# Log canonical algebras and modules 

By Caucher Birkar

(Received Feb. 29, 2012)


#### Abstract

Let $(X / Z, B)$ be a lc pair with $K_{X}+B$ pseudo-effective $/ Z$ and $Z$ affine. We show that $(X / Z, B)$ has a good $\log$ minimal model if and only if its $\log$ canonical algebra and modules are finitely generated.


## 1. Introduction.

Let $X \rightarrow Z$ be a projective morphism of varieties over $\mathbb{C}$ with $Z=\operatorname{Spec} A$ being affine. For any Cartier divisor $L$ on $X$ we have the graded ring

$$
R(L):=\bigoplus_{m \geq 0} H^{0}(X, m L)
$$

which is a graded $A$-algebra. On the other hand, for each $\mathscr{O}_{X}$-module $\mathscr{F}$ on $X$ and each integer $p$, we have the graded $R(L)$-module $M_{\mathscr{F}}^{p}(L)=\bigoplus_{m \in \mathbb{Z}} M_{m}$ where $M_{m}=0$ if $m<p$ but

$$
M_{m}=H^{0}(X, \mathscr{F}(m L))
$$

if $m \geq p$. Here $\mathscr{F}(m L)$ stands for $\mathscr{F} \otimes_{\mathscr{O}_{X}} \mathscr{O}_{X}(m L)$ and the module structure is given via the pairing

$$
H^{0}(X, m L) \otimes H^{0}(X, \mathscr{F}(n L)) \rightarrow H^{0}(X, \mathscr{F}((m+n) L)) .
$$

If $\mathscr{F}=\mathscr{O}_{X}(D)$ for some divisor $D$, we usually write $M_{D}^{p}(L)$ instead of $M_{\mathscr{O}_{X}(D)}^{p}(L)$.
When $L=I\left(K_{X}+B\right)$ for a log canonical pair $(X, B)$ and integer $I>0$, we refer to $R(L)$ as a $\log$ canonical algebra and refer to the module $M_{\mathscr{F}}^{p}(L)$ as a $\log$ canonical module. The following theorem is the main result of this short note.

Theorem 1.1. Assume that $(X / Z, B)$ is lc where $Z=\operatorname{Spec} A$, and let $I$ be a positive integer so that $L:=I\left(K_{X}+B\right)$ is Cartier. If $K_{X}+B$ is pseudoeffective/ $Z$, then the following are equivalent:

Key Words and Phrases. minimal models, log canonical algebra, finite generation.
(1) $(X / Z, B)$ has a good log minimal model;
(2) $R(L)$ is a finitely generated $A$-algebra, and for any very ample $/ Z$ divisor $G$ and integer $p$ the module $M_{G}^{p}(L)$ is finitely generated over $R(L)$.

The klt case of the theorem is a result of Demailly-Hacon-Păun [3]. Our proof below is somewhat different and more algebraic in nature, and it also works in the lc case. Note that we have assumed $Z$ to be affine for simplicity of notation; the general case can be formulated and proved in a similar way.

Acknowledgements. I would like to thank the referee for useful comments and for the very quick refereeing of this paper. This work was supported by La Fondation Sciences Mathématiques de Paris.

## 2. Preliminaries.

Varieties are assumed to be over $\mathbb{C}$ unless stated otherwise. We use the notion and notation of pairs and $\log$ minimal models as in [1]. Singularities such as lc, klt , and dlt are as in [5]. We use the numerical Kodaira dimension $\kappa_{\sigma}$ introduced by Nakayama [6].

Rings are assumed to be commutative with identity. A graded ring is of the form $R=\bigoplus_{m \geq 0} R_{m}$, that is, graded by non-negative integers, and a graded module is of the form $M=\bigoplus_{m \in \mathbb{Z}} M_{m}$, that is, it is graded by the integers. For an element $(\ldots, 0, \alpha, 0, \ldots)$ of degree $m$ we often abuse notation and just write $\alpha$ but keep in mind that $\alpha$ has degree $m$.

Remark 2.1 (Truncation principle).
(1) Let $R=\bigoplus_{m \geq 0} R_{m}$ be a graded ring and $I$ a positive integer. Define the truncated ring $R^{[I]}=\bigoplus_{m \geq 0} R_{m}^{\prime}$ by putting $R_{m}^{\prime}=R_{m}$ if $I \mid m$ and $R_{m}^{\prime}=0$ otherwise. Note that the degree structure is different from the usual definition of truncation. However, it is more convenient for us to define it in this way.
(2) With $R$ and $I$ as in (1), assume that $R_{0}$ is a Noetherian ring and that $R$ is an integral domain. It is well-known that: $R$ is a finitely generated $R_{0}$-algebra if and only if $R^{[I]}$ is a finitely generated $R_{0}$-algebra.
(3) Again $R$ and $I$ are as in (1). Let $M=\bigoplus_{m \in \mathbb{Z}} M_{m}$ be a graded $R$-module. Let $N_{i}=\bigoplus_{m \in \mathbb{Z}} N_{m, i}$ where $N_{m, i}=M_{m}$ if $m \equiv i(\bmod I)$ but $N_{m, i}=0$ otherwise. Then, each $N_{i}$ is a graded module over $R^{[I]}$ and we have the decomposition

$$
M \simeq N_{0} \oplus N_{1} \oplus \cdots \oplus N_{I-1}
$$

as graded $R^{[I]}$-modules. If the modules $N_{0}, \ldots, N_{I-1}$ are finitely generated over $R^{[I]}$, then $M$ is also a finitely generated $R^{[I]}$-module hence a finitely
generated $R$-module too.
Theorem 2.2. Let $X \rightarrow Z$ be a projective morphism of normal varieties with $Z=\operatorname{Spec} A$, and let $L$ be a Cartier divisor on $X$ such that $R(L)$ is a finitely generated $A$-algebra. Fix an integer $p$. Then we have:
(1) Assume that $M_{G}^{p}(L)$ is a finitely generated $R(L)$-module for any very ample $/ Z$ divisor $G$. Then $M_{\mathscr{F}}^{p}(L)$ is a finitely generated $R(L)$-module for every torsionfree coherent sheaf $\mathscr{F}$.
(2) If $L$ is big/Z, then $M_{\mathscr{F}}^{p}(L)$ is a finitely generated $R(L)$-module for every torsion-free coherent sheaf $\mathscr{F}$.
(3) Let $\mathscr{F}$ be a coherent sheaf and $I>0$ an integer. For each $0 \leq i<I$, assume that $M_{\mathscr{F}(i L)}^{q_{i}}(I L)$ is a finitely generated $R(I L)$-module where $q_{i} \in \mathbb{Z}$ is the smallest number satisfying $q_{i} I+i \geq p$. Then $M_{\mathscr{F}}^{p}(L)$ is a finitely generated $R(L)$-module.

Proof. (1) Let $G$ be a very ample $/ Z$ divisor and pick a reflexive coherent sheaf $\mathscr{F}$. There is a surjective morphism $\bigoplus_{j=1}^{r} \mathscr{O}_{X}\left(-l_{j} G\right) \rightarrow \mathscr{F}^{\vee}$ for some $l_{j}>0$ where $\vee$ stands for dual. Taking the dual of this morphism gives an injective morphism

$$
\mathscr{F} \simeq \mathscr{F} \vee \vee \rightarrow \mathscr{E}=\bigoplus_{j=1}^{r} \mathscr{O}_{X}\left(l_{j} G\right)
$$

which in turn gives an injective map $M_{\mathscr{F}}^{p}(L) \rightarrow M_{\mathscr{E}}^{p}(L)$. By assumptions, $M_{\mathscr{E}}^{p}(L)$ is finitely generated over $R(L)$ which in particular means that $M_{\mathscr{E}}^{p}(L)$ is Noetherian as $R(L)$ is Noetherian. Therefore, each submodule of $M_{\mathscr{E}}^{p}(L)$ is also finitely generated over $R(L)$, in particular, $M_{\mathscr{F}}^{p}(L)$.

Now assume that $\mathscr{F}$ is just a torsion-free coherent sheaf. The natural morphism $\mathscr{F} \rightarrow \mathscr{F}^{\vee \vee}$ is injective (cf. [4]). So, we get an injective map $M_{\mathscr{F}}^{p}(L) \rightarrow$ $M_{\mathscr{F} \vee \vee}^{p}(L)$ and the claim follows since $\mathscr{F} \vee \vee$ is a reflexive sheaf.
(2) By (1), it is enough to verify the finite generation of $M_{G}^{p}(L)$ for very ample $/ Z$ divisors $G$. Since $L$ is big $/ Z$, there is $n>0$ such that $n L \sim E+G$ for some effective Cartier divisor $E$. Thus, there is an injective map

$$
M_{G}^{p}(L) \rightarrow M_{E+G}^{p}(L) \simeq M_{n L}^{p}(L)
$$

So, it is enough to show that $M_{n L}^{p}(L)$ is a finitely generated $R(L)$-module. This in turn follows from finite generation of $M_{n L}^{-n}(L)$. Now the elements of degree $-n$ are $H^{0}(X,-n L+n L)=H^{0}\left(X, \mathscr{O}_{X}\right)$ which contains $1 \in \mathscr{O}_{X}(X)$. If $\alpha \in M_{n L}^{-n}(L)$ is a
homogeneous element of degree $m \geq-n$, that is, an element of $H^{0}(X, m L+n L)$, then $\alpha=\alpha \cdot 1$ where we consider the second $\alpha$ as an element of $R(L)$ of degree $m+n$ and we consider 1 as an element of $M_{n L}^{-n}(L)$ of degree $-n$. So, $M_{n L}^{-n}(L)$ is generated over $R(L)$ by the element 1 of degree $-n$.
(3) We can write $M_{\mathscr{F}}^{p}(L) \simeq N_{0} \oplus N_{1} \oplus \cdots \oplus N_{I-1}$ as in Remark 2.1 (3). Let $N_{i}^{\prime}$ be the module over $R(I L)$ whose $m$-th degree summand is just $N_{m I+i, i}=$ $M_{m I+i}$. In fact, $N_{i}^{\prime}=M_{\mathscr{F}(i L)}^{q_{i}}(I L)$ where $q_{i} \in \mathbb{Z}$ is the smallest number satisfying $q_{i} I+i \geq p$. Note that the degree $n$ elements of $R(I L)$ are the same as the degree $n I$ elements of $R(L)^{[I]}$, and the degree $m$ elements of $N_{i}^{\prime}$ are the same as the degree $m I+i$ elements of $N_{i}$. By assumptions, $N_{i}^{\prime}$ is a finitely generated $R(I L)$-module. Therefore, $N_{i}$ is a finitely generated $R(L)^{[I]}$-module, and so by Remark 2.1 (3) we are done.

## 3. Proof of Theorem 1.1.

Throughout this section we let $X \rightarrow Z$ be a projective morphism of normal varieties over $\mathbb{C}$ with $Z=\operatorname{Spec} A$.

Lemma 3.1. Assume that $Z=\mathrm{pt}$ and $L$ is a Cartier divisor on $X$. Further assume that for any very ample divisor $G$ the module $M_{G}^{0}(L)$ is finitely generated over $R(L)$. Then, $\kappa(L)=\kappa_{\sigma}(L)$.

Proof. The inequality $\kappa(L) \leq \kappa_{\sigma}(L)$ follows from the fact that $\kappa(L)=$ $\kappa(J L)$ and $\kappa_{\sigma}(L)=\kappa_{\sigma}(J L)$ for any positive integer $J$ and the fact that for some $J$ and certain constants $c_{1}, c_{2}>0$ we have

$$
c_{1} m^{\kappa(L)} \leq h^{0}(X, m J L) \leq c_{2} m^{\kappa(L)}
$$

for any $m \gg 0$.
For the converse $\kappa(L) \geq \kappa_{\sigma}(L)$, we may assume that $\kappa_{\sigma}(L) \geq 0$ and we can choose a very ample divisor $G$ so that $\kappa_{\sigma}(L)$ satisfies

$$
\limsup _{m \rightarrow+\infty} \frac{h^{0}(X, m L+G)}{m^{\kappa_{\sigma}(L)}}>0
$$

By assumptions, $M_{G}^{0}(L)$ is a finitely generated $R(L)$-module. Let $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be a set of generators of homogeneous elements with $n_{i}:=\operatorname{deg} \alpha_{i}$. For any $\alpha \in M_{G}^{0}(L)$ of degree $m$, there are homogeneous elements $a_{i} \in R(L)$ such that $\alpha=\sum_{i} a_{i} \alpha_{i}$. It is clear that $\operatorname{deg} a_{i}=m-n_{i}$. Thus,

$$
h^{0}\left(X,\left(m-n_{1}\right) L\right)+\cdots+h^{0}\left(X,\left(m-n_{r}\right) L\right) \geq h^{0}(X, m L+G)
$$

which implies that

$$
\limsup _{m \rightarrow+\infty} \frac{h^{0}\left(X,\left(m-n_{1}\right) L\right)+\cdots+h^{0}\left(X,\left(m-n_{r}\right) L\right)}{m^{\kappa_{\sigma}(L)}}>0
$$

hence $\kappa(L) \geq \kappa_{\sigma}(L)$.
The next result is well-known but we include its proof for convenience.
Lemma 3.2. Let $L$ be a Cartier divisor on $X$ with $h^{0}(X, n L) \neq 0$ for some $n>0$. Then, the following are equivalent:
(1) $R(L)$ is a finitely generated $A$-algebra;
(2) there exist a projective birational morphism $f: W \rightarrow X$ from a smooth variety, a positive integer $J$, and Cartier divisors $E$ and $F$ such that $|F|$ is base point free, and

$$
\operatorname{Mov} f^{*} m J L=m F \quad \text { and } \quad \operatorname{Fix} f^{*} m J L=m E
$$

for every positive integer $m$.
Proof. Assume that $R(L)$ is a finitely generated $A$-algebra. Perhaps after replacing $L$ with $J L$ for some positive integer $J$, we may assume that the algebra $R(L)$ is generated by elements $\alpha_{1}, \ldots, \alpha_{r}$ of degree 1 , and that there is a resolution $f: W \rightarrow X$ on which $f^{*} L=F+E$ where $F$ is free, $\operatorname{Mov} f^{*} L=F$, and Fix $f^{*} L=$ $E$. We could in addition assume that $F \geq 0$ with no common components with $E$. Obviously, Fix $m f^{*} L \leq m E$ for any $m>0$. Suppose that equality does not hold for some $m>0$. Take $m>0$ minimal with this property. Since $E=\operatorname{Fix} f^{*} L, m>1$. There is $\alpha \in H^{0}\left(W, m f^{*} L\right)$ and a component $S$ of $E$ such that $\mu_{S}(\alpha)<0$ where $\mu$ stands for multiplicity, that is, the coefficient and $(\alpha)$ is the divisor associated to the rational function $\alpha$. By assumptions, $\alpha=\sum a_{i} \alpha_{i}$ where $a_{i}$ are elements of $H^{0}\left(W,(m-1) f^{*} L\right)$. Thus,

$$
\mu_{S}(\alpha) \geq \min \left\{\mu_{S}\left(a_{i}\right)+\mu_{S}\left(\alpha_{i}\right)\right\}=\mu_{S}\left(a_{j}\right)+\mu_{S}\left(\alpha_{j}\right)
$$

for some $j$. The choice of $m$ ensures that $\mu_{S}\left(\alpha_{j}\right) \geq 0$ and $\mu_{S}\left(a_{j}\right) \geq 0$. This contradicts $\mu_{S}(\alpha)<0$.

Conversely, assume that there exist $f: W \rightarrow X, J, E$, and $F$ as in the theorem. Then, $R(J L) \simeq R\left(f^{*} J L\right) \simeq R(F)$ is a finitely generated $A$-algebra as $|F|$ is base point free. This implies that $R(L)$ is a finitely generated $A$-algebra by Remark 2.1.

Lemma 3.3. Let $L$ be a Cartier divisor on $X$ with $h^{0}(X, n L) \neq 0$ for some $n>0$ and with $R(L)$ a finitely generated $A$-algebra. Assume further that $M_{G^{\prime}}^{0}(L)$ is a finitely generated $R(L)$-module for any very ample/ $Z$ divisor $G^{\prime}$. Let $f, W, F, E, J$ be as in Lemma 3.2. Fix a nonnegative integer $r$ and a very ample $/ Z$ divisor $G$ on $W$. Then,

$$
\operatorname{Supp} \operatorname{Fix}\left(m\left(f^{*} J L+r F\right)+G\right)=\operatorname{Supp} E
$$

for every integer $m \gg 0$.
Proof. Let $G^{\prime \prime}$ be a very ample $/ Z$ divisor on $W$ and let $G^{\prime}$ be a very ample $/ Z$ divisor on $X$ such that $G^{\prime \prime} \leq f^{*} G^{\prime}$. By assumptions, $R(L)$ is a Noetherian ring and $M=M_{G^{\prime}}^{0}(L)$ is a Noetherian $R(L)$-module. Moreover, $R(L)$ is integral over the ring $R(L)^{[J]}$ which implies that $M$ is a finitely generated $R(L)^{[J]}$-module. Put $N_{0}=\bigoplus_{m \geq 0} N_{m, 0}$ where $N_{m, 0}=M_{m}$ if $J \mid m$ but $N_{m, 0}=0$ otherwise, as in Remark 2.1 (3). Since $N_{0}$ is an $R(L)^{[J]}$-submodule of $M$, it is finitely generated over $R(L)^{[J]}$. This corresponds to saying that $M_{G^{\prime}}^{0}(J L)$ is a finitely generated $R(J L)$-module. On the other hand, $M_{G^{\prime \prime}}^{0}\left(f^{*} J L\right)$ is a submodule of $M_{f^{*} G^{\prime}}^{0}\left(f^{*} J L\right)$ hence a finitely generated $R\left(f^{*} J L\right)$-module. Thus, after replacing $L$ with $f^{*} J L$ and $X$ with $W$ we can assume that $J=1$ and $W=X$. We may also assume that $F, G \geq 0$ and that $F+G$ has no common component with $E$.

Obviously,

$$
\operatorname{Supp} \operatorname{Fix}(m(L+r F)+G) \subseteq \operatorname{Supp} E
$$

for every integer $m>0$. Assume that there is a component $S$ of $E$ which does not belong to Supp Fix $(m(L+r F)+G)$ for some $m>0$. Let $\alpha \in H^{0}(X, m(L+r F)+G)$ so that

$$
S \nsubseteq \operatorname{Supp}((\alpha)+m(L+r F)+G)
$$

which in particular means that $\mu_{S}(\alpha)=-m \mu_{S} E$. Since

$$
(m+m r) L+G=m(L+r F)+G+m r E
$$

and $m r E \geq 0$, there is $\alpha^{\prime}$ in $M_{G}^{0}(L)$ of degree $m+m r$ such that $\alpha^{\prime}=\alpha$ as rational functions on $X$.

Assume that $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is a set of homogeneous generators of $M_{G}^{0}(L)$ with $n_{i}:=\operatorname{deg} \alpha_{i}$. We can write $\alpha^{\prime}=\sum a_{i} \alpha_{i}$ where $a_{i} \in R(L)$ is homogenous of degree $m+m r-n_{i}$. Therefore,

$$
\mu_{S}\left(\alpha^{\prime}\right) \geq \min \left\{\mu_{S}\left(a_{i}\right)+\mu_{S}\left(\alpha_{i}\right)\right\}
$$

Since

$$
\operatorname{Fix}\left(m+m r-n_{i}\right) L=\left(m+m r-n_{i}\right) E
$$

we have $\mu_{S}\left(a_{i}\right) \geq 0$ hence if the above minimum is attained at index $j$, then

$$
-m \mu_{S} E=\mu_{S}(\alpha)=\mu_{S}\left(\alpha^{\prime}\right) \geq \mu_{S}\left(\alpha_{j}\right)
$$

from which we get $m \mu_{S} E \leq-\mu_{S}\left(\alpha_{j}\right)$. This means that such $m$ cannot be too large so the theorem holds for $m \gg 0$.

Proof of Theorem 1.1. (1) $\Longrightarrow(2)$ : Assume that $(X / Z, B)$ has a good $\log$ minimal model $\left(Y / Z, B_{Y}\right)$. By Theorem 2.2, we can replace $I$ with a multiple so that we can assume that $\left|I\left(K_{Y}+B_{Y}\right)\right|$ is base point free. Let $f: W \rightarrow X$ and $g: W \rightarrow Y$ be a common resolution. Then, we can write

$$
f^{*} I\left(K_{X}+B\right)=g^{*} I\left(K_{Y}+B_{Y}\right)+E
$$

where $E \geq 0$ and exceptional/Y [1, Remark 2.4]. Then, by letting $L_{Y}:=I\left(K_{Y}+\right.$ $B_{Y}$ ) we have $R(L) \simeq R\left(L_{Y}\right)$ as $A$-algebras and this is a finitely generated $A$-algebra as $\left|L_{Y}\right|$ is base point free by assumptions. Let $\mathscr{G}$ be any torsion-free coherent sheaf on $Y$ and let $\pi: Y \rightarrow T / Z$ be the contraction defined by $\left|L_{Y}\right|$. There is an ample $/ Z$ divisor $N$ on $T$ such that $L_{Y} \sim \pi^{*} N$. Then, by the projection formula

$$
\pi_{*}\left(\mathscr{G}\left(m L_{Y}\right)\right) \simeq\left(\pi_{*} \mathscr{G}\right)(m N)
$$

hence

$$
H^{0}\left(Y, \mathscr{G}\left(m L_{Y}\right)\right) \simeq H^{0}\left(T,\left(\pi_{*} \mathscr{G}\right)(m N)\right)
$$

So $R(L) \simeq R\left(L_{Y}\right) \simeq R(N)$ as $A$-algebras and $M_{\mathscr{G}}^{p}\left(L_{Y}\right) \simeq M_{\pi_{*} \mathscr{G}}^{p}(N)$ as modules. By Theorem $2.2(2), M_{\pi_{*} \mathscr{G}}^{p}(N)$ is a finitely generated $R(N)$-module hence $M_{\mathscr{G}}^{p}\left(L_{Y}\right)$ is a finitely generated $R\left(L_{Y}\right)$-module.

Next we prove the finite generation of $M_{\mathscr{F}}^{p}(L)$ for any coherent torsion-free sheaf $\mathscr{F}$ on $X$. By Theorem 2.2 (1), we may assume that $\mathscr{F}=\mathscr{O}_{X}(G)$ where $G$ is some very ample/ $Z$ divisor. For each $m$ we have an isomorphism

$$
H^{0}(X, m L+G) \simeq H^{0}\left(W, f^{*} m L+f^{*} G\right)
$$

and this is isomorphic to a subspace of $H^{0}\left(Y, m L_{Y}+g_{*} f^{*} G\right)$. So, $M_{G}^{p}(L)$ is isomorphic to a submodule of $M_{g_{*} f^{*} G}^{p}\left(L_{Y}\right)$. Therefore, $M_{G}^{p}(L)$ is a finitely generated $R(L)$-module because $M_{g_{*} f_{*} G}^{p}\left(L_{Y}\right)$ is a finitely generated $R\left(L_{Y}\right)$-module and $R\left(L_{Y}\right)$ is Noetherian.
$(2) \Longrightarrow(1):$ We may assume that $X \rightarrow Z$ is a contraction. Let $V$ be the generic fibre of $X \rightarrow Z$, and let $K$ be the function field of $Z$. As $Z$ is affine, by base change theorems, $R\left(\left.L\right|_{V}\right) \simeq R(L) \otimes_{A} K$ is a finitely generated $K$-algebra, and for any very ample/ $Z$ divisor $G$ on $X$ the module $M_{\left.G\right|_{V}}^{0}\left(\left.L\right|_{V}\right) \simeq M_{G}^{0}(L) \otimes_{A} K$ is finitely generated over $R\left(\left.L\right|_{V}\right)$. By Theorem 2.2 and Lemma 3.1, $\kappa\left(\left.L\right|_{V}\right) \geq 0$ which in particular implies that $h^{0}(X, n L) \neq 0$ for some $n>0$.

Let $f, W, E, F, J$ be as in Theorem 3.2. We may assume that $f$ gives a log resolution of $(X / Z, B)$. Let $B_{W}$ be $B^{\sim}$ plus the reduced exceptional divisor of $f$ where $B^{\sim}$ is the birational transform of $B$. We can write

$$
J I\left(K_{W}+B_{W}\right)=J I f^{*}\left(K_{X}+B\right)+E^{\prime}
$$

where $E^{\prime} \geq 0$ is exceptional/ $X$. It is enough to construct a good log minimal model for $\left(W / Z, B_{W}\right)\left[\mathbf{1}\right.$, Remark 2.4]. We will show that $\left(W / Z, B_{W}\right)$ also satisfies the finite generation assumptions. Pick any $\alpha \in H^{0}\left(W, m J I\left(K_{W}+B_{W}\right)\right)$ and let

$$
P:=(\alpha)+m J I\left(K_{W}+B_{W}\right)=(\alpha)+m F+m E+m E^{\prime} .
$$

Since $P-m E^{\prime} \equiv 0 / X$ and $f_{*}\left(P-m E^{\prime}\right) \geq 0$, we have $P-m E^{\prime} \geq 0$ by the negativity lemma. Moreover, $\operatorname{Fix}\left(P-m E^{\prime}\right)=m E$ hence $P-m E^{\prime} \geq m E$. This implies that

$$
\text { Fix } m J I\left(K_{W}+B_{W}\right)=m E+m E^{\prime} \quad \text { and } \quad \operatorname{Mov} m J I\left(K_{W}+B_{W}\right)=m F
$$

Therefore, $R\left(L_{W}\right) \simeq R(L)$ where $L_{W}=I\left(K_{W}+B_{W}\right)$. On the other hand, if $G$ is a very ample $/ Z$ divisor on $W$, then there is a very ample $/ Z$ divisor $G^{\prime}$ on $X$ such that $G \leq f^{*} G^{\prime}$ hence $M_{G}^{p}\left(L_{W}\right)$ is a finitely generated $R\left(L_{W}\right)$-module as it is a submodule of $M_{f^{*} G^{\prime}}^{p}\left(L_{W}\right) \simeq M_{G^{\prime}}^{p}(L)$. Therefore, by replacing $(X / Z, B)$ with $\left(W / Z, B_{W}\right)$ from now on we can assume that $W=X$ and that $f$ is the identity.

Let $g: X \rightarrow T$ be the contraction $/ Z$ defined by $|F|$. Let $F^{\prime}$ be a general element of $|r F|$ for some $r \in \mathbb{N}$. We can choose a very ample $/ Z$ divisor $G \geq 0$ so that $K_{X}+B+F^{\prime}+G$ is nef $/ Z$ and that $\left(X / Z, B+F^{\prime}+G\right)$ is dlt. Run the LMMP $/ Z$ on $K_{X}+B+F^{\prime}$ with scaling of $G$. By boundedness of the length of extremal rays due to Kawamata, if $r$ is sufficiently large, then the LMMP is over $T$, i.e. only extremal rays over $T$ are contracted. Suppose that, perhaps after some log flips
and divisorial contractions, we get an infinite sequence of log flips $X_{i} \rightarrow X_{i+1} / Z_{i}$. Let $\lambda_{i}$ be the numbers appearing in the LMMP with scaling in the above sequence of $\log$ flips, that is, $K_{X_{i}}+B_{i}+F_{i}^{\prime}+\lambda_{i} G_{i}$ is nef $/ Z$ and numerically trivial over $Z_{i}$ where $B_{i}, F_{i}^{\prime}, G_{i}$ are birational transforms on $X_{i}$. By $[\mathbf{2}], \lambda:=\lim \lambda_{i}=0$. Moreover, by the base point free theorem, each $K_{X_{i}}+B_{i}+F_{i}^{\prime}+\lambda_{i} G_{i}$ is semiample $/ Z$ (of course $K_{X_{i}}+B_{i}+F_{i}^{\prime}+\lambda_{i} G_{i}$ may not be klt but we can use the ampleness of $G$ to reduce the claim to the klt case). Thus, if $S$ is a component of $E$ not contracted by the LMMP, then there exist

$$
0 \leq N_{i} \sim_{\mathbb{Q}} K_{X}+B+F^{\prime}+\lambda_{i} G
$$

not containing $S$. This contradicts Lemma 3.3 in view of Theorem 3.4 below. Therefore, $E$ is contracted by the LMMP and $K_{X_{i}}+B_{i}+F_{i}^{\prime}$ is $\mathbb{Q}$-linearly a multiple of $F_{i}^{\prime}$. But $\left|F_{i}^{\prime}\right|$ is base point free as the LMMP we ran is over $T$. Thus, the LMMP terminates with a good log minimal model.

The following theorem was proved by Nakayama [6, Theorem 6.1.3]. He treated the case $Z=\mathrm{pt}$ but his proof works for general $Z$. For convenience of the reader we present his proof.

Theorem 3.4. Assume that $W \rightarrow Z=\operatorname{Spec} A$ is a projective morphism from a smooth variety, $w \in W$ a closed point, and $D$ a Cartier divisor on $W$. Assume further that for some effective divisor $C$ there exist an infinite sequence of positive rational numbers $t_{1}>t_{2}>\cdots$ with $\lim t_{i}=0$, and effective $\mathbb{Q}$-divisors $N_{i} \sim_{\mathbb{Q}} D+t_{i} C$ with $w \notin \operatorname{Supp} N_{i}$. Then, there is a very ample/ $Z$ divisor $G$ on $W$ such that $w \notin \mathrm{Bs}|m D+G|$ for any $m>0$.

Proof. Let $f: W^{\prime} \rightarrow W$ be the blow up at $w$ with $E$ the exceptional divisor, $D^{\prime}=f^{*} D, C^{\prime}=f^{*} C$, and $N_{i}^{\prime}=f^{*} N_{i}$. Let $G$ be a very ample/ $Z$ divisor on $W$ such that $H:=f^{*} G-K_{W^{\prime}}-E$ is ample $/ Z$ and $H-\epsilon C^{\prime}$ is also ample $/ Z$ for some $\epsilon>0$. Put $G^{\prime}=f^{*} G$. For each $m>0$, we can write

$$
\begin{aligned}
& m D^{\prime}+G^{\prime}=K_{W^{\prime}}+ E+H+m D^{\prime}=K_{W^{\prime}}+E+H-m t_{i} C^{\prime}+m\left(t_{i} C^{\prime}+D^{\prime}\right) \\
& \sim_{\mathbb{Q}} K_{W^{\prime}}+E+H-m t_{i} C^{\prime}+m N_{i}^{\prime}
\end{aligned}
$$

where we choose $t_{i}$ so that $m t_{i}<\epsilon$. By assumptions, $E$ does not intersect $N_{i}^{\prime}$. Thus, the multiplier ideal sheaf $\mathscr{I}_{i}$ of $m N_{i}^{\prime}$ is isomorphic to $\mathscr{O}_{W^{\prime}}$ near $E$. In particular, we have the natural exact sequence

$$
0 \rightarrow \mathscr{I}_{i}\left(m D^{\prime}+G^{\prime}-E\right) \rightarrow \mathscr{I}_{i}\left(m D^{\prime}+G^{\prime}\right) \rightarrow \mathscr{O}_{E}\left(m D^{\prime}+G^{\prime}\right) \rightarrow 0
$$

from which we derive the exact sequence

$$
\begin{aligned}
H^{0}\left(W^{\prime}, \mathscr{I}_{i}\left(m D^{\prime}+G^{\prime}\right)\right) & \rightarrow H^{0}\left(E,\left.\left(m D^{\prime}+G^{\prime}\right)\right|_{E}\right) \\
& \rightarrow H^{1}\left(W^{\prime}, \mathscr{I}_{i}\left(m D^{\prime}+G^{\prime}-E\right)\right)=0
\end{aligned}
$$

where the last vanishing follows from Nadel vanishing. On the other hand, $\left(m D^{\prime}+\right.$ $\left.G^{\prime}\right)\left.\right|_{E} \sim 0$ hence some section of $\mathscr{I}_{i}\left(m D^{\prime}+G^{\prime}\right)$ does not vanish on $E$. But

$$
\mathscr{I}_{i}\left(m D^{\prime}+G^{\prime}\right) \subseteq \mathscr{O}_{W^{\prime}}\left(m D^{\prime}+G^{\prime}\right)
$$

so some section of $\mathscr{O}_{W^{\prime}}\left(m D^{\prime}+G^{\prime}\right)$ does not vanish on $E$, which simply means that $w$ is not in $\operatorname{Bs}|m D+G|$.

## References

[1] C. Birkar, On existence of log minimal models and weak Zariski decompositions, Math. Ann., 354 (2012), 787-799.
[2] C. Birkar, P. Cascini, C. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 23 (2010), 405-468.
[3] J.-P. Demailly, C. D. Hacon and M. Păun, Extension theorems, Non-vanishing and the existence of good minimal models, Acta Math., 210 (2013), 203-259.
[4] R. Hartshorne, Generalized divisors on Gorenstein schemes, K-theory, 8 (1994), 287-339.
[5] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge University Press, 1998.
[6] N. Nakayama, Zariski-decomposition and Abundance, MSJ Memoirs, 14, Math. Soc. Japan, Tokyo, 2004.

Caucher BIRKAR<br>DPMMS<br>Centre for Mathematical Sciences<br>Cambridge University<br>Wilberforce Road<br>Cambridge CB3 0WB, UK<br>E-mail: c.birkar@dpmms.cam.ac.uk

