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Abstract. Two partial differential equations are studied from the view-
point of critical exponents. They are equations for a scalar unknown of one
spatial variable, and produce self-similar solutions of the Navier-Stokes equa-
tions. Global existence and blow-up are examined for them, and the critical
exponent separating them is determined.

1. Introduction.

One of the difficult problems on the Navier-Stokes equations is the one about
the existence global-in-time or blow-up in-finite-time of the solutions in three di-
mensions. It is well-known that this is a very difficult problem, and there have
been proposed models which mimic the essence of the 3D mechanism and, at the
same time, are feasible for mathematical analysis. Perhaps, the oldest of such is
the Burgers equation: ut + uux = νuxx, where the subscripts imply differentia-
tion. But we know now that this equation is too simple. Fujita’s introduction
of the nonlinear heat equation ut = 4u + u1+α, where 4 denotes the Laplace
operator, was motivated similarly, see [5]. Although it and its sister equations
have their own merit and many mathematicians have developed the theory to an
amazing extent ([28], [29]), we now know that such equations are quite differ-
ent from the Navier-Stokes equations. In fact, both the Fujita equation and the
Burgers equation ignore the non-locality which appears in some form or other in
differential equations for incompressible fluid flow. Constantin, Lax and Majda
[3] proposed a simple model for 3D vortex dynamics, where non-local nature of
vorticity-velocity relation is cleverly incorporated. However, both Fujita’s equa-
tion and the Constantin-Lax-Majda model ignore the role of a convection term,
which we now know is important, see [11], [26]. The author therefore wishes to
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have an equation which is mathematically accessible and, at the same time, is
closer to the Navier-Stokes equations than those models are.

We shall consider in this paper the following nonlinear nonlocal equations:
The first one is

ωt = ‖ω(t)‖α
p (xωx + ω) + ωxx (−∞ < x < ∞), (1)

with the initial condition ω(0, x) = ω0(x). Here, the norm is the Lp-norm:

‖g‖p =
( ∫

R
|g(x)|p dx

)1/p

if p ∈ [1,∞), and ‖g‖∞ = ess supx∈R |g(x)| if p = ∞. The symbol ω(t) denotes
ω(t, ·), which is a function of x only with t being frozen. The exponent α can be
any non-negative constant. The second equation is:

ωt = ‖ω(t)‖α
p (rωr + 2ω) +

1
r
(rωr)r (0 ≤ r < ∞), (2)

The Lp-norm here is:

‖g‖p =
(

2π

∫ ∞

0

|g(r)|prdr

)1/p

and ‖g‖∞ = ess sup0≤r<∞ |g(r)|. Namely it is an Lp-norm in R2 for axisymmetric
functions.

Our equations are more complicated than those of Fujita type or the
Constantin-Lax-Majda equation. However, ours have a merit that their solutions
are exact solutions (of infinite energy) of the Navier-Stokes equations. We now
explain how we derived these equations.

We first note that the Navier-Stokes equations for incompressible viscous fluid
are written as ut + (u · ∇)u = −∇p + ν4u, where u and p denotes the velocity
and the pressure, respectively. ν > 0 is the kinematic viscosity, which we assume
to be a positive constant. The following equation for ω : [0,∞) × R2 → R was
proposed in [24].

ωt + (−γ1(t)x + u)ωx + (−γ2(t)y + v)ωy − (γ1(t) + γ2(t))ω = ν4ω, (3)

supplemented by
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u(t, x, y) =
−1
2π

∫

R2

y − η

(x− ξ)2 + (y − η)2
ω(t, ξ, η) dξdη,

v(t, x, y) =
1
2π

∫

R2

x− ξ

(x− ξ)2 + (y − η)2
ω(t, ξ, η) dξdη.

In (3), γ1 and γ2 may be arbitrary if they are a function of t only. These equations
are derived by assuming the following form of the vector field of the Navier-Stokes
equations:

u =
(− γ1(t)x + u(t, x, y), −γ2(t)y + v(t, x, y), (γ1(t) + γ2(t))z

)
, (4)

where u is the velocity field, t denotes time, and (x, y, z) denotes a point in three
dimensional space R3. ω, the vorticity, is given by ω = vx − uy. The reader may
find that substitution of (4) reduces the Navier-Stokes equations to the equation
(3) without any approximation. Thus the solutions of (3) yield exact solutions of
the Navier-Stokes equations via (4) (and a suitable form of the pressure).

Here the reader may well wonder why this kind of ansatz is introduced and
what history this equation possesses. It is related to papers [7], [13], [20], [21],
[23], and we will explain them in due course.

If γ1 ≡ γ2, there exist axisymmetric solutions, where ω = ω(t, r) with r =√
x2 + y2. With γ(t) = γ1(t) = γ2(t), the vorticity satisfies the following equation:

ωt − γ(t)(rωr + 2ω) = ν
1
r
(rωr)r (0 ≤ r < ∞). (5)

If γ is a constant, then (5) has been known for many decades, originally due to
Burgers, see [2], [9], [14], [19], [20]. However, at this stage, γ(t) may be an
arbitrary function of t. In spite of the arbitrariness of γ, (4) gives us an exact
solution of the 3D Navier-Stokes equations.

If we start with the following ansatz

u = (−γ(t)x, v(t, x, z), γ(t)z),

then we obtain

vt − γ(t)(xvx − zvz) = ν4v + γ̃(t),

where γ̃(t) is an unknown function of t only. Rather than discussing this equation
in general, we restrict ourselves to the case where v depends only on x. Then ω,
which is defined by ω = vx satisfies
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ωt − γ(t)(xωx + ω) = νωxx (−∞ < x < ∞). (6)

Equations (5) and (6) can be solved with respect to ω, once γ is prescribed.
Since the vector field (−ax,−by, (a+ b)z), where a and b are constants, is called a
straining flow, we call γ1 and γ2 a strain rate. “The strained vorticity dynamics” in
the title of the present paper comes from this. The straining flow naturally appears
if we integrate the Poisson equation for the pressure −4p =

∑
1≤i,j≤3 ui,xj uj,xi ,

which is derived from the Navier-Stokes equations. There are many techniques to
incorporate the straining flow, by which we can simulate 3D fluid motion: See [7],
[23], for instance. However, there is no way of specifying γ(t) without resorting to
a kind of hypothesis. The case where γ(t) = γ0 is a constant is the classical one:
[2], [9], [14]. Kambe [12], [13] realized that the strain rate γ may depend on t

and he derived equations similar to ours. He then studied some examples. Moffatt
[20] considered the case where γ(t) = a/(T − t) with positive constants a and T .
Both Kambe and Moffatt, however, assumed that γ is a prescribed function of t.
Accordingly, [24] seems to be the first to treat the case where γ depends on the
unknown ω on non-local fashion.

In the present paper we consider the following model

γ(t) = µ‖ω(t)‖α
p , (7)

where µ > 0 and α ≥ 0 are constant, and ‖·‖p denotes the Lp-norm. The constant
ν > 0 and µ > 0 can be assumed to be unity, by which we do not lose generality
since we can normalize them to unity by rescaling t, r (or x), and ω. We thus
get to equations (1) and (2). (7) is a generalization of [24] in the sense that [24]
considered only the case of α = 1. If α = 1, the hypothesis (7) has a physical
motivation, for which we refer the reader to [24].

The case of α = 1, 1 ≤ p < ∞ for (2) was considered in [24], where the global
existence was proved. For (1) they proved that a solution exists globally in time
for all p ∈ [1,∞]. The case of α = 1, p = ∞ for (2) was left unanswered by [24]
but was solved by [22], where it was proved that the solution blows up in finite
time if and only if ‖ω(0)‖1 > 1.

In the present paper we consider both (1) and (2) for general α, and determine
the parameter range of (α, p) for which blow-up occurs.

Roughly speaking, our conclusion is as follows:

• Set α∗ = 2p/(p− 1) for (1) and α∗ = p/(p− 1) for (2). Then if 0 ≤ α < α∗,
all the solutions exist in 0 ≤ t < ∞. If α∗ ≤ α < ∞, a solution blows up in
finite time if its initial data is large.

In this sense, we call α∗ = 2p/(p−1) or α∗ = p/(p−1) a critical exponent. Critical
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exponent is used in many senses in many equations, see [15]. In the present case,
we may say that a larger p induces blow-up with smaller α, which hints that the
L∞-norm of the vorticity is the most relevant to a blow-up. This may have a
relation to the Beale-Kato-Majda theorem on the possible blow-up of solutions of
the Euler equations, in which blow-up occurs if and only if a certain integral of
the L∞-norm of the vorticity is infinite, see [1].

This paper is organized as follows. After preparing some preliminary materials
in Section 2, we study the equation (1) in Section 3. Section 4 is devoted to the
study of (2). Some special solutions are considered in Section 5. The local existence
theorems will be proved in Section 6.

2. Preliminary.

Throughout the present paper, we assume that ω0 ∈ L1 ∩ Lp with some
p ∈ (1,∞]. We first state a theorem on local existence about (1):

Theorem 1. Suppose that 1 < p < ∞. For all ω0 ∈ L1(R) ∩ Lp(R) there
exist a T > 0 depending only on ‖ω0‖1 and ‖ω0‖p such that there exists a unique
solution in C([0, T ];L1∩Lp) which satisfies (1) in the classical sense in 0 < t < T .

Theorem 2. For all ω0 ∈ L1(R)∩L∞(R) there exist a T > 0 depending only
on ‖ω0‖1 and ‖ω0‖∞ such that there exists a unique solution of (1) in 0 ≤ t ≤ T .
The solution belongs to C([0, T ];L1 ∩ Lp) for all p < ∞.

Since we obviously have L1 ∩ L∞ ↪→ L1 ∩ Lp, Theorem 2 is a consequence of
Theorem 1. A similar theorem holds true for (2) if we replace Lp(R) with Lp(R2).
Theorem 1 will be proved in Section 6. We remark that, as is often employed,
L1 ∩ Lp is regarded as a Banach space with ‖f‖L1 + ‖f‖Lp .

We next note that the positivity is preserved in the sense that ω0(x) ≥ 0
everywhere implies ω(t, x) ≥ 0 for all t and x for (1). Similarly, ω0(r) ≥ 0 every-
where implies that ω(t, r) ≥ 0 for all t and r for (2). See [22], [24]. Accordingly,
for the sake of simplicity, we henceforth consider only those initial data which are
nonnegative everywhere.

We next note that for all 1 ≤ q < ∞, we have

d
dt

∫

R
ω(t, x)qdx

= (q − 1)‖ω(t)‖α
p

∫

R
ω(t, x)qdx− q(q − 1)

∫

R
ω(t, x)q−2ωx(t, x)2dx (8)

for (1), and
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d
dt

∫ ∞

0

ω(t, r)qrdr

= (2q − 2)‖ω(t)‖α
p

∫ ∞

0

ω(t, r)qrdr − q(q − 1)
∫

ω(t, r)q−2ωr(t, r)2rdr (9)

for (2). These can be verified by integration by parts. In particular, if we set
q = 1, we see that the total vorticity is preserved;

∫ ∞

−∞
ω(t, x) dx ≡

∫ ∞

−∞
ω0(x) dx,

∫ ∞

0

ω(t, r)r dr ≡
∫ ∞

0

ω0(r)r dr

for (1) and (2), respectively. We have therefore obtained an important proposition
that ‖ω(t)‖1 ≡ ‖ω0‖1.

We will use the Lp-Lq estimate: Let Ω = Ω(t, x) be the solution of the heat
equation:

Ωt = 4Ω (0 < t, x ∈ Rd).

We then have for q ≤ p

‖Ω(t)‖p ≤ (4πt)−d/2(1/q−1/p)‖Ω(0)‖q. (10)

For proof, see [8] or [28], for instance.

3. Equation (1).

Here we consider (1) and examine global existence and blow-up. Since ‖ω(t)‖1
is preserved, the solution exists globally in time if we have proved that ‖ω(t)‖p is
locally bounded. By this we mean that for all T > 0 the solution satisfies that
‖ω(t)‖p ≤ c(T ) (0 ≤ t ≤ T ) if a solution exists in 0 ≤ t ≤ T . Here c(T ) denotes a
positive constant which depends only on T, ‖ω0‖1, and ‖ω0‖p.

We now prove

Theorem 3. Suppose that 1 < p < ∞. If 0 ≤ α < 2p/(p− 1), the solution
exists globally in time for all non-negative ω0 ∈ L1 ∩Lp. If 2p/(p− 1) ≤ α then a
solution with a sufficiently large ‖ω0‖p blows up in finite time.

Proof. We start with a particular case of (8):
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d
dt

∫

R
ω(t, x)pdx = (p− 1)‖ω(t)‖α+p

p − p(p− 1)
∫

R
ω(t, x)p−2ωx(t, x)2dx

≤ (p− 1)‖ω(t)‖α+p
p .

Accordingly,

‖ω(t)‖p
p ≤ ‖ω(0)‖p

p exp
(

(p− 1)
∫ t

0

‖ω(s)‖α
p ds

)
. (11)

We therefore obtain boundedness of ‖ω(t)‖p if

∫ t

0

‖ω(s)‖α
p ds

is bounded by some function of the initial data ω0.
Suppose that the solution ω exists in 0 ≤ t ≤ T and set

σ(t) = exp
( ∫ t

0

‖ω(s)‖α
p ds

)
. (12)

Define τ = τ(t) by

dτ

dt
= σ2, τ(0) = 0.

Note that t ↔ τ is one-to-one. We finally define Ω by

ω(t, x) = σΩ(τ, σx) or Ω(τ, ξ) =
1
σ

ω

(
t,

ξ

σ

)
. (13)

Then Ω satisfies the one-dimensional linear heat equation:

Ωτ = Ωξξ, Ω(0, ξ) = ω0(ξ). (14)

This beautiful trick is due to Lundgren [16], whence we call it Lundgren’s trick.
It was effectively used by [12], [13]. Note also that

∫

R
ω(t, x)pdx = σp

∫

R
Ω(τ, σx)pdx = σp−1

∫

R
Ω(τ, ξ)pdξ.
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Namely, ‖ω(t)‖p = σ1−1/p‖Ω(τ)‖p. Now we have

dσ

dt
= σ‖ω(t)‖α

p = σ1+α(p−1)/p‖Ω(τ)‖α
p .

Therefore

dσ

dτ
= σ−1+α(p−1)/p‖Ω(τ)‖α

p , (15)

where σ = σ(t(τ)) is now regarded as a function of τ . In what follows, we employ
a convention that σ(τ) implies σ(t(τ)).

We first consider the case where 2p/(p− 1) < α. We set

κ = −2 +
α(p− 1)

p
,

which is positive. (15) is then written as

d
dτ

σ−κ = −κ‖Ω(τ)‖α
p .

After integrating, we have

1
σ(τ)κ

= 1− κ

∫ τ

0

‖Ω(s)‖α
p ds. (16)

If the initial data is so large that

κ

∫ ∞

0

‖Ω(s)‖α
p ds > 1, (17)

then the right hand side of (16) vanishes at some τ = τ0 < ∞. Thus, if a solution
exists, it must hold that τ < τ0. By dt/dτ = σ−2 ≤ 1, we have t ≤ τ . Therefore
the solution blows up before t exceeds τ0. If

κ

∫ ∞

0

‖Ω(s)‖α
p ds < 1, (18)

then there exists a constant σ0 such that σ(τ) ≤ σ0 for all 0 ≤ τ < ∞. By the
definition, we have σ ≥ 1. We see therefore that 1 ≤ σ(τ) ≤ σ0 for all τ . This
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implies that σ(t) < σ0 for all t. The solution therefore exists in 0 ≤ t < ∞ thanks
to (11) and (12).

Before we proceed further, we consider on what conditions (17) or (18) is
satisfied. First let us note that if the initial data ω0 is replaced by λω0 with a
positive constant λ then ‖Ω(τ)‖p is replaced by λ‖Ω(τ)‖p. In this sense, large
solutions satisfy (17) and small solutions do (18). But this argument does not give
us quantitative knowledge. We therefore use the Lp-Lq estimate (10), in which d

is equal to 1 in the present case. We then have

‖Ω(τ)‖p ≤ ‖ω0‖p, ‖Ω(τ)‖p ≤ c0τ
−(p−1)/(2p)‖ω0‖1.

This gives us

∫ ∞

0

‖Ω(s)‖α
p ds =

∫ 1

0

+
∫ ∞

1

≤ ‖ω0‖α
p + cα

0 ‖ω0‖α
1

∫ ∞

1

s−α(p−1)/(2p) ds

= ‖ω0‖α
p +

cα
0 ‖ω0‖α

1

α(p− 1)/(2p)− 1
.

Namely,

κ

∫ ∞

0

‖Ω(s)‖α
p ds ≤ κ‖ω0‖α

p + 2cα
0 ‖ω0‖α

1 .

Therefore, κ‖ω0‖α
p +2cα

0 ‖ω0‖α
1 < 1 is a sufficient condition for the global existence.

On the other hand, it is not difficult to construct an initial data such that

‖Ω(τ)‖p ≥ Mτ−(p−1)/(2p) (1 ≤ τ < ∞), (19)

where M can be taken arbitrarily large. The author does not know, except for
constructing ad hoc examples, a systematic theory to derive a lower bound such as
(19). There are many functions which satisfy (19). For instance, ω0(ξ) = Me−cξ2

,
where M and c are positive constants, is one of them. In fact, in this special case,
Ω is explicitly written as Ω(τ, ξ) = M/

√
1 + 4cτe−cξ2/(1+4cτ) and we have

‖Ω(τ)‖p = M

(
π

cp

)1/(2p)

(1 + 4cτ)−(p−1)/(2p). (20)

Note that if ω0(x) ≥ Me−cξ2
, then the equality sign in (20) is replaced by ≥.

Therefore there are many functions satisfying (19). Now if we have an initial data
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satisfying (19), then

κ

∫ ∞

0

‖Ω(s)‖α
p ds ≥ κ

∫ ∞

1

Mαs−α(p−1)/(2p)ds ≥ 2Mα,

which may be taken as large as we wish.
We now consider the case where α = 2p/(p− 1). (15) is now

dσ

dτ
= σ‖Ω(τ)‖2p/(p−1)

p ,

whence

log σ(τ) =
∫ τ

0

‖Ω(s)‖2p/(p−1)
p ds.

This shows the local boundedness of σ(τ) as a function of τ . But this does not by
itself imply global existence, since at this stage there remains a possibility that t

tends to a finite limit as τ → ∞. That is, global existence is guaranteed only if
t 7→ σ(t) is locally bounded, which is not the same as the local boundedness of
τ 7→ σ(τ). In fact, since dt/dτ = σ(τ)−2, blow-up occurs if (and only if)

∫ ∞

0

dτ

σ(τ)2
< ∞.

Accordingly, if σ(τ) grows sufficiently rapidly as τ → ∞, then limτ→∞ t(τ) < ∞
and the solution blows up. For instance, if we have ω0 for which (19) holds, then
we have

log σ(τ) ≥ log σ(τ0) +
∫ τ

τ0

M2p/(p−1)s−1 ds ≥ M2p/(p−1) log τ + constant.

And we have a blow-up if M2p/(p−1) > 1/2.
In this way we can obtain blow-up solutions, if the initial data is large. Al-

though we do not obtain a sharp criterion for sufficiency, we may be content with
this rough observation and the fact that there exist special self-similar blow-up
solutions, which will be given in Section 5 below.

We finally consider the case where 0 ≤ α < 2p/(p−1). We come back to (16),
where κ is now negative. Since (10) gives us

‖Ω(τ)‖p ≤ cτ−(p−1)/(2p)‖ω0‖1,
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we obtain

σ(τ)−κ = 1− κ

∫ τ

0

‖Ω(s)‖α
p ds ≤ c + cτ1−(p−1)α/(2p).

Namely,

σ(τ) ≤ c + cτ1/2,

which implies that

dt

dτ
=

1
σ(τ)2

≥ c′

1 + τ
.

Therefore t ≥ c′ log(1 + τ). Consequently there exist positive constant A and B

such that σ(t) = σ(τ) ≤ c + cτ1/2 ≤ AeBt. This proves the global existence. ¤

We now consider the case where p = ∞:

ωt = ‖ω(t)‖α
∞(xωx + ω) + ωxx (−∞ < x < ∞). (21)

The proof is carried out in a parallel fashion. We define Ω by (13) and assume
that

dτ

dt
= σ2, τ(0) = 0;

dσ

dt
= σ‖ω(t)‖α

∞, σ(0) = 1. (22)

Then Ω satisfies Ωτ = Ωξξ. Also we have

‖ω(t)‖∞ = σ‖Ω(τ)‖∞,
dσ

dt
= σα+1‖Ω(τ)‖α

∞. (23)

Accordingly,

dσ

dτ
= σα−1‖Ω‖α

∞ or σ1−α dσ

dτ
= ‖Ω‖α

∞,

which yields

σ(t)2−α = 1 + (2− α)
∫ τ

0

‖Ω(s)‖α
∞ ds. (24)
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In the case of p = ∞, Ω can be estimated rather easily. In fact, we have

‖Ω(τ)‖∞ ≤ 1√
4πτ

‖ω0‖1, ‖Ω(τ)‖∞ ≤ ‖ω0‖∞, (25)

which can be derived easily by

Ω(τ, ξ) =
1√
4πτ

∫

R
ω0(η) exp

(
− (ξ − η)2

4τ

)
dη. (26)

Although (11) is not available in the present case, we see from (23) that the local
boundedness of σ implies that of ω, since ‖Ω(τ)‖∞ is bounded by ‖ω0‖∞.

With these formulas in hand, we can prove

Theorem 4. Suppose that 0 ≤ α < 2, that ω0 ≥ 0, and that ω0 ∈ L1 ∩L∞.
Then the solution exists globally in time. Suppose that 2 ≤ α and 0 ≤ ω0 ∈
L1 ∩ L∞. Then the solution blows up in finite time if ω0 is large.

The same method as was used in the case of p < ∞ can be used in the case
of p = ∞. In fact interpretation of the proof above into the present case is
straightforward. And we may safely omit the proof of this theorem.

4. Equation (2).

Here we consider (2). For this equation we modify the definition of Ω as

ω(t, r) = σ2Ω(τ, σr),

where τ = τ(t), σ = σ(t). If they satisfy

dσ

dt
= σ‖ω(t)‖α

p , σ(0) = 1,
dτ

dt
= σ2, τ(0) = 0,

then Ω = Ω(τ, ρ) satisfies

∂Ω
∂τ

=
∂2Ω
∂ρ2

+
1
ρ

∂Ω
∂ρ

.

Namely Ω satisfies the axi-symmetric heat equation in R2.
Note that

‖ω(t)‖p = σ2−2/p‖Ω(τ)‖p,
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whence

dσ

dt
= σ1+2α(p−1)/p‖Ω(τ)‖α

p ,
dτ

dt
= σ2.

This implies that

dσ

dτ
= σ−1+2α(p−1)/p‖Ω(τ)‖α

p .

We now prove

Theorem 5. Suppose that 1 < p < ∞ and p/(p− 1) ≤ α. Then a solution
blows up if the initial data is large. If 0 ≤ α < p/(p−1), the solution exists globally
in time.

Proof. Set

λ =
2α(p− 1)

p
− 2,

which is positive if α > p/(p− 1). We then have

d
dτ

σ(τ)−λ = −λ‖Ω(τ)‖α
p or

1
σ(τ)λ

= 1− λ

∫ τ

0

‖Ω(s)‖α
p ds.

The conclusion follows in the same way as in the preceding section. Namely the
solution blows up if

λ

∫ ∞

0

‖Ω(s)‖α
p ds > 1,

and exists globally in time if the inequality of the opposite direction holds true.
If α = p/(p− 1), then

log σ(τ) =
∫ τ

0

‖Ω(s)‖p/(p−1)
p ds.

Note also that if ω0(r) = Me−cr2
then

Ω(τ, ρ) =
M

1 + 4cτ
exp

(
− cρ2

1 + 4cτ

)
,
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which gives us

‖Ω(τ)‖p ∼ τ−(p−1)/p as τ →∞.

The rest of the proof goes just as in the previous section.
We finally assume that a < p/(p− 1). The Lp-Lq estimates (10) is now

‖Ω(τ)‖p ≤ (4πτ)−(p−1)/p‖ω0‖1.

Hence we obtain

σ(τ)−λ = 1− λ

∫ τ

0

‖Ω(s)‖α
p ds ≤ c + c

∫ τ

1

s−(p−1)α/p ds.

The rest of the proof is the same as before. ¤

In quite an analogous way, we obtain

Theorem 6. Suppose that p = ∞. Then, if 1 ≤ α, the solution blows up if
ω0 is large. If 0 ≤ α < 1, all the solution exist globally in time.

We remark that this theorem in the special case of α = 1 was proved in
[22], where a necessary and sufficient condition for blow-up was computed to be
‖ω0‖1 > 1. In general cases a concrete expression for the necessary and sufficient
condition in terms of ω0 is difficult for us to obtain. This is because we need some
estimates from below of ‖Ω(τ)‖p.

5. Some special solutions.

5.1. Steady-state.
Here we compute certain steady-states. Although we do not study in this

paper asymptotic behavior of solutions as t → ∞, the information on steady-
states will be helpful in the future study.

Steady-states of (1) is characterized by

‖ω‖α
p (xω′ + ω) + ω′′ = 0 (−∞ < x < ∞)

(
′ =

d
dx

)
. (27)

Since ‖ω‖α
p is a constant, we set 2µ = ‖ω‖α

p . Then,

2µ(xω′ + ω) + ω′′ = 0 (−∞ < x < ∞). (28)
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This equation was considered in [25] in a context of self-similar solution of the
Navier-Stokes equations. Its general solution is (see [25, page 182]):

ω(x) = Ae−µx2
+ Be−µx2

∫ x

0

eµy2
dy,

where A and B are constants. Note that the second term in the right hand side
decays in the order of |x|−1 as |x| → ∞. Therefore this function belongs to Lp

but not to L1. We therefore set B = 0.
The solution of (27) is obtained if the following condition is satisfied:

∫

R

(
Ae−µx2)p dx = (2µ)p/α.

This is written as

A = 21/α

(
p

π

)1/(2p)

µ(2p+α)/(2pα). (29)

Therefore for any given µ > 0 there exists a unique A > 0 satisfying 2µ = ‖ω‖α
p .

We have thus obtained a family of steady-states parameterized by µ ∈ (0,∞). The
results are summarized as follows:

Theorem 7. For all 0 ≤ α < ∞ and all 1 < p ≤ ∞, (1) and (2) have a
family of steady-states.

Proof. The argument above proves the case for (1) if 1 < p < ∞. If
p = ∞, we should put A = (2µ)1/α. If α = 0, then µ = 1/2 and A is arbitrary. As
for (2), the equation to be solved is:

2µ(rω′ + 2ω) + r−1(rω′)′ = 0 (0 ≤ r < ∞)
(

2µ = ‖ω‖α
p , ′ =

d
dr

)
. (30)

This equation admits a solution ω = Ae−µr2
if

A = 21/α

(
p

π

)1/p

µ(p+α)/(pα). ¤

If only steady-states are considered, then ‖ω‖α
p is a constant. Therefore the

classical steady-state of Burgers in [2] satisfies (30). Our solutions above, ω =
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Ae−µr2
, are nothing but the Burgers vortices in a disguised form. The Burgers

vortices are stable. This was proved by Giga and Kambe [9] in a special case, and
later by Gallay and Wayne [6] in a general case. But this stability is meant in
the framework of the equation (5) where γ(t) is a given constant, namely, (2) with
α = 0. If we consider the stability of the solution in the framework of (1) or (2),
then this poses a new problem.

It is known that there are steady-states of (3) without axisymmetry, which was
first demonstrated numerically by Robinson and Saffman [27]. A mathematical
proof of existence is recently discovered by Maekawa [17], [18]. [18] is remarkable
in that the author proves existence of steady-states in a strain in which any asym-
metry of the external strain can be assumed. Stability of the asymmetric solutions
are proved by [17]. In this regard, a study of (3) in a general γ1 and γ2 would
offer interesting problems.

Although we do not study the stability of our steady-states, the following
consideration may be interesting to the reader. Our solution Ae−µx2

with (29)
is unstable if 2p/(p − 1) < α. In fact, if ω0(x) = Me−µx2

, then Ω(τ, ξ) =
M/

√
1 + 4µτ exp(−µξ2/(1 + 4µτ)). An elementary computation shows that

κ

∫ ∞

0

‖Ω(s)‖α
p ds =

Mα

Aα
.

Therefore, for all M > A the solution corresponding to ω0(x) = Me−µx2
blows up

in finite time. If M < A, then σ is bounded as is proved in the proof of Theorem
3. On the other hand, Ω tends to zero. Hence ω(t, x) = σΩ(τ, σx) tends to zero if
M < A. This also suggests that ω ≡ 0 is stable if 2p/(p− 1) < α.

If 0 ≤ α < 2p/(p − 1), the steady-state may be stable, as the following
reasoning suggests. Suppose that ω0(x) = Me−µx2

with M slightly different from
A. Note that

σ(τ)−κ = 1− κ

∫ τ

0

‖Ω(s)‖α
p ds = 1−

(
M

A

)α

+
(

M

A

)α

(1 + 4µτ)−κ/2,

where κ = −2 + α(p− 1)/p < 0. Therefore

lim
τ→∞

σ(τ)√
τ

=
√

4µ

(
M

A

)−α/κ

(:= σ0).

This implies that
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ω(t, x) =
σ(τ)√
4πτ

∫

R
Me−µy2

exp
(
− (σ(τ)x− y)2

4τ

)
dy → Mσ0

2
√

µ
exp

(
− σ2

0

4
x2

)
.

as τ →∞.

5.2. Self-similar blow-up.
We now look for a solution of (1) of the following form:

ω(t, x) = (T − t)−δφ

(
x

(T − t)s

)
, (31)

where T > 0, δ > 0 and s are parameters to be chosen. A solution of this form is
called a self-similar blow-up solution. By substituting (31) into (1), we see that δ

and s must be chosen as

δ =
1
α

+
1
2p

, s =
1
2
. (32)

To prove this, set ξ = x/(T − t)s. Then φ satisfies

(T − t)2s−1(δφ(ξ) + sξφ′(ξ)) = (T − t)2s+αs/p−δα‖φ‖α
p (ξφ′ + φ(ξ)) + φ′′(ξ).

This is independent of t if and only if

2s− 1 = 0 and 2s +
αs

p
− δα = 0,

by which we obtain (32). The equation for φ becomes

(
2µ− 1

2

)
ξφ′ + (2µ− δ)φ + φ′′ = 0 (−∞ < ξ < ∞), (33)

where µ = 1/2‖φ‖α
p . If δ = 1/2, then this equation is the same as (28) with 2µ

being replaced by 2µ − 1/2. We do not know solvability of (33) for a general δ.
However, it can be written as

(
2µ− 1

2

)
(ξφ)′ +

(
1
2
− δ

)
φ + φ′′(ξ) = 0.

Since we are looking for a solution which is everywhere positive and decays to zero
as |x| → ∞, integration of this equation forces us to put δ = 1/2. We therefore
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assume this.
Now we have (1/α) + (1/2p) = 1/2, i.e., α = 2p/(p− 1), which is exactly the

critical exponent. Then (33), which is now

(
2µ− 1

2

)
(ξφ′ + φ) + φ′′ = 0 (−∞ < ξ < ∞),

admits a solution of the form φ(ξ) = A exp(−(µ − 1/4)ξ2), where A > 0 and
µ > 1/4 are constants. This becomes a solution of our problem if and only if
2µ = ‖ω‖α

p , i.e.,

A =
(

p

π

)1/(pα)(
µ− 1

4

)1/(pα)

(2µ)1/α.

If p = ∞, then

µ =
1
2
Aα.

Similarly we can obtain a self-similar blow-up solution of (2) if α = p/(p− 1).
If we set

ω(t, r) =
1

T − t
φ

(
r√

T − t

)
,

then the equation becomes:

(
2µ− 1

2

)
(ρφ′ + 2φ) + ρ−1(ρφ′)′ = 0 (0 < ρ < ∞)

(
ρ =

r√
T − t

)
.

The solution is:

φ(ρ) = A exp
(
−

(
µ− 1

4

)
ρ2

)
, A =

(
p

π

)1/p(
µ− 1

4

)1/p

(2µ)1/α.

We thus have

Theorem 8. Suppose that α = 2p/(p − 1) or α = p/(p − 1) for (1) and
(2), respectively. Then there exists a family of self-similar blow-up solutions of the
following form:
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ω(t, x) =
A√

T − t
exp

(
−

(
µ− 1

4

)
x√

T − t

)
,

ω(t, r) =
A

T − t
exp

(
−

(
µ− 1

4

)
r√

T − t

)
,

respectively for (1) and (2).

6. Proof of the local existence theorems.

Theorem 1 can be proved by the usual successive iteration method. But here
we prove it by Lundgren’s trick. We suppose that p < ∞. Let ω0 ∈ L1 ∩ Lp.
A unique solution of (14) exists and belongs to C([0, T ];L1 ∩ Lp) for any T > 0.
‖Ω(τ)‖p is a continuous function of τ in [0, T ]. We then consider the following
ordinary differential equation.

dσ

dτ
= σ−1+α(p−1)/p‖Ω(τ)‖α

p , σ(0) = 1. (34)

This has a unique solution, say σ = σ(τ) (0 ≤ τ ≤ T1), where T1 > 0 depends
only on ω0. Note that σ(τ) ≥ 1 for all τ . We then define t by

dt

dτ
=

1
σ(τ)2

, t(0) = 0. (35)

Since σ ≥ 1, we have t ≤ τ and t can be defined in 0 ≤ τ ≤ T1. Then we define ω

by

ω(t, x) = σΩ(τ, σx). (36)

It is easy to verify that ω is a solution of (1) in 0 ≤ t ≤ T2 = t(T1) and belongs to
C([0, T2];L1 ∩ Lp).

Uniqueness is seen by tracing this process conversely: if ω is a classical solution
of (1) in C([0, T ];L1 ∩ Lp), then we define σ and τ , by

dσ

dt
= σ‖ω(t)‖α

p , σ(0) = 1;
dτ

dt
= σ(t)2, τ(0) = 0.

We then define Ω by

Ω(τ, ξ) =
1
σ

ω

(
τ,

ξ

σ

)
.
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Since Ω is a solution of the linear heat equation with initial data in L1 ∩ Lp, it
is uniquely determined. We now invert the function t 7→ τ in a neighborhood of
0. Then t = t(τ) and σ may be considered to be a function of τ . They satisfy
(34) and (35). Apparently, these ordinary differential equations admit a unique
solution near (σ(0), t(0)) = (1, 0), which implies that ω is unique. ¤
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