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Abstract. We consider Schrédinger equations i0:u = (—A + V)u in R3
with a real potential V such that, for an integer k > 0, (z)*V(z) belongs
to an amalgam space ¢P(L7) for some 1 < p < 3/2 < g < oo, where (z) =
(1+]x|?)1/2. Let H = —A+V and let Py be the projector onto the absolutely
continuous subspace of L2(R3) for H. Assuming that zero is not an eigenvalue
nor a resonance of H, we show that solutions u(t) = exp(—itH)Pacp admit
asymptotic expansions as t — oo of the form

k/2

[k/2]
—k— _3_ _ k+3+e

(z)~F e(u(t)— t72 "Pgw)” <cT 2 [,
3=0 o0

for 0 < e < 3(1/p—2/3), where Py, ..., Py /g are operators of finite rank and
[k/2] is the integral part of k/2. The proof is based upon estimates of boundary
values on the reals of the resolvent (—A—X2)~1 as an operator-valued function
between certain weighted amalgam spaces.

1. Introduction.

We consider the large time behavior of solutions of Schrédinger equations in
R3:

i0u = Hu, H=-A+V(x). (1.1)
We assume that V is real valued and belongs to the amalgam space
V e P(L9) for some 1 <p<3/2<q< 0. (1.2)

Here, ¢"(L*®) for 1 < r, s < oo is the space of functions which behave locally like
L? and globally like L"-functions, and is defined by
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1/r
(L = {u ller 20y = (Z ||><qu||:) < oo},

jezs

where Q; is the unit cube centered at j € Z?, X@; its characteristic function and

| - |ls is the norm of Lebesgues space L*(R?): [Juls = ( [gs |u(m)|sdx)1/s.
Amalgam spaces are Banach spaces and satisfy inclusion relations

(L) C 2 (L*2)  for mp < rg, $1 > Sa. (1.3)
It follows that ¢"(L*) C L"(R3) N L*(R3) if 1 <r < s < 0o and, we have
Ve LP(R*) N LYR?) for some 1 <p<3/2<q< oo (1.4)

under the assumption (1.2). Then, it is well known that:

(1) The operator H = —A + V is selfadjoint in the Hilbert space H = L?*(R3)
with domain D(H) = {u € L?: Vu € L}, —Au+ Vu € L?} and the solution
u(t) in ‘H of (1.1) with initial condition u(0) = ¢ € H is uniquely given by
u(t) = e .

(2) The spectrum of H consists of a finite number of non-positive eigenvalues of
finite multiplicities and a purely absolutely continuous part [0, c0). Embedded

positive eigenvalues are absent ([10]).

DEFINITION 1.1.  We say that H is of generic type if 0 is neither eigenvalue
nor resonance of H, viz. there are no non-trivial solutions of —Au(z)+V (z)u(x) =
0 which satisfy u € L*(R3) for all 3 < s < oo; and it is of exzceptional type if
otherwise.

In this paper, we show the following theorem. For a > 0, [a] is the integral
part of a; (z) = (1 + |z|?)'/?; P, is the orthogonal projection onto the absolutely
continuous subspace of H for H.

THEOREM 1.2.  Suppose that V(x) satisfy for an integer k > 0 and some
1<p<3/2<qg<oo that

)V e (L), (1.5)

and that H is of generic type. Then, for any 0 < e < 3(1/p —2/3), e *H P,
admits an expansion as t — oo of the following form:
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[k/2]
<:L_>—k—s (e—itHPaC _ Z t_3/2_ij>SDH < C|t|—(k+3+5)/2|‘<m>k+€¢’ ¥ (16)
=0 o0
where Py, ..., Py /) are finite rank operators which may be expressed via derivatives

of (H—X )71 at A = 0, and C is a positive constant independent of t and .
Similar statement holds as t — —oo.

REMARK 1.3. (1) The case when V satisfies (1.5) with non-integral k is
partly covered by the theorem: If V' satisfies (x)kJrUV € LP(LY) for 0 < 0 < 1,
then (z)"V € ¢P(L7) for any p > 1 such that 1/p < (1/p) + (¢/3), and the range
of allowed ¢ in the theorem is widened by o to 0 < e < min(1,3(1/p —2/3) + o).

(2) For the free Schrodinger operator H = —A, (1.6) is well known and the
decay rate C|[t|~*+3+2)/2 for the weight (z)**¢ cannot be improved.

When V satisfies (1.4) and H is of generic type, Goldberg [7] has recently
proved that solutions u(t) = e~ *H P,.¢ of (1.1) satisfy dispersive estimate:

le™ " Pacoll . < CltI™*lielly, ¢ € L'(R®) N LA(R?). (L.7)

Theorem 1.2 singles out the leading terms in (1.7) of u(t,z) as ¢ — oo under a
slightly stronger condition. We refer to [12], [21], [18], [8], [3], [22], [4], [5] for
earlier works on dispersive estimates in three dimensions.

Theorem 1.2 is an extension of the well-known results of Rauch ([17]), Jensen-
Kato ([11]), Murata ([16]) and etc. on asymptotic expansions in the weighted L?
spaces, when spatial dimension is three and H is of generic type. However, results
of these authors are not only for generic H but also for H of exceptional type,
and for general dimensions d > 1. We plan to study these cases in a future
investigation. See also [6] for corresponding results for time periodic potentials.
We mention that, in one dimension, the expansion of the form (1.6) has recently
been obtained by H. Mizutani ([15]) when V satisfies (z) "V € L'(R!) for an
integer k > 2.

The rest of the paper is devoted to the proof of Theorem 1.2 and we always
assume that H is of generic type. We write Ro(2) = (Ho — 2z)~! and R(z) =
(H — )~ for resolvents and set Go(\) = Rg(A?) and G(\) = R(A\?) for \ € @+,
T = {A € C: S\ > 0} being the closed upper half plane. For boundary values
on the reals, we have

Go(£N) = Ry(N® £i0), G(£N) = R(\*£i0), X>0.

The proof is a modification of Goldberg’s argument for proving the dispersive
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estimate (1.7) which heavily relies on the special feature in three dimensions that
the resolvent Go(\) has a simple convolution kernel

1 et lz—yl

GoWule) = - [ T rutway. (19)

The modification requires in particular new estimates on boundary values on the
reals of the weighted free resolvent (z)*Go(A)(z)™ %, € > 0, and its derivatives with
respect to A\ as an operator-valued function between certain amalgam spaces which
improve well known LP-estimates by Kenig-Ruiz-Sogge ([13]) and Goldberg-Schlag
([9]). We formulate and prove them in Section 2.

We explain here the basic strategy of the proof for the case k = 0, introducing
some notation and pointing out what modifications are necessary to Goldberg’s
argument. Weighted L spaces are denoted by (z) °L" = {(z) "u: u € L"}. The
coupling of u in a function space and v in its dual space, i.e. foru € S and v € &',
is indiscriminately denoted by (u, v):

(u,v) = / u(z)v(z)dz.
R3
We reserve notation x for a cut off function x € C§°(R) such that

1 for |A] <1,

X(A) = x(=A); x(A) = {0 for [\ > 2

) Z x(A=3n)=1 (1.9)
n=0
and, for L > 0, xr(A) = x(A/L). We use resolvent equations in two ways:

G(\) = (1 4+ Go(MNV)71Go(\) = Go(N) (1 +VGo(N) L. (1.10)

By virtue of the assumption that H is of generic type, we may write e~ by
using boundary values of G()A) on the reals. We then apply integration by parts
with respect to A and obtain for u,v € S(R?) that

(e7"" Pyeu,v) = lim i / e~ (G(A)u, v) Ay (A)dA
R

I
\
|
E—:

< /R e~ (G (N, v) Xz (A)dA
+ /R e“X"(G(A)u,U)X'L(A)dA)
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= lim (U1,L(t)u,v) + (Us,(t)u,v)). (1.11)

It suffices to show that Uy 1 (t) satisfies (1.6) and that Us 1 (t) does
1)U 1] < I~ E+5+972) (@) (112)

with C' > 0 independent of L > R, R > 0 being a large constant. We explain here
how to do this only for Uy 1(t). We write, following Goldberg ([7]),

G'(\) = 20G(\)? = (1 + GoN)V) LG\ (1 +VGo(N) 7t (1.13)
and define for w € S(R3) and L > 1:
wr, (A, ) = x(A\/2L)(1 + VGo(\) tw(x). (1.14)

Since ((1+ Go(\)V)™H)* = (1 +VGo(—A))~1, we have for u,v € S(R3) that

(U1,L(t)u,v) = e (XN L)Gh(Aur, (N), v (—A) YdA. (1.15)

2t Jy
For the partial Fourier transform 4y, (p, ) = (Fas,ur)(p, x), it is proven in Theo-
rem 4 of [7] that |4z L1rs ) < Cllul|p1(rs) which immediately implies dispersive

estimates (as can be seen below). We improve that estimate to the following
weighted ones:

LEMMA 1.4. Let e be as in Theorem 1.2. Then, iy (p,x) satisfies
1€p)* + (@)t (p, @) s sy < Cllé@) ] s oy (1.16)

where the constant C' is independent of u € (x)” “L*(R®) and L > 1.

Theorem 1.2 for k = 0 will follow from Lemma 1.4 as follows. We define
Fr(0) = Fao (XN L)GH(Nur(N), vL(=N))) (0).

Since Gj(\) has the kernel ie**=¥l /47 we may compute as

Fi0) = 557 [ a2 ~1e = ol = 1= p)ie 1. 0)52p D) dudpdody.
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It follows from elementary Lemma 3.5 below and Lemma 1.4 above that
[ @ IFolas
R

< C'//qul” —yl 4w+ p)°lar(u,v)orL(p, x)|dudpdrdy
< CH(<N>E + <IU>5)12LH1H(<P>E + (x>€)1}LH1 < C||<$>EU||1H<JU>EUH1 (117)
The Parseval identity and the identity el /At _ | n (ewz Jar 1) imply

o F3im/4

(Uy,L(t)u,v) = W(/RFL(J)CZU+/R(&“2/“ - 1)FL(U)d0). (1.18)

The Fourier inversion formula shows that the first term on the right yields the
leading term

V2eF3m/A

\/§e$3iﬂ'/4
3/2; <G0 =
2t/ 2iy/T

(0)ur(0),vL(0)) = W<G/(O)U, v) (1.19)

and (1.17) implies that the second is a remainder:

21—6 R C - R
WME/Q)W/Rﬂ |[F(0)]do < W||<$> ull1[[{x) vl

with a constant C' independent of L. We prove Lemma 1.4 by splitting ur, () into
the large and the small energy parts:

ur high(A) = x> A/ Ao)ur(N),  urLiow(X) = x(A/Ao)ur(N), (1.20)

where x>(A) = 1 — x(A) and A\g > 0 is a large parameter. We prove a gen-
eralization of Lemma 1.4 for derivatives “(L])m on(A) and u(Lj,)low()\) in Sections 3
and 4 respectively by modifying the argument of Goldberg via estimates of Sec-
tion 2. Here and hereafter f)()) is the j-th derivative of f(\). For Banach
spaces X and Y, B(X,Y) is the Banach space of bounded operators from X to

Y. B(X) = B(X, X).

ACKNOWLEDGEMENTS. We thank the referee for constructive comments
which lead to an improvement of the paper.
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2. Resolvent estimates in weighted amalgam spaces.

In this section, we improve the well-known L? estimates in [13] and [9] on
boundary values on the reals of the free resolvent Gy(\) to the weighted estimates
in amalgam spaces. We write ¢’ for the dual exponent of ¢: 1/¢+ 1/¢’ = 1 and
1 < gq, ¢ < oco. We recall the complex interpolation for amalgam spaces: For
0 <0 <1 we have

1 1-6 6 1 1-6 0

ETO Lso fh LS1 :gTe LSG P — R — = —_
(L), L]y = L), = = e

Weak spaces ¢ (L®), £"(L2)) and £ (L$)) are likewise defined. If we denote Lorentz
spaces by LP9, L1 = L?° and it is the dual space of L71. The real interpolation
theorems apply to LP? and, hence, to amalgam spaces built over them. For 1 <
Pj,q; <00, j=1,2,3suchthat 1/p1+1/ps =1+1/psand 1/¢1 +1/q2 =1+1/gs
we have weak Young’s inequality for amalgam spaces:

P (L8) 5 (P2 (L92) C 073 (L%). (2.1)

We recall that the norm of the space L, for 1 < r < oo may be defined by

1
Ul = SUP —7 u(x)|dx 2.2
oo = 510 7 | Ju) 22)

and L7, becomes a Banach space, where A runs over measurable subsets with finite
measures (see p.99 of [14]).
For0<e<1land )€ @Jr, we define the weighted resolvent:

Go,ee(\) = (2) “Go(\)(z)T*

and we denote its integral kernel by

1 (z iaei)\krfy\ y Fe
GO,iE(Aaxay) = E< > |IL' _ yl < > . (23)

In the (1/r,1/s)-plane Q = (0,1) x (0, 1) is the open unit cube. We set

L) = {(1/r,1/s) € : 1/r — 1/s = (2 + u)/3},

for 0 < p < 1. The Hardy-Littlewood-Sobolev inequality, which is a special case
of (2.1), implies
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e~ % ulls < Cllulle,  (1/r,1/5) € L(p). (2.4)

For o > 0, A7 f(X) = f(A+ o) — f(A) is the difference operator.

LEMMA 2.1. Let 0 <e <1and 0 <~y <1—ec. Then Go+:()\) satisfies

following properties as an operator valued function of A\ € CT, where £** should
be replaced by ¢* whenever it appears:

(1)

For (1/r,1/s) € L(0) and (1/7,1/5) € L(e + ), it is analytic and bounded as
a B({T(L"), 03(L®))-valued function. If v > 0, it extends to C" as a Holder
continuous function of order~y, and if v = 0, it does so as a strongly continuous
bounded function. There exists a constant C > 0 such that, for A € @Jr,
o€ R\ {0} and u e ¢"(L"),

1Go,£c(M)u

espe) T 1ol I(ATGo c) (Mu

03(L*) S C”uHé'F(Lr). (25)
If (1/r,1/s) € L(0) and (1/7,1/5) € L(y + &) are both at the ends of respective
line segments, then it satisfies the properties of (1) as a function with values
in any of the following spaces, where strong continuity should be replaced by

weak continuity if e = v = 0 and if the space is one of those in the first line
(2.6) :

B(L', ¢3/0===(L3 ), B((H(L3/2Y), 63/ (=== (L)), (2.6)

B(¢3/ et (p3/2.0) 1oy B3/ e (LY o (L2)). (2.7)

If one and only one of (1/r,1/s) € L(0) or (1/7,1/3) € L(y+¢€) is at the
ends, then, it satisfies the properties of (1) as a function with values in any of
the following spaces, where the same comment as in (2) applies if e =y =0
and if the space is the first of (2.8) :

B(¢!(L"), 6/ 7=(L)), B(¢%/CHetA(Lr), 2(L7)), (2.8)
B(£(LY/21), L3 (L), B((7(L"), €%(Ly,))- (2.9)

ProOOF. In this proof we often omit the variable A from Gy 4. and etc. The

kernel Gy +-(\, z, y) is entire with respect to A for « # y and it satisfies along with
derivatives that

|9,Go,1c(N 2,9)| < Cjw —y) |z —yPre3MNewlj =01, (2.10)



Resolvent estimates in amalgam spaces and asymptotic expansions 571
Hence, the stated analyticity of Go +.()) follows by weak-Young’s inequality (2.1).
We next prove the estimate (2.5) corresponding to the cases in (2), viz. we assume

that (1/7,1/s) and (1/7,1/3) are end points and prove (2.5) with ¢" (L") and £5(L*)
being appropriately replaced by the function spaces in (2.6) and (2.7). We set

GO,:ts,S(/\axay) = X(‘x - y|)GO,:I:s()\>$7y)a
Gote >Nz, y) = (1= x(|z = y])Go,zea(, y)

and denote by Go te<(A) and Go 1. >(\) the operators with respective integral
kernels. We have

|G ze< (2, 9)] < Ox(|z —yl)/|z —yl. (2.11)
Then, the characterization (2.2) of LI spaces and the duality argument imply
1GosecMullzy < Cllulls, GosecWullze < Cllullgzas.  (212)
It follows from the first of (2.12) and the inclusion relation (1.3) that
1Go, e, <ull zra-o s ) < CllGo,xe, <ty < Clluls. (2.13)

Since G +¢ <(z,y) is supported by {|z — y| < 2}, the second of (2.12) implies

Z ||G07i57§u||Lm(Qj) <C Z Hu||L3/2‘1(5QJ,) < 125C Z Hu||L3/2‘1(Qj) (2.14)

JEZ3 JEZ3 JEZ?
where 5@Q); is the cube of sides 5 concentric with @;, hence, from (1.3),
[Go,ze,<ullsra-o ooy < Cllullgrpsrzay. (2.15)

The kernel Go 1. > (A, z,y) is smooth with respect to (x,y) and satisfies

SU.% ’XQj (m)GO,i&Z()‘axvy)XQk (y)‘ < C(] - k>_1+6' (2'16>
z,y€R3

Hence, if F}j  is the operator with kernel xq, (7)Go,+c,> (N Z,¥)xQ. (V)

1Go2e>Nullzs @) < D IFiwxeuullis,) < DG — k) llullLiqu,
k k
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1Go 2> Nullz=@y) < D IFwx@uullie, < D0 = k) llull s,
k k

It follows by virtue of the discrete version of (2.2) that

1Go,+¢,>(Null -2 1y < Cllulls, (2.17)

HGOviEaZ(/\)u”qu/(l_E)(LOO) S O||u||gl(L3/2,1). (218)

The combination of (2.13) with (2.17) (resp. (2.15) with (2.18)) and the inclusion
relation (1.3) of amalgam spaces imply that Go +.()) is a bounded function of
A € T with values in the first (resp. second) space of (2.6). Then, the duality
implies that G +.()) satisfies the same as a function with values in spaces in (2.7).
Recall that (2> = (> = (£1)*.

The integral kernels of A°Go 1. <(A) and A°Gy 1. > satisfy

|A7Goze, <N 2,y)| < Clo|"|z = y| ™ x(lz — /2),

S [xq, (2)A7Gose> (N 2, 9)xQu ()] < Clof"(j = k) 7H7.
x,YyE

Thus, the argument above for Go 1.()) implies that |o|"YA%Gy 1.(A) is bounded
with respect to (A, 0) € T' x R as a function with values in any of the spaces of
(2.6) and of (2.7). This proves the estimate (2.5) for the cases in the statement (2).
Then, interpolation theory implies the same for statements (3) and (1). We next
prove the strong continuity in the statement (1) for the case v = 0. If u € C§°(R?),
then Go 1-(A)u(x) is smooth with respect to (A, z) € T x R?, the derivatives are
bounded in every compact sets, and we have that

IGoseNu(z)| < Cla) ™5, AeCT'.

Since (z) "' € £5(L*) for 1 < s < 0o and § > 3/(1 — ¢), Lebesgue’s dominated
convergence theorem implies that Go +.(A)u is an £3(L*) valued continuous func-
tion of A € C . Since C°(R?) is dense in ¢"(L®) if 1 < r, s < oo, the desired
strong continuity of Go t.(A) follows. The strong or the weak continuities in other
statements may be proved similarly. O

The following is the weighted version of the well-known LP-estimates of Kenig-
Ruiz-Sogge (Theorem 2.3 in [13]) and the proof patterns after their argument.
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LEMMA 2.2. For3/2<p<2, let

r(p) = =L s(p)= 2L~ and 0<e<i-L. (2.19)

>
I
—
)

Then, Go +-()\) is bounded from L") to L*®) for any X\ € c’ \ {0}. For any
0 < ¢, there exists a constant C. , such that for A € T" with [A| >¢>0,

1Go,2eNulls(p) < Coppl A7) ] ). (2.20)

PROOF. We prove +¢ case only. Since 1/r(p) + 1/s(p) = 1 and Go(\)* =

Go(—=M), the other case follows by the duality. We define closed strip S by
S={zeC: —2<Rz<0}

and, for A € CT, consider analytic family of operators T'(z) = m,(—i0,) defined
for z € S via the Fourier multipliers

B 622(52 _ )\2)2
S e CTE)

so that Go()\) = I'(1/2)e T (-1). For u,v € S(R?), (T'(2)u,v) is continuous for
z € S, analytic in the interior of S and

(T(ir)u, v)| < Cllull2[lv]l2, 7 €R.

The Fourier transform of m, is given by

. e 97 +1 A\ B/ .
"””:Hzﬁwmna(m> Hereel=ilel),

where K, (—is) = (iw/Q)ei””/zH,El)(s), Hﬁl)(s) being Hankel function of the first
kind, and, as is shown in (2.23) and (2.26) in page 339 of [13], we have

e VK, (w)] < Clw| ™, Jw| <1, Rw >0 (2.21)

|K, ()] < Crpe R w|~Y2, |w| >1, Rw>0. (2.22)

This implies for A € C* and for —2 < Rz = —p < —3/2 that
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1, Allz] < 1,

i ()] < CIAP— { .
(Nlla))?~2, \JJe] > 1

} < OB (Az)P~2. (2.23)

Thus, |T(2)ullec < CIAP72°|Julj; for —2 < Rz = —p < —3/2 and Stein’s theorem
of complex interpolation implies

IGo(Nulls(p) = T(1/2)e | T(=Lyulls(py < CINE P72 [l (2.24)

We then fix p € [3/2,2] and define another analytic family of operators:
T(2) = (M) = F/ODT () (|A]2) /07D,
By virtue of (2.23), it satisfies
HTp(z)uH2 < Cllull2, Rz=0; ||Tp(z)u||OO < C|)\|3*2”||u\|1, Nz = —p.

It follows again by Stein’s analytic interpolation theorem that

IKIALz) /=D Go(Aulls(p) < CINSDZ2(IA]2) /D] . (2.25)
Write e, = (2/p) — 1. We have (z) < 2Y2|A|"Y(|A|z) if |z| > 1, and (z) >
2= 12|\~ Y(|\|z) if |A||z] > 1. Hence, for |A| > ¢ > 0, (2.24) and (2.25) imply the
following with 7(p) = r and s(p) = s:

()™ Go(Nulls
< 27| Go(A)ulls + 272N 5 [l [2)* Go(A)ulls
< CINCOZ2([ully + A= ([ Al2)* )
< OGO+ A7) [ully + A7 1L = x(IM2){[Ale)* |, }
< C{L+AT=)INE D2 |, + [[(2) = ull} < CL+ )N D72 (2) ),

The last estimate is (2.20) with € = ¢, and (2.24) is that with e = 0. Thus, the
desired estimate (2.20) follows by interpolation. O

We now interpolate estimates on Go 1.(A) obtained in the last two lemmas.
There are various ways to interpolate them and results are not necessarily compa-
rable. We have chosen the following which we think fits best for our purpose. We
arbitrarily fix 3/2 < p < 2 so that we have by (2.20):
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+ — +
(2) = Go(Nullsp) < Crpl A ) ullep), 0 < <eulp) (2.26)

with r(p) = 2p/(p+ 1) and s(p) = 2p/(p — 1). Here and hereafter we define

ep) =21, S(p)=2-2. (2.27)

When p increases from 3/2 to 2, e.(p) decreases from 1/3 to 0 whereas d.(p)
increases from 0 to 1/2.
For 0 < ¢, such that 0 < kK =& 4+ v < 1 we define two closed triangles
D, =AP,QR\{Q,R} and D,(e,v) = APQuR \ {Qn: Ri}

with two vertices removed in the (1/r,1/s) plane, where

() @ (59) ==(13)
Qﬁ,=<2§’i,0), RR=<1,13“).

Lines QR and QR are parallel to each other and QR = L(0) and Q. R, = L(k)
in the previous notation. We note that P, is on the line (1/7) — (1/s) = 1/p and
define for 0 < 8 < 1 two lines

11 1 1 1-60 20
bp=p,n (LY 1 Lot

r's) r s p

Lero(p) = Dyle.7) N {Ci) 11 _1-0, 2+r)

- + }, K=¢e+7vy
r s p 3

which are respectively parallel to QR and Q.R,. and divide triangles D, and
D,(e,~) into the ratio § to 1 — 6.

We remark that all estimates in what follows remain valid when e,(p) is
replaced by any e; such that 0 < g; < e,(p) because this is true for Theorem

2.3 and because estimates in what follows are obtained by interpolating those of
Theorem 2.3 and those which are independent of €, (p). We denote

e(p,0) =0+ (1 —0)e.(p).

THEOREM 2.3. Let3/2<p<2,0<e<1,0<0<1 andlet0 <~ be such
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Lerp ([))

Figure 1.

that e +~v < 1. Let (1/r,1/s) € Lg(p) and (1/7,1/8) € L. 5 9(p). Then, we have
the following statements:

(1) For every A € CT, Go te(p0)(N) is bounded from (7(L") to £3(L*). For ¢ >0,
there exists a constant C > 0 such that

|Go,2e(p,0) Nl B(er (Lr).05(1ey) < CIA|7E93-0) (2.28)

for xe T\ {0} with |\| > c.

(2) As aB("(L"),£5(L?))-valued function of X, it is analytic in CT and it extends
to C' \ {0} as a strongly continuous function. If v > 0, then it is a locally
Hélder function of A € @+\{O} of order 6~. For c > 0, there exists a constant
C > 0 such that

A7 G te(p.0) Nl B(er(Lr).05 (1)) < CIA|TED% )50 (2.29)

for |[A| > ¢ and |o| < |A|/2.

PrOOF. We interpolate estimates in Lemma 2.1 and that in Lemma 2.2
with € = e.(p) by applying real or/and complex interpolation theories ([2]). This
immediately produces (2.28) and proves statement (1).

We omit the proof of the analyticity and the strong continuity in statement
(2) which is similar to that of the corresponding part of Lemma 2.1. For proving
estimate (2.29), we interpolate

1A G ze. () Nlls() < CelA=* O ull ), (2.30)

which is valid for |A| > ¢ and which trivially follows from (2.20), and the estimate
(2.5):
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[(A7Go,e)(Nulles(zsy < Clo|"||ullerzr (2.31)

for (1/r,1/s) € L(0) and (1/7,1/8) € L(y + ¢) and its modification at end points.
Then, (2.29) follows as in the proof of (2.28). O

We next prove that G 1c(,,0)(A) becomes continuous upto A = 0 if the weights
on both sides are suitably increased. In the following proposition we omit the
variable A from G 4.(,.0)(A).

PROPOSITION 2.4.  Let p,e,v and 0 be as in Theorem 2.3. Let (1/r,1/s) €
Lo(p) and (1/7,1/5) € L. ~9(p). Suppose that > 1/2(1 — (1/p)). Then, there
exists a constant C > 0 such that, for A € T and0 < lo| <1,

H<x>_HG0,i€(p,9) (x) Mu )+ ‘0’|_79H<$>_HA0G0,iE(p79) () Hu

¢3(Ls 03(Ls)

< O OO . (2.32)
PROOF. In view of interpolation, it suffices to show (2.32) for # = 0 and

60 =1.1f # = 1, then (2.32) a fortiori holds since it is already true when p = 0 by
virtue of Lemma 2.1. For § = 0, it suffices to show

[42) ™ Go e (W)l ) < OO lull (2.33)

for all 0 < ¢ < e,. This is evident from (2.20) for |A\| > 1 and we may assume
|A| < 1. Decompose the integral kernel of (z) "Gy 1. (\)(z) " as

e (€N =) | (o= )Y e
R e R =1 e L

and denote the operators with respective kernels by T<(\) and T> (). Then,

<x>7uieei>\\w—y| <y>7“qzsx(|x — yl) ‘ < C,X(|x — y|)
4|z — y| B 2 =]

and | T<(M)|lg(Lr), Lty < C by Young’s inequality. For T%()), we have

() "M () T — (| — ) ‘

47_‘_‘:5 — y| < C<{E>7N<£L' - y>8_1<y>7#
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and (p/3)+((1=¢€)/3)+(u/3) 2 1-(1/p) = 1+((p—1)/2p) = ((p+1)/2p) since € <
e«(p). It follows again by virtue of Young’s inequality that || T (N)||g(pre),Let)) <
C for |A| < 1. This completes the proof.

Recall that e(p,8) = 0 + (1 — )e.(p). To simplify notation we write

Ki+c(\) = (@) 'GoreW) (@), 1=0,1,....

THEOREM 2.5. Let p, €, v and 0 be as in Theorem 2.3. Let (1/r,1/s) €
Lg(p), (1/7,1/8) € Leyo(p) and I = 1,2,.... Then, K 1c(p0)()) is analytic as
a B({T(L"),63(L*))-valued function of A\ € C*, and it extends to \ € T asa
function of class C'. There exists a constant C > 0 independent of u and \ € c’
such that

!
Z lie(p,@) )“Hﬁ(Ls +bup|a‘ WHAU lie(p@)(/\)u

65 (L)

< OO O )| ey (2:34)

ProOOF. Differentiating under the sign of integration, we obtain for simple
functions u that

; iJ eMT=yl|p — i
RGo(Nu(z) = E/ x_|y|y|u(y)dy, (2.35)

and the integral kernels of K l(J i)s for j =1,...,0 and that of A°K l(’lie are bounded
respectively by

Clz) e (y) 1 FE < Cla —y) 1, (2.36)

Clo| (z) " (y) ol — y|" < Clo (@ — y) 1t (2.37)

for any 0 < v < 1. It follows by the argument of the proof of Lemma 2.1 that
K 4c(p,0)(A) satisfies (2.34) when 0 = 1. If § = 0, using (2.36) and Holder’s
inequality, we have for 0 < ¢ < ¢, that

72 (Nl

< CH<‘IE>71+EH§(p)”uH < CHU’”T(p)? ] = ]-7 ey

o~

s(p) r(p)

since (1 —¢€)s(p) > (1 —ex(p))s(p) = 4. Thus, in view of the interpolation theory,
it suffices to prove for all 0 < ¢ < ¢, and for [A| > 10 that
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IEEL ]l ) < COV O llullyy, =1, (2:38)
Since (z — y)?™ is a sum of monomials 2%y?, |a + 8| = 2m, we have
R HFGo(Nu(z) = D Capr®d5Go(N)(z ) (2.39)
la-+Al=2m

and (2.38) for even j = 2m follows immediately from (2.28). Thus, by virtue of
(2.39) we have only to prove (2.38) for | = 1. We deal with Kl(ls)(/\) only. The
other may be dealt with similarly. We write A = p + ix with k > 0, |A| > 10.
Since the case |k| > |A|/10 is much easier to dealt with (see below), we assume
|k] < |A]/10 and we further assume p > 0 since the case —u < 0 may be treated
similarly. Write u.(z) = (z) " "“u(z) and v_.(x) = (x) " “v(x). Then,

(G v-2)

- i ] e [

~5l@ de] i[éé/ eeugigff)”‘ ]
SRS L

The first term on the right is equal to A™1{Go(\)ue,v_.) and, by virtue of (2.20),
it is bounded in modulus by C|A|=2=%@)||ull, [|v]ls(p). We take ¢ € Cg°(R?)
such that p(§) = 1 when 1/2 < |¢] < 2 and ¢(§) = 0 outside 1/4 < |§] < 4 and
decompose the second term of (2.40) as

3 a A~ A\
0 (/1) (&5 /1) - (Ot (§)D- (€)+us(£)8@v-s(£)>
AZ/ e — “
1o~ [ 05 (E/n)E 8@(%(5)@—5(6))
AZ/ e de  (2.41)

where ¢>(£) = 1 — (). For j = 1,2,3, we may write F{o(¢/n)(§;/1)}(x) =
w3h;(ux) with h; € S(R?). Define hj, () = ph;j(pz). Then, for any 7 € R,
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(@) i h (u(z — y) ()" < CpPlhy(u(z — y) [z — y))7

for 11 > 1 and the operator of convolution with hj,(x), ¢ > 1 is uniformly bounded
n (x)" L"(R?). The first term of (2.41) may be written in the form

%Z (Go(N)(hjp * (Tjue)), v—e) — (Go(A)ue, by * (250 8))}

and it is bounded by C|/\|_5*(p)|\u||r(p)||vHT(p) by virtue of (2.20). Integration by
parts implies that the second term of (2.41) is a sum over j = 1,2,3 of

{(0/0¢;) (> 6/#)6;)} (&) 20> (£/ )& 4. (€)0-(€)
-~/ € - iy | o e

In the last two integrals, both Fourier multipliers

0 £ _dp> (6§ £ 20> (6/n)E2
e\ )& ) = =)=tex =) —mm
3] jz 06 \p) p Iz €2 = A
satisfy the Mikhlin-Hormander condition uniformly with respect to |u| > |A|/2,

[A\] > 10. Hence the second term is estimated as in the previous case by
CIN1= @ |uf|, () |0l +(p). This completes the proof. O

For 0 <¢,~ such that 0 < (e +7)/3 < (1/p) — (2/3) < 1/3, we define p, by
1 1 2
1<+6+7) (2.42)
Px p 3

We have that 1 < p. <3/(2+¢+7).

LEMMA 2.6. Suppose that V. € ¢P(L9) for 1 < p < 3/2 < q¢ < oo. Let
0 <e,v be such that (¢ + ) < 3((1/p) — (2/3)). Then:

(1) Let 1 <r <3q/(q+3). Then, forl=0,..., we have

o l
pr+suplol” ATV (Nl < CIV oo llullcr,

Z VL.

(2.43)

where the constant C' > 0 is independent of A € @+, u and V.
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(2) Let1<r <p.. Then, forl=0,..., we have

l
2 VKWl +sup o [ ATVEL (Vulla < CIV lran e
j=0 7

(2.44)

where the constant C' > 0 is independent of A € @+, wand V.
(3) Let 3/2 < p <2. Definer_(0) and r(0) for 0 < <1 by

1 1 1 1
P91, S

pt1 2+cty,
0 2 0 2 |

3

Let 6y = 0 if ¢ > p and 6y be such that 1/q = ((1—600)/p) + (2600/3) if ¢ < p.
Then, for 6y < 0 <1, the following is satisfied for r—_(0) <r <r,(0):
(a) For any c > 0, there exists a constant C such that

[V Go se(o (Nl + o] A7 G se(p0) (V|

< CIA[TE=D% @y, (2.45)

for |\l > c and |o] < |\|/2. If 0 =1, then (2.45) holds for all X € T and
o € R\ {0}.
(b) Forl=1,...,k, we have for a constant C > 0 that

l
SOIE. oy Null, + ol ATVES ., 5 Aull,
7=0
< CA) "Dy, (2.46)

for X e R and o # 0.

ProOOF. We prove statements and estimates for the case [ = 0 only. The
proof for the case [ > 1 may be given similarly by using Theorem 2.5 in place of
Lemma 2.1 or Theorem 2.3. The proof of statements (1) and (2) uses only Lemma
2.1 and Hoélder’s inequality.

(1) By virtue of Lemma 2.1, for any 5 such that 0 < 1/5 < (1 — (e +7))/3,
Go.+e(\) maps L' continuously into ¢3(L3)) and

||Go,is()\)u

63 (L3) + SU% |O’|7’YHA0GO7:|:E(>\)’UJ 03(L3) < C”U”Ll (247)
ge
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By Hélder’s inequality we have L(Q) - L2 (Q) C L™(Q) whenever (1/3) + (1/q) <
1/r. Likewise, ¢ - ¢ C " if (1/p) + (1/3) > 1/r and such an § with 0 < 1/5 <
(1 —(e++))/3 may be found since (1/p)+ ((1 — (¢ ++))/3) > 1. This with (2.47)
implies (2.43).

(2) We may assume r > 1 as the case r = 1 is proven in (1). Recall that
1/ps > (24 €+ v)/3. Then, Go+e(A) maps L, 1 < r < p,, continuously into
03(L#) for 1/s = (1/r) — (2/3) and 1/5 = (1/r) — ((2+¢ +7)/3) and

||G0,i8()\)u 05(L%) +SUHP§|O"_’Y||ASG0715(/\)U 035(L%) S CHUHLT (248)
oc
Since (1/7) — (2/3) 4+ (1/q) < 1 and r < p, implies
L1 24e4n 11 2449
rop 3 Pxe D 3

Holder’s inequality and the inclusion relation for amalgam spaces produce the
desired estimate (2.44).
(3) For0<6 <1, (1/r,1/s) € Lo(p) and (1/7,1/5) € L. ~,9(p), we have

1Go,xe (.0 ulles(re) + o] A7 Go e oyulles (1)

< CC|)\|*(1*9>5*(”)||u

ey (2.49)

for |A] > c and |o| < |\|/2 by virtue of Theorem 2.3; if § = 1, then this holds

for all A € C and 0 € R \ {0} by virtue of Lemma 2.1. Note that 1/r,(0) is

the common 1/r-coordinates of the right ends of Ly(p) and L. ~.¢(p), and 1/r_(0)

is the one of the left end of L., ¢(p) which is larger than that of Lg(p). Hence,

(1/r,1/s) € Lo(p) and (1/r,1/5) € L. 4.¢(p) simultaneously for some 1/s and 1/5
if and only if r_(0) < r < r,(0). Then, we have

1 1

+ -<-

s q T p 3 q - r

for 6 > 6y. On the other hand, since 1/p < 2/3 and, by assumption, (2+e+7)/3 <
1/p, we have for any 0 < 6 < 1 that

1 1 1-6 (2+e+v0 1
—_—= - — — _A'_f
p T p 3 D

1
+> 2

>1_2+5+’y 1
o 3 p T

Thus, (a) follows from (2.49) via the help of Hélder’s inequality as previously. O
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In view of Lemma 2.6, we define

. 3q 1 2
Tmax = Min | py,, —— and Kpax =3[ -—=). 2.50
(p q+ 3) (p 3) (2:50)

PROPOSITION 2.7.  Let 0 < g,7 be such that € + v < Kmax and 3/2 < p < 2.
Let 1 < r < rmax. Then, there exists 0 < 0, = 0.(p,e,7v,7) < 1 such that, for
all 0, < 0 <1, estimates (2.43), (2.44), (2.45) and (2.46) of Lemma 2.6 are all
satisfied with €(p,0) being replaced by €.

PROOF. We recall that all estimates which contain £, (p) are valid when it
is replaced by smaller non-negative numbers. Note that

r—(0) =1, r:(0)—=3/24+c+7y)>p. (0—1). (2.51)

Thus, the proposition is obvious if e.(p) > . If .(p) < &, we take an & > € such
that &'+ < Kmax and r < 3/(24¢’++) and apply Lemma 2.6 (3) with &’ in place
of . We let 1/, (#) be the r(0) for the triplet (p,’,7). Then, by virtue of (2.51),
we can find 6y < 6, < 1 such that (1 —0)e’ + fe.(p) > e and r_(0) < r < 7/ (0)
for all 6, < 6 < 1. This completes the proof. O

REMARK 2.8. If V € ¢P(L4) for some 1 < p < 3/2 < q < oo, then the proof
of statements (1) and (2) of Lemma 2.6 shows that integral operators K whose
kernels satisfy

K (2,9)] < cv<x>H (2.52)

for p < Kmax are bounded in L'(R3). We shall use this fact in the proof of
Proposition 3.3.

LEMMA 2.9. Suppose that V € (P(L%) for some 1 < p < 3/2 < q < oc.
Let 0 < € < Kmax and 1 < 7 < ryax. Then, VG 1.(\) € B(L") is compact
and is norm continuous with respect to A € T'. Forl= 1,... and j =0,...,1,
(x>_lVG((){i€()\)<ac>_l € B(L") satisfies the same property.

ProOOF. We prove the lemma for [ = 0 only by the same reason as before.
We set §# =1 in (a) of Lemma 2.6 (3). Then, (2.45) with § = 1 is satisfied for all
1 <7 < rpax- This holds also for r» = 1 as, then, it is the same as (2.43) or/and
(2.44). Since the constant C' on the right of (2.45) is bounded by a constant times
[V ller(ray and C§°(R?) is dense in ¢P(L?), it suffices to prove the lemma when
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V € Cg°(R?). Suppose, then, that V(z) = 0 outside Bg = {z € R?: |z| < R}.
Then, VGo +.(\) maps L"(R3) continuously into W27 (Bg) and Rellich’s theorem
implies that VG +.()\) is a compact operator in L"(R3). The norm continuity is
obvious since we still may take v > 0 such that € + v < Kpax. Then, it is locally
Holder continuous of order . This completes the proof. 0

LEMMA 2.10.  Suppose that (x)*V € P(L9) for an integer k > 0 and that H
is of generic type. Let 0 < e,7 satisfy € + v < Kmax ond 1 <1 < ryax. Then, the
following statements are satisfied for 1 =0,1,...,k:

(1) The inverse (1 + VGo(A)™! ezists in (x)"=°L" for all A € R and is norm
continuous.

(2) Let u € (x) L™, Then, u(\) = (1 + VGo(\) 'u is an (x)*°L" valued
function of A € R of class C'.

(3) There exits a constant C' such that for A € R

l

3 ||<x>ifu<i>(A)Hr+o sup o] (@) == ATUD V) |, < C)|(2) = ull,. (2.53)
<lo|<

§=0

For the proof we need the following lemma. It probably is known, but we give
a proof as we were not able to find a reference. In the proof we write x (u, T.)x+
for 2,(u) and etc. when u € X and x, € X*.

LEMMA 2.11. Let X and Y are Banach spaces. Suppose that there exists a
linear topological space X such that X C X andY C X and that X NY C X is a
dense and continuous embedding, where X NY is the Banach space with the norm
llullx + ||u|ly. Suppose that an operator A is compact both in X and Y. Then,
Kerx(1+ A) # {0} implies Kery (1 + A) # {0}.

ProoOF. We write Ax and etc. when the operator A is considered as the
one from X to X. With respect to the coupling

<U,£E* + y*> = X<’LL,(E*>X* + Y<U,y*>Y*,

we have (X NY)* = X* + Y™, the right being the sum space of Banach spaces
X* and Y*, and X* C X* + Y™ is a dense continuous embedding since so is
X NY C X. By the assumption Axny is compact in X NY. It follows by virtue
of Banach’s theorem that A%~y is also a compact operator in X* 4 Y™*. Suppose
that Kerx (1 + A) # {0}. Then, Ker(1 + A% ) # {0}. Let u, € X*\ {0} satisfy
uy + A%u, = 0. Then, with the left most and the right most couplings being
understood as the ones between X NY and X* + Y™, we have for any u € XNY
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that
(Axayu, us) = x (Axu, us) x= = x (U, AxUs) x+ = —x (U, Us) x+ = — (U, Us).

This implies u* + (Axny)*u* = 0 and, as u* # 0 in X* 4+ Y™ as well, —1 €
O’((Ame)*) = J(AXny). Thus, Kery(l + A) 7é {0} [l

PROOF OF LEMMA 2.10. By Lemma 2.9 VGo(\) = (z) ' ((z)'V)Go(N) €
B((:c)fliELT) is compact for any [ = 0,...,k. It follows that (1 + VGo(N)) is
invertible in (z) "°L" if and only if Ker(1 + VGo(A)) = {0}. Goldberg-Schlag
[9] and Goldberg [7] have proven that, if Kerp-(1 + VGo(A)) # {0} for X €
R\ {0}, then A? > 0 is an eigenvalue of H. It follows by virtue of the absence of
positive eigenvalues for H proven by Tonescu-Jerison [10] and by the assumption
that H is of generic type that (1 + VGo(\))™! exists in B(L") for every A € R.
Then, the same is true for Ker,y-itcp.(1 + VGo(A)) by virtue of Lemma 2.11
and (1 4+ VGo(\)~! exists in B((z) "*°L") for every A € R. It satisfies the
stated norm continuity and differentiability properties by virtue of Lemma 2.9.
For proving (3), we take 6, < 6 < 1 of Proposition 2.7. Then, if r > 1, (2.53)
follows from (2.45) and (2.46). If r = 1, we take r_(0) < r, < r;(f). Then, we
may estimate H(VGO()\))?’HB(@Y&EU) by

VGo(Nlg((z)-t=<1m)

X NV Go(N)llg ()t Lo gmy-rte 1y < CQ)TE7D%0)(2.54)

[VGo(N) HB((x)*liELl,(m)’lier*)

and, for large \, we may write (1 + VGo(\))~! in the form
(L+VGo(A) ™" = (1= VGo(N) + (VGo(N)*) (1 + VGo(A) .
Then, the estimate (2.53) follows from Lemma 2.6. O

3. High energy estimates.

In this section we study the high energy part of propagator e~ P,.(H). We
set, for large A\g < L,

hrae(A) = x>(A/Ao)x(A/L) (3.1)

and prove the following theorem. In what follows we always assume <x>kV €
P(L7) for 1 < p < 3/2 < q < o0, and define Kpax = 3(1/p — 2/3) and rpax =
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min(ps, 3¢/(q + 3)) as previously.

THEOREM 3.1.  There exists A\g > 0 such that, for any 0 < € < Kmax,
[ (7 ng(VE) Pacu,v) | < Ol ~F D=2 @) ully (@) ol (3.2)

for [t| > 1 with C > 0 independent of L > 10X\g and u,v € (x)* L1 (R3).
The proof consists of several steps.

3.1. Stationary representation.
It suffices to prove Theorem 3.1 for u,v € S(R3) which we assume in what
follows. Define ur, pign by

UL high(A) = hap xg/2(A) (1 + VGo(N) tu (3.3)

and vy, pign by the same formula with v replacing u. These are (x)° L' (R?) valued
functions of A € R of class C*+7, ¢ + 4 < Kmax by virtue of Lemma 2.10. Using
that Gf(\) is weakly-* continuous from L' to L>, we then define

€N B0 GOV high (V). VL hign (=) dX;
(3.4)

Ut ign (b, v) = —=—
(U1,L,high(t)u, v) sir ).

1 o
(UQ,L,,ngh(t)u,v):—ﬂ Re_“»‘ Toag MG (N u, v)dA. (3.5)

LEMMA 3.2.  We have
(e7™ hp z,(VH) Pact, v) = (Un,1,high (t)u,v) + (Uz, 1, nign (t)u, ).

PrROOF. The well-known Stone formula implies

, 1 '
(7 o (VE) Pactyv) = 1im | hrg ()e™ (GO + imu, v)AdA.
T nl0 Jgr

We apply integration by parts to the right hand side and take the limit | 0. For
SA > 0 we have as in (1.13)

(G'(Nu,v) = (GHA) (1 4+ VGo(N)tu, (1+ VGo(=N)) '),
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This extends to real A by the weak-* continuities of G4(A\) € B(L', L>) and the
smoothness property of (1 +VGo(A\))"tu and (1 + VGo(—X)) !v. Lemma easily
follows from this. O

We often write h(X) for hy x,()), suppressing indices L and A\g. We prove
(U, Loig (), 0)| < Ot F= G/ =ER2 )B4y ()"0 (3.6)

for j=1and j = 2.

3.2. Key lemma.

The following proposition, which is an improvement of Goldberg’s estimate
([7]) and of Lemma 1.4 in the introduction, plays an essential role in what follows.
F is the partial Fourier transform with respect to the A\ variable.

PROPOSITION 3.3. Let 0 < 7,& satisfy 7 + € < Kmax- 1LThen, there exists
A > 0 such that whenever \g > A, Fur nigh(p, ) satisfies that

k
> [[ o @ (o) dado < Cl Fuly, ()
=0

where the constant C' is independent of u, \g > A and L > Aq.

We prove the proposition by modifying the argument in [7]. In the sequel,
we choose and fix 1 < r < rpax and 0, < 6 < 1 as in Proposition 2.7. Then,
for I = 0,...,k, we may estimate ||(VGO(/\))3||B(<$>4¢EL1) as in (2.54) and, if Ao
is large enough, for A in the support of Ay ), we may expand as

(1+VGo(\)™

D (=1)"Ga(N),  Gu(N) = (VGo(N)"
n=0

in the space B((x)fliELl). The proof of the proposition consists of the following
two lemmas.

LEMMA 3.4. Let0<e <1andT >0 satisfy e+7 < Kmax- Lhen, there exists
A such that the following statement is satisfied: For a constant C' independent of
0<a+p0<Ii<k,nand L >N\ > A, we have

/R o) @) T F R, WG W) (0, 2) [ doda < O @) Eully. (38)
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ProOF. Following Rodnianski and Schlag ([18]), we write G, (A\)u(x) as an
integral over R3" and, differentiate under the sign of integration. We have that,
with 2o = y, © = 2, and ¥ = 37, [x; — 251,

iX)PeME T T
G N u(z) = / LT ”u(y)dydxl-.-dxn_l. (3.9)

won [ [y 4mla; — 5]

Here the integral on the right is absolutely convergent as the proof of Lemma 2.6
shows, and using Fubini’s theorem, we have

FRO NG (Nu)(o,)
_ / (2)(FR) (o = D) [Tjo, V()
R3n

- H;'L:1 Am|z; — x5

u(y)dydzy - - dzp_1. (3.10)

We use the following lemma (see Proposition 8 of [7]):

LEMMA 3.5.  With a constant independent of L > 1, we have for p > 0 that
/(U)pL\(fX(O‘))(L(U —X))ldo < C,(%)". (3.11)

PROOF. Since (o + %) < C,({0)? + (X)?) and (¢/L) < (o) for L > 1, we
have

[@r L) Lo - 5o
= /<a + 2| L(FxY)(Lo)|do
< cp(<z>P +f <o/L>P|<fx<a>><o>|da) <o+ (2))

This proves the lemma. O

CONTINUATION OF THE PROOF OF LEMMA 3.4. Since (o) < C{u){(c — u),
we see from (3.11) that, for Ao > 2,

/<a>7</ Mo X (o) L@ (L(o — i — E))\du> do <O, (3.12)
R R
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This implies that

[ AN Nuo.2)]do

By 1T v
SCAO/ 2173 TTi= [V (=)l

m u(y)|dyday - - dwy—1. (3.13)
R3n Hj:l 4’/T‘.’£j 7xj—1| n

We estimate |X|%(X)7 < (£)+7 by C(n)?*+7 times

(2 —a; 1)t <O () (w50) (wy — w50)” (3.14)
1 j=1

J

n

and replace |%|?(X)7 on the right of (3.13) by the right of (3.14). This produces
following bound for (3.13):

n—2
Ch, (n)*+7 ((Kf1K4|u)(x) +> (K{K3K2Kf”|u|)(x)), (3.15)

=0

where K1, Ko, K3 and K4 respectively are integral operators with the kernels

T 2V x\P
Kl(x7y)_4ﬂ"|/{)3‘(—)y|7 K2($7y)_z‘:/7£|x)<_>y|7
)z (z — )T oW 2N (x — )T ()P
ey VBT Ve

Since (z)" ' (x)°V € ¢r(L9) for any |B| < I, Remark 2.8 implies that operators
() Ky, Ko, () K, Kaa)

are all bounded in (x)°L! for ¢ + 7 < Kpax. Estimating as n® < O™ for n > 1 with
a suitable constant C, we obtain the lemma. 1

LEMMA 3.6. Let 0 < 47 < Kmax and 3/2 < p < 2. Then, there exists
0 < 0, < 1 such that the following statement is satisfied for any 0, < 0 < 1: There
exists a constant C' independent of u, n > 1, 0<a+8<I<kand1 <)\ <L
such that
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sup | (@) (0) " F (R, NG V)@ o)

< Oy TREOR O Ry (3.16)

PROOF. We arbitrarily take 1 < r < rpax and then choose 8, = 0(p,e,v,r)
as in Proposition 2.7. Using Leibniz’ law, we write Ggf )()\) as a linear combination
of VGéjl)()\) e VG(()j")()\) with ji +--- 4+ jn, = 5. We apply (2.43) and (2.44) to
the right most and to the left most factors respectively and (2.45) and (2.46) to
the remaining n — 2 factors in between. Noticing that [ > j; and k — j;_1 > j; for
t=2,...,n— 1, we obtain

@)V GEFI () - VET (Wl

< H< k l+sVG(J1) —j1— EHB n H H JL 1+aVGéji)<$>—ji—sHB(U)

X H<x>j"+EVG(()J" uHLl

< C(C N0 D () Ty, (3.17)

and likewise estimate for difference quotient with respect to A:

sup o] 0| AT () EVETY () - vEE (Wl
0<|o|<1

< Cn(C/A) =2 A=0-ED (2)F 2y (3.18)

We have for any integrable functions that

/ e FNIA = / A (F(A) = F(A— 7 /0))dA. (3.19)
We integrate e =2 (@) ()G (\)u with respect A € R and apply (3.17) and (3.18).
We obtain the lemma by using (3.19) and the fact that (®)()) is uniformly Lips-
chitz continuous with respect to 1 < \g < L. O

Proor oF PROPOSITION 3.3. For given €,7 > 0 such that € + 7 < Kmax
we take v > 0 such that € + (7 +7) < Kmax- Take A and 0, as in Lemma 3.4 and
in Lemma 3.6 respectively with 7 being placed by 7 4+ v and let 6, < 6§ < 1. Let
(z)¥*°u € L'. Then, (3.17) implies that
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@ VG = Do) ) (1) G

n=0

converges in L!(R3) uniformly with respect to A > X\ and that it is [-times term-
wise differentiable in L!(R3). We write, for [ = 0,...,k,

fin(@) = [[@)"EF () - Gu()) V) (0,0)]| 1 s - (3.20)

Summing up (3.8) with 7 being replaced by 7 + 7 over («, ) with a + 8 =1, we
obtain that

(@)™ funll, < C7II(@)" s, (3.21)
and likewise from (3.16) that
() funll o < €A™ ) (3.22)
with w = (1 — 6)d.(p) > 0. We choose p < 7 close enough to v such that

— 0
(T +y 7)>

1
T
and set
-~ T+vy—~0
T+u—~0

Then, r(t+p) =7+ v+ (r — 1), r > 1 and we have sy > 1 for s =r/(r — 1).
It follows by Holder’s inequality, (3.21) and (3.22) that

/R<a>rfl,n(a)da < (/Rfl’"(U)T<U>T(T+“)dJ>UT(/R@sudg>1/s

< Ol (@) ™ fial, [ 40)* il

< OmAST TR Ry (3.23)
If Ao > (20)"/«("=1) | then C"/\a”w(r_l)/r < 27" produces an exponential fall-off

as n — oo and we may sum up (3.23) for n = 0,1,..., producing the desired
estimate (3.7). This proves the proposition. O
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PROOF OF THEOREM 3.1. Using that (—2itA)~10ye~ """ = e~ we ap-
ply integration by parts k-times with respect to A to the integral (3.4). We obtain

1 - ,
(UL high(t)u, v) = =5~ Rfm h(N{(Go(N L, high(N), VL high (=) )dX
_ 1 —itA? E l i
- (2t)k+1ik7r/Re <8)\ A) hA)
X <G6()\)UL,high()\)7UL,high(_)\)>d)\' (324)

It is elementary to check that, with suitable constants Cl;,

9 1 k k ) lel
(a)\'A) :Z(a)\> o=t k=0,1,.... (3.25)

=0

Define hy(\) = —(Chi /P25 0L x (A/ L) (A Xo) =2 x> (20 /X) for 0 < 1 < k
and write the right of (3.24) as a sum over [ =0,...,k of

Fp(t) =t [ e 0k I (0N (G (N nigh(N), v nigh (—A)) YA, (3.26)
R

Note that A'=2¥y~ ()) is smooth and [\ =2k x5 (A\)] < C(N)7F.

LEMMA 3.7. Let 0 < & < Kmax. Suppose that, for every integer 0 <1 < k,
()N, ) is an LY(R3)-valued function of compact support of A € R of class
C' and that it satisfies

[ oy + @)@ (Fu)o.0)] do < M(w) (3.7
R
Suppose that v(A,-) satisfies the same property with v in place of u. Define

g()‘) = a()‘)<G6()‘)u()‘7 ')7 1}()\7 )>

for a(\) € C§°(R). Then, g()\) is a function of class C* and it satisfies
/<a>€\(fg<l>)(a)| < CC(a)M(u)M(v), 1=0,1,....k, (3.28)
R

where Cy(a) = ||(a)T¢a(a)||; and C > 0 is a constant independent of u,v and a.
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ProOOF. By Leibniz’ rule g ()) is a linear combination of
Gijmn(N) = a@N(GTTV N W™ (A, ), 0 (), i+ j+mtn =L

Since the kernel of Géj+1)()\) equals 7/ T1eM*=vl|z — |7 /47 the Fourier transform
Gijmn(0) may be given by a constant times

// o — |2 =yl — 11— p)le = ylPul™ (1, y)o0 (p, ) dydadudp.

Since [, (o) |a(z (0 — p)|do < CCi(a){u)° and
(lz —yl+p+p° <Ce({z = )" + W)+ (P)°),

it follows that [ (0)°|gijmn(c)|do is bounded by CCi(h) times

J [ =07 07 4 ()7 = a7 0,)0) . 2) .

Estimating as [z —y|? < ((x)? + (y)?) and remembering that j < min(k—m,k—n),
we obtain

A@%WMH®<“3</H wkmww7uw)
x(/ww+mw> " .o
< CCy(a)M(u)M(v). (3.29)
Lemma follows by summing (3.29) over (i, j,m,n) with i +j + m+n=1. O

PROPOSITION 3.8.  Let F 1(t), 1 =0,1,...,k be defined by (3.26). Then for
any 0 < € < Kmax, there exists a constant C > 0 independent of A\g > A, L > Xg
and u,v such that

| ()] < Ot R B E ()M 2| (2) <o) (3.30)

ProoF. If we define g(A) = a(A){(GH(A)u(A),v(A)) as in Lemma 3.7 with
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u()\, ) = uL,high()\7 ')7 1}()\, ) = ’UL,high(_)\, ')7 and a()\) = hl(/\)

then, we have the representation

Frat) =1 [ e g0
R

Proposition 3.3 implies that u(A,-) and v(A,-) satisfy conditions of Lemma 3.7
with M(u) = C|(z)" ™ ul| and M(v) = C||(z)* || and, by virtue of (3.11) and
(3.12), C;(hy) < C with a constant C independent of L > Ao > A. Tt follows that g
satisfies (3.28) and, by definition, g()(0) = 0. Hence, by virtue of Fourier-Parseval
identity as in (1.18), we obtain from (3.28) that

|Fyp(t)| < Ct=h=3/2)

/ (7% _ 1) g0 (0)do
R
< O +-B2-C)|| () g0 (o),

< Ot RO @) M 2y (@) oL (3.31)

This completes the proof of Proposition 3.8. O

COMPLETION OF THE PROOF OF THEOREM 3.1. We still have to estimate
(Ua, L, high (t)u,v). We rewrite it as follows (cf. [7]): We have h'(—X) = —h/(N)
and G(\) — G(=X) = (1 + Go(=N)V)"HGo(N\) — Go(=N)}(1 + VGo(\)) "t by the
resolvent equation. It follows by writing Gj()\) for (Go(A) — Go(=N))

(U2, 1, high (t)u,v)
1 —itA? 7/
= 5 L HONGO) ~ N v
1

= g7 [T H OGN+ VEA) (14 VEo(A) )

We then insert th,)\O/g(/\)2 which is 1 on the support of iz’()\) and write as

(U27L7high(t)u, v) = 67“)\2 71/()\)<é€)(/\)uL7high()\), UL,hz’gh()\)>d/\~ (332)

dtm Jy

Here G (A\)u may be written as
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5 L[ sinAlz —y|
Gh(\ula :l/Lu dy.

We note that for L > X\ B'(X) = A tur(A) + 7(\) where

nr(A) = (A/L)X' (M L)x(A o),  7(A) = (1/20)x (A/Xo)
and, substituting this for A’(\), we write (Us, L high(t)u,v) as the sum

1
4t R

1
4t R

e L VAT G (N u.nigh (V) 0L righ (V) )dA
e_mz)\T()\)Q\—lé()()\)ubhigh(A), 0L high(N) ).
Here the integral kernel of /\71@60\) is given by

isin Az — y| 1 /1 O
A — > J iOAlz—yl g9
Gixz,9) 27|z — g 4mi _16
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(3.33)

(3.34)

(3.35)

and in (3.35) A7(A) is L-independent compactly supported smooth function sup-

ported far outside a neighborhood of 0. Thus, the argument used for studying
(U1, hign(t)u, v) applies to (3.34) and (3.35) with e*A(¢l=¥D) replacing the role of

e #=vl and produces the estimate
k— — k k
|(Us, L hign (t)u, v)| < CEF= G2~ ED | @)y |y || (2) o).
This completes the proof of the theorem.

4. Low energy estimate.

We now analyze the low energy part e~y (v/H /Ag)Pae. We define

Uiow(A) = x(A/2X00)(1 + VGo(A) " tu
and, as in the previous section, express (e~ x(vVH /A\o)u,v) as
e_itHX<\/ﬁ/)\0)U = (Ul,low(t)ua U) + (U27low (t)ua U),

where, with the notation G()) of the previous section,

(3.36)

O
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(Uuow(t)u,v):—% Re‘”A?X(A/)\O)<G6(A)ulow()\)7vlow(—)\)>d)\; (4.2)
(Uz,low(t)u,v):—ﬁ Re*mzAo—lx’(A/Ao)<ég(A)ulow(A),vlow(A)>dA. (4.3)

The following proposition will play for the low energy part what Proposition 3.3
did for the high energy part.

PROPOSITION 4.1.  Let 0 < 7,& be such that T+ ¢ < Kmax. Then, the partial
Fourter transform o (0, ) = (FaopUiow) (0, ) satisfies

J[ oy

for every 0 < ¢ < k, where the constant C' is independent of u.

") (o,2)|dzdo < C||(2) ul| 11 (g9 (4.4)

low

For the proof of Proposition 4.1, we again borrow the basic strategy from [7].
Define B(A, i) = Go(A\) — Go(t). Next lemma may be found in [7]:

LEMMA 4.2. Let 0 < &+ 0 < Kmax. Then, there exists a constant C > 0
independent of X, ju € R such that ||(z)* VB, u)(z) °|lB(z1) < C|A — pl’.

PROOF. The integral kernel of (x)°B(\, u)(z)”° is bounded by

EleMz—yl _ oplz—yl —€ _ o \e+6
(@) (e e ) e =)
|z — y| lz =yl
and Remark 2.8 implies the lemma. O

For £ =0,1,...,k, (14 VGo(\)~! exists in B((z) " °L') and is norm con-
tinuous with respect to A\. Write S(u) = (1 + VGo(u)) ™! so that

S = (1+VGo(N) ™! = 1+ S(VBA, )~ S(p). (4.5)

Lemma 4.2 guarantees that we can find dy > 0 such that, for [ = 0,...,k, and
[Al ] < 20 with |A — p| < 4dp, we have

ISV B, w)llg((gy-1-p1y <1/2. (4.6)

For 0 <d <dpand p; =3jd, j = —n,...,n, n=[2(Ao + d)/3d] + 1, we have
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X(A/2X0) = Z X5,d(A)s XG,a(A) = X((A = pg)/d)x(A/2X0). (4.7)

j=-n

Using this, we decompose as

Ulow () = Z Xj,d(AN)S(AN)u = Z Ulow,j - (4.8)

We have for A such that x;a(\) # 0 that

SO = (14 x((A = 115)/2d)S () VB, 1))~ S (u5)

and, by virtue of (4.6), we may expand the right hand side as

=) (- (A = 117)/2d)S (1)V B, 1)) ™ S (1) (4.9)

m=0

in the space B((x>_l_8L1), 0 <!l <kandO0 < e < Kpax, uniformly on the support
of x;.a(A). We define for |u] < 2X¢

Tu(A) = x((A = p)/2d)S(n)V B(A, ).

LEMMA 4.3. Let 0 < e+ 7T < Kmax ond let 0 < 0 < max — (e + 7). Then,
for 0 <d < 1, we have

/ (@) AT (VNu) (0, 2)|| do < CdTHO () ul)y (4.10)

for£=0,... k, where C does not depend on |u| < 2Xg or 0 < d < 1.
For the proof we need the following lemma.

LEMMA 4.4. Let 0<e, 0 <1 be such that 0 < 8+e < 1. Then, there exists
a constant C > 0 such that for 0 < a <1 and 0 < p < co we have

a/(0>5|>2(a(0 —p)) = x(a0)|do < Ca®(p)**=. (4.11)

When € = 0, we may replace {p)? on the right by |p|°.
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PrROOF. We split the domain of integration into |o| < 10p and |o| > 10p.
The integral over |o| < 10p is bounded by both of

<1OP>EQ/ [X(a(o = p)) = x(ao)|do < 2(10p)%|[X]1, (4.12)
lo|<10p
2a||>2||oo/ (o)do < Ca{10p) "1 X|oo, (4.13)
|o|<10p

and, hence, by the right of (4.11). When |o| > 10p, we apply mean value theorem
and obtain that, for any 0 < N < oo,

[X(ao — ap) — X(a0)| = apl¥' (a0 — agp)| < Cwaplac) ™™, 0<é<1.

It follows by taking N = 2 — @ that the integral over |o| > 10p may be bounded
by a constant times

g

: 1
ap/ <> <g>f2+9d0 < C’ap(l + E) <ap>9+e—1 < Oalfep<ap>9+€71.
lo|>10ap \ @ a

The right hand side is bounded again by Ca?{p)?*¢ because

(i) ==(5)

For € = 0 the statement follows easily via the mean value theorem. O

PROOF OF LEMMA 4.3.  Since S(u) € B({(z) ""°L) for I = 0,...,k and it
is independent of A, it suffices to prove (4.10) for x((A — p)/2d)V B(A, ) in place
of T),(A). We have

Froo X((A = 1) /20)V BO\ )} (o, ) = / Ko, y)u(y)dy,

K(07 T, y) — Qdefiﬂ(tff|a:7y|)v(x) <>A<(2d(0' —Jli;'; g|)y)| — X(Zda) ) .

Lemma 4.4 and (z)°(y)~° < C.(z — y)© imply that, for any 0 < 7+6 < 1,

T — T+e+0
/ (o) )+ K (0,0, 5) ) " ldor < Oy (@) 20

] (4.14)
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Since (2)"V € 7(L9) and 7 + & + 0 < Kmax, Remark 2.8 implies that the operator
with integral kernel given by the right side of (4.14) is bounded in L*(R?®) with
norm bounded by d?. This proves (4.10) for £ = 0. We now let £ > 1. By Leibniz’
rule, we have

(X((N = w)/2d)VB(A, 1) D
= (1/2d)'XV((A — 1) /2d)V B(A, )u

4
+37(1/2d) 0N ED (A = p)2d) VG (M. (4.15)
=1

The argument for the case £ = 0 applies to the first term on the right, and we
conclude that it satisfies the estimate (4.10). We have by Fubini’s theorem that

Frma{ @) XD (N — 1) /2d) VG (Vu(z) } (o)

XD (2d(0 — |z — y]))

471"56 *y|1il U(y)d’y

_ 2d I—04+1,1 —iu(a—|x—y\)V
[ ayrrite (@)
We denote the integral kernel on the right by Ky (o, z,y). We have that
20 [ (o) [\ 2d(o [~ y))|do
R
< C<<a: — )T+ / (1 + m )\W—\l)(g)\da) <Cd " (x—y)"
R

for 0 < d < 1. It follows that

(@) |V (@)|( — )7
|z —y|

J/<a>f<x>k‘€+5Lka<a,x,y>uy>‘f‘5da < cd=t

and, as previously, the right side is the kernel of a bounded operator in L' with
the norm bounded by Cd'~*~7 < Cd?~¢,1=1,...,k. This completes the proof.
O

We continue to write f(o,2) = (Fa_of)(0,2).

LEMMA 4.5. Let 0 <e,7 and 0 satisfy 0 < e+7+60 < Kmax- Let 0 < d < 1.
Suppose that S1(N), ..., Sn(N) are B(LY(R3))-valued functions of A € R which are
strongly C* class and are compactly supported. Write for u € L*(R?)
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(Siu)(A, z) = Si(Nu(z) € L' (R{y 1)

Suppose further that derivatives Sl(z)u, {=0,...,k, satisfy

[or

Then, for £ =0,...,k, T,(A\) = Sp(\)---S1(N\) satisfies

er

where C is independent of n, C1,...,Cp, d and u.

(@) 5O (o, x)Hlda < Crd0)|(2) ). (4.16)

@) T Ou(o,0) | do < " ( I1 ck) A @) oy, (417)
k=1

PROOF. We prove the lemma by induction. For n = 1, (4.17) holds trivially.
We assume that it holds upto n — 1 and prove that it holds also for n. Define for
u € L'(R3?)

—

(Thow) (N, z) = {Sn(N)lp_1(0)} () Gpn-1(0,2) = Tph_1u(o, z).

Since the Fourier inversion formula is satisfied for L'-valued functions f(\) such
that f, f € LY(R, L*(R?)), we have

Tho1u(, x) lip—1 (0, z)do.

v

It follows after applying Fubini’s theorem that

Trip.) = o= [ ([ 05,0001} a)ir )ao

\/ﬁ/ not(p —o,z)do. (4.18)

Thus, Minkowski’s inequality and the assumption on S, (A) imply

AU
SJ%/R(/RW

k+s H

(o) Tl “>H1dﬂ> do
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< 52%/ (/R<0> ()" T, ou(p) H dp+ (o /H VT, pulp H dp)

< O ([ i a0t + [ (o) 1@ 1))

Then, the induction hypothesis implies that (4.17) holds if £ = 0. For derivatives
we proceed similarly and argument goes almost in parallel. In view of Leibniz’s

rule it suffices to prove (4.17) for
TN = SO (), 1=0,...,¢
in place of T,(f)()\) If we define T,(f 2 u(A) = Sy(Ll)()\)T(z D u(o), then

(15 l) ()
T Tno do 4.19
ulp) = —= / ~0) (4.19)

as in (4.18), and Minkowski’s inequality and the assumption (4.16) imply

Lo
< \/%/JR (/R@V
gcscnd“”(/RH< ey, Hdchr/R< o)

as previously. Since [ < k — (£ —1), the induction hypothesis implies that the right
side is bounded by

<x>k4+s (z 5) H

(@) Ty — o) Hldf’> do

(x >z+sT(e D, H da>

n—1
C«Ecndefl . On1< H Cj>d(6l)+(n1)0||<1,>f—l+6u|1.

j=1
This implies (4.17) for n and completes the proof. O

PRrROOF OF PROPOSITION 4.1. We apply Lemma 4.5 to
Si(A) = =8u(N) =Ty;(N), p;=3jd, j=-n,...,n

Lemma 4.3 implies that S1(A),---, S, () satisfy the assumption of Lemma 4.5
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and we have
/ H k g+g ()\)mu}(é))(o_’ ‘r)HldU < Cmdm9—2||<x>2+€u“1 (4.20)

for £ =0,...,k, where C is independent of 0 < d < 1, j and u. Choose d so that
Cd’ < 1/2 and we sum up both sides of (4.20) for m = 0,1,.... It follows by
virtue of (4.9) that all terms u;0,,; in the right of (4.8) satisfy

k ¢ ¢ ¢
L@@ F ), o)l do < Coll@Full, =0,k (@21)
Hence, by summing up (4.21) over j = —n, ..., n, we see that the same is true for
Uow- This proves Proposition 4.1. O

5. Proof of Theorem 1.2.

By virtue of Proposition 4.1, the entirely the same argument used for proving
Theorem 3.1 implies that, for any 0 < € < Kmax,

|(Uz,tow (1), 0)| < Ct=F=CID=E2 (@)= [[(2)" 0. (5.1)

Thus, we have only to deal with (Ut jow(t)u,v). We replace w4y in (4.2) by the
right of (4.8) and v, by the corresponding formula. This produces

Orinltius) == 3 o = X 30 GoN i () (A i

a,b=—n

(5.2)

Then, unless a = b = 0, the integrand vanishes in a neighborhood of A =
Hence all terms except the one with @ = b = 0 in (5.2) are bounded by
Ct=F=B/2=/2) || (2)" u|||(z)* || and we may put them into the remainder.
We are left with

-1

2 . o= itA? X(A/20){Go (N Uiow,0(N), Viow,0(—A) YdA

which we write, using the Parseval formula, in the following form:

81F37r/4

W/Rew /4t.7:{x(/\//\0)<G6(/\)ulow)o()\),Ulow70(—)\)>}(a)da. (5.3)
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We write f(A) = x(A/A0){GH(N)tiow,0(N), View,0(—N)) for shortening the formula.

We expand i’ /4t i Taylor’s formula

[k/2] 2\ 8 o [k/2] f1
1/.0 1 o 0 2

E — ;== - ;= 1 — g)[F/21=1(i0(c"/4t) _ 1) 0.
s! (1475) - ([k/2] 1)!(Z4t) /o -6 (e )df

= (5.4)

Inserting the remainder term of (5.4) into (5.3) yields

c ' k/2]—1 2[k/2] ( i0(c2 /4t 7
W/O(l—e)[” (/RU[/](e (o?/ )—1)f(a)da>d9. (5.5)

We estimate |i(c*/40) — 1| by C|o2/4t|/2 if k is even and by C|o?/4t|(1F€)/2 if
is odd and estimate the modulus of (5.5) by

¢ kde| 7 C
WW/RIUI “f(o)ldo < Itl’“”'”/?/ | F®) (o) dor.

Then, Lemma 3.7 and Proposition 4.1 imply that the right side is bounded by
C|t|F+3+)/2 || (2)* || 1 ||(2)* 0|, and the contribution from the remainder term
(5.5) may also be put into the remainder. Replacing ¢ /4t in (5.3) by the first
term of (5.4) produces

[%%] l \/561377/47;5 1
— s!(2]t])3/2(4t)%iv/T V2T Jr

[k/2] €:|Z37r/4 s

= 2 i rarigm (RO

o f(o)do

Recalling that (1 + Go(\)V)71GH(A\)(1 + VGo(N\)™t = G'(N), we see that
((=02)*£)(0) = (—1)*(G?*TY(0)u,v) in the right hand side and the leading terms

in the expansion are expressed in the form

(k/2] V2eF3m/4(—)s
— (2[t])3/2(4t)%iy/7s!

(G (0)u, v).

Thus, the proof of Theorem 1.2 is completed by the following lemma.
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LEMMA 5.1.  When j is even, operator GU+1(0) is of finite rank.

PROOF.  Write Q(\) = (1 + Go(M)V)~t. We have (1 + VGo(\)V)™! =
Q(=MN)*. Differentiating (1.13) G times by using Leibniz’ rule, we have

cotny = Y EU g )6l 00 .

131~/1
ot Bymi algly!

If 3 is even, then Géﬁﬂ)(O) is of finite rank. If 3 is odd, then either « or =y is odd.
If a is odd, Q(®)(0) is of finite rank, since Q(*)(0) is a linear combination of

QGLIVQGEIVQ- GEIVQ, i+t =a

where the variable A = 0 is omitted, and at least one of /; is odd. Likewise,
Q*"(0) is of finite rank if v is odd. The lemma follows. O
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