ H2(Z)>0 such that

det(cFi
(Aj ;u)1≤i,j≤d) 6= 0,

where u = (u1, u2). Then solving the simultaneous equation

εl,(k,m)(Ai, S;U) =
d∑

i=1

cFj (Ai;U1)
(
cFj (S;U2)Λ(l − n, Fj , St)

)

for i = 1, . . . , d by Cramer’s formula, we have

Λ̃(l − n, Fi, St) =
det(Ki)

cFi
(S; v)× det(K)

.

where K is the d×d matrix (cFi
(Aj ;U1))1≤i,j≤d and Ki is a matrix obtained by replacing

the i-th column of K by the column vector (εl,(k,m)(Aj , S;U))1≤j≤d. In order to calculate
concrete values, we need explicit φ, values of εl,(k,m)(Ai, S;U) and the Fourier coefficients
cFi

(Aj , u). Still this is not very easy and will be explained in the following section.
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4. Construction of differential operators.

We construct non-zero polynomials φ in P12,(13,10), P10,(13,10), P8,(13,10), P6,(13,10),
P4,(13,10). The first two cases has already been given in [6, Section 8]. The latter
three is much more complicated. So here we give a polynomial in P8,(13,10) in details,
which is the simplest among three, and in the other cases we give only a short hint for
the polynomials. We explain a slightly more general case Pl,(l+5,10) first. Since any
φ ∈ Pl,(k,m) is V

(m)
1 ⊗ V

(m)
2 -valued, we can regard φ as a polynomial of rij , sij , tij and

ui (1 ≤ i ≤ 4). For Pl,(l+5,10), the polynomial φ is given by a certain linear combination
of the following 134 polynomials hi = hi(R, S, T ) over the polynomials in l. Here as for
the definitions of the polynomials Pi (i = 0, 1, 2) , Q, Qi (i = 1, 2), m, s in rij , sij , tij ,
confer [6, Section 8].

h1 = QQ2
1m

2 h2 = QQ2
1ms2 h3 = QQ2

1s
4

h4 = QQ2
2m

2 h5 = QQ2
2ms2 h6 = QQ2

2s
4

h7 = det(T )Q2
1m

3 h8 = det(T )Q2
1m

2s2 h9 = det(T )Q2
1ms4

h10 = det(T )Q2
1s

6 h11 = det(T )Q2
2m

3 h12 = det(T )Q2
2m

2s2

h13 = det(T )Q2
2ms4 h14 = det(T )Q2

2s
6 h15 = det(T )Q1P0m

4

h16 = det(T )Q1P0m
3s2 h17 = det(T )Q1P0m

2s4 h18 = det(T )Q1P0ms6

h19 = det(T )Q1P0s
8 h20 = det(T )Q1P1m

4 h21 = det(T )Q1P1m
3s2

h22 = det(T )Q1P1m
2s4 h23 = det(T )Q1P1ms6 h24 = det(T )Q1P1s

8

h25 = det(T )Q1P2m
4 h26 = det(T )Q1P2m

3s2 h27 = det(T )Q1P2m
2s4

h28 = det(T )Q1P2ms6 h29 = det(T )Q1P2s
8 h30 = det(T )Q2P0m

4

h31 = det(T )Q2P0m
3s2 h32 = det(T )Q2P0m

2s4 h33 = det(T )Q2P0ms6

h34 = det(T )Q2P0s
8 h35 = det(T )Q2P1m

4 h36 = det(T )Q2P1m
3s2

h37 = det(T )Q2P1m
2s4 h38 = det(T )Q2P1ms6 h39 = det(T )Q2P1s

8

h40 = det(T )Q2P2m
4 h41 = det(T )Q2P2m

3s2 h42 = det(T )Q2P2m
2s4

h43 = det(T )Q2P2ms6 h44 = det(T )Q2P2s
8 h45 = QQ1P0m

3

h46 = QQ1P0m
2s2 h47 = QQ1P0ms4 h48 = QQ1P0s

6

h49 = QQ1P1m
3 h50 = QQ1P1m

2s2 h51 = QQ1P1ms4

h52 = QQ1P1s
6 h53 = QQ1P2m

3 h54 = QQ1P2m
2s2

h55 = QQ1P2ms4 h56 = QQ1P2s
6 h57 = QQ2P0m

3

h58 = QQ2P0m
2s2 h59 = QQ2P0ms4 h60 = QQ2P0s

6

h61 = QQ2P1m
3 h62 = QQ2P1m

2s2 h63 = QQ2P1ms4

h64 = QQ2P1s
6 h65 = QQ2P2m

3 h66 = QQ2P2m
2s2

h67 = QQ2P2ms4 h68 = QQ2P2s
6 h69 = det(T )P 2

0 m5

h70 = det(T )P 2
0 m4s2 h71 = det(T )P 2

0 m3s4 h72 = det(T )P 2
0 m2s6

h73 = det(T )P 2
0 ms8 h74 = det(T )P 2

0 s10 h75 = det(T )P 2
1 m5

h76 = det(T )P 2
1 m4s2 h77 = det(T )P 2

1 m3s4 h78 = det(T )P 2
1 m2s6

h79 = det(T )P 2
1 ms8 h80 = det(T )P 2

1 s10 h81 = det(T )P 2
2 m5

h82 = det(T )P 2
2 m4s2 h83 = det(T )P 2

2 m3s4 h84 = det(T )P 2
2 m2s6

h85 = det(T )P 2
2 ms8 h86 = det(T )P 2

2 s10 h87 = det(T )P0P1m
5

h88 = det(T )P0P1m
4s2 h89 = det(T )P0P1m

3s4 h90 = det(T )P0P1m
2s6
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h91 = det(T )P0P1ms8 h92 = det(T )P0P1s
10 h93 = det(T )P0P2m

5

h94 = det(T )P0P2m
4s2 h95 = det(T )P0P2m

3s4 h96 = det(T )P0P2m
2s6

h97 = det(T )P0P2ms8 h98 = det(T )P0P2s
10 h99 = det(T )P1P2m

5

h100 = det(T )P1P2m
4s2 h101 = det(T )P1P2m

3s4 h102 = det(T )P1P2m
2s6

h103 = det(T )P1P2ms8 h104 = det(T )P1P2s
10 h105 = QP 2

0 m4

h106 = QP 2
0 m3s2 h107 = QP 2

0 m2s4 h108 = QP 2
0 ms6

h109 = QP 2
0 s8 h110 = QP 2

1 m4 h111 = QP 2
1 m3s2

h112 = QP 2
1 m2s4 h113 = QP 2

1 ms6 h114 = QP 2
1 s8

h115 = QP 2
2 m4 h116 = QP 2

2 m3s2 h117 = QP 2
2 m2s4

h118 = QP 2
2 ms6 h119 = QP 2

2 s8 h120 = QP0P1m
4

h121 = QP0P1m
3s2 h122 = QP0P1m

2s4 h123 = QP0P1ms6

h124 = QP0P1s
8 h125 = QP0P2m

4 h126 = QP0P2m
3s2

h127 = QP0P2m
2s4 h128 = QP0P2ms6 h129 = QP0P2s

8

h130 = QP2P1m
4 h131 = QP2P1m

3s2 h132 = QP2P1m
2s4

h133 = QP2P1ms6 h134 = QP2P1s
8

The coefficients of polynomials for general l are polynomials in l but too complicated to
write them down here. Instead, we give here only the case l = 8, where the coefficients
are numbers. We have φ8,(13,10) =

∑134
i=1 cihi ∈ P8,(13,10) if we define ci by the following

table.

c1 = 4232592 c2 = −112869120 c3 = 474050304 c4 = 4232592

c5 = −112869120 c6 = 474050304 c7 = 16633344 c8 = −1241560320

c9 = 15621086208 c10 = −44244695040 c11 = 16633344 c12 = −1241560320

c13 = 15621086208 c14 = −44244695040 c15 = 241922240 c16 = −15308160000

c17 = 228273454080 c18 = −1127996620800 c19 = 1691994931200 c20 = 63497448

c21 = −4817272320 c22 = 70234112256 c23 = −293668085760 c24 = 317249049600

c25 = 18659200 c26 = −1450208256 c27 = 26011991040 c28 = −159308685312

c29 = 301447372800 c30 = 241922240 c31 = −15308160000 c32 = 228273454080

c33 = −1127996620800 c34 = 1691994931200 c35 = 63497448 c36 = −4817272320

c37 = 70234112256 c38 = −293668085760 c39 = 317249049600 c40 = 18659200

c41 = −1450208256 c42 = 26011991040 c43 = −159308685312 c44 = 301447372800

c45 = 104415360 c46 = −4644998400 c47 = 43029181440 c48 = −98699704320

c49 = 18946704 c50 = −638144640 c51 = 4360220928 c52 = −7049978880

c53 = 6397440 c54 = −265676544 c55 = 2396298240 c56 = −5514958848

c57 = 104415360 c58 = −4644998400 c59 = 43029181440 c60 = −98699704320

c61 = 18946704 c62 = −638144640 c63 = 4360220928 c64 = −7049978880

c65 = 6397440 c66 = −265676544 c67 = 2396298240 c68 = −5514958848

c69 = 255963456 c70 = −17620149120 c71 = 294466486272 c72 = −1757257592832

c73 = 3996330885120 c74 = −2797431619584 c75 = 53189556 c76 = −4003398000

c77 = 61987994880 c78 = −297417076992 c79 = 444987952640 c80 = −116559650816

c81 = 2107392 c82 = −171664640 c83 = 4234374144 c84 = −43949002752

c85 = 197032935424 c86 = −307800457216 c87 = 364827904 c88 = −23305074240

c89 = 357128131584 c90 = −1889998623744 c91 = 3483360993280 c92 = −1398715809792

c93 = 97800192 c94 = −6029168320 c95 = 104368750080 c96 = −750749819904

c97 = 2372821463040 c98 = −2677111980032 c99 = 26151104 c100 = −2036539344

c101 = 40090197504 c102 = −291216717312 c103 = 762601656320 c104 = −472818583552

c105 = 124607280 c106 = −7987203840 c107 = 119497142016 c108 = −588169666560

c109 = 874197381120 c110 = 17538577 c111 = −671331360 c112 = 5674929120
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c113 = −14351742720 c114 = 9106222720 c115 = 932960 c116 = −57576960

c117 = 922053888 c118 = −5110118400 c119 = 8719284224 c120 = 163353680

c121 = −8081566080 c122 = 90033092352 c123 = −311206210560 c124 = 291399127040

c125 = 39050564 c126 = −1602330240 c127 = 22595529600 c128 = −143673707520

c129 = 299624102400 c130 = 9729440 c131 = −461438208 c132 = 5251018752

c133 = −19116804096 c134 = 18799943680

By the way, gcd of coefficients ci is one.
Next, a polynomial in P6,(13,10) is a linear combination of the 270 polynomials in

the following set.

{Q3
1, Q

3
2} ×Q× {m, s2}

{Q3
1, Q

3
2} × det(T )× {m2,ms2, s4}

{Q2
1, Q

2
2} ×Q× {P0, P1, P2} × {m2,ms2, s4}

{Q2
1, Q

2
2} × det(T )× {P0, P1, P2} × {m3,m2s2,ms4, s6}

{Q1, Q2} ×Q× {P 2
0 , P 2

1 , P 2
2 , P0P1, P0P2, P1P2} × {m3,m2s2,ms4, s6}

{Q1, Q2} × det(T )× {P 2
0 , P 2

1 , P 2
2 , P0P1, P0P2, P1P2} × {m4,m3s2,m2s4,ms6, s8}

Q× {P 3
0 , P 3

1 , P 3
2 , P 2

0 P1, P
2
0 P2, P

2
1 P0, P

2
1 P2, P

2
2 P0, P

2
2 P1, P0P1P2}

× {m4,m3s2,m2s4,ms6, s8}
det(T )× {P 3

0 , P 3
1 , P 3

2 , P 2
0 P1, P

2
0 P2, P

2
1 P0, P

2
1 P2, P

2
2 P0, P

2
2 P1, P0P1P2}

× {m5,m4s2,m3s4,m2s6,ms8, s10}

Here by the product × of the sets we mean the set obtained by taking product of each
element in each set. For example, we mean

{Q3
1, Q

3
2} ×Q× {m, s2} = {QQ3

1m,QQ3
2m,QQ3

1s
2, QQ3

2s
2}.

We denote by φ6,(13,10) the unique polynomial in P6,(13,10) which is a linear combination
of the above 270 polynomials such that the coefficient of det(T )P 3

0 s10 is −220 · 32 · 5 · 7 ·
17 · 19 · 29 · 31. Then all the coefficients of φ6,(13,10) are integers whose gcd is one.

Next, a polynomial in P4,(13,10) is a linear combination of the following 465 polyno-
mials.

{Q4
1, Q

4
2} × det(T )× {m, s2}

{Q4
1, Q

4
2} ×Q

{Q3
1, Q

3
2} × det(T )× {P0, P1, P2} × {m2,ms2, s4}

{Q3
1, Q

3
2} ×Q× {m, s2} × {P0, P1, P2}

{Q2
1, Q

2
2} × det(T )× {P 2

0 , P 2
1 , P 2

2 , P0P1, P0P2, P1P2} × {m3,m2s2,ms4, s6}
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{Q2
1, Q

2
2} ×Q× {P 2

0 , P 2
1 , P 2

2 , P0P1, P0P2, P1P2} × {m2,ms2, s4}
{Q1, Q2} × det(T )× {P 3

0 , P 3
1 , P 3

2 , P 2
0 P1, P

2
0 P2, P

2
1 P0, P

2
1 P2, P

2
2 P0, P

2
2 P1, P0P1P2}

× {m4,m3s2,m2s4,ms6, s8}
{Q1, Q2} ×Q× {P 3

0 , P 3
1 , P 3

2 , P 2
0 P1, P

2
0 P2, P

2
1 P0, P

2
1 P2, P

2
2 P0, P

2
2 P1, P0P1P2}

× {m3,m2s2,ms4, s6}
det(T )× {P 4

0 , P 4
1 , P 4

2 , P 3
0 P1, P

3
0 P2, P

3
1 P0, P

3
1 P2, P

3
2 P0, P

3
2 P1, P

2
0 P 2

1 ,

P 2
0 P1P2, P

2
0 P 2

2 , P 2
1 P 2

2 , P 2
1 P0P2, P

2
2 P0P1} × {m5,m4s2,m3s4,m2s6,ms8, s10}

Q× {P 4
0 , P 4

1 , P 4
2 , P 3

0 P1, P
3
0 P2, P

3
1 P0, P

3
1 P2, P

3
2 P0, P

3
2 P1, P

2
0 P 2

1 ,

P 2
0 P1P2, P

2
0 P 2

2 , P 2
1 P 2

2 , P 2
1 P0P2, P

2
2 P0P1} × {m4,m3s2,m2s4,ms6, s8}

We denote by φ4,(13,10) the unique polynomial in P4,(13,10) which is a linear combination
of the above 465 polynomials such that the coefficient of det(T )P 4

0 s10 is −220 · 3 · 52 · 72 ·
13 · 17 · 19 · 29 · 31. Then all the coefficients of φ4,(13,10) are integers whose gcd is one.

5. Proof of Theorem 2.2.

For (k, m) = (13, 10) and l = 4, 6, 8, 10, 12, we denote by Φl,(k,m) the differential
operators corresponding to φl,(k,m) defined in the last section. (As for l = 10 and 12, see
the definition in [6].) In these cases, explicit values of C(l, (k, m)) can be calculated for
each l by comparing the actions of both operators Φl,(k,m) and Dl,(k,m) on the polynomial.
det(Z12)k−l(tuZ12v)m where Z =

(
Z1 Z12
Z12 Z2

) ∈ H4 and u = (u1, u2) and v = (u3, u4). The
image of these actions are constant multiples of (u, u)m(v, v)m. The action of Dl,(m,k)

has been given in [6, Section 7, Corollary 7.6]. The actions of Φl,(k,m) depends only on
the coefficients of det(T )P (k−l−1)/2

0 sm and the above constants are calculated by using
Lemma 7.5 in [6]. We have the following values.

C(4, (13, 10)) = −223 × 38 × 55 × 75 × 113 × 13× 172 × 192

C(6, (13, 10)) = −223 × 39 × 55 × 74 × 113 × 13× 172 × 192

C(8, (13, 10)) = −221 × 39 × 54 × 75 × 112 × 132 × 172 × 192

C(10, (13, 10)) = −220 × 313 × 56 × 74 × 112 × 13× 173 × 192 × 41

C(12, (13, 10)) = −217 × 311 × 55 × 74 × 112 × 13× 172 × 192.

For Φl,(13,10) (l = 4, 6, 8, 10, 12), we have

(Φl,(13,10)E4,l)
∣∣
H2×H2

= c1(l)F13,10a(Z1)F13,10a(Z2) + c2(l)F13,10b(Z1)F13,10b(Z2)

for some constant c1(l) and c2(l) ∈ C, where Z1, Z2 ∈ H2. Here we are identifying the
vector valued forms with polynomials in two variables and using variables u1, u2 for Z1

and u3, u4 for Z2. So the product is a polynomial in ui but means the tensor product in
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the usual sense. Explict values of ci(l) are obtained by comparing the Fourier coefficients
of both sides as we exlained in Section 3.2. For the sake of simplicity, we put

T0 =
(

1 1/2
1/2 1

)
T1 =

(
1 0
0 1

)
T2 =

(
2 0
0 2

)

We define εl,(13,10)(A,B, U) for Φl,(13,10) as in Section 3.2 and denote this shortly by
εl(A,B) for the sake of simplicity. To calculate this, we need Fourier coefficients of E4,l.
In principle, the Fourier coefficients can be calculated by using the results in [10], but
still it is very complicated. A simpler way of calculation has been given in [6] Proposition
7.8 and we use this. We omit the details of the calculation but anyway we obtain the
following results.

ε4(T0, T1) = −(3968055/32)u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(14779u8
3 − 57972u6

3u
2
4 + 57972u2

3u
6
4 − 14779u8

4)

ε4(T0, T2) = −(3968055/32)u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(14779u8
3 − 57972u6

3u
2
4 + 57972u2

3u
6
4 − 14779u8

4)

ε6(T0, T1) = 915705/8u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(20301u8
3 − 38968u6

3u
2
4 + 38968u2

3u
6
4 − 20301u8

4)

ε6(T0, T2) = 7325640u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(283499u8
3 − 184578472u6

3u
2
4 + 184578472u2

3u
6
4 − 283499u8

4)

ε8(T0, T1) = −1180242u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(52013u8
3 − 76579u6

3u
2
4 + 76579u2

3u
6
4 − 52013u8

4)

ε8(T0, T2) = −37767744u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(9524109u8
3 − 938928392u6

3u
2
4 + 938928392u2

3u
6
4 − 9524109u8

4)

ε10(T0, T1) = 135158058000u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(1693627u8
3 − 2321496u6

3u
2
4 + 2321496u2

3u
6
4 − 1693627u8

4)

ε10(T0, T2) = 8650115712000u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(184909013u8
3 − 15261048024u6

3u
2
4

+ 15261048024u2
3u

6
4 − 184909013u8

4)

ε12(T0, T1) = −75952235520u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(26199u8
3 − 35275u6

3u
2
4 + 35275u2

3u
6
4 − 26199u8

4)

ε12(T0, T2) = −2430471536640u1u2(u2
1 + u1u2 + u2

2)
2(2u4

1 + 5u3
1u2 − 5u1u

3
2 − 2u4

2)

× u3u4(5941681u8
3 − 471962984u6

3u
2
4 + 471962984u2

3u
6
4 − 5941681u8

4).
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We also have the following table of Λ(r, F, St) for F ∈ S13,10(Γ2).

r F13,10a F13,10b

2
−29 · 31

229 · 37 · 56 · 72 · 113 · 13 · 17 · 19
−73

230 · 36 · 54 · 74 · 113 · 13 · 17

4
29 · 31

224 · 37 · 56 · 72 · 113 · 132 · 17 · 19
6529

228 · 37 · 54 · 73 · 113 · 132 · 17 · 19

6
−23 · 29 · 31 · 691

223 · 39 · 56 · 74 · 112 · 133 · 17 · 19
−29 · 9049

223 · 39 · 55 · 74 · 112 · 133 · 17

8
31 · 653

215 · 39 · 55 · 7 · 112 · 132 · 172 · 19
312931

218 · 37 · 54 · 73 · 112 · 132 · 172 · 19

10
−34981

210 · 35 · 56 · 72 · 112 · 132 · 17 · 19
−436307

210 · 35 · 56 · 73 · 112 · 132 · 17 · 19

Here, if we use exact values of ε4(Ti, Tj) given above and the table of the Fourier coeffi-
cients in the appendix, it is a routine work to calculate cl(i) by the method explained in
Section 3.2. Dividing Λ̃(l−n, F, St) for F = F13,10a or F13,10b by C(l, (k, m)), we obtain
Λ(r, F, St) for F = F13,10a or F13,10b as in the above table.

Remark. From the above table, we see that the values of L(r, F, St) are all pos-
itive for r = 2, 4, 6, 8, 10 for F = F13,10a or F13,10b. If the absolute value of the
Satake parameters in L(s, F, St) is one, then the Euler products of L(s, F, St) converges
absolutely for Re(s) > 1, so this is naturally expected.

Proof of Theorem 2.2. The value L(r, F13,10a, St)/(F13,10a, F13,10a) is by defi-
nition a rational multiple of Λ(r, F13,10a, St) depending on r, and can be calculated easily
for each r. Then multiplying (2π)−3r−33Γ(11)−1Γ(r + 11)Γ(r + 22) to this, we obtain
Theorem 2.2. ¤

6. Table of the Fourier coefficients.

We give below the Fourier coefficients we needed in the above calculation. These
are calculated by a computer. We explain the notation. For a cusp form F ∈ Sk,m(Γ2),
we write the Fourier expansion as

F (Z) =
∑

T

cF (T, u)e2π
√−1 Tr(TZ)

where T runs over positive definite half integral symmetric matrices and the Fourier
coefficients cF (T, u) =

∑m
µ=0 cF,µ(T )um−µ

1 uµ
2 are in V

(m)
1 = C[u1, u2]m and cF,µ(T ) ∈ C.

In the table, (a, b, c, µ) denotes
(
m
µ

)−1
cF,µ(T ), where

T =
(

a b/2
b/2 c

)
.



Exact critical values of the symmetric fourth L function 157

Here we multiplied
(
m
µ

)−1 to make the table simpler. When a = c in T , we have

cF,µ(T ) = (−1)kcF,m−µ(T )

by the automorphy with respect to the transformation (τ, z, ω) 7→ (ω, z, τ) for
(

τ z
z ω

) ∈ H2.
So we give values of cF,ν(T ) only for µ ≤ m/2 in the following table.

f13,10a f13,10b F13,10a F13,10b

(1,1,0,0) 0 0 0 0
(1,1,0,1) −1033482 131790 6 6
(1,1,0,2) 0 0 0 0
(1,1,0,3) −732570 −127822 −9 4
(1,1,0,4) 0 0 0 0
(1,1,0,5) 0 0 0 0
(1,1,1,0) 0 0 0 0
(1,1,1,1) 516741 −65895 −3 −3
(1,1,1,2) 516741 −65895 −3 −3
(1,1,1,3) 344494 −43930 −2 −2
(1,1,1,4) 172247 −21965 −1 −1
(1,1,1,5) 0 0 0 0
(2,2,0,0) 0 0 0 0
(2,2,0,1) −120565055616 −14105233536 −1065984 666240
(2,2,0,2) 0 0 0 0
(2,2,0,3) 41609947392 −7401697024 −367104 −243968
(2,2,0,4) 0 0 0 0
(2,2,0,5) 0 0 0 0
(2,2,2,0) 0 0 0 0
(2,2,2,1) −28664602560 −3353549760 −253440 158400
(2,2,2,2) −28664602560 −3353549760 −253440 158400
(2,2,2,3) −19109735040 −2235699840 −168960 105600
(2,2,2,4) −9554867520 −1117849920 −84480 52800
(2,2,2,5) 0 0 0 0
(3,3,0,0) 0 0 0 0
(3,3,0,1) −22962940769520 −6636953887920 −439674480 122374800
(3,3,0,2) 0 0 0 0
(3,3,0,3) −12114978315120 11380342607280 659511720 81583200
(3,3,0,4) 0 0 0 0
(3,3,0,5) 0 0 0 0
(3,3,3,0) 0 0 0 0
(3,3,3,1) 33725476041021 481913263665 90697077 −190327563
(3,3,3,2) 33725476041021 481913263665 90697077 −190327563
(3,3,3,3) 22483650694014 321275509110 60464718 −126885042
(3,3,3,4) 11241825347007 160637754555 30232359 −63442521
(3,3,3,5) 0 0 0 0
(1,3,0,0) 0 0 0 0
(1,3,0,1) 2091767568 −266742960 −12144 −12144
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f13,10a f13,10b F13,10a F13,10b

(1,3,0,2) 0 0 0 0
(1,3,0,3) 1011105232 317082512 20848 −5360
(1,3,0,4) 0 0 0 0
(1,3,0,5) 4811457440 −1091436320 −56560 −28480
(1,3,0,6) 0 0 0 0
(1,3,0,7) −8848264032 6576137568 377712 57600
(1,3,0,8) 0 0 0 0
(1,3,0,9) −193798838736 −5297409936 −672624 1090800
(1,3,0,10) 0 0 0 0
(1,4,0,0) 0 0 0 0
(1,4,0,1) 49607136 −6325920 −288 −288
(1,4,0,2) 0 0 0 0
(1,4,0,3) −12061925760 −1605230976 −118272 66432
(1,4,0,4) 0 0 0 0
(1,4,0,5) −2789152800 886648800 48000 16800
(1,4,0,6) 0 0 0 0
(1,4,0,7) −391895872320 4480764096 −450048 2223168
(1,4,0,8) 0 0 0 0
(1,4,0,9) −3468463687296 491999011200 23113728 20193408
(1,4,0,10) 0 0 0 0
(1,7,1,0) 0 0 0 0
(1,7,1,1) −101179954764 12902504580 587412 587412
(1,7,1,2) −101179954764 12902504580 587412 587412
(1,7,1,3) −943015320576 −125948841984 −9273600 5193216
(1,7,1,4) −1784850686388 −264800188548 −19134612 9799020
(1,7,1,5) −3352044999240 362462653080 15567480 19386360
(1,7,1,6) −5644598259132 1755839682900 94832676 33955236
(1,7,1,7) −609784653744 863008300944 50579280 4438224
(1,7,1,8) 19805121629244 −5368354092756 −285274404 −118232100
(1,7,1,9) −1035074248691868 81228688663284 2968282692 5951187396
(1,7,1,10) −5354649359992800 460040331492000 17741354400 30832250400
(1,9,0,0) 0 0 0 0
(1,9,0,1) −346874798034 44233600230 2013822 2013822
(1,9,0,2) 0 0 0 0
(1,9,0,3) 3023838489870 313300863594 24311403 −16755948
(1,9,0,4) 0 0 0 0
(1,9,0,5) −13497275937600 −2278657310400 −161244000 73785600
(1,9,0,6) 0 0 0 0
(1,9,0,7) 338156932299570 54763902017046 3900489957 −1851262452
(1,9,0,8) 0 0 0 0
(1,9,0,9) −11260623773839086 1058621009379930 42771014658 64943319618
(1,9,0,10) 0 0 0 0
(2,5,2,0) 0 0 0 0
(2,5,2,1) 25959576133872 3037081366512 229523328 −143452080
(2,5,2,2) 25959576133872 3037081366512 229523328 −143452080
(2,5,2,3) 14227355195730 1121949324882 93291624 −79240554
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f13,10a f13,10b F13,10a F13,10b

(2,5,2,4) 2495134257588 −793182716748 −42940080 −15029028
(2,5,2,5) −8526618668250 −2304796506570 −153697140 45622890
(2,5,2,6) −18837903581784 −3412892044584 −238979556 102715200
(2,5,2,7) −140269573451520 3330960223068 −57619629 797704074
(2,5,2,8) −484652481245964 25375189850244 631550340 2772045684
(2,5,2,9) 466463893314618 83030231321442 5828966010 −2545124598
(2,5,2,10) 5861811443758200 209468524051800 23294331000 −32936992200
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