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Log canonical algebras and modules

By Caucher Birkar

(Received Feb. 29, 2012)

Abstract. Let (X/Z, B) be a lc pair with KX + B pseudo-effective/Z
and Z affine. We show that (X/Z, B) has a good log minimal model if and
only if its log canonical algebra and modules are finitely generated.

1. Introduction.

Let X → Z be a projective morphism of varieties over C with Z = Spec A

being affine. For any Cartier divisor L on X we have the graded ring

R(L) :=
⊕

m≥0

H0(X, mL)

which is a graded A-algebra. On the other hand, for each OX -module F on X

and each integer p, we have the graded R(L)-module Mp
F (L) =

⊕
m∈ZMm where

Mm = 0 if m < p but

Mm = H0(X, F (mL))

if m ≥ p. Here F (mL) stands for F ⊗OX
OX(mL) and the module structure is

given via the pairing

H0(X, mL)⊗H0(X, F (nL)) → H0(X, F ((m + n)L)).

If F = OX(D) for some divisor D, we usually write Mp
D(L) instead of Mp

OX(D)(L).
When L = I(KX + B) for a log canonical pair (X, B) and integer I > 0, we

refer to R(L) as a log canonical algebra and refer to the module Mp
F (L) as a log

canonical module. The following theorem is the main result of this short note.

Theorem 1.1. Assume that (X/Z, B) is lc where Z = Spec A, and let I

be a positive integer so that L := I(KX + B) is Cartier. If KX + B is pseudo-
effective/Z, then the following are equivalent :
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(1) (X/Z, B) has a good log minimal model ;
(2) R(L) is a finitely generated A-algebra, and for any very ample/Z divisor G

and integer p the module Mp
G(L) is finitely generated over R(L).

The klt case of the theorem is a result of Demailly-Hacon-Pǎun [3]. Our proof
below is somewhat different and more algebraic in nature, and it also works in the
lc case. Note that we have assumed Z to be affine for simplicity of notation; the
general case can be formulated and proved in a similar way.

Acknowledgements. I would like to thank the referee for useful comments
and for the very quick refereeing of this paper. This work was supported by La
Fondation Sciences Mathématiques de Paris.

2. Preliminaries.

Varieties are assumed to be over C unless stated otherwise. We use the notion
and notation of pairs and log minimal models as in [1]. Singularities such as lc,
klt, and dlt are as in [5]. We use the numerical Kodaira dimension κσ introduced
by Nakayama [6].

Rings are assumed to be commutative with identity. A graded ring is of
the form R =

⊕
m≥0 Rm, that is, graded by non-negative integers, and a graded

module is of the form M =
⊕

m∈ZMm, that is, it is graded by the integers. For
an element (. . . , 0, α, 0, . . . ) of degree m we often abuse notation and just write α

but keep in mind that α has degree m.

Remark 2.1 (Truncation principle).

(1) Let R =
⊕

m≥0 Rm be a graded ring and I a positive integer. Define the
truncated ring R[I] =

⊕
m≥0 R′m by putting R′m = Rm if I|m and R′m = 0

otherwise. Note that the degree structure is different from the usual definition
of truncation. However, it is more convenient for us to define it in this way.

(2) With R and I as in (1), assume that R0 is a Noetherian ring and that R is an
integral domain. It is well-known that: R is a finitely generated R0-algebra if
and only if R[I] is a finitely generated R0-algebra.

(3) Again R and I are as in (1). Let M =
⊕

m∈ZMm be a graded R-module. Let
Ni =

⊕
m∈ZNm,i where Nm,i = Mm if m ≡ i(mod I) but Nm,i = 0 otherwise.

Then, each Ni is a graded module over R[I] and we have the decomposition

M ' N0 ⊕N1 ⊕ · · · ⊕NI−1

as graded R[I]-modules. If the modules N0, . . . , NI−1 are finitely generated
over R[I], then M is also a finitely generated R[I]-module hence a finitely
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generated R-module too.

Theorem 2.2. Let X → Z be a projective morphism of normal varieties
with Z = Spec A, and let L be a Cartier divisor on X such that R(L) is a finitely
generated A-algebra. Fix an integer p. Then we have:

(1) Assume that Mp
G(L) is a finitely generated R(L)-module for any very ample/Z

divisor G. Then Mp
F (L) is a finitely generated R(L)-module for every torsion-

free coherent sheaf F .
(2) If L is big/Z, then Mp

F (L) is a finitely generated R(L)-module for every
torsion-free coherent sheaf F .

(3) Let F be a coherent sheaf and I > 0 an integer. For each 0 ≤ i < I, assume
that Mqi

F(iL)(IL) is a finitely generated R(IL)-module where qi ∈ Z is the
smallest number satisfying qiI + i ≥ p. Then Mp

F (L) is a finitely generated
R(L)-module.

Proof. (1) Let G be a very ample/Z divisor and pick a reflexive coherent
sheaf F . There is a surjective morphism

⊕r
j=1 OX(−ljG) → F∨ for some lj > 0

where ∨ stands for dual. Taking the dual of this morphism gives an injective
morphism

F ' F∨∨ → E =
r⊕

j=1

OX(ljG)

which in turn gives an injective map Mp
F (L) → Mp

E (L). By assumptions, Mp
E (L)

is finitely generated over R(L) which in particular means that Mp
E (L) is Noethe-

rian as R(L) is Noetherian. Therefore, each submodule of Mp
E (L) is also finitely

generated over R(L), in particular, Mp
F (L).

Now assume that F is just a torsion-free coherent sheaf. The natural mor-
phism F → F∨∨ is injective (cf. [4]). So, we get an injective map Mp

F (L) →
Mp

F∨∨(L) and the claim follows since F∨∨ is a reflexive sheaf.
(2) By (1), it is enough to verify the finite generation of Mp

G(L) for very
ample/Z divisors G. Since L is big/Z, there is n > 0 such that nL ∼ E + G for
some effective Cartier divisor E. Thus, there is an injective map

Mp
G(L) → Mp

E+G(L) ' Mp
nL(L).

So, it is enough to show that Mp
nL(L) is a finitely generated R(L)-module. This in

turn follows from finite generation of M−n
nL (L). Now the elements of degree −n are

H0(X,−nL + nL) = H0(X, OX) which contains 1 ∈ OX(X). If α ∈ M−n
nL (L) is a
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homogeneous element of degree m ≥ −n, that is, an element of H0(X, mL + nL),
then α = α · 1 where we consider the second α as an element of R(L) of degree
m + n and we consider 1 as an element of M−n

nL (L) of degree −n. So, M−n
nL (L) is

generated over R(L) by the element 1 of degree −n.
(3) We can write Mp

F (L) ' N0 ⊕ N1 ⊕ · · · ⊕ NI−1 as in Remark 2.1 (3).
Let N ′

i be the module over R(IL) whose m-th degree summand is just NmI+i,i =
MmI+i. In fact, N ′

i = Mqi

F(iL)(IL) where qi ∈ Z is the smallest number satisfying
qiI + i ≥ p. Note that the degree n elements of R(IL) are the same as the degree
nI elements of R(L)[I], and the degree m elements of N ′

i are the same as the degree
mI + i elements of Ni. By assumptions, N ′

i is a finitely generated R(IL)-module.
Therefore, Ni is a finitely generated R(L)[I]-module, and so by Remark 2.1 (3) we
are done. ¤

3. Proof of Theorem 1.1.

Throughout this section we let X → Z be a projective morphism of normal
varieties over C with Z = Spec A.

Lemma 3.1. Assume that Z = pt and L is a Cartier divisor on X. Further
assume that for any very ample divisor G the module M0

G(L) is finitely generated
over R(L). Then, κ(L) = κσ(L).

Proof. The inequality κ(L) ≤ κσ(L) follows from the fact that κ(L) =
κ(JL) and κσ(L) = κσ(JL) for any positive integer J and the fact that for some
J and certain constants c1, c2 > 0 we have

c1m
κ(L) ≤ h0(X, mJL) ≤ c2m

κ(L)

for any m À 0.
For the converse κ(L) ≥ κσ(L), we may assume that κσ(L) ≥ 0 and we can

choose a very ample divisor G so that κσ(L) satisfies

lim sup
m→+∞

h0(X, mL + G)
mκσ(L)

> 0.

By assumptions, M0
G(L) is a finitely generated R(L)-module. Let {α1, . . . , αr} be

a set of generators of homogeneous elements with ni := deg αi. For any α ∈ M0
G(L)

of degree m, there are homogeneous elements ai ∈ R(L) such that α =
∑

i aiαi.
It is clear that deg ai = m− ni. Thus,

h0(X, (m− n1)L) + · · ·+ h0(X, (m− nr)L) ≥ h0(X, mL + G)
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which implies that

lim sup
m→+∞

h0(X, (m− n1)L) + · · ·+ h0(X, (m− nr)L)
mκσ(L)

> 0

hence κ(L) ≥ κσ(L). ¤

The next result is well-known but we include its proof for convenience.

Lemma 3.2. Let L be a Cartier divisor on X with h0(X, nL) 6= 0 for some
n > 0. Then, the following are equivalent :

(1) R(L) is a finitely generated A-algebra;
(2) there exist a projective birational morphism f : W → X from a smooth variety,

a positive integer J , and Cartier divisors E and F such that |F | is base point
free, and

Mov f∗mJL = mF and Fix f∗mJL = mE

for every positive integer m.

Proof. Assume that R(L) is a finitely generated A-algebra. Perhaps after
replacing L with JL for some positive integer J , we may assume that the algebra
R(L) is generated by elements α1, . . . , αr of degree 1, and that there is a resolution
f : W → X on which f∗L = F + E where F is free, Mov f∗L = F , and Fix f∗L =
E. We could in addition assume that F ≥ 0 with no common components with E.
Obviously, Fixmf∗L ≤ mE for any m > 0. Suppose that equality does not hold for
some m > 0. Take m > 0 minimal with this property. Since E = Fix f∗L, m > 1.
There is α ∈ H0(W,mf∗L) and a component S of E such that µS(α) < 0 where
µ stands for multiplicity, that is, the coefficient and (α) is the divisor associated
to the rational function α. By assumptions, α =

∑
aiαi where ai are elements of

H0(W, (m− 1)f∗L). Thus,

µS(α) ≥ min{µS(ai) + µS(αi)} = µS(aj) + µS(αj)

for some j. The choice of m ensures that µS(αj) ≥ 0 and µS(aj) ≥ 0. This
contradicts µS(α) < 0.

Conversely, assume that there exist f : W → X, J , E, and F as in the
theorem. Then, R(JL) ' R(f∗JL) ' R(F ) is a finitely generated A-algebra as
|F | is base point free. This implies that R(L) is a finitely generated A-algebra by
Remark 2.1. ¤
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Lemma 3.3. Let L be a Cartier divisor on X with h0(X, nL) 6= 0 for some
n > 0 and with R(L) a finitely generated A-algebra. Assume further that M0

G′(L) is
a finitely generated R(L)-module for any very ample/Z divisor G′. Let f,W,F, E, J

be as in Lemma 3.2. Fix a nonnegative integer r and a very ample/Z divisor G

on W . Then,

SuppFix(m(f∗JL + rF ) + G) = SuppE

for every integer m À 0.

Proof. Let G′′ be a very ample/Z divisor on W and let G′ be a very
ample/Z divisor on X such that G′′ ≤ f∗G′. By assumptions, R(L) is a Noetherian
ring and M = M0

G′(L) is a Noetherian R(L)-module. Moreover, R(L) is integral
over the ring R(L)[J] which implies that M is a finitely generated R(L)[J]-module.
Put N0 =

⊕
m≥0 Nm,0 where Nm,0 = Mm if J |m but Nm,0 = 0 otherwise, as in

Remark 2.1 (3). Since N0 is an R(L)[J]-submodule of M , it is finitely generated
over R(L)[J]. This corresponds to saying that M0

G′(JL) is a finitely generated
R(JL)-module. On the other hand, M0

G′′(f
∗JL) is a submodule of M0

f∗G′(f
∗JL)

hence a finitely generated R(f∗JL)-module. Thus, after replacing L with f∗JL

and X with W we can assume that J = 1 and W = X. We may also assume that
F, G ≥ 0 and that F + G has no common component with E.

Obviously,

SuppFix(m(L + rF ) + G) ⊆ SuppE

for every integer m > 0. Assume that there is a component S of E which does not
belong to Supp Fix(m(L+rF )+G) for some m > 0. Let α ∈ H0(X, m(L+rF )+G)
so that

S * Supp((α) + m(L + rF ) + G)

which in particular means that µS(α) = −mµSE. Since

(m + mr)L + G = m(L + rF ) + G + mrE

and mrE ≥ 0, there is α′ in M0
G(L) of degree m+mr such that α′ = α as rational

functions on X.
Assume that {α1, . . . , αr} is a set of homogeneous generators of M0

G(L) with
ni := deg αi. We can write α′ =

∑
aiαi where ai ∈ R(L) is homogenous of degree

m + mr − ni. Therefore,
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µS(α′) ≥ min{µS(ai) + µS(αi)}.

Since

Fix(m + mr − ni)L = (m + mr − ni)E

we have µS(ai) ≥ 0 hence if the above minimum is attained at index j, then

−mµSE = µS(α) = µS(α′) ≥ µS(αj)

from which we get mµSE ≤ −µS(αj). This means that such m cannot be too
large so the theorem holds for m À 0. ¤

Proof of Theorem 1.1. (1) =⇒ (2): Assume that (X/Z, B) has a good
log minimal model (Y/Z, BY ). By Theorem 2.2, we can replace I with a multiple
so that we can assume that |I(KY + BY )| is base point free. Let f : W → X and
g : W → Y be a common resolution. Then, we can write

f∗I(KX + B) = g∗I(KY + BY ) + E

where E ≥ 0 and exceptional/Y [1, Remark 2.4]. Then, by letting LY := I(KY +
BY ) we have R(L) ' R(LY ) as A-algebras and this is a finitely generated A-algebra
as |LY | is base point free by assumptions. Let G be any torsion-free coherent sheaf
on Y and let π : Y → T/Z be the contraction defined by |LY |. There is an ample/Z
divisor N on T such that LY ∼ π∗N . Then, by the projection formula

π∗(G (mLY )) ' (π∗G )(mN)

hence

H0(Y,G (mLY )) ' H0(T, (π∗G )(mN)).

So R(L) ' R(LY ) ' R(N) as A-algebras and Mp
G (LY ) ' Mp

π∗G (N) as modules.
By Theorem 2.2 (2), Mp

π∗G (N) is a finitely generated R(N)-module hence Mp
G (LY )

is a finitely generated R(LY )-module.
Next we prove the finite generation of Mp

F (L) for any coherent torsion-free
sheaf F on X. By Theorem 2.2 (1), we may assume that F = OX(G) where G is
some very ample/Z divisor. For each m we have an isomorphism

H0(X, mL + G) ' H0(W,f∗mL + f∗G)
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and this is isomorphic to a subspace of H0(Y, mLY + g∗f∗G). So, Mp
G(L) is

isomorphic to a submodule of Mp
g∗f∗G(LY ). Therefore, Mp

G(L) is a finitely gener-
ated R(L)-module because Mp

g∗f∗G(LY ) is a finitely generated R(LY )-module and
R(LY ) is Noetherian.

(2) =⇒ (1): We may assume that X → Z is a contraction. Let V be the
generic fibre of X → Z, and let K be the function field of Z. As Z is affine, by
base change theorems, R(L|V ) ' R(L) ⊗A K is a finitely generated K-algebra,
and for any very ample/Z divisor G on X the module M0

G|V (L|V ) ' M0
G(L)⊗A K

is finitely generated over R(L|V ). By Theorem 2.2 and Lemma 3.1, κ(L|V ) ≥ 0
which in particular implies that h0(X, nL) 6= 0 for some n > 0.

Let f,W,E, F, J be as in Theorem 3.2. We may assume that f gives a log
resolution of (X/Z, B). Let BW be B∼ plus the reduced exceptional divisor of f

where B∼ is the birational transform of B. We can write

JI(KW + BW ) = JIf∗(KX + B) + E′

where E′ ≥ 0 is exceptional/X. It is enough to construct a good log minimal model
for (W/Z,BW ) [1, Remark 2.4]. We will show that (W/Z,BW ) also satisfies the
finite generation assumptions. Pick any α ∈ H0(W,mJI(KW + BW )) and let

P := (α) + mJI(KW + BW ) = (α) + mF + mE + mE′.

Since P − mE′ ≡ 0/X and f∗(P − mE′) ≥ 0, we have P − mE′ ≥ 0 by the
negativity lemma. Moreover, Fix(P −mE′) = mE hence P −mE′ ≥ mE. This
implies that

FixmJI(KW + BW ) = mE + mE′ and Mov mJI(KW + BW ) = mF.

Therefore, R(LW ) ' R(L) where LW = I(KW + BW ). On the other hand, if G

is a very ample/Z divisor on W , then there is a very ample/Z divisor G′ on X

such that G ≤ f∗G′ hence Mp
G(LW ) is a finitely generated R(LW )-module as it

is a submodule of Mp
f∗G′(LW ) ' Mp

G′(L). Therefore, by replacing (X/Z, B) with
(W/Z,BW ) from now on we can assume that W = X and that f is the identity.

Let g : X → T be the contraction/Z defined by |F |. Let F ′ be a general
element of |rF | for some r ∈ N. We can choose a very ample/Z divisor G ≥ 0 so
that KX +B+F ′+G is nef/Z and that (X/Z, B+F ′+G) is dlt. Run the LMMP/Z

on KX +B +F ′ with scaling of G. By boundedness of the length of extremal rays
due to Kawamata, if r is sufficiently large, then the LMMP is over T , i.e. only
extremal rays over T are contracted. Suppose that, perhaps after some log flips
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and divisorial contractions, we get an infinite sequence of log flips Xi 99K Xi+1/Zi.
Let λi be the numbers appearing in the LMMP with scaling in the above sequence
of log flips, that is, KXi

+ Bi + F ′i + λiGi is nef/Z and numerically trivial over
Zi where Bi, F

′
i , Gi are birational transforms on Xi. By [2], λ := limλi = 0.

Moreover, by the base point free theorem, each KXi
+ Bi + F ′i + λiGi is semi-

ample/Z (of course KXi
+ Bi + F ′i + λiGi may not be klt but we can use the

ampleness of G to reduce the claim to the klt case). Thus, if S is a component of
E not contracted by the LMMP, then there exist

0 ≤ Ni ∼Q KX + B + F ′ + λiG

not containing S. This contradicts Lemma 3.3 in view of Theorem 3.4 below.
Therefore, E is contracted by the LMMP and KXi + Bi + F ′i is Q-linearly a
multiple of F ′i . But |F ′i | is base point free as the LMMP we ran is over T . Thus,
the LMMP terminates with a good log minimal model. ¤

The following theorem was proved by Nakayama [6, Theorem 6.1.3]. He
treated the case Z = pt but his proof works for general Z. For convenience of the
reader we present his proof.

Theorem 3.4. Assume that W → Z = Spec A is a projective morphism
from a smooth variety, w ∈ W a closed point, and D a Cartier divisor on W .
Assume further that for some effective divisor C there exist an infinite sequence
of positive rational numbers t1 > t2 > · · · with lim ti = 0, and effective Q-divisors
Ni ∼Q D + tiC with w /∈ SuppNi. Then, there is a very ample/Z divisor G on W

such that w /∈ Bs |mD + G| for any m > 0.

Proof. Let f : W ′ → W be the blow up at w with E the exceptional
divisor, D′ = f∗D, C ′ = f∗C, and N ′

i = f∗Ni. Let G be a very ample/Z divisor
on W such that H := f∗G −KW ′ − E is ample/Z and H − εC ′ is also ample/Z
for some ε > 0. Put G′ = f∗G. For each m > 0, we can write

mD′ + G′ = KW ′ + E + H + mD′ = KW ′ + E + H −mtiC
′ + m(tiC ′ + D′)

∼Q KW ′ + E + H −mtiC
′ + mN ′

i

where we choose ti so that mti < ε. By assumptions, E does not intersect N ′
i .

Thus, the multiplier ideal sheaf Ii of mN ′
i is isomorphic to OW ′ near E. In

particular, we have the natural exact sequence

0 → Ii(mD′ + G′ − E) → Ii(mD′ + G′) → OE(mD′ + G′) → 0
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from which we derive the exact sequence

H0(W ′,Ii(mD′ + G′)) → H0(E, (mD′ + G′)|E)

→ H1(W ′,Ii(mD′ + G′ − E)) = 0

where the last vanishing follows from Nadel vanishing. On the other hand, (mD′+
G′)|E ∼ 0 hence some section of Ii(mD′ + G′) does not vanish on E. But

Ii(mD′ + G′) ⊆ OW ′(mD′ + G′)

so some section of OW ′(mD′+G′) does not vanish on E, which simply means that
w is not in Bs |mD + G|. ¤
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