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Abstract. We are concerned with rigorously defined, by time slicing
approximation method, Feynman path integral er ) F(7)eSMD(y) of a

functional F(v), cf. [13]. Here Q4 is the set of paths y(t) in R? starting
from a point y € R? at time 0 and arriving at € R? at time T, S(v) is the
action of v and v = 2rh~!, with Planck’s constant h. Assuming that p(7) is
a vector field on the path space with suitable property, we prove the following
integration by parts formula for Feynman path integrals:

/Q DF(3)[p()]e* S D()

—— [ Fo)Dwp)e" SO0 —iv [ Fo)DSlp]e D).
Qz .y Qaz,y
(1)

Here DF(v)[p(v)] and DS(v)[p(v)] are differentials of F(y) and S(v) evalu-
ated in the direction of p(vy), respectively, and Div p(y) is divergence of vector
field p(v). This formula is an analogy to Elworthy’s integration by parts for-
mula for Wiener integrals, cf. [1]. As an application, we prove a semiclassical
asymptotic formula of the Feynman path integrals which gives us a sharp in-
formation in the case F'(y*) = 0. Here v* is the stationary point of the phase

S(v)-

1. Time slicing approximation of Feynman path integral.

Let [0,7], T > 0, be an interval. Let L(t,4,z) = (1/2)|#|> — V(¢,x) be the
Lagrangian function with real potential V (t,z), (t,z) € [0,T] x R<.

A path 7 is a continuous map 7 : [0,T] > t — ~(t) € R? starting from ~(0)
at time 0 and reaching v(7') at time 7. In the following, we always assume that
d =1 for the sake of simplicity of notation.

We write X = L?([0,7]). For any f,g € X we write (f,g)x for the inner
product of f,g and ||f||x for the norm of f in X. Let H = H'([0,T]) be the
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real L2-Sobolev space of order 1 equipped with the usual norm || ||. For any
z,y € R, we write Hy, = {y € H : v(0) = y,7(T) = z}. Hs, is an infinite
dimensional differentiable manifold. Its tangent space at v € H, , is identified
with the Hilbert space Ho = H3([0,T]) = {v € H;v(0) = v(T) = 0} equipped
with the inner product

(i, ha)ae /dtl o) dt

We denote the norm in Hy by/||h||#, for h € Hy. The cotangent space of H, ,, at
is identified with Hg via the inner product of Hy. There are continuous canonical
inclusions Hg C H C X.

The action S() of a path v € H in the interval [0, 7] is the functional on H:

se)= [ £ @20 Jar )

It is Fréchet differentiable and its differential DS(y) of S(v) restricted to H , is
a cotangent vector, whose value evaluated at a tangent vector h € H is

DS()[h] = /O (jty(t)jth(t) _ GIV(t,Py(t))h(t))dt, for ¥ h € Ho.

A stationary point v* of S(vy) on H,, is the solution of Euler’s equation with
boundary conditions:

2
%'y(t) + 0, V(t,y(t) =0, forO0<t<T, (3)

7(0) =y, AT)==z (4)

The solution v* of Euler’s equation is called a classical path or a classical orbit
starting from (0,y) and arriving at (T, x).

Throughout this paper we always assume the potential V(¢,2) has the fol-

lowing properties: For any integer k£ > 0 there exists a positive constant v; such
that

|3§V(t,x)’ < vp(1 + |))mex102=k} - for any 2 € R. (5)

For the sake of simplicity we assume that vg < vy <wvg < ---
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We fix a positive constant p so that
g <4 and  pwp < 1. (6)

If T < u, then for any z,y € R the solution v*(¢) of two points boundary value

problem of the Euler’s equation (3) exists uniquely and attains the minimum of

the action. We write S(T,0,z,y) = S(v*), because it is a function of (T, z,y).
Let A be an arbitrary division of the interval [0, T] such that

A:0:T0<T1<"'<TJ<TJ+]_:T. (7)

Weset 7j =T; —Tj_1,j=1,2,...,J+1, and |A] =max {r;;1 < j < J+1}.
For j =1,2,...,J, choose arbitrary point x; € R and set xg =y, x541 = .
We denote by ya the path such that

’YA(I—})::EJ7 j:O71727"'3J+17

and

d2
@y(t) +0,V(t,v(t) =0, Tj.1<t<Tj forj=1,2,...,J+1

vYa is a path which may have edges at ¢t = T}, j = 1,2,...,J. We call such a
path a piecewise classical path or a piecewise classical path associated with the
division A. We sometimes express its dependency on (41,2, ..., Zo) by writing
Yyalt, zyp1, 2, ..., %0) O YA(Ts41,27,...,%0). It is clear that yA € Hy .

The set T'(A) of all piecewise classical paths associated with the division A
forms a differentiable manifold of dimension .J + 2, which is embedded in Hilbert
space H. The correspondence YA — (zj+1,-..,%0) is a global coordinate system
of T'(A). We write I'y ,(A) = T(A) N Hy y-

If a functional F(v) of v is given, F(ya) is a function of (xy11,2s,...,21, o),
which we sometimes write Fa as an abbreviation. For example the action S(ya)
of ya(xjy1,27,...,20) is a function of (xj41,25,...,21,20) if A is fixed.

S(WA(HJJHJJ?W,SCO)):/O L<t, im(ﬂm(ﬂ)dt
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Feynman [2] introduced the notion of his path integral

| P
Qa .y

by the following formula:

| FOESODE) = i F)(AiT.0.2.0), 9)
Q

|[A]—0

z,y

where

J+1 1/2
I[FA](A;V7T707:E’Z/) = H < > / F(’YA(Z‘J-‘rtha"'vxth))
RJ

e 2miT;
J

w eS(a(@rt1,m,.,21,20)) H dz;. (10)

j=1

We call I[FA](A;v,T,0,2,y) time slicing approximation of path integral. Math-
ematically, the multiple integral on the right hand side of (10) is not absolutely
convergent. We consider it as an oscillatory integral, cf. [11], [12].

Following Kumano-go [13] we say that the functional F(y) is F-integrable
if the limit on the right hand side of (9) exists. F(y) = 1 was proved to be F-
integrable, cf. [4], [10] and [6]. More general sufficient conditions for the limit (9)
to exist was studied first by [13], cf. also [7].

Now we introduce seminorms which are convenient for us to describe class of
functionals F'(y) discussed in this paper.

Let o = (aj41,,. .., 02,01, q0) be a multi-index. Then we write m(«) for
max{a;;0 < j < J+1}. Let )V be a Banach space equipped with norm || ||y. Let
A be a division of [0,T], va and (zjy1,2s,...,21,%0) be as before. Assume that
the map G : T'(A) 2 yo — G(ya) € Y is infinitely differentiable with respect to
(xj41,---,20). Let K be a non-negative integer, m be a non-negative constant
and X > 1 be a constant. Then we define a seminorm of G(ya):

1G(va)l{y;a,m,x,x}

= max sup(1 + |zo| + var(ya))™™

J+1
(TLxaz o)
3=0
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where var(ya) = Zjill |z; — 2;_1], max is taken over all multi-indices a with
m(a) < K and sup is taken over all (z741,...,709) € R/T2. Moreover if G(7v) is
defined on H, then we define

1Gll (yim.x.xy = sup Gl (v:a.m. k. x} (12)

where sup is taken over all divisions A of [0,T]. In particular, if Y = C or = R,
we simply write HG||{A,m7K7X} or ||G||{m,K,X}.

We usually write an element h € H as a function h(s) € X of a variable, say,
s € [0,T]. We denote this natural embedding by p : H — X when we need to
emphasize it. We denote the restriction of p to Hy by p. The symbol p* : X — H,
expresses the adjoint of p.

Suppose that a functional F(v) restricted to H,, is Fréchet differentiable
at . Then DF(vy) denotes its differential, which is a cotangent vector € Hp.
DF(v)[h] is the value of DF(~) at the tangent vector h € Hy, i.e., DF(v)[h] =
(DF(v), h)n,. Moreover, if there exists a density f,(s) with respect to some
positive Borel measure ¢ on [0,7] such that

T
DFH = [ £,(s)oh(s) dels). for Vh € Ho,

then we often denote f.,(s) by 6F (v)/dv(s) or (6/6v(s))F (7).

DEFINITION 1.1. Let m be a non-negative constant. We call F(y) an m-
smooth functional if F(+y) satisfies all of the following conditions.

F-I. F(y) is an infinitely differentiable map from H to C.
F-2: There exist a positive Borel measure ¢ in [0, 7] such that for any v € H the
differential DF(v) has its density 6F(y)/dv(s) with respect to ¢, that is,

prem = [ 50

ph(s)dp(s), for Vy e H, Vh € Hy.

0F(7y)/67(s) is a continuous function of s € [0,T] if each v € H is fixed.
F-3: The map H > v — dF(v)/dv(s) € C([0,T]) is infinitely differentiable, where
C(]0,T7)) is the Banach space of continuous functions in [0, 7] equipped with
the maximum norm || f||¢(p0,77) = maxep, 7y |f(¢)| for any f € C([0, T7]).
F-4: For any non-negative integer K there are positive constants Ax and X such
that for any K =0,1,2,...,
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6F ()
67(s)

Ag = [[F(V)lfm, k. x5}y + H

< 0. (13)
{C(0,T);m, K, Xk }

REMARK 1. Let g be so small that vop? < 4 and v < 1. If T < p,
N. Kumano-go gave a fairly large class of Feynman path integrable functionals
including those functionals which are m-smooth. See [13] and also [7].

2. Divergence operator.

2.1. Some operators of trace class.
We write w = 7/T and for n =1,2,3,...,

en(t) = \/zsin nwt, ©on(t) = ppn(t) = \/g(mu)_1 sin nwt. (14)

The system {e,,n = 1,2,3,...} is a complete orthonormal system, c.o.n.s. in
short, in X and {p,,n=1,2,3,...}is a c.on.s. of Hy. Clearly,

PPn = (nw)_lena p*en = (nw>_14pn~

pp"en(t) = (n‘*))_gen(t)- (15)

Let Z; be the ideal of trace class operators in X equipped with trace norm
I ||z, and Z3 be the ideal of Hilbert-Schmidt class operators equipped with norm

[E=
The following Proposition is known.

ProrosiTION 2.1.

L pp* € Ii and |pp*|z, = 02, (nw) 2.
2. pp* coincides with the Green operator Gg of Dirichlet boundary value problem
of ordinary differential equation: For all f € X,

d2
~ 25 Gof (H) = f(0) (16)

Gof(o) =0, Gof(T) = 0.

For any f € &,

Gof(s) = / dols, 1) f(t) dt,
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where go(s,t) is the Green function

T 1s(T—t) if0<s<t<T,
gl =4 | (a7
T 4T —s) if0<t<s<T.
We have
Bugo(s.) T-YT -t) if0<s<t<T, a8)
sgo(s,t) =
+90 —T 1 if0<t<s<T.
It is clear that for any (s,t) € [0,T] x [0,T],
|05g0(s, )] < 1 (19)
and for any (s,t) € [0,T] x [0, T,
go(s,t) :/ 0sgo(o,t) do.
0
Let 0;Gq be the operator in X
T
0.60f(s) = | dugo(s,f(O)dh, for f € 2. (20)
0
Since
T T 2
T
/ / 10,90 (s, ) dsdt = =,
o Jo 6
we have

PROPOSITION 2.2.  0,Go € Zy. And ||0sGol|z, = T/V6.
Let B : X — X be a bounded linear operator. Then we have the following

PROPOSITION 2.3.  p*Bp € I; and pp*B € I,. Their traces are equal:
tr p*Bp = tr pp* B.

Proof is clear.
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Propositions 2.2 and 2.3 imply that there exist k(s,t) € L2([0,T] x [0,T]) and
h(s,t) € L?([0,T] x [0,T]) such that for any f € X,

P BI) = [ K0t 0.GoBs(s) = [ hs 00

We shall prove next Lemma.

LEMMA 2.4. For any s € |0,T] and for almost all t € [0,T]

/S h(o,t) do = k(s,t).
0

PrROOF OF LEMMA. For any f € X it is clear that both dsg0(s,t)(Bf)(t)
and h(s,t)f(t) € L([0,T] x [0,T]). Therefore, for any s € [0, 7],

/OT (/Osh(a,t)f(t) da)dt:/os (/OTh(J,t)f(t) dt)d(,
:/OS (/OTasgo(U,t)(Bf)(t)dt)da:/OT </0585g0(0,t)(Bf)(t)dg>dt

T

T
=/’%@wwﬁmw= (s, 6) (1) dt.

0 0
This proves Proposition 2.4. O
We have

PROPOSITION 2.5.  For almost all t € [0,T], k(t,t) is well defined and

T
/ |k(t, )| dt < oo, (21)
0
T
trpp*B:/ k(t,t)dt. (22)
0

PROOF OF PROPOSITION 2.5. For almost ¢ € [0, 7]

k(t,t) = /Ut h(s,t)ds
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is well-defined because of Lemma 2.4. Inequality (21) is proved in the following

way.
¢

/ h(s,t)ds
0

/OTk(t,t)th—/OT

T t
g/ t/ |h(s,t)|? dsdt gT// |h(s,t)|? dsdt < oo.
0 0 [0,7]%[0,T]

We shall prove (22). Since {e,;n =1,2,3,...}is a c.o.n.s. of X, we can write

2
dt

Bf(s) = Z binn(€ns f)axem(s). (23)

m,n=1

We have

/OT k(t,t)dt:/OT (/Ot h(s,t) ds)dtz/OT /OTh(s,t)x(s,t) dsdt,

where x(s,t) is the characteristic function of the set {(s,t) € R?:0 < s <¢,0 <
t <T}. Let

fo(s) = %, and  f,(s) = \/%cos(mws) form=1,2,3,....

Then the system {fo, f1, f2,-..} is a c.ons. of X. Thus {fin(s) R e,(t) : m =
0,1,2,... and n=1,2,3,...} is a c.om.s. of L%([0,T] x [0,T]). We have expan-
sions

and

_1\n+1 x>
E T fo)entd) + 30D —bmafm(e)en(t).

n=1 m=1n=1

Therefore,
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/OT/OTh(s,t) (s, t)dsdt = ZZ n:i(mi)2bmm

m=1n= 1 m=1

= trpp*B.

We have proved Proposition 2.5. O

2.2. Divergence of a vector field.

Let p: H > v — p(v) € Ho. Then p(y) restricted to H, , is a tangent vector
field on H, . We write as usual p(v, s) = pp(y)(s). We have dsp(v,s) € X.

We use the symbol £(X) for the Banach space of all bounded linear operators
in X equipped with operator norm.

DEFINITION 2.6 (Admissible vector field). We say that p(y) is an admissible
vector field if p() has the following properties:

1. There exists a C! map ¢ : H — X such that

*

p(y) =p"q(y), forany v € Hyy.
2. When we restrict ¢(vy) to H,,, the Fréchet differential Dg(vy) : Ho 3 h —

Dq(~)[h] € X can be boundedly extended to a bounded linear map B(7y) in X,
that is, for any h € Hy,

We often write dq(y)/dv for B(%).
Let Dp(y) : Ho — Ho be Fréchet differential of p(v) restricted to H, , at
v € Hz,y. Then it is clear that for all h € Ho,

Dp(y)[h] = p*B(7)ph.
That is, for all hy, hy € Ho,
(Dp(M[ha]; h2)wy = (B(v)ph1, pha)x
DEFINITION 2.7 (Divergence of a vector field).  Suppose that p(y) is an

admissible vector field. We define its divergence Divp(y) at v € H,, by the
following equality:

Divp(y) =trp*B(y)p =trp %(7)/)-
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Let p(y) be an admissible vector field. The map pp*B(y) is an operator of
trace class. We denote its kernel function by dp(v, s)/dv(t), i.e.,

T op(v,s)
o7(t)

p(Dp(1)[])(s) = / ph(t) dt.

It is clear that for any h € H,

T S
/o 52% L oh(t) dt = Dp(s,5)[1].

On account of Proposition 2.5 in the previous subsection we have the following

PROPOSITION 2.8.  Assume p(7) is an admissible vector field. Then

. [T op(v.t)
Div p(7) _/0 0] dt

The notion of admissible vector field defined above is an analogy to infinites-
imal version of “admissible transformation” in the case of Wiener integral. cf.
[14].

3. Statement of main theorem.

DEFINITION 3.1. Let m’ be a non-negative number. We say that the vector
field p() is an m/-admissible vector field if it has all the following properties:

P1: p is an infinitely differentiable map p : H > v — p(y) € Ho of which the
restriction to H , is admissible for any fixed =,y € R, that is, there is a C*
map ¢ : H — X such that p(y) = p*q(y) for v € H;, and that for all h € Hy,
Dq(v)[h] = B(v)ph, where B(y) € L(X).

P2: The map H > v — B(vy) € L(X) is infinitely differentiable. For any non-
negative integer K there exists a positive constant Yk such that

B = [lg(V)l(xim k. viey T 1B licaym: i yiey < 0. (24)

Let p be as in (6). Our main theorem is the following

THEOREM 3.2 (Integration by parts). Let T < p. Suppose that F(v) is
an m-smooth functional and that p(v) is an m'-admissible vector field. We fur-
ther assume that two of DF(v)[p(7y)], F(v)Divp(y) and F(y)DS(v)[p(v)] are F-
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integrable. Then the rest is also F-integrable and the following equality holds.

/Q DF(y)[p(1)]e”* ) D(v)

- / F(y) Divp(7)e* S D() — iw / F(7)DS () ()] 5P D ().
Qa,y Qz,y )
(25

Let F(y) = 1. Then we have the following corollary, which will be used in
Section 5.1.

COROLLARY 3.3.  Assume that p(y) is an m'-admissible vector field and
that DS(v)[p(7)] is F-integrable. Then Divp(y) is F-integrable and the following
equality holds:

/ DS()[p()]e”SDD() = —(iv)? / Divp(1)e”SD(y).  (26)
Quy Q

The following case was proved earlier by N. Kumano-go in [7].

REMARK 2. If p(v, s) is independent of 7, i.e., p(v, s) = h(s) then Divp(y) =
0 and the above formula (25) reduces to

/ DF(y)[He”SDD() = —iv / F(1)DS()[HeSOD().  (27)
Qay Qey

4. Proof of main theorem.

4.1. Outline of the proof.

Throughout this section A denotes an arbitrary division of the interval [0, T]
as in Section 1. We use the notation, for example, (zjy1,2,...,%0), 7a and
a=(ajq1,0y,...,02,a1,00) etc. as in Section 1. We write

J+1 y 1/2
N(A) - H (27ri'rj) ’

Jj=1

and ya; = p(va,Tj), 5 = 0,1,...,J+ 1. Clearly yao = 0 = ya,j+1. Since
definition of oscillatory integral on finite dimensional space R’ implies that
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J
/ Zazj (va)ya ;e 0>)) H

we have
J

J
N [ 30, (Fls)a 0 ] da;

j=1 j=1

J
= _N(A / 2) Y00, (yas)e wsm>de
j=1 Jj=1

J J
N [ FOa) Y ua s, 80)e 0 [T de;

j=1 j=1

1285

Our main theorem follows from the above formula if we prove the following

lemmas.

LEMMA 4.1 (First equality). There holds the equality:

J
D yai02,5(7a) = DS(1a)lp(1a)].

j=1

LEMMA 4.2 (Second equality). The following equality holds.

J J
|ii|r£0 <N(A) /RJ Z Oz; (F(’YA))yAJ.eiIJS(’YA) H dz;
Jj=1 Jj=1

- / DF(7a)[p(ya)]e™50) Hd%> =0.

j=1
LEMMA 4.3 (Third equality). The following equality is true.

J

J
lim <N(A) F(ya) Z (9%. (yA,j)eiVS(’YA) H dz;
j=1

|A]—0 R/ =1

) J
- N(8) [ PO Divpa)er 0 [ s, ) 0

Jj=1
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4.2. Basic facts.

Let A be an arbitrary division of [0,T]. We use notation in Section 1 such
as (Tjy1,2g,...,21,20) and ya, etc. We summarize some properties of the norm
I llta,m,x,x}, etc. here.

PROPOSITION 4.4. Let m,m’ > 0, X, X' > 1 be constants and K, K’ be
non-negative integers.

1. Ifm>m/, K <K' and X > X', then for any functional F(ya) on T'(A)
IE(va)llgamrxy < IFOa)lliam g x3- (28)
2. For any functionals F,G on I'(A), we have

IF(va)G(ya) l{a,mtm K, x+Y}
< [F(ya)llgamx.xy 1GOya)lliam xyy- (29)

PROOF. (28) is clear. We shall prove (29). Set
A = HF(W/A)”{A,m,K,X}, By = HG(’YA)||{A,77L/,K7Y}.

Then, for any multi-index o = (aj41, @y, ..., a1,ap) with m(a) < K,

JH1
‘ ( 11 5?f>F(VA) < A (14 |wo| + var(ya))™ X 1%,

(Ioz oo

here and hereafter |a| = E‘]H |cej|. Leibniz’s rule gives

< Bg(1+ |zo| + Var(WA))m/Y“",

|02 F(va)G(7a)|

< Z( >|35F 7a)]|057 PG (ya)]

B<a

< Z( )AK (1+ |0 + var(7a))" X1 By (1 + [zo] + var(ya))™ Y12~
BLla
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' o
< Ax B (L + [wo| + var(ya))™ ™ ) ( )xlﬂlya—ﬁl
Bl

= AgBr (1 + |zo| + var(ya))™ ™ (X + V)l
This proves (29). O

COROLLARY 4.5. If F(v) is an m-smooth functional and G(vy) is an m'-
smooth functional, then the product F(v)G(7) is (m +m’)-smooth.

PROPOSITION 4.6.  Let Y, Z be Banach spaces. Let L(Y,Z) be the Banach
space of bounded linear operators from Y to Z equipped with the operator norm.
Suppose A be a division of the interval [0,T] and F : T'(A) 3 yao — F(ya) € Y
and R :T(A) 39a — R(va) € LV, Z) are C* maps.

1. If R(ya) = R does not depend on v, then
IR(va)F(va)lliziam g xixr < 1Rle@,z) 1F(va)llvia,mx xx -
2. In general,
IR(va)E(va)ll {20 mtm 5, X e+ Vi)
< ROl ie.2ya,m v 1F (Vo) lyiam, g xx}-
If F(v), R(vy) are C*®-map from H to Y and L(Y, Z). Then
||R(7)F(7)||{z;m+m',K,XK+YK}
SNRMge.2yme &y HIEF ) 1wim, k. x 3

PrROOF OF PROPOSITION. First part of the proposition is clear. To prove
the second part we have only to mimic the proof of Proposition 4.4. (|

The following special cases are also useful.

PROPOSITION 4.7.  Besides the assumption of previous proposition, we sup-
pose that R(ya) depends only on three variables xj_1,z,&j11, i.e., O R(ya) =0
fork#.j_17j7j+17 cmd

IROalc,z)a,m k13 < 0o

Then
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IR(va)F(va) l{z0,mam i, xy < 225K RIl (v, 2)0,m 5,13 1 F ) | 938,m, 5,

PROOF OF PROPOSITION 4.7. Let a be a multi-index with m(a) < K. By
Leibniz’s rule and assumption,

P R(va)F(1a) = 3 (g) 08 Riva)oe P F(1a)

BLa

-2 (500) () () mosw o)

where >_" means summation over only those multi-indices that is of the form
ﬁ* = (0707"'7076j—17ﬂja6j+17070a"'70)'
Let |[R(va)l{cv.2):a,m k13 = Br and [|[F(va)ll{y;a,m,x,x3 = Ax. Then

|02 R(va)F(va)|| -

<2 () () Gl + sy s

X (14 |xo| + var(ya))mXI1=1871 A

< (1 + |zo| + var(ya))™+™ Z (gji> <ZJ> (a7+1>3 Ag X1el=1871
- j

6]-&-1

< (1 + |xo| + Var(fyA))m+m'AKBKX\O‘| (Z <Zji> (gj) (2@11))
J— J J

< (1 + |zo| + var(ya))™ ™ Ag B X |*123K

because X > 1. Proposition 4.7 has been proved. d

Let f: H3>~v— f(y) € X and u(y) = pp* f(). We use the symbols f(v, s)
and u(y, s) for the functions which represent elements f(v) € X and u(y) € X,
respectively. Let m > 0. Suppose that for any positive integer K there exists a
positive X such that for any division A of [0, 7]

AK = ||f(’yA)||{X;A,m,K,XK} < 0.

Then we can apply Proposition 2.1 and have the following facts.

PROPOSITION 4.8.  u(y) = Gof(7y). u(y,0) = u(v,T) = 0. There hold the
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following estimates:

sup [u(va, ) |l{amxxey < T2 Ak, (30)
s€[0,T)
d 1/2
sup [|—u(ya,s) < T/ Ak. (31)
sefo1] || ds (Am,K X}

PROOF OF PROPOSITION. Proposition 2.1 implies the first part of proposi-
tion. Since (19) means 9;Go : X — C([0,T]) is a bounded linear map with norm
less than 7/2, (31) holds. (30) follows easily from this. O

4.3. Proof of the first equality.

We prove Lemma 4.1.

Since ya (t) is a piecewise classical path with edgesatt = Tj for j = 1,2,...,J,
integration by parts gives

d

T d T
DSGalptra)) = [ Graltgrta = [0V (taapta. i

J+1 d d
=3 (el = 0w6a 1) = GralTyos + Ol 7o)

j=1
J

= 0:,5(7a)ya-
j=1

Lemma 4.1 has been proved. O

4.4. Proof of the second equality.
Let Ax,m, Xk be as in Definition 1.1 and By, m’, Y be as in Definition 3.1.
We know

J J
> 0., F(va)ya,; = Y DF(7a)[Cajlya s (32)

j=1 j=1
where (a j(t) = 0z;7a(t), for t € [0,T], j = 1,2,...,J. The function (s ; is a

piecewise smooth curve which may have edges at t = T;_y, T}, Tj11. It is clear
that

Caj(s) =0, fors¢& (Tj_1,Tjt1) (33)
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and for t € (T;_1,T;)U(Tj,Tj4+1), Ca,; satisfies differential equation of Jacobi-field

d2
@Cm(t) + 92V (t,va(t))Ca,;(t) =0,

and boundary conditions

CAJ(J 1) 0, CA,j(T)*l CAJ( J+1) 0.

By definition

0z,Caj(t) =0, forte[0,T],if |j—Fk|l>1,
82?j—1CA,j(t) =0, fort¢ [ Jj— 17TJ]’
8x].+1CA’j(t) = 0 fOI‘ t g [Tj,Tj+1].

Ca,;j is very close to the following piecewise linear function ea ;. For j =1,2,...

0 if t ¢ (Tj—1,Tj+41),
ea;(t) = T{l(t—Tj,l) ift € [T;-1,T}],
T Ty — 1) if t € [T, T
And
0 ift ¢ (1o, Th),
eA’()<t) = . '
1 (T1 — If) ifte [To,Tl],

0 if ¢ ¢ (TJ7TJ+1)7
Trp(t—=Ty) if t € [Ty, Ty4q).

ea,+1(t) = {

(34)

It is easy to see (cf. for example [3], or [6]) that for any «, 3 there exists
constant Cng such that the following estimate holds: For j =1,2,3,...,J +1,

05,05 (ea;(t) = Cai(1)| < Capry for t € [Tj-1,T)]
and for j =0,1,2,...,J,

‘8a a1 (eA,j(t) — CA,j(t))’ < Ca,@ i1 for t € [Tj7Tj+1].

(39)

(40)
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It is clear that for t & (T;-1,7;) U (T}, Tj+1)
ea,;(t) —Ca,;(t) =0. (41)
Therefore, for any K = 0,1,2,... there exists a positive constant C'c independent
of A such that for any ¢ € [0, 7]

||6A7j (t) - CAJ (t)”{A,O,K,l} <Cgk (T]'ZX[ijth] (t) + T]'2+1X[Tj7Tj+1] (t)) . (42)

Here X(r,_, 1;)(t) is the characteristic function of the interval [T;_y, T}].

REMARK 3. We can choose constant Cyg so that it depends only on
V2,3, .. -, Vja|+|8|+2 and does neither depend on A nor on x; 1,2, ;1.

The function ea ; is independent of {x;};=01, . s+1 and the collection of
functions {ea ;} is a partition of unity on [0, 77, i.e., for any ¢ € [0, 17,

J+1

Z ea,;(t)

1. (43)
Using this and the fact that ya,0 = ya,s7+1 = 0, we have

DF(7a)p(ya)] - Z DF(ya)[ya.jCa.j]

J+1 J
=Y DF(7a)[(p(va) — ya)ea ]+ > DF(va)lyaj(ea; —Ca )l
=0 j=1

In the following we write Zx = Xk + Yk and my = m +m/ and N(T,z,y) =
(v/2miT)Y?(1 + |z| + |y|)™ for brevity. Then Lemma 4.2 follows from the case
a = =0 of the next Lemma.

LEMMA 4.9.1  For any non-negative integers a, 3 there exist a positive con-
stant C' and a positive integer K independent of division A, v and z,y € R such
that

1Statements of Lemma 4.9 and Lemma 4.10 in the first version of manuscript are corrected
following kind advice by prof. N. Kumano-go. The author expresses sincere thanks to him.
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J+1 J
0207 (5 ON@) [ DFGa)| S 008) - s e 50 L )|
R =0 j=1
< CIN(T 2,1)| Ax Br (0. T A (14)

J J
020 (50 IN@) [ 5 DPGs) s feas —Gale 0 [ ds, )
j=1

j=1

< CIN(T, 2, )| Axc Bieo([0, T]) | A2, (45)

Here ¢([0,TY]) is the measure of the set [0,T] with respect to ¢.

We will prove these estimates by means of stationary phase method over a
space of large dimension. cf. [5], [13] and [8].

We now begin the proof of (44). Replacing f(v) by ¢() and Ax by Bk of
(24), we can apply Proposition 4.8, because p(y) = pp*q(v). We have

t d t
poa) = s = [ aptras)ds = [ 0.Goala)(s) ds.
T; @5 T;

And we obtain by (31), for ¢t € [T;_1,T}]

t
<_/
T;

ds
{A,m" ,K,YK}

IP(vast) = ya,ill{am k. vi

d
%p(’yAv S)

N

t
< f/ TY?By ds < 7,TY* By
T;

Similar estimate holds in the case ¢ € [T}, T;41]. Therefore, by Proposition 4.6,
there exists a positive constant C' which may depend on T but not on A, K and
J such that

CBKT]‘ for t € [Tj,th],

(46)
CBKT]‘+1 fort € [Tj,Tj+1].

[(p(va,t) —ya)ea;i Ol (am kyiey < {

Writing

J+1

u(yat) = Y (p(yart) — yaj)ea (),
j=0
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we have for any fixed t € [Tj_1,T}],

lu(va, Ol {a,me &, vic}

= [[(p(va,t) —yaj-1)eaj—1(t) + (P(ya,t) —yajlea; Ol am xvic}

Thus,
lu(ya) licomysa,m: kyviey < 2CBk|A].

Since m1 = m+m/, Zx = Xi + Y, we have

HDF(M) {J_Z_:H(p(m) - ym)%j]

<| [ s

{A,m1,K,ZKk}

u(ya,t) do(t)

{Aﬂ’nl,K,ZK}
oF
< H %M) lw(ya)ll oo m:am, & v}
Y LN (0.T)e)iA m K Xk}
< CAxBrp([0, T)IA]. (47)

In order to apply stationary phase method we need still more information.
cf.[5], [13] and [8]. Let A be an arbitrary division of interval [0, 7] as is given in
(7). Let Ay be any division of [0, 7] which is coarser than A, in other words, A be
a refinement of A;. Then there is a subset {i1,42,...,4s} of {1,2,3,...,J} such
that division points of A; are

AlzT‘():Tig<T‘il<"'<Tis<ns+1:T]+1~ (48)

We set 1511 = J 4+ 1 and 15 = 0.

Let ya, (t) = va, (Ti oy Tigs - - - Tiy, T4 ) (t) be an arbitrary piecewise classical
path associated with the division A;. We can identify this with the piecewise
classical path ya € T'(A) with the property ya(t) = ya,(t) for any ¢t € [0,T]. We
denote this identification map by ¢ : T(A;) — T'(A). Let f : T'(A) — C be a
function defined on T'(A). We use the symbol ¢* f for the pull back of f by «.

We wish to prove that for any K =0,1,2,...,
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< CAKBKQO([OaT])‘AL

J+1
t"DF(vya) [ Z(p(’m) - yA,j)eA,]}
{Ay,m1,K,Zk}

j=0

with positive constant C' independent of A.
Since ea ;(t) does not depend on z;, j =0,1,2,...,J +1,

Vea(t) =eaj(t), fortel0,T], j=0,1,...,J +1. (49)

and
Up(vast) —ya; =p(va,,t) — p(va,, Tj).
It is clear that

CBKTj fort e [’I’jfl,Tj},

C(p(vast) —yagleasllian,m kyiey <
10 (0 (ras ) = yagdeasllismm s {CBW R,

Therefore, mimicking discussion following (46), we have

J+1
Y (018t — ya e < 20Bx|A.
7=0 {C([0,T));A1,m" ,K,YK}
Clearly,
o7() {L([0,T],¢);A1,m, K, XK } dy(t) {L1([0,T),0);81,m, K, XK }

Therefore, there exists a positive constant C' independent of A;, A such that

J+1
V"DF(7a) {Z(p(m) - yA,j)eA,j]

7=0 {A1,m1,K,ZK}
0Y(#) MlLr(to,1),0):0,m, 5, X}

J+1

Y (p(vant) —yaglea

=0

X

{C(0,T]);81,m/, K, Yk }
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< CAgBge([0,T])[A]. (50)

Since we have obtained (47) and (50), we can apply stationary phase method to
the oscillatory integral:

J+1 J
N@) [ pFGa) [;)(p(w - m,ﬂeM} s L,

As a consequence, for any non-negative integers «, [ there exist a positive constant
C and a positive integer K independent of A such that

J+1 J
020 (= 0IN(8) [ DF) [ o000~ s )ea) |50 [T )|
j=0 j=1

< CIN(T,z,y)|Ax B ([0, T])|Al.

We have proved (44).

Now we prove (45). By virtue of (39), Proposition 4.7 and (31), there exists
a positive constant C'x for each non-negative integer K such that for any fixed
te [Tj_th}, j= 1,2,3,...,J,

lya,i(ea; () = Ca i) l{am k. vi}
< 23Klea () = Cai Ol (a0, k.13 1PV, Ti) | (amr 5 vie)

< Cx BT},
and for t € [T}, Tj11], j =1,2,3,...,J
lyaj(ea; () = CaiO)ltam ke yviey < Ox BT
Obviously, for t ¢ (Tj_1,Tj4+1)

lya.jlea;(t) = Ca ()l {am xyvi) = 0.

Therefore,

< 2Ck Bg|AJ2.
{C([0,T]);a,m K, Yic}

J
> Walea; —Cay)
j=1
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This leads to

J

HDF(’YA) [Z(yA,j(eA,j - CAJ)):|

{Am1,K,Zk}

H/ o (iwm] - Cas(0) ) dptt)

j=1

{A,m1,K,Zr}

<%

< Cx Ak Bro([0,T))|AP, (51)

J
Z yA] [SVANY CA,J))

{LM([0,T));8,m, K, Xk } {¢([0,T]);4,m", K, Yk }

with some positive constant Cx independent of A.

Let A; be any division of [0,7] which is coarser than A. Now we discuss
the pull back of DF(74)[Y27_, (yaj(ea — Ca))]. The pull back 1*Ca ; vanishes
outside (Tj_1,T;+1) and satisfies differential equation of Jacobi field and boundary
value:

d2 * 2 *
pre Ca; () + 0V (t,ya, (1) Ca,;(t) =0, te (Tj-1,T5) U (T}, Tj+1),
Cai(Tj-1) = 0" Caj(Tj41) =0, and *Ca;(T) = 1.

Therefore, the estimates (39), (40) and (42) replaced {a ; by ¢*(a ; hold with the
same constants Cy, g and Cx. We have clearly

ea,j(t) = Ca (1) =0 ift & [Tj_1,Tj4]. (52)
And

CK72 fort € [ijl7Tj]7

(53)
CKT Gl fort e [Tj,TjJrl].

lea;j(t) = " Cai(D)ll{a0x1) < {
Thus we can obtain in the same way as in (51)

< Cx AgBrp([0,T])|A%,
{Al,m’,K,ZK}

J
t*DF(ya) {Z (ya,jlea; — CA,j)):|

Jj=1

(54)
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with some positive constant C'x independent of A.

It follows from (54), (51) and stationary phase method that for any non-
negative integers a and (3, there exists a positive integer K and a positive constant
C such that

J J
020f (¢ IN) [ 5 DPGs) s fen —Gale 0o [T dsy )

j=1 j=1

< O|N(T,z,y))|Ax Bro([0, T])|A]*.

This proves (45). We have proved Lemma 4.9. Therefore, proof of Lemma
4.2 has been completed. |

4.5. Proof of the third equality.

Let B(v) € L(X) be as in Definition 3.1. We can use Propositions 2.3, 2.5,
2.8 and Lemma 2.4. Let us denote the kernel function of pp*B(y) = GoB(v) by
k(7, s, t) and that of ;GoB(v) by h(y,s,t). We know

k(v,s,t) = / h(v,0,t)do, for almost all ¢ € [0, T], (55)
0

T
Divp(y) = [ k(r.t.0)d,
0
/Q W5, 8) 2 dsdt < [0,Goll3, | BOIE - (56)

Here and hereafter we write @ = [0,T] x [0,T].
Inequality (56) and inequality (24) in Definition 3.1 for p(y) implies that for
any division A of [0, 7]
Ih(va, s Ol z2@yam k v} < Brll0sGollz, - (57)

It is clear from (55) that for almost all t € [0, T, k(7, s,t) is continuous in s. Since
the range of Gy is in Hg, we have

k(7,0,t) = k(v,T,t) =0 for almost all ¢ € [0, 7. (58)
We know

T
Oz,yn,j = Dya j[0z;7a] = D(pp*q(va)(T;))[Ca 4] = /0 k(va,Tj t)Ca,;(t) dt.



1298 D. FUJIWARA

Using partition of unity {ea ;} again and (58), we have

Div p(va) Zaz]yA]

J+1

_Z/ (va, t, t)ea ;(t dt—Z/ (va, Ty, t)Ca,5(t) dt

J+1

-2 / K, t1) = k(78 Ty, )ea (1) dt

J .7
+ Z/o k(va, Tj,t)(ea,;(t) — Ca,;(t))dt.

Lemma 4.3 follows from the case o = = 0 of the next Lemma.

LEMMA 4.10.  For any non-negative integers «, 3 there exist a positive con-
stant C' and a positive integer K independent of A such that

020 (50N (@) [ Pa)esie

J+1

X Z/ E(ya,t,t) — k(ya, Tj,t))en ; (t dtHd:z:]>‘
< CIN(T,z,y)|[|0sGollz, Ax Bk T"/?|A['/2, (59)

and

0;9; (e‘i”S““)N(m | Fla)es0s)

/ Zk va: Ty t)(ea (1) = Ca (1) dtHdJ?])’

< CIN(T,2,y)|Ax Bx[|0,Gol| . T*?| A2, (60)

PROOF OF LEMMA 4.10. We begin with the proof of (59). Using (55), we
have
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T
/ (K t,8) — k(o Ty t))ea; (1) dt
0

T ot
= / / h(va,s,t)ea ;(t) dsdt
o Jry

:7/ h(va, s, t)ea, ;(t) dsdtJr/ h(ya, s, t)ea ;(t) dsdt,
Q Qf

where @ is the triangle {(s,t) € Q;t < s <T;,Tj_1 <t <T;} and Q;‘ =
{(s;1) € ;T < s <t,Tj <t <Tjy1}. We denote characteristic functions of @
and Q;r by x; (s,t) and X;r(s,t), respectively. Then

J+1

Z/ B(vastt) — (98, T3, 1)) ea s () dt

J+1

= [, (3006 0 = 00001, 00) s
j=
= (x(A), h(va))2(),
here x(A) € L%(Q) is the function x(A,s,t) = Z]J+()1(XJ (s:1) = x5 (s:1))ea ;(t)
and (, )r2(g) is the inner product in the space L*(Q). x(A) does not depend on

(Ty41,27,...,21,20). Its norm [|x(A)][2(@) is majorized as

J+1

N =3 [, cos(0P it

1 1
<D (T i) + 5 (7 +73) S IAIT

j=1
Hence,
J+1
=0 {AvmlzKny}

< ‘A‘1/2T1/2”h(7A7s’t)”{LQ(Q);A,m’,K,Yk} < |10sGollz, Bk T*/?| A2

Therefore,
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J+1

T
3 / (k(ya, . 8) = k(7a, Ty D)y (8) AP (1)

=0

{Am1, K, ZK}

J+1 .1

< |3 [ atit) ~ boa Ty ea 0 de I PO 2 e}
j=0"0 {Am! K Yk}

< ||05Gollz, A Bk T2 A[V2. (61)

Let A; be an arbitrary division of [0, 7] coarser than A and ¢ : T'(A;) — I'(A)
be the embedding. Then we obtain that

J+1

T
oY [ st t) KOs T e (0 de
j=0"0

{&1,m/ K, YK }

= H(X(A7 s,t), h('VAuSvt))LQ(Q)H{Ahm/,K,YK}

< ||8SG0||12 HB(’Yﬁl)||{L(X);A1,m’7K7YK}|A‘1/2T1/2

< 10:Gollz, Bk T2 A2
Therefore,

J+1 .7
o / (Kt 8) — k(yas Ty, ))en s (£) dtF(7a)
=0

{Ahml,K,ZK}

J+1

X [F(va) l{ar,m g x5}

< ||0sGo ||z, Ax Bk T /2| A2, (62)

T
< / (k(’YAut?t) - k(7A1aTj7t>)€A,j(t) dt
0

{A1,m/ K Yk}

(59) follows from (61), (62) and stationary phase method.

Next we shall prove (60). We denote the characteristic function of the interval
[0,T}] by xjo.7,1(s). Then
J [0,7}]

T
/0 k(ra, Ty, 1) (ea s (1) — Cay(6)) dt

= (X[O,Tj] (S) (€A7j (t) - CA,j (t))v h(’YAa S, t))Lz(Q)-
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Since 0z, X[0,1;)(5)(ea,;(t) — Ca,(t)) = 0 for k # j —1,4,j + 1, Proposition 4.7
leads us to

(| (xj0,7,1(s) (ea (1) — Ca (), h(ya, 5,) L2 ||{A,m’,K,YK}

< 23K||X[0,Tj]($)(€A,j(t) —Cayj (t))H{L?(Q);A,o,K,uHh(’ma Sat)H{LZ(Q);A,m',K,YK}
< 250k 0:Gollz, Brc (77 + 1) (7 7j0) /2T,

with some positive constant Cx. Therefore,

(A K, Yi}

J T
S [ ks T 050 - a0t

T
/0 k(ya, Tj,t)(ea ;(t) — Caj(t))dt

J
<X
j=1

{Am' K, Yk}

< QSKCKH(?SG()HIQBK (7'J2 + Tj2+1)(7'j + Tj+1)1/2T1/2

e

<
Il
—

< Cx|0:Gollz, BkT??| A}/,

here and hereafter we denote various positive constants which are different from
place to place but may depend on K by the same symbol Cx. Consequently,

J T
[0 Y [ ba Ty 0 = o

{Am1,K,Zk }

< NF(ya)llfam k. xx}

I T
le/o E(va, Tj t)(ea () — Caj(t))dt

{Am/ K.Yk}

< Ckl|0sGollz, Ax Bk T/ APP/2. (63)

Let Ay be any division of [0, 7] coarser than A. Then we shall prove similar
estimate for the pull-back

J T
PO Y. [ ha Tt e () — G )i
j=1"0

J T
= FOa) Y [ ks T 0en 0 = a0t
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Since the estimate (53) holds, we have

J T
PO Y [ B T e (0) — Gas0)i
j=1"0

{Am1, K, Zk}
< Ok ||05Gol|z, Ax Bk T2 A2 (64)
Using (63) and (64), we can apply stationary phase method. As a result,

for any non-negative integers «, 3, there exist a positive integer K and a positive
constant C' such that

020 (=N (a) [ Fgesoe)

J T J
<3 [ KOs T Beas )~ Gas®)ar [T dxj) ]
j=170 j=1
< CIN(T,2,y)|9.Collz Ax B T2 A2 (65)

We have proved (60). Lemma 4.10 has been proved.
Therefore, Lemma 4.3 is proved.
We have completed proof of our main Theorem 3.2.
5. Application to semiclassical asymptotic behaviour of Feynman
path integrals.

5.1. A sharper asymptotic formula.
We always assume T < p. Let F(y) be an m-smooth functional. Then
semiclassical asymptotic formula was proved by Kumano-go [13].

/ F(y)eSO)D(y)
Qo v

1/2
—(5m7) DT 250 (PG o T o). (60

where 7* is the classical path connecting (7,z) and (0,y) in time-space and
D(T,0,z,y) is Van Vleck-Morette determinant, cf. [15], and also [6].

If F'(y*) = 0, then the main term of the right hand side of (66) vanishes. What
happens in that case? Even in this case integration by parts formula enables us
to get a sharper information if the following additional assumption is satisfied.
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ASSUMPTION 5.1.  We assume F'() has all of the following properties:

1. F (7) is a real valued m-smooth functional. For fixed v, DF(y)[h] =
fo (0F(v)/07(s))ph(s)ds for any h € Ho and 0F(y)/dy(s) € X as a func-
tion of s, which we write 0F(y)/dy. The map H > v — dF(y)/dy € X is a O
map. There exists a C* map H > v — A(y) € L(X) such that for any h € Ho,

2. For any K =0,1,2,..., there exist positive constants Ax and Xg such that

el

5y + A {2x)m,r, x5} < 00 (67)

{Xm, K, X}

We often use symbol §2F(v)/dv(s)dv(t) for the integral kernel of A(7), if it

exists, i.e., for any f,g € X
T 2
/ / F) F ( )g(t) dsdt.

Suppose that F(v) satisfies Assumption 5.1 and F(v*) = 0. Then for any
v € Hey, v =" € Hoand

F(y) = / DF(y0)ly - 7°1d6 = (p(y — 7*).C()

where 79 = 6y + (1 —0)y*, 0 < 6 < 1, (, )x is the inner product in X and
C(y) € X is the following function of ¢

LOF(9)
o 6v(t)

do. (68)

=76

C(’Y’ t) =

On the other hand, the fact DS(~v*) = 0 implies that for all h € Ho,

DS(y)[h] = DS(v)[h] = DS(v")[h]

= (v =7 Wy — (W)p(y —77), ph) 4. (69)

Here (, )7, is the inner product in Hilbert space Ho and W (7) is the multiplication
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operator X 3 h(s) — W (v, s)h(s) € X with

1
W) = [ G2V (s () db. (70)
0
It is clear that
sup |W('y,s)| < vs. (71)
s€[0,T],yeH

Now we can state our results in this section. Some of proofs are left to the
next subsection. We begin with

PROPOSITION 5.2.  IfT < pu, I — W(y)pp* is an invertible operator in X.

. 72 \ !
1T =Wee )| 2y < (1 - 8U2> :

Proposition 5.2 enables us to introduce the following vector field, which is the
key tool for our purpose.

p(y) = p* (I = W(H)pp*) " ¢(). (72)
Then

PROPOSITION 5.3.  Suppose that F(v) satisfies Assumption 5.1 and F(y*) =
0. Then the following equality holds:

This implies that DS(~)[p(7)] is F-integrable.

PROOF OF PROPOSITION 5.3.  Since p(v) € Ho, Equality (69) gives

DSp()] = (v =7 p" (L = WH)pp*) 7' C(N) gy,
— (WMp(v =), 0" (I = W()pp™) () 4

= (p(v =), (I =W ()pp*) 7)) »
= (p(y =) Wpp* (I =W (1)pp™) (M) o
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because W(v) is a self-adjoint operator. Proposition 5.3 has been proved. O
As a consequence, we have

PROPOSITION 5.4.  Under the same assumption as in Proposition 5.3 the
following equality holds:

[ Foesope = [ DSt De). (1)
Qa,y Qo y

Note that both sides of (73) have definite meaning by virtue of Proposition
5.3.

We can show the following fact:

PROPOSITION 5.5.  If F(v) satisfies Assumption 5.1 and F(y*) = 0, then
p(y) defined by (72) is an m-admissible vector field.

Once Proposition 5.5 is proved, the next theorem follows easily from Corollary
3.3 and Proposition 5.4.

THEOREM 5.6.  Suppose that F(v) satisfies the Assumption 5.1 with some
m > 0. Suppose further that F(v*) = 0. Let () and p(vy) be as above. Then
Div p(v) is F-integrable and

/ F(y)eSOD(y) = —(iv) ! / Divp(1)e®SID(y).  (74)
Qz .y Qz,y

Applying Kumano-go’s theorem of semiclassical asymptotics, c.f. [13], to
(74), we have the following theorem.

THEOREM 5.7.  Under the same assumption as in Theorem 5.6 the following
asymptotic formula holds:

1/2
F wS(v)p _ v D(T.0 —1/2 ivS(y")
| Pee0De) = () D0y

x,y

x (= (iv) ' Divp(y*) + v °r(v,T,0,2,y)).
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Here the remainder term r(v,T,0,xz,y) has the following property: For any non-
negative integers «, 3 there exists a positive constant Copg such that

103071 (v, T,0,2,y)| < Cap(L+ |z] + [y)™
We now calculate Div p(y*). We write G- = pp*(I —W (y*)p*p) "' = Go(I —
W(y*)Go)~!. Since v; = v*, we have W(y*,t) = 92V (t,y*(t)). Thus G« =

Go(I — 82V (t,v*(t))Go)~'. We know that G~ is an operator of trace class. Let
G (s,t) denote the Green function of the differential equation of Jacobi field at 7:

(d2+82 (t (t)))u<t>=f<t>, u(0) = 0 = u(T). (75)

dit?

Then it is easy to see that the kernel function of G- is nothing but G« (s, t).
Calculation shows:

THEOREM 5.8.  Under the same assumption as in Theorem 5.7

R R S

1 T6G. - (s,t) 6F(v*) . 1. .
_ / / o gy e+ gt G A (T6)

If in addition the operator A(y*) has the integral kernel 52F(v*)/5v(s)67(t), then

Divp(y / / 5G- st 6F(())ddt

/ / >Es <)> dodt.

EXAMPLE 5.9 (Semiclassical limit of covariance matrix). For any a(s,t) €
C([0,T] x [0,T]) we set

T /T
:A /0 (v(8) =¥ () (v(t) — 7" (t))a(s, t) dsdt.

Then
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Div p(y //G (s,t)a(s,t) dsdt. (77)

Therefore, we have semiclassical asymptotic formula

(/OT /OT(W(S) — () (v(t) — v (t))a(s,t) dsdt) vSOD()

1/2
—1/2 ivS(v*)
<2mT> D(T,0,z,y)""/%e

« (_ (iy)—l(/OT /OT G- (s, 1)a(s, 1) dsdt) +u_2r(u,T,O,x,y)>. (78)

Here the remainder term (v, T,0,x,y) has the following property: For any non-

negative integers a, 3 there exists a positive constant C,g such that
|6365T(V7 Tv 07 Z, y)| < Oaﬁ(l + “T| + |y|)2

This means that semiclassical limit of covariance matrix of Feynman path
integral equals —(iv)"1G,- (s, t) after suitable normalization.

Proofs of Propositions 5.2, 5.5 and Theorem 5.8 will be given in the next
subsection.

5.2. Proof of a sharper asymptotic formula.
For any index 1 < p < oo and f € LP([0,T7]), we write || f[z» the norm of f
in LP([0,T7). Since |[W(7)(t)| < vq for any v € H and t € [0,T],

W) fllze < vallfllze, (1 <p < o).

We use the Green operator G defined by (16) in Section 2.1. Since the kernel
function go(s,t) of Gy is given by (17), the following Lemma holds.

LEMMA 5.10. Letp be 1 <p < co. It is clear that for any f € C([0,T)),

T? 1 /T3 T
1Gofllze <~ fllLes IGoSflleqom = 3\ 5 Iflxs 1Goflleqom < FIflle

T T
10sGofllzr < §||f||Lp, 10sGo fllcqo,r) </ ngHX, 19:sGofllcory < IIfllzt-
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In order to prove Proposition 5.2, we have only to prove the next proposition,
because pp* = G in X.

PROPOSITION 5.11.  Under the assumption that T < u the operator (I —
W(v)Gyo) is invertible in X. We have

(1 - W(’Y)Go)_lfHX < collfllx,

where

ProoF. Using Lemma 5.10, we have

~ U2T2
IF G0, < i
Since T' < ju, we have v,72/8 < 1/2. Thus (I — W ()Go) ™! exists and

(T =W ()Go) " £l < coll fllx-

Proposition is proved. O
The crucial fact in this section is following

PropoOSITION 5.12.  For any K =0,1,2,..., there exists a constant Y > 1
independent of v such that

% -1
|(1 =W (7)Go) H{L‘(X);O,K,YK} < ¢o-
PROOF. Let A be an arbitrary division of the interval [0, T, i.e.,

AZO:T0<T1<T2<"'<TJ<TJ+1:T.

We use the notation in Section 1, for example, (zjy1,27,...,21,20) and vya, etc.
It is clear that

B, W (7a,1) = Cay (1) /0 PV (0va(t) + (1 — 0)7*(£))0 do, (79)
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where (a,;(t) = 02;7a(t). By (33)
ijW(7A7t) =0, fortd[Tj_1,T)41) (80)

If |[j — k| > 2, then (a ;(t)Cax(t) = 0 by (33) and 9,,(a () = 0 by (36).
Thus we have

Oz, 00, W (ya,t) =0 for any ¢ € [0,T] if |k — j| > 2. (81)

We know from estimates (39) and (40) that there exists a positive constant C, g
independent of A and of j such that for j =0,1,2,...,J+1ifa>1

’ x]+1<AJ )| < CagﬁX[Tj—laTj+1](t)7 ’ x] 1CA,j )| <, BX[T; -1 TJ+1]( )

Here Xz, ,(t) is the characteristic function of the interval [T}y, Tj11]. Hence,

-1 Tj41
for any positive integer K there exists a positive constant C'x independent of A
such that as far as 0 < aj < K, aj41 < K, aj_1 < K and t € [0,T]

0530251 W (ya, )] + 0570292 W (ya, 1) < Okt Xypy 1 (8- (82)

The constant Cx depends on v3,vy,...,V2x42 but not on v;,j > 2K 4 3.
For any f € C(]0,T]) we write

u(ya,t) = (I — W(ya,t)Go) ' f(1).

Proposition 5.12 follows from Proposition 5.11 and the next lemma, which
we shall prove by induction on the order relation “<” among multi-indices. Let

a = (aji1,ar,...,a1,00) and B = (B741,87,..., 02,01, 80) be multi-indices.
Recall that o > §if and only if a; > g for j =0,1,2,...,J+1land a # 3. f < «
is equivalent to a > (8

LEMMA 5.13.  Let Ck be as in (82) and ¢y be as in Proposition 5.12. Set
Yy =1 and for any positive integer K > 1 define Y by

Y = max{Yx_1, 22713712000 T?}. (83)
Then for any multi-index o we have

05 u(ra) |y < Yortuy lu(va) - (84)
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PROOF. In the case a = 0, (84) is obviously true. Let multi-index a be such
as |a| > 1. Suppose that the inequality (84) for any § with § < « is true, i.e.,

|0%u(va)|| < Yoy lu(ra)llx,  if B <o (85)

We shall prove (84) using (85). Obviously,
07 (1 = W(ya,)Go)u(ya, 1)) = O3 f(t) = 0.
We set g(t) = (I — W (ya)Go)d%u(ya,t). Using Leibnitz’ rule, we have
« ~
g(t) = Z (ﬁ) OXPW (ya, 1) GodPu(ya, t).
0<p<a

Since 3 < «, induction hypothesis implies 9°u(ya) € X on the right hand side of
the above equality. Hence God2u(ya) € Ho. Thus g(T') = g(0) = 0.

If t # 0, then there exists some j € {J+1,J,...,2,1} such that t € (T;_1,T}].
We know from (80) for any t € [T_1,T}]

Do W(ya,t) =0 te[Tj_1,Ty]ifk#jand k # 5 — 1.
Hence for any t € (Tj_1,T}]
- o
giy= Y <5j 1) (ﬂ )‘9“ W (2, 1)GodY ulyast),
0<B*<a ML J
here sum Zggﬁ*<a is taken over all these 0* = (841,87, .., 02,51, 80) < a such
that Oy =0 unless k=jor k=j—1,ie., 8*=(0,0,...,0,5;,5;-1,0,...,0).

We write K = m(a). By induction hypothesis 97 u(ya) € X. As a result of
this, Proposition 5.10 and (85),

16002 utva) ooy < 1y 5 108 w0l < 3y Y )l

It follows from this and (82) that

L . 1 /13 af—
0577 W (18, 1) G0 u(ya, )] < Aﬁcﬂé' Hutva)lx.
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Therefore, for any ¢ € (T}_1,T}]

*

. . 3
VOIS S G [ G FNE e N
0<B*<a -

<22 [T oy o )|
= 3 KYp ya)llx-

Since the right hand side of this inequality does not depend on j, we have

o T8 ol—
lg(t)] < 22K S Ox Vi u(ya) |, for any ¢ € [0,7).

Consequently we have
lollz < 28237 AT 0 YR () -
We use Proposition 5.11 and definition (83) of Y, and we obtain

[05u(ya, B[], < 02K 7287212 Cx Y u(ya) | 2

< YN u(ra) | x-

1311

Inequality (84) for « is proved. Induction process is over. Lemma 5.13 has

been proved.
Proof of Proposition 5.12 has been completed.

Now we begin proof of Proposition 5.5. Let us recall definition (72):

p(v) = p"q(7),

g(v) = (I = W)pe) " ¢,
_ [TEF(y)

C(v) = /0 —

de.
oy

y=0y+(1-0)y*

d

O

We shall prove that p(y) has property P1 of Definition 3.1 of m-admissibility.
Since F'(y) is m-smooth and satisfies (67), we know that dF(y)/dy € X and
H >~ — §F(y)/éy € X is an infinitely differentiable map. This implies that
C(y) € X and that the map: H > v — ((v) € & is also an infinitely differentiable
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map. Obviously, v — VNV(W) is also an infinitely differentiable map from H to
Ck([0,T)) for any k = 0,1,2,.... Therefore, g(7) € X and H > vy — ¢(vy) € X is
an infinitely differentiable map.

Let Yx be the constant in (83) and Ax, Xk be as in (67) of Assumption 5.1.

LEMMA 5.14.  There exists a positive constant c(m,vy) depending on m,vs
such that for any K =0,1,2,...,

g g aeim. ., x5 +viey < €, v2) AR < 00,

PROOF. By virtue of Proposition 4.6 and Proposition 5.12,

||Q(’Y)||{X;m,K,XK+YK}

< H(I - W(V)Go)il||{£(X);07K7YK}”C(’Y)”{X;m,K,XK} < CO”C(’Y)”{X;W%K;XK}'

By definition of {(v)

6F(v0)

5 de.

1
OF (7o
T WA
0 Y {X;m,K, Xk}

1
< /
{X;m,K, Xk} 0

If v € Hy ), then 79 € Hy,, for any 6 € [0,1]. Let A be an arbitrary division of
the interval [0, T

A20:T0<T1<T2<"'<T]<TJ+1:T.

We use the notation in Section 1, for example, (zjy1,27,...,21,20) and ya, etc.
We write ya,9 = 0ya + (1 — 0)y*, for 0 < < 1. Then

Since there exists some positive constant ¢(ve) depending on v such that

5F(7A,0)

=5

<0111 + || + var(ya,0)" X)) Aum(a)-
X

var(y*) < c(v2)(1 + |zy41| + |zol),
we have
var(y*) < 2¢(ve)(1 + |xo| + var(y)), for any v € Hy . (87)

Thus
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(1 + [wo| + var(va,e)) < (1 + [wo| + var(ya) + var(y"))

< (14 2¢(v2))(1 + |xo| + var(ya)). (88)
Therefore,
oF o
ag(;j") < (14 26(02))™ (1 + o] + var(ya)) " X)) A
X
Thus
oF
H () < (14 2¢(v2))™ Axc.
67 {X¥;m, K, Xk}
Therefore,

ICN aem, 16, x5y < (1 + 2¢(v2))™ A
Consequently, we have, by virtue of Proposition 5.12,
gV g xsm, & X e +vier < co(1+ 2¢(v2))" Ak

Lemma 5.14 is now proved. O

Next we calculate Dq(v)[h] for h € Hy. By definition of ¢(v)

!
=
2
=

Il
—~

~

I
=

(71)Go) " (DW ()[R Go(I — W()Go)~*¢(%) + D¢()[R))

= (I=W()Go)~ (DW(3)[hlpp*a(v) + DS()[A]). (89)
Since W (%) is the multiplication operator: f(s) — fol 02V (vo(s),s) dOf(s),

DW (7)[h](s)pp™q(7)(s) = Ui(7, s)pp*q(7)(s)ph(s), (90)

where

1
Us(7.s) = / 3V (yo(s), 5)0 do.

Since
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Ui (7, 8)| < s, (91)

the map f(s) — Ui (7, s)pp*q(y) f(s) is a bounded linear map in X', which depends
smoothly on ~.
On the other hand, we have

DC(y)[h] = A(y)ph, (92)

where
A(y) = / 0A(v9) do. (93)

It follows from (89) and (92) that

Dq(v)[h] = B(v)ph, (94)

here B(7) is given by

B f = (I-WHGo) (Ui(v)ppa(y) + A(y))f, forany feX.  (95)

It is clear that B(vy) € £(X) and it is infinitely differentiable with respect v € H.
Therefore, we have proved that the vector field p(v) has property P1.

We shall prove p(v) has property P2.

LEMMA 5.15. For any K =0,1,2,... let Zx = X + 2Yx. Then for each
K, there exists positive constant Cx such that

1BV l1zxyim.x,zxy < CrAk.
ProOOF. Using Proposition 4.6 and Proposition 5.12,
BN {c(x)im, k. 25}
- . . .
< [T =WNG) ™ 2oy [01)00" a0 + AN £y i6 X 4y}
< co(IUL(Mpp*a()lgexym k. xc+vier + 1AM teeym g xctviey)- (96)

Map X 3 f — Ui (7)pp*q(7)f € X is the multiplication of two functions.
Let A be an arbitrary division of [0,7] and ya be an arbitrary piecewise
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classical path. Then we have

1
0.,U1(08,5) = [ Cay(s) B2V (5:718.0(5))6%) b,
0
Therefore, if |j — k| > 2, then for any s € [0, T]]
02,02, U1(7a,5) = 0.

In just the same way as (82), for any K = 1,2, 3, ... there exists a positive constant
C'k such that we have

’agjj 62?111 Ui (’YA’ 8)‘ < CKX[TJ'—LTJJA] (S)’ (97)

if0 < a; <K and aj41 < K. Let s € [0,7]. Then we may assume s € [T}, Tj11]
with some j.

07 (U1(va, 8)pp*a(va)(s))

=D (aj) (aj“>3fj 07111 U1 (va, $)05 P pp*a(ya)(s),
5

i/ \Bj+1
where Z; means the sum over those 8 = (0,0,...,0,8;,8;+1,0,0,...,0). We set
Co=w3 asin (91) and Cx, K =1,2,3 be as in (97). If m(«) < K, then (91) and
(97) give
|05 (U (va, 5)pp*a(ya) (5))]

> (gj> (am) 051005+ Ur (va, 5)]|05 P pp*a(va) (s)|
é] J

IN

Bj+1

IN

i: (gj) (ajH)CKW?_%,O*Q(M)(S)!

3 Bi+1
< 22K Ok (1 + |zo| + var(ya))™ (X + Y&)'Mlop*a(va) | too.11):am, 56, x i v}

The right hand side is independent of j. Using Lemma 5.14, we have proved
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1U1(va)ep™ a(va)ll{ccx):am &, X x+Vi }

< 222 Cxklop" a(va)l e o.17);0,m. K, X c+vic}

T3/2

V3

Next we discuss A(ya). We have, by (93) and (88),

S 22K_20K coc(m,vg)AK. (98)

T
VAl ey am s xn) < / 0 A 200 A x40

Thus it follows from (96), (98) and (99) that

I Bl {zxyim k.23 < CrxAx

with some positive constant Cx. We have proved Lemma 5.15. d

We have proved that p(v) has property P2. Therefore it is m-admissible, i.e.
we have proved Proposition 5.5.

Now we can apply integration by parts formula of Theorem 3.2. Thus we have
proved Theorem 5.6.

Applying Kumano-go’s result in [13] to Theorem 5.6, we obtain Theorem 5.7.
We have proved the sharp asymptotic formula up to the explicit expression of
Divp(y*).

Now we calculate Div p(v*) to prove Theorem 5.8. For that purpose we have
to calculate kernel function of pp* B(v*).
If v = ~*, then vj = ~*, for any 6 € [0,1]. Then

o0 BO) = G Ua(1)G-C0") + G A7), (100
and
ey [TOF(0Y) o GF(Y)
R A OB TO N

Wy 1) = 82V (t,7"(1)),
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r 1
Uit = [ OV ()08 = SVt (1),
0

1
* * 1 *
Ay = [ oA do = a0,
0
Hence for any f € X

Gy Ui (7)) G- C(v) f ()

T T
| a0z @1 [ 6 ana

v(t1)
L[ [ oo

£(1) ‘g Et )) dtydt.

Y=

Therefore,

tr G- Ur(7")G4+C(7")

/G ss)@st /G (s,t1) OF(y )dtld

67(t1)
oF
/ / S tl)) ('Y )dtld .
67(s) 6v(t1)
Therefore,
SF(v") 1
Div p(y / / dtrds + —tr G~ A(v").
6"}/ )) e (5’}/(t1) 1 2 Y (7 )
(76) of Theorem 5.8 has been proved.
The rest of Theorem 5.8 follows from this.
Theorem 5.8 has been proved. O
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