©2013 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 65, No. 4 (2013) pp. 1329–1336 doi: 10.2969/jmsj/06541329

Erratum and addendum to "Commutators of C^{∞} -diffeomorphisms preserving a submanifold"

[The original paper is in this journal, Vol. 61 (2009), 427–436]

By Kōjun ABE and Kazuhiko FUKUI

(Received Aug. 5, 2011) (Revised Mar. 5, 2012)

Abstract. Let $D^{\infty}(M, N)$ be the group of C^{∞} -diffeomorphisms of a compact manifold M preserving a submanifold N. We give a condition for $D^{\infty}(M, N)$ to be uniformly perfect.

1. Introduction and statement of results.

This paper gives a correction of Theorem 1.4 in our previous paper [1] in expanded form and also subsequent supplements.

Let M be a connected C^{∞} -manifold without boundary and let $D_c^{\infty}(M)$ denote the group of all C^{∞} -diffeomorphisms of M which are isotopic to the identity through C^{∞} -diffeomorphisms with compact support. It is known that M. Herman [5] and W. Thurston [9] proved $D_c^{\infty}(M)$ is perfect, which means that every element of $D_c^{\infty}(M)$ can be represented by a product of commutators.

Let (M, N) be a manifold pair and $D_c^{\infty}(M, N)$ be the group of C^{∞} diffeomorphisms of M preserving N which are isotopic to the identity through compactly supported C^{∞} -diffeomorphisms preserving N. In the previous paper [1], we proved that the group $D_c^{\infty}(M, N)$ is perfect if the dimension of N is positive. In this paper we consider the conditions for $D_c^{\infty}(M, N)$ to be uniformly perfect. A group G is said to be uniformly perfect if each element of G can be represented as a product of a bounded number of commutators of elements in G.

Let $\pi: D^{\infty}(M, N) \to D^{\infty}(N)$ be the map given by the restriction. First we shall prove the following.

THEOREM 1.1. Let M be an m-dimensional compact manifold without boundary and N an n-dimensional C^{∞} -submanifold such that both groups $D^{\infty}(N)$

²⁰¹⁰ Mathematics Subject Classification. Primary 57R50; Secondary 58D05.

Key Words and Phrases. diffeomorphism group, uniformly perfect, non-trivial quasimorphism, compact manifold pair.

The first author was partially supported by KAKENHI (No. 21540074).

The second author was partially supported by KAKENHI (No. 23540111).

and $D_c^{\infty}(M-N)$ are uniformly perfect. If the connected components of ker π are finite, then $D^{\infty}(M,N)$ is a uniformly perfect group for $n \geq 1$.

Secondary we shall prove that the converse of Theorem 1.1 is valid when N is the disjoint union of circles in M.

THEOREM 1.2. Let M be an m-dimensional compact manifold without boundary and N be the disjoint union of circles in M. If the connected components of ker π are infinite, then $D^{\infty}(M, N)$ is not a uniformly perfect group.

2. The proof of Theorem 1.1.

In this section we prove Theorem 1.1 and give some examples for this result. First we recall the uniform perfectness of $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$ $(n \ge 1)$.

THEOREM 2.1 ([1, Theorem 4.2]). $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$ is uniformly perfect for $n \geq 1$. In fact, any $f \in D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$ can be represented by two commutators of elements in $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$.

By the result of R. Palais [7], π is epimorphic and in fact it is a locally trivial fibration. Applying Theorem 2.1, we can prove Theorem 1.1 as follows.

PROOF OF THEOREM 1.1. Take any element $f \in D^{\infty}(M, N)$ and put $\bar{f} = \pi(f)$. Since $D^{\infty}(N)$ is uniformly perfect by the assumption, there exists a bounded number k such that \bar{f} can be written as

$$\bar{f} = \prod_{j=1}^{k} [\bar{g}_j, \bar{h}_j] \text{ for } \bar{g}_j, \bar{h}_j \in D^{\infty}(N).$$

Then there exist diffeomorphisms g_j and h_j of M preserving N such that $\pi(g_j) = \bar{g}_j$, $\pi(h_j) = \bar{h}_j$. Let $\hat{f} = (\prod_{j=1}^k [g_j, h_j])^{-1} \circ f$. Thus we have $\hat{f} \in \ker \pi$.

First we consider the case that \hat{f} is isotopic to the identity in ker π . Let \hat{f}_t $(0 \leq t \leq 1)$ be an isotopy in ker π satisfying $\hat{f}_0 = id$ and $\hat{f}_1 = \hat{f}$. Take a tubular neighborhood W of N which is identified with the normal bundle of N. Let $q: W \to N$ be the bundle projection.

Let ℓ be the category number of N and $\mathcal{U} = \{U_i\}_{i=1}^{\ell+1}$ be an open covering of N such that each connected component of U_i is diffeomorphic to an open ball B^n in N. Then we may assume that U_i is diffeomorphic to B^n and $q^{-1}(U_i)$ is diffeomorphic to the product of open balls $B^n \times B^{m-n}$. Let $\{\varphi_i\}_{i=1}^{\ell+1}$ be a partition of unity subordinate to the covering \mathcal{U} .

 $\ell + 1$) be real valued functions on W given by $\Phi_i(p) = 1 - (\hat{\varphi}_1(p) + \dots + \hat{\varphi}_i(p))$, and let h_i be a smooth map from W to M defined by $h_i(p) = \hat{f}_{\Phi_i(p)}(p)$.

Let $\{x_1^i, \ldots, x_n^i, y_1^i, \ldots, y_{m-n}^i\}$ be a coordinate on $q^{-1}(U_i)$ such that $\{x_1^i, \ldots, x_n^i\}$ is a coordinate on U_i . Since \hat{f}_t is an isotopy in ker π , if $p \in N$ we have the following.

$$\begin{aligned} x_j^i(\hat{f}_t(p)) &= x_j^i(h_i(p)) = x_j^i(p) & (1 \le i \le \ell + 1, \ 1 \le j \le n), \\ y_k^i(\hat{f}_t(p)) &= y_k^i(h_i(p)) = 0 & (1 \le i \le \ell + 1, \ n + 1 \le k \le m - n) & \text{and} \\ \frac{\partial \hat{\varphi}_i}{\partial y_k^i}(p) &= 0 & (1 \le i \le \ell + 1, \ n + 1 \le k \le m - n). \end{aligned}$$

Then the Jacobian matrix of h_i is non-singular on N. Thus h_i is diffeomorphic on a neighborhood of N. Since \hat{f}_t is an isotopy in ker π , from Chapter 8 Theorem 1.3 in [6], we can find $\hat{h}_i \in \ker \pi$ such that $\hat{f} \circ \hat{h}_i^{-1}$ is supported in $q^{-1}(\bigcup_{j=1}^i U_j)$, which coincides with h_i on a neighborhood of N.

Now we define $\tilde{f}_i \in \ker \pi$ $(i = 1, 2, ..., \ell + 1)$ supported in $q^{-1}(U_i)$ such that for $p \in M$,

$$\begin{split} \tilde{f}_1(p) &= \left(\hat{f} \circ \hat{h}_1^{-1}\right)(p) \quad \text{and} \\ \tilde{f}_i(p) &= \left(\left(\tilde{f}_1 \circ \cdots \circ \tilde{f}_{i-1}\right)^{-1} \circ \hat{f} \circ \hat{h}_i^{-1}\right)(p) \quad (i = 2, \dots, \ell + 1) \end{split}$$

Then we have $\hat{f} = \tilde{f}_1 \circ \cdots \circ \tilde{f}_{\ell+1}$ on a neighborhood of N. From Theorem 2.1, each \tilde{f}_i $(i = 1, \ldots, \ell + 1)$ can be represented by two commutators of elements in $D_c^{\infty}(q^{-1}(U_i), U_i)$. Put $\tilde{f}_{\ell+2} = (\tilde{f}_1 \circ \cdots \circ \tilde{f}_{\ell+1})^{-1} \circ \hat{f}$. Then $\tilde{f}_{\ell+2}$ is in $D_c^{\infty}(M-N)$. By the assumption of Theorem 1.1, there exist a bounded number s such that $\tilde{f}_{\ell+2}$ can be represented by s commutators of elements in $D_c^{\infty}(M-N)$. Hence f can be represented by $k + 2(\ell+1) + s$ commutators of elements in $D^{\infty}(M, N)$.

Next we consider the case that \hat{f} is not connected to the identity in ker π . Let a be the number of the connected components of ker π . Take elements, say g_1, \ldots, g_a , from each connected component of ker π and fix them. Then from Theorem 1.1 of [1], each g_i can be written by t_i commutators of elements in $D^{\infty}(M, N)$. Put $t = \max\{t_1, \ldots, t_a\}$. For any element $g \in \ker \pi$, there exists g_i $(i = 1, \ldots, a)$ satisfying that g and g_i are in the same connected component of ker π . Since $g \circ (g_i)^{-1}$ is in the identity component of ker π , g can be written by $2(\ell+1) + s + t$ commutators. Hence for any element $f \in D^{\infty}(M, N)$, above \hat{f} can be written by $2(\ell+1) + s + t$ commutators. Therefore any $f \in D^{\infty}(M, N)$ can be written by $k + 2(\ell+1) + s + t$ commutators of elements in $D^{\infty}(M, N)$. Since k, ℓ, s and t are bounded numbers, this completes the proof of Theorem 1.1.

K. ABE and K. FUKUI

REMARK 2.2. T. Tsuboi ([10], [11]) studied the uniform perfectness of $\operatorname{Diff}_c^r(M)$. He has proved that it is uniformly perfect if $1 \leq r \leq \infty$ $(r \neq \dim M + 1)$ and M is one of the following cases

- (1) an odd dimensional compact manifold without boundary,
- (2) an even dimensional compact manifold without boundary of dimension ≥ 6 ,
- (3) the interior of a compact manifold W which has a handle decomposition only with handles of indices not greater than $(\dim W 1)/2$.

Remark 2.3.

- (1) The proof of Theorem 1.1 is valid when M is a compact C^{∞} -manifold with boundary and $N = \partial M$.
- (2) The condition that the connected components of ker π are finite is necessary for the proof of Theorem 1.1 in general. The statement of Theorem 1.4 in [1] should be added this condition.

EXAMPLE 2.4. (1) It is known that for int D^m and S^{m-1} $(m \ge 2)$, $D_c^{\infty}(\operatorname{int} D^m)$ and $D^{\infty}(S^{m-1})$ are uniformly perfect groups (cf. Tsuboi [10]). Furthermore the number of the connected component of $D^{\infty}(D^m, \operatorname{rel} S^{m-1})$ is finite for $m \ne 4$ (see Smale [8], Hatcher [4], and Cerf [2]), where $D^{\infty}(D^m, \operatorname{rel} S^{m-1})$ denotes the subgroup of $D^{\infty}(D^m, S^{m-1})$ consisting of C^{∞} -diffeomorphisms of D^m which are the identity on S^{m-1} . Therefore, from Theorem 1.1 $D^{\infty}(D^m, S^{m-1})$ is a uniformly perfect group for $m \ne 4$.

(2) Since $D^{\infty}(S^2 \times [0,1], rel \ \partial(S^2 \times [0,1]))$ has two connected components (Hatcher [4]), $D^{\infty}(S^2 \times [0,1], \partial(S^2 \times [0,1]))$ is a uniformly perfect group.

(3) Let N be the Hopf link in S^3 . Then the map $\pi : D^{\infty}(S^3, N) \to D^{\infty}(N)$ induces the surjective homomorphism $\pi_* : \pi_1(D^{\infty}(S^3, N), id) \to \pi_1(D^{\infty}(N), id) \cong \mathbb{Z} \times \mathbb{Z})$ since any element in $\pi_1(D^{\infty}(N), id)$ is come from an element of $\pi_1(D^{\infty}(M, N), id)$ generated by a flow along a corresponding Seifert fibered space with N as fiber via π_* . Thus $D^{\infty}(S^3, rel N)$ is connected. Furthermore $D_c^{\infty}(S^3 - N)$ is uniformly perfect since $S^3 - N$ is diffeomorphic to $T^2 \times \mathbb{R}$. Therefore, from Theorem 1.1 $D^{\infty}(S^3, N)$ is a uniformly perfect group. This fact has been pointed out by Y. Mitsumatsu.

3. The proof of Theorem 1.2.

In this section we prove Theorem 1.2 and give some examples.

Put $G = D^{\infty}(M, N)$. We construct a quasimorphism of G to $Z(\subset \mathbf{R})$. Then we can see that G is not uniformly perfect (cf. J. M. Gambaudo, É. Ghys [3]). Let \hat{G} denote the universal covering group of G. Then \hat{G} is expressed as the quotient group of PG by the normal subgroup of null-homotopic loops. Here PG is the

path space of G starting from the identity with the product of paths given by the pointwise multiplication. By the assumption, N is the disjoint union of circles S_1, \ldots, S_k in M. Take a base point e_i of S_i for each i.

Let $F = \{F_t | 0 \le t \le 1\}$ be an element of \hat{G} . Put $f_t = \pi(F_t)$ $(0 \le t \le 1)$. Then f_t is written as

$$f_t = (f_t^1, \dots, f_t^k) \in D^{\infty}(S_1) \times \dots \times D^{\infty}(S_k).$$

Let $p^i(t) = f^i_t(e_i) \in S_i$ (i = 1, ..., k). Note that $p^i = \{p^i(t) | 0 \le t \le 1\}$ is a path in S_i starting from e_i .

Since S_i is a circle, we can identify the universal covering space \hat{S}_i with the real line **R**. Note that $p^i(0) = e_i$. Let $\hat{p}^i = {\hat{p}^i(t)}$ be the lifting of p^i with $\hat{p}^i(0) = 0$. Put

$$\psi^i(F) = \hat{p}^i(1).$$

Let n_i be the integer satisfying $n_i \leq \hat{p}^i(1) < n_i + 1$ $(1 \leq i \leq k)$. Define a map $\varphi^i : \hat{G} \to \mathbb{Z}$ to be $\varphi^i(F) = n_i$.

Now we prove that φ^i is a quasimorphism. Let $H = \{H_t | 0 \leq t \leq 1\}$ be another element of \hat{G} . Put $h_t = \pi(H_t)$ which is written as $h_t = (h_t^1, \ldots, h_t^k)$. Let $q^i(t) = h_t^i(e_i)$ and let $\hat{q}^i = \{\hat{q}^i(t)\}$ be the lifting of q^i with $\hat{q}^i(0) = 0$.

Let $F \sharp H$ be a path in G given by

$$(F \sharp H)_t = \begin{cases} F_{2t} & \left(0 \le t \le \frac{1}{2} \right) \\ H_{2t-1} \cdot F_1 & \left(\frac{1}{2} \le t \le 1 \right). \end{cases}$$

If α is a path from x to y and β is a path from y to z, let $\alpha \lor \beta$ denote the path composition. Then

$$H \cdot F \simeq (H_0 \lor H) \cdot (F \lor F_1) = F \lor (H \cdot F_1) = F \, \sharp \, H. \tag{3.1}$$

Here $\alpha \simeq \beta$ means that the paths α and β in G with the same initial point and the terminal point are homotopic relative to the set of the initial point and the terminal point.

Since π is a group homomorphism, it follows from (3.1) that

$$h^i \cdot f^i \simeq f^i \sharp h^i \quad (i = 1, \dots, k). \tag{3.2}$$

K. ABE and K. FUKUI

Here we need the following lemma.

LEMMA 3.1. Let $E: \mathbf{R} \to S^1$ denote the exponential map. Let $h = \{h_t | 0 \le t \le 1\}$ be a path in $D^{\infty}(S^1)$ such that $h_0 = 1$. For a real number a, put $\bar{a} = E(a)$. Set $q(t) = h_t(1)$ and $s(t) = h_t(\bar{a})$ ($0 \le t \le 1$). Let \hat{q} and \hat{s} be the liftings of q and s such that $\hat{q}(0) = 0$ and $\hat{s}(0) = a$, respectively. Then $|\hat{s}(t) - \hat{q}(t) - a| < 1$.

PROOF. Assume that $\hat{s}(t_1) - \hat{q}(t_1) \ge a+1$ for some t_1 . Since $\hat{s}(0) - \hat{q}(0) = a$, there exists a real number $t_0 \in (0, t_1]$ with $\hat{s}(t_0) - \hat{q}(t_0) \in \mathbf{Z}$. Then

$$E(\hat{s}(t_0) - \hat{q}(t_0)) = s(t_0) \cdot q(t_0)^{-1} = 1.$$

Thus we have $h_{t_0}(\bar{a}) = h_{t_0}(1)$. Therefore $\bar{a} = 1$ and s(t) = q(t). Since $\hat{s}(0) - \hat{q}(0) = a$, we have that $\hat{s}(t_1) - \hat{q}(t_1) = a$. This is a contradiction. We can argue similarly when $a - 1 < \hat{s}(t_1) - \hat{q}(t_1)$. Then Lemma 3.1 follows.

PROOF OF THEOREM 1.2 CONTINUED. Set $s^i(t) = h^i_t(p^i(1))$ and let \hat{s}^i be the lifting of s^i such that $\hat{s}^i(0) = \hat{p}^i(1)$. By Lemma 3.1 we have

$$\left|\hat{s}^{i}(t) - \hat{q}^{i}(t) - \hat{p}^{i}(1)\right| < 1.$$
(3.3)

It follows from the definition that

$$(f^{i}\sharp h^{i})_{t}(e_{i}) = \begin{cases} p^{i}(2t) & \left(0 \le t \le \frac{1}{2}\right) \\ s^{i}(2t-1) & \left(\frac{1}{2} \le t \le 1\right). \end{cases}$$

Combining (3.2) we have

$$\psi^{i}(H \cdot F) = \psi^{i}(F \,\sharp\, H) = \psi^{i}(F) + \psi^{i}(H \cdot F_{1}) = \hat{p}^{i}(1) + \hat{s}^{i}(1).$$

By (3.3) we obtain

$$|\psi^i(H \cdot F) - \psi^i(H) - \psi^i(F)| < 1.$$

Thus we have that

$$|\varphi^i(H \cdot F) - \varphi^i(F) - \varphi^i(H)| < 3.$$

Therefore φ^i is a quasimorphism.

Let ΩG denote the loop group of G. Then ΩG is a normal subgroup of PGand $PG/\Omega G \cong \hat{G}/\pi_0(\Omega G) \cong G$. Put $\varphi = (\varphi^1, \dots, \varphi^k)$. Note that the map φ restricted to $\pi_0(\Omega G)$ coincides with the homomorphism

$$\pi_0(\Omega G) \cong \pi_1(G) \xrightarrow{\pi_*} \pi_1(D^\infty(N)) \cong \mathbf{Z}^k.$$

Consider the following homotopy exact sequence:

$$\pi_1(G) \xrightarrow{\pi_*} \pi_1(D^{\infty}(N)) \to \pi_0(\ker \pi) \to 1.$$

Then the cokernel of the homomorphism π_* is isomorphic to $\mathbf{Z}^k/\varphi(\Omega G)$. Since the connected components of ker π are infinite, $\mathbf{Z}^k/\varphi(\Omega G)$ has infinite cyclic group \mathbf{Z}^ℓ of rank ℓ as a direct summand for a positive number ℓ . Since π is a locally trivial fibration, π induces the epimorphism of the universal coverings. Then the induced map $\varphi_* : G \to \mathbf{Z}^\ell$ is a non-trivial map and each component of φ_* is a quasimorphism. Hence we have a quasimorphism of G to \mathbf{Z} . This completes the proof of Theorem 1.2.

EXAMPLE 3.2. (1) We see that the group $D^{\infty}(S^1 \times [0,1], \partial(S^1 \times [0,1]))$ satisfies the conditions of Theorem 1.2. Therefore $D^{\infty}(S^1 \times [0,1], \partial(S^1 \times [0,1]))$ is not a uniformly perfect group. This fact has been pointed out by F. L. Roux privately.

(2) Let $M^n = S^1 \times L^{n-1}$ be the product manifold of the circle S^1 and an orientable closed manifold L^{n-1} $(n \ge 3)$. Take a base point $(x, y) \in S^1 \times L$. Let $N = S_1 \cup S_2$ be the union of two circles in M^n as follows. $S_1 = S^1 \times \{y\}$, and S_2 is a circle in $\{x\} \times L$ not passing through (x, y). Let h be a diffeomorphism of M^n obtained by rotating one time along S_1 supporting in a small neighborhood of S_1 . Then we can prove that h generates elements of infinite order in $\pi_0(D^{\infty}(M^n \operatorname{rel} N))$. Therefore $D^{\infty}(M, N)$ is not uniformly perfect from Theorem 1.2.

References

- K. Abe and K. Fukui, Commutators of C[∞]-diffeomorphisms preserving a submanifold, J. Math. Soc. Japan, 61 (2009), 427–436.
- [2] J. Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France, 89 (1961), 227–380.
- [3] J.-M. Gambaudo and É. Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems, 24 (2004), 1591–1617.
- [4] A. E. Hatcher, A proof of the Smale conjecture, $\text{Diff}(S^3) \simeq O(4)$, Ann. of Math. (2), 117 (1983), 553–607.

K. Abe and K. Fukui

- [5] M.-R. Herman, Simplicité du groupe des difféomorphismes de classe C^{∞} , isotopes à l'identité, du tore de dimension n, C. R. Acad. Sci. Paris Sér. A-B, **273** (1971), 232–234.
- [6] M. W. Hirsch, Differential Topology, Grad. Text in Math., 33, Springer-Verlag, New York, 1976.
- [7] R. S. Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv., 34 (1960), 305–312.
- [8] S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621–626.
- [9] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc., 80 (1974), 304–307.
- [10] T. Tsuboi, On the uniform perfectness of diffeomorphism groups, In: Groups of Diffeomorphisms, (ed. Y. Mitsumatsu *et al.*), Adv. Stud. Pure Math., **52**, Math. Soc. Japan, 2008, pp. 505–524.
- [11] T. Tsuboi, On the uniform perfectness of the groups of diffeomorphisms of evendimensional manifolds, Comment. Math. Helv., 87 (2012), 141–185.

Kōjun Abe

Department of Mathematical Sciences Shinshu University Matsumoto 390-8621, Japan E-mail: kojnabe@shinshu-u.ac.jp Kazuhiko FUKUI

Department of Mathematics Kyoto Sangyo University Kyoto 603-8555, Japan E-mail: fukui@cc.kyoto-su.ac.jp