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Abstract. Let F be a non-Archimedean local field of characteristic zero.
Jacquet, Piatetski-Shapiro and Shalika introduced the notion of newforms for
irreducible generic representations of GLn(F ). In this paper, we give an ex-
plicit formula for Whittaker functions associated to newforms on the diagonal
matrices in GLn(F ).

1. Introduction.

Let F be a non-Archimedean local field of characteristic zero. Shintani [12] gave an
explicit formula for spherical Whittaker functions of unramified principal series represen-
tations of GLn(F ). His formula is a key to the unramified computation of Rankin-Selberg
type zeta integrals (see for example [2] and [3]). In this paper, we extend Shintani’s result
to Whittaker functions associated to newforms for GLn(F ).

Jacquet, Piatetski-Shapiro and Shalika [7] introduced the notion of newforms for
irreducible generic representations of GLn(F ), which is an extension of that for GL2(F )
by Casselman [4]. Newforms for GLn(F ) are defined by using a certain family of open
compact subgroups {Kn}n≥0. Given an irreducible generic representation π of GLn(F ),
the smallest integer c(π) among those n such that π has Kn-fixed vectors is called the
conductor of π. We say that a vector in π is a newform if it is fixed by Kc(π). When
the conductor of π is zero, its newforms are just GLn(o)-fixed vectors, where o is the
ring of integers in F . In this paper, we give an explicit formula for Whittaker functions
associated to newforms on the diagonal matrices in GLn(F ).

Originally, Shintani’s explicit formula for spherical Whittaker functions is written
in terms of Hecke eigenvalues. We will follow his method. For an irreducible generic
representation π, the Hecke algebra associated to Kc(π) acts on the space of its newforms.
Since this space is one-dimensional, the actions of elements in this Hecke algebra are given
by scalar multiplication. Suppose that the conductor of π is positive. Then, similar to the
unramified case, we get a formula for the Whittaker function W associated to a newform
on T1 = {diag(a1, . . . , an−1, 1) | ai ∈ F×} in terms of Hecke eigenvalues λ1, . . . , λn−1

(see Section 3 for precise definition). Kondo and Yasuda [9] showed the relation between
these Hecke eigenvalues and the L-factor of π. We therefore obtain an explicit formula
for W on T1 in terms of the L-factor of π (Theorem 4.1).

As a corollary, we show that Whittaker functions associated to newforms attain L-
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factors when they are integrated on GL1(F ) which is embedded into the upper left side
in GLn(F ) (Theorem 5.1).

We note that our formula determines Whittaker functions associated to newforms
for π on BKc(π), where B denotes the upper triangular Borel subgroup of GLn(F ). But
the set BKc(π) is smaller than GLn(F ) when the conductor of π is positive. However
it seems that our formula is enough to compute several kinds of zeta integrals when all
data in them are related to newforms.

Recently, Matringe [11] gave a constructive proof of the existence of newforms for
generic representations π of GLn(F ), by investigating derivatives of π. One can find the
same formula for Whittaker functions associated to newforms in loc. cit.

Acknowledgements. The author would like to thank Satoshi Kondo, Takuya
Yamauchi and Seidai Yasuda for helpful discussions and comments. He also thanks the
referee for useful suggestions.

2. Local newforms.

In this section, we recall from [7] the notion and basic properties of local newforms
for GL(n). Let F be a non-Archimedean local field of characteristic zero, o its ring of
integers, p the maximal ideal in o, and $ a generator of p. We write | · | for the absolute
value of F normalized so that |$| = q−1, where q denotes the cardinality of the residue
field o/p. We fix a non-trivial additive character ψ of F whose conductor is o.

We set G = GLn(F ). Let B denote the Borel subgroup of G consisting of the
upper triangular matrices, and U its unipotent radical. We use the same letter ψ for the
following character of U induced from ψ:

ψ(u) = ψ

( n−1∑

i=1

ui,i+1

)
, for u = (ui,j) ∈ U.

Let (π, V ) be an irreducible generic representation of G. Then there exists a unique
element l in HomU (π, ψ) up to constant. For v ∈ V , we define the Whittaker function
associated to v by

Wv(g) = l(π(g)v), g ∈ G.

We call W(π, ψ) = {Wv | v ∈ V } the Whittaker model of π with respect to ψ.
Put K0 = GLn(o). For each positive integer m, let Km be the subgroup of K0

consisting of the elements k = (kij) in K0 which satisfy

(kn1, kn2, . . . , knn) ≡ (0, 0, . . . , 0, 1) (mod pm).

We write V (m) for the space of Km-fixed vectors in V . Due to [7, (5.1) Théorème (ii)],
there exists a non-negative integer m such that V (m) 6= {0}. We denote by c(π) the
smallest integer with this property. We call c(π) the conductor of π, and elements in
V (c(π)) newforms for π. By [7, (5.1) Théorème (ii)], we have
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dimV (c(π)) = 1. (2.1)

For simplicity, we say that an element W in W(π, ψ) is a newform if W is the
Whittaker function associated to a newform for π. Suppose that W is a non-zero newform
in W(π, ψ). Then by the existence of Kirillov model for π (see [1, Theorem 5.20]), there
exists an element g ∈ GLn−1(F ) such that

W

(
g

1

)
6= 0.

For any element f = (f1, . . . , fn−1) in Zn−1, we set

$f = diag($f1 , . . . , $fn−1 , 1) ∈ G.

By using the Iwasawa decomposition of GLn−1(F ), we see that there exists f ∈ Zn−1

such that W ($f ) 6= 0.

Proposition 2.2. Let W be a newform in W(π, ψ). For f ∈ Zn−1, we have
W ($f ) = 0 unless f1 ≥ · · · ≥ fn−1 ≥ 0.

Proof. The proposition follows since W is U ∩Mn(o)-invariant. ¤

3. Hecke operators.

Let (π, V ) be an irreducible generic representation of G with conductor c = c(π).
Throughout this section, we suppose that c is positive. For each g ∈ G, we define the
Hecke operator Tg on V (c) by

Tgv =
1

vol(Kc)

∫

KcgKc

π(k)vdk =
∑

k∈Kc/Kc∩gKcg−1

π(kg)v,

for v ∈ V (c). By (2.1), there exists a complex number λg such that Tg = λg1V (c). We
call λg the Hecke eigenvalue of Tg.

For 1 ≤ i ≤ n− 1, we denote by λi the Hecke eigenvalue of Ti = T$fi , where

f i = (

i︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) ∈ Zn−1.

To describe Ti, we give a complete system of representatives for Km/Km ∩$fi

Km$−fi

(m > 0, 1 ≤ i ≤ n− 1). We write A ∈ Mn(F ) as

A =
(

A11 A12

A21 A22

)
,
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where A11 ∈ Mn−1(F ), A12 ∈ Mn−1,1(F ), A21 ∈ M1,n−1(F ) and A22 ∈ F . We embed
the group GLn−1(F ) into G by

g 7→
(

g

1

)
, g ∈ GLn−1(F ).

Then we may regard $f , f ∈ Zn−1 as an element in GLn−1(F ). Set H = GLn−1(o).
For 0 ≤ i ≤ n− 1, we define an o-lattice Li in Mn−1,1(F ) by

Li = t(
i︷ ︸︸ ︷

p⊕ · · · ⊕ p⊕o⊕ · · · ⊕ o).

Then the groups H and H ∩$fi

H$−fi

fix L0 and Li respectively.

Lemma 3.1. Let m be a positive integer. For 1 ≤ i ≤ n− 1, we can take

(
a x

0 1

)
, a ∈ H/H ∩$fi

H$−fi

, x ∈ L0/aLi

as a complete system of representatives for Km/Km ∩$fi

Km$−fi

.

Proof. We use the block notation. An element g =
(

a b
c d

) ∈ Km lies in Km ∩
$fi

Km$−fi

if and only if a ∈ H ∩$fi

H$−fi

and b ∈ Li. Thus, one can observe that
the elements in the lemma belong to pairwise disjoint cosets in Km/Km ∩$fi

Km$−fi

.
For g =

(
a b
c d

) ∈ Km, we see that g is equivalent to
(

a b
0 1

)
modulo Km ∩ $fi

Km$−fi

.
This completes the proof of the lemma. ¤

Let W be a newform in W(π, ψ). Set w(f) = W ($f ), for f ∈ Zn−1. Then we
obtain the following lemma:

Lemma 3.2. Suppose that f ∈ Zn−1 satisfies f1 ≥ · · · ≥ fn−1 ≥ 0. Then we have

q−iλiw(f) = qi(n−1)−i(i−1)/2
∑

ε∈Ii

q−
Pn−1

j=1 εjjw(f + ε), (3.3)

where Ii = {ε ∈ Zn−1 | εj ∈ {0, 1}, ∑n−1
j=1 εj = i}.

Proof. By Lemma 3.1, we get

λiW ($f ) =
∑

k∈Kc/Kc∩$fiKc$−fi

W ($fk$fi

)

=
∑

a∈H/H∩$fiH$−fi , x∈L0/aLi

W

(
$f

(
1 x

0 1

)(
a 0
0 1

)
$fi

)
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= qi
∑

a∈H/H∩$fiH$−fi

W

(
$f

(
a 0
0 1

)
$fi

)
.

In the last equality, we use the equation [L0 : aLi] = [aL0 : aLi] = [L0 : Li] = qi. Now
the proof is quite similar to that of the theorem in [12, p. 181] because W |GLn−1(F ) is
GLn−1(o)-invariant. We note that in [12] one should take the set Ii as Ii = {ε ∈ Zn |
εj ∈ {0, 1}, ∑n

j=1 εj = i}. ¤

4. An explicit formula for Whittaker functions.

We prepare some notation to state our main theorem. For an irreducible generic
representation π of G, let L(s, π) denote its L-factor defined in [5]. It follows from [6,
Section 3] that the degree of L(s, π) is equal to or less than n. So we can write it as

L(s, π) =
n∏

i=1

(1− αiq
−s)−1, αi ∈ C.

By [6, Section 3] again, L(s, π) is of degree n if and only if π is unramified, that is,
c(π) equals to zero. We take αn to be zero if the degree of L(s, π) is less than n. Let
X = (X1, . . . , Xn) be n indeterminates. If f ∈ Zn satisfies f1 ≥ · · · ≥ fn ≥ 0, then we
denote by sf (X) the Schur polynomial in X1, . . . , Xn associated to f , that is,

sf (X) =
|(Xfi+n−i

j )1≤i,j≤n|∏
1≤i<j≤n(Xi −Xj)

(see [10, Chapter I, Section 3]). Since sf (X) is a symmetric polynomial in X1, . . . , Xn,
the number sf (α) = sf (α1, . . . , αn) is well-defined. We identify (f1, . . . , fn−1) ∈ Zn−1

with (f1, . . . , fn−1, 0) ∈ Zn. We note that if the conductor of π is positive, then we have
sf (α) = s(f1,...,fn−1,0)(α1, . . . , αn−1, 0) = s(f1,...,fn−1)(α1, . . . , αn−1), for f ∈ Zn−1 such
that f1 ≥ · · · ≥ fn−1 ≥ 0.

We denote by δB the modulus character of B. We have δB($f ) = q−
Pn−1

j=1 (n+1−2j)fj ,
for f ∈ Zn−1.

Theorem 4.1. Let π be an irreducible generic representation of G and W its
newform in W(π, ψ). For f ∈ Zn−1, we have

W ($f ) =

{
δ
1/2
B ($f )sf (α)W (1), if f1 ≥ · · · ≥ fn−1 ≥ 0;

0, otherwise.

Proof. If c(π) = 0, then the theorem follows from [12]. So we may assume that
π has positive conductor. For f ∈ Zn−1, we set

w̃(f) = q
Pn−1

j=1 (n−1−j)fj W ($f ).
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By Proposition 2.2 and Lemma 3.2, the function w̃ on Zn−1 satisfies the following system
of difference equations:

{
qi(i−1)/2−iλiw̃(f) =

∑
ε∈Ii

w̃(f + ε), if f1 ≥ · · · ≥ fn−1 ≥ 0;

w̃(f) = 0, otherwise.
(4.2)

As in [12, p. 182], the solution of the above difference equations is unique and given by

w̃(f) =

{
sf (µ)W (1), if f1 ≥ · · · ≥ fn−1 ≥ 0;

0, otherwise,

where µ1, . . . , µn−1 are complex numbers whose i-th elementary symmetric polynomial
equals to qi(i−1)/2−iλi, for 1 ≤ i ≤ n− 1, and µn = 0.

By [9, Theorem 3.5], we have

L(s, π) =
( n−1∑

i=0

(−1)iλiq
i(i−1)/2−i((n−1)/2+s)

)−1

.

Hence we may assume µi = q(n−1)/2−1αi, for 1 ≤ i ≤ n. Thus, if f ∈ Zn−1 satisfies
f1 ≥ · · · ≥ fn−1 ≥ 0, then we obtain

W ($f ) = q−
Pn−1

j=1 (n−1−j)fj sf (µ)W (1)

= q−
Pn−1

j=1 (n−1−j)fj+((n−1)/2−1)
Pn−1

j=1 fj sf (α)W (1)

= q−
Pn−1

j=1 ((n+1)/2−j)fj sf (α)W (1)

= δ
1/2
B ($f )sf (α)W (1).

This completes the proof. ¤

Remark 4.3. Set D1 = {$f | f ∈ Zn−1}. Since the center Z of G acts onW(π, ψ)
by the central character of π, Theorem 4.1 gives an explicit formula for newforms in
W(π, ψ) on BKc(π) = UZD1Kc(π).

Corollary 4.4. Let π be an irreducible generic representation of G. Then we
have W (1) 6= 0 for all non-zero newforms W in W(π, ψ).

Proof. By Theorem 4.1, W (1) = 0 implies W ($f ) = 0 for all f ∈ Zn−1. This
contradicts the remark before Proposition 2.2. ¤

5. An application to zeta integral.

In this section, we give an integral representation of L-factors by using our formula
for Whittaker functions associated to newforms. Let (π, V ) be an irreducible generic
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representation of G. For W ∈ W(π, ψ), we set

Z(s,W ) =
∫

F×
W (t(a))|a|s−(n−1)/2d×a, s ∈ C,

where t(a) = diag(a, 1, . . . , 1), for a ∈ F×. Here we normalize Haar measure d×a on F×

so that
∫

o× d×a = 1. The integral Z(s,W ) absolutely converges to a rational function
in q−s when the real part of s is sufficiently large. By [8, Theorem 2.7 (ii)], the set
{Z(s,W ) | W ∈ W(π, ψ)} coincides with the fractional ideal of C[q−s, qs] generated by
L(s, π). We shall show that Z(s,W ) attains L(s, π) when W is a newform.

Theorem 5.1. Let π be an irreducible generic representation of G and W the
newform in W(π, ψ) such that W (1) = 1. Then we have

Z(s,W ) = L(s, π).

Proof. By Proposition 2.2 and Theorem 4.1, we obtain

Z(s,W ) =
∞∑

k=0

W (t($k))|$k|s−(n−1)/2

=
∞∑

k=0

δ
1/2
B (t($k))s(k,0,...,0)(α)|$k|s−(n−1)/2

=
∞∑

k=0

s(k,0,...,0)(α)q−ks.

It follows from [10, Chapter I (3.4)] that s(k,0,...,0)(α) is the complete homogeneous
symmetric polynomial of degree k, that is,

s(k,0,...,0)(α) =
∑

k1+···+kn=k

αk1
1 · · ·αkn

n .

Hence we get

Z(s,W ) =
∞∑

k=0

( ∑

k1+···+kn=k

αk1
1 · · ·αkn

n

)
q−ks =

n∏

i=1

( ∞∑

ki=0

αki
i q−kis

)

=
n∏

i=1

(1− αiq
−s)−1 = L(s, π),

as required. ¤
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