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Abstract. We consider Schrödinger equations i∂tu = (−∆ + V )u in R3

with a real potential V such that, for an integer k ≥ 0, 〈x〉kV (x) belongs
to an amalgam space `p(Lq) for some 1 ≤ p < 3/2 < q ≤ ∞, where 〈x〉 =

(1+|x|2)1/2. Let H = −∆+V and let Pac be the projector onto the absolutely
continuous subspace of L2(R3) for H. Assuming that zero is not an eigenvalue
nor a resonance of H, we show that solutions u(t) = exp(−itH)Pacϕ admit
asymptotic expansions as t →∞ of the form

‚‚‚‚〈x〉−k−ε

„
u(t)−

[k/2]X

j=0

t−
3
2−jPjϕ

«‚‚‚‚
∞
≤ C|t|− k+3+ε

2
‚‚〈x〉k+εϕ

‚‚
1

for 0 < ε < 3(1/p− 2/3), where P0, . . . , P[k/2] are operators of finite rank and

[k/2] is the integral part of k/2. The proof is based upon estimates of boundary
values on the reals of the resolvent (−∆−λ2)−1 as an operator-valued function
between certain weighted amalgam spaces.

1. Introduction.

We consider the large time behavior of solutions of Schrödinger equations in
R3:

i∂tu = Hu, H = −∆ + V (x). (1.1)

We assume that V is real valued and belongs to the amalgam space

V ∈ `p(Lq) for some 1 ≤ p < 3/2 < q ≤ ∞. (1.2)

Here, `r(Ls) for 1 ≤ r, s ≤ ∞ is the space of functions which behave locally like
Ls and globally like Lr-functions, and is defined by
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`r(Ls) =
{

u : ‖u‖`r(Ls) ≡
( ∑

j∈Z3

‖χQj u‖r
s

)1/r

< ∞
}

,

where Qj is the unit cube centered at j ∈ Z3, χQj
its characteristic function and

‖ · ‖s is the norm of Lebesgues space Ls(R3): ‖u‖s =
( ∫
R3 |u(x)|sdx

)1/s.
Amalgam spaces are Banach spaces and satisfy inclusion relations

`r1(Ls1) ⊂ `r2(Ls2) for r1 ≤ r2, s1 ≥ s2. (1.3)

It follows that `r(Ls) ⊂ Lr(R3) ∩ Ls(R3) if 1 ≤ r ≤ s ≤ ∞ and, we have

V ∈ Lp(R3) ∩ Lq(R3) for some 1 ≤ p < 3/2 < q ≤ ∞ (1.4)

under the assumption (1.2). Then, it is well known that:

(1) The operator H = −∆ + V is selfadjoint in the Hilbert space H = L2(R3)
with domain D(H) = {u ∈ L2 : V u ∈ L1

loc,−∆u + V u ∈ L2} and the solution
u(t) in H of (1.1) with initial condition u(0) = ϕ ∈ H is uniquely given by
u(t) = e−itHϕ.

(2) The spectrum of H consists of a finite number of non-positive eigenvalues of
finite multiplicities and a purely absolutely continuous part [0,∞). Embedded
positive eigenvalues are absent ([10]).

Definition 1.1. We say that H is of generic type if 0 is neither eigenvalue
nor resonance of H, viz. there are no non-trivial solutions of −∆u(x)+V (x)u(x) =
0 which satisfy u ∈ Ls(R3) for all 3 < s ≤ ∞; and it is of exceptional type if
otherwise.

In this paper, we show the following theorem. For a ≥ 0, [a] is the integral
part of a; 〈x〉 = (1 + |x|2)1/2; Pac is the orthogonal projection onto the absolutely
continuous subspace of H for H.

Theorem 1.2. Suppose that V (x) satisfy for an integer k ≥ 0 and some
1 ≤ p < 3/2 < q ≤ ∞ that

〈x〉kV ∈ `p(Lq), (1.5)

and that H is of generic type. Then, for any 0 ≤ ε < 3(1/p − 2/3), e−itHPac

admits an expansion as t →∞ of the following form:



Resolvent estimates in amalgam spaces and asymptotic expansions 565

∥∥∥∥〈x〉
−k−ε

(
e−itHPac −

[k/2]∑

j=0

t−3/2−jPj

)
ϕ

∥∥∥∥
∞
≤ C|t|−(k+3+ε)/2

∥∥〈x〉k+ε
ϕ
∥∥

1
, (1.6)

where P0, . . . , P[k/2] are finite rank operators which may be expressed via derivatives
of (H − λ2)−1 at λ = 0, and C is a positive constant independent of t and ϕ.
Similar statement holds as t → −∞.

Remark 1.3. (1) The case when V satisfies (1.5) with non-integral k is
partly covered by the theorem: If V satisfies 〈x〉k+σ

V ∈ Lp(Lq) for 0 < σ < 1,
then 〈x〉kV ∈ `p̃(Lq) for any p̃ ≥ 1 such that 1/p̃ < (1/p) + (σ/3), and the range
of allowed ε in the theorem is widened by σ to 0 ≤ ε < min(1, 3(1/p− 2/3) + σ).

(2) For the free Schrödinger operator H = −∆, (1.6) is well known and the
decay rate C|t|−(k+3+ε)/2 for the weight 〈x〉k+ε cannot be improved.

When V satisfies (1.4) and H is of generic type, Goldberg [7] has recently
proved that solutions u(t) = e−itHPacϕ of (1.1) satisfy dispersive estimate:

∥∥e−itHPacϕ
∥∥
∞ ≤ C|t|−3/2‖ϕ‖1, ϕ ∈ L1(R3) ∩ L2(R3). (1.7)

Theorem 1.2 singles out the leading terms in (1.7) of u(t, x) as t → ∞ under a
slightly stronger condition. We refer to [12], [21], [18], [8], [3], [22], [4], [5] for
earlier works on dispersive estimates in three dimensions.

Theorem 1.2 is an extension of the well-known results of Rauch ([17]), Jensen-
Kato ([11]), Murata ([16]) and etc. on asymptotic expansions in the weighted L2

spaces, when spatial dimension is three and H is of generic type. However, results
of these authors are not only for generic H but also for H of exceptional type,
and for general dimensions d ≥ 1. We plan to study these cases in a future
investigation. See also [6] for corresponding results for time periodic potentials.
We mention that, in one dimension, the expansion of the form (1.6) has recently
been obtained by H. Mizutani ([15]) when V satisfies 〈x〉−k

V ∈ L1(R1) for an
integer k ≥ 2.

The rest of the paper is devoted to the proof of Theorem 1.2 and we always
assume that H is of generic type. We write R0(z) = (H0 − z)−1 and R(z) =
(H − z)−1 for resolvents and set G0(λ) = R0(λ2) and G(λ) = R(λ2) for λ ∈ C+

,
C+

= {λ ∈ C : =λ ≥ 0} being the closed upper half plane. For boundary values
on the reals, we have

G0(±λ) = R0(λ2 ± i0), G(±λ) = R(λ2 ± i0), λ ≥ 0.

The proof is a modification of Goldberg’s argument for proving the dispersive
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estimate (1.7) which heavily relies on the special feature in three dimensions that
the resolvent G0(λ) has a simple convolution kernel

G0(λ)u(x) =
1
4π

∫
eiλ|x−y|

|x− y| u(y)dy. (1.8)

The modification requires in particular new estimates on boundary values on the
reals of the weighted free resolvent 〈x〉εG0(λ)〈x〉−ε, ε > 0, and its derivatives with
respect to λ as an operator-valued function between certain amalgam spaces which
improve well known Lp-estimates by Kenig-Ruiz-Sogge ([13]) and Goldberg-Schlag
([9]). We formulate and prove them in Section 2.

We explain here the basic strategy of the proof for the case k = 0, introducing
some notation and pointing out what modifications are necessary to Goldberg’s
argument. Weighted Lr spaces are denoted by 〈x〉−s

Lr = {〈x〉−s
u : u ∈ Lr}. The

coupling of u in a function space and v in its dual space, i.e. for u ∈ S and v ∈ S ′,
is indiscriminately denoted by 〈u, v〉:

〈u, v〉 =
∫

R3
u(x)v(x)dx.

We reserve notation χ for a cut off function χ ∈ C∞0 (R) such that

χ(λ) = χ(−λ); χ(λ) =

{
1 for |λ| ≤ 1,

0 for |λ| ≥ 2
,

∞∑
n=0

χ(λ− 3n) = 1 (1.9)

and, for L > 0, χL(λ) = χ(λ/L). We use resolvent equations in two ways:

G(λ) = (1 + G0(λ)V )−1G0(λ) = G0(λ)(1 + V G0(λ))−1. (1.10)

By virtue of the assumption that H is of generic type, we may write e−itH by
using boundary values of G(λ) on the reals. We then apply integration by parts
with respect to λ and obtain for u, v ∈ S(R3) that

(
e−itHPacu, v

)
= lim

L→∞
1
iπ

∫

R
e−itλ2

(G(λ)u, v)λχL(λ)dλ

= − 1
2tπ

lim
L→∞

( ∫

R
e−itλ2

(G′(λ)u, v)χL(λ)dλ

+
∫

R
e−itλ2

(G(λ)u, v)χ′L(λ)dλ

)
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≡ lim
L→∞

(
(U1,L(t)u, v) + (U2,L(t)u, v)

)
. (1.11)

It suffices to show that U1,L(t) satisfies (1.6) and that U2,L(t) does

∥∥〈x〉−k−ε
U2,Lϕ

∥∥
∞ ≤ C|t|−(k+3+ε)/2

∥∥〈x〉k+ε
ϕ
∥∥

1
(1.12)

with C > 0 independent of L ≥ R, R > 0 being a large constant. We explain here
how to do this only for U1,L(t). We write, following Goldberg ([7]),

G′(λ) = 2λG(λ)2 = (1 + G0(λ)V )−1G′0(λ)(1 + V G0(λ))−1 (1.13)

and define for w ∈ S(R3) and L ≥ 1:

wL(λ, ·) = χ(λ/2L)(1 + V G0(λ))−1w(x). (1.14)

Since ((1 + G0(λ)V )−1)∗ = (1 + V G0(−λ))−1, we have for u, v ∈ S(R3) that

(U1,L(t)u, v) = − 1
2tπ

∫

R
e−itλ2〈

χ(λ/L)G′0(λ)uL(λ), vL(−λ)
〉
dλ. (1.15)

For the partial Fourier transform ûL(ρ, x) = (Fλ→ρuL)(ρ, x), it is proven in Theo-
rem 4 of [7] that ‖ûL‖L1(R4

λ,x) ≤ C‖u‖L1(R3) which immediately implies dispersive
estimates (as can be seen below). We improve that estimate to the following
weighted ones:

Lemma 1.4. Let ε be as in Theorem 1.2. Then, ûL(ρ, x) satisfies

∥∥(〈ρ〉ε + 〈x〉ε)ûL(ρ, x)
∥∥

L1(R4)
≤ C

∥∥〈x〉εu∥∥
L1(R3)

, (1.16)

where the constant C is independent of u ∈ 〈x〉−ε
L1(R3) and L ≥ 1.

Theorem 1.2 for k = 0 will follow from Lemma 1.4 as follows. We define

FL(σ) = Fλ→σ

(〈χ(λ/L)G′0(λ)uL(λ), vL(−λ)〉)(σ).

Since G′0(λ) has the kernel ieiλ|x−y|/4π, we may compute as

FL(σ) =
i

2(2π)3/2

∫∫
Lχ̂(L(σ − |x− y| − µ− ρ))ûL(µ, y)v̂L(ρ, x)dµdρdxdy.
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It follows from elementary Lemma 3.5 below and Lemma 1.4 above that

∫

R1
〈σ〉ε|FL(σ)|dσ

≤ C

∫∫

R8
〈|x− y|+ µ + ρ〉ε|ûL(µ, y)v̂L(ρ, x)|dµdρdxdy

≤ C
∥∥(〈µ〉ε + 〈y〉ε)ûL

∥∥
1

∥∥(〈ρ〉ε + 〈x〉ε)v̂L

∥∥
1
≤ C‖〈x〉εu‖1‖〈x〉εv‖1. (1.17)

The Parseval identity and the identity eiσ2/4t = 1 + (eiσ2/4t − 1) imply

〈U1,L(t)u, v〉 =
e∓3iπ/4

(2|t|)3/2iπ

( ∫

R
FL(σ)dσ +

∫

R

(
eiσ2/4t − 1

)
FL(σ)dσ

)
. (1.18)

The Fourier inversion formula shows that the first term on the right yields the
leading term

√
2e∓3iπ/4

(2|t|)3/2i
√

π
〈G′0(0)uL(0), vL(0)〉 =

√
2e∓3iπ/4

(2|t|)3/2i
√

π
〈G′(0)u, v〉 (1.19)

and (1.17) implies that the second is a remainder:

21−ε

(2|t|)(3/2)+(ε/2)π

∫

R
|σ|ε|FL(σ)|dσ ≤ C

|t|(3/2)+(ε/2)
‖〈x〉εu‖1‖〈x〉εv‖1

with a constant C independent of L. We prove Lemma 1.4 by splitting uL(λ) into
the large and the small energy parts:

uL,high(λ) = χ≥(λ/λ0)uL(λ), uL,low(λ) = χ(λ/λ0)uL(λ), (1.20)

where χ≥(λ) = 1 − χ(λ) and λ0 > 0 is a large parameter. We prove a gen-
eralization of Lemma 1.4 for derivatives u

(j)
L,high(λ) and u

(j)
L,low(λ) in Sections 3

and 4 respectively by modifying the argument of Goldberg via estimates of Sec-
tion 2. Here and hereafter f (j)(λ) is the j-th derivative of f(λ). For Banach
spaces X and Y , B(X, Y ) is the Banach space of bounded operators from X to
Y . B(X) = B(X, X).

Acknowledgements. We thank the referee for constructive comments
which lead to an improvement of the paper.
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2. Resolvent estimates in weighted amalgam spaces.

In this section, we improve the well-known Lp estimates in [13] and [9] on
boundary values on the reals of the free resolvent G0(λ) to the weighted estimates
in amalgam spaces. We write q′ for the dual exponent of q: 1/q + 1/q′ = 1 and
1 ≤ q, q′ ≤ ∞. We recall the complex interpolation for amalgam spaces: For
0 < θ < 1 we have

[`r0(Ls0), `r1(Ls1)]θ = `rθ (Lsθ ),
1
rθ

=
1− θ

r0
+

θ

r1
,

1
sθ

=
1− θ

s0
+

θ

s1
.

Weak spaces `r
w(Ls), `r(Ls

w) and `r
w(Ls

w) are likewise defined. If we denote Lorentz
spaces by Lp,q, Lq

w = Lq,∞ and it is the dual space of Lq′,1. The real interpolation
theorems apply to Lp,q and, hence, to amalgam spaces built over them. For 1 <

pj , qj < ∞, j = 1, 2, 3 such that 1/p1 +1/p2 = 1+1/p3 and 1/q1 +1/q2 = 1+1/q3

we have weak Young’s inequality for amalgam spaces:

`p1
w (Lq1

w ) ∗ `p2(Lq2) ⊂ `p3(Lq3). (2.1)

We recall that the norm of the space Lr
w for 1 < r ≤ ∞ may be defined by

‖u‖r,w = sup
A

1
|A|1/r′

∫

A

|u(x)|dx (2.2)

and Lr
w becomes a Banach space, where A runs over measurable subsets with finite

measures (see p. 99 of [14]).
For 0 ≤ ε ≤ 1 and λ ∈ C+

, we define the weighted resolvent:

G0,±ε(λ) = 〈x〉±ε
G0(λ)〈x〉∓ε

and we denote its integral kernel by

G0,±ε(λ, x, y) =
1
4π

〈x〉±ε
eiλ|x−y|〈y〉∓ε

|x− y| . (2.3)

In the (1/r, 1/s)-plane Ω = (0, 1)× (0, 1) is the open unit cube. We set

L(µ) = {(1/r, 1/s) ∈ Ω: 1/r − 1/s = (2 + µ)/3},

for 0 ≤ µ ≤ 1. The Hardy-Littlewood-Sobolev inequality, which is a special case
of (2.1), implies
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‖|x|−1+µ ∗ u‖s ≤ C‖u‖r, (1/r, 1/s) ∈ L(µ). (2.4)

For σ > 0, ∆σf(λ) = f(λ + σ)− f(λ) is the difference operator.

Lemma 2.1. Let 0 ≤ ε ≤ 1 and 0 ≤ γ ≤ 1 − ε. Then G0,±ε(λ) satisfies
following properties as an operator valued function of λ ∈ C+, where `1,1 should
be replaced by `1 whenever it appears:

(1) For (1/r, 1/s) ∈ L(0) and (1/r̃, 1/s̃) ∈ L(ε + γ), it is analytic and bounded as
a B(`r̃(Lr), `s̃(Ls))-valued function. If γ > 0, it extends to C+

as a Hölder
continuous function of order γ, and if γ = 0, it does so as a strongly continuous
bounded function. There exists a constant C > 0 such that, for λ ∈ C+

,
σ ∈ R \ {0} and u ∈ `r̃(Lr),

‖G0,±ε(λ)u‖`s̃(Ls) + |σ|−γ‖(∆σG0,±ε)(λ)u‖`s̃(Ls) ≤ C‖u‖`r̃(Lr). (2.5)

(2) If (1/r, 1/s) ∈ L(0) and (1/r̃, 1/s̃) ∈ L(γ + ε) are both at the ends of respective
line segments, then it satisfies the properties of (1) as a function with values
in any of the following spaces, where strong continuity should be replaced by
weak continuity if ε = γ = 0 and if the space is one of those in the first line
(2.6) :

B(L1, `3/(1−ε−γ)
w (L3

w)), B(`1(L3/2,1), `3/(1−ε−γ)
w (L∞)), (2.6)

B(`3/(2+ε+γ),1(L3/2,1), L∞), B(`3/(2+ε+γ),1(L1), `∞(L3
w)). (2.7)

(3) If one and only one of (1/r, 1/s) ∈ L(0) or (1/r̃, 1/s̃) ∈ L(γ + ε) is at the
ends, then, it satisfies the properties of (1) as a function with values in any of
the following spaces, where the same comment as in (2) applies if ε = γ = 0
and if the space is the first of (2.8) :

B(`1(Lr), `3/(1−ε−γ)
w (Ls)), B(`3/(2+ε+γ),1(Lr), `∞(Ls)), (2.8)

B(`r̃(L3/2,1), Ls̃(L∞)), B(`r̃(L1), `s̃(L3
w)). (2.9)

Proof. In this proof we often omit the variable λ from G0,±ε and etc. The
kernel G0,±ε(λ, x, y) is entire with respect to λ for x 6= y and it satisfies along with
derivatives that

∣∣∂j
λG0,±ε(λ, x, y)

∣∣ ≤ Cj〈x− y〉ε|x− y|j−1e−=λ|x−y|, j = 0, 1, . . . . (2.10)
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Hence, the stated analyticity of G0,±ε(λ) follows by weak-Young’s inequality (2.1).
We next prove the estimate (2.5) corresponding to the cases in (2), viz. we assume
that (1/r, 1/s) and (1/r̃, 1/s̃) are end points and prove (2.5) with `r̃(Lr) and `s̃(Ls)
being appropriately replaced by the function spaces in (2.6) and (2.7). We set

G0,±ε,≤(λ, x, y) = χ(|x− y|)G0,±ε(λ, x, y),

G0,±ε,≥(λ, x, y) = (1− χ(|x− y|))G0,±ε,λ(x, y)

and denote by G0,±ε,≤(λ) and G0,±ε,≥(λ) the operators with respective integral
kernels. We have

|Gλ,±ε,≤(x, y)| ≤ Cχ(|x− y|)/|x− y|. (2.11)

Then, the characterization (2.2) of Lr
w spaces and the duality argument imply

‖G0,±ε,≤(λ)u‖L3
w
≤ C‖u‖L1 , ‖G0,±ε,≤(λ)u‖L∞ ≤ C‖u‖L3/2,1 . (2.12)

It follows from the first of (2.12) and the inclusion relation (1.3) that

‖G0,±ε,≤u‖
`
3/(1−ε)
w (L3

w)
≤ C‖G0,±ε,≤u‖L3

w
≤ C‖u‖1. (2.13)

Since Gλ,±ε,≤(x, y) is supported by {|x− y| ≤ 2}, the second of (2.12) implies

∑

j∈Z3

‖G0,±ε,≤u‖L∞(Qj) ≤ C
∑

j∈Z3

‖u‖L3/2,1(5Qj) ≤ 125C
∑

j∈Z3

‖u‖L3/2,1(Qj) (2.14)

where 5Qj is the cube of sides 5 concentric with Qj , hence, from (1.3),

‖G0,±ε,≤u‖`3/(1−ε)(L∞) ≤ C‖u‖`1(L3/2,1). (2.15)

The kernel G0,±ε,≥(λ, x, y) is smooth with respect to (x, y) and satisfies

sup
x,y∈R3

∣∣χQj
(x)G0,±ε,≥(λ, x, y)χQk

(y)
∣∣ ≤ C〈j − k〉−1+ε. (2.16)

Hence, if Fj,k is the operator with kernel χQj
(x)G0,±ε,≥(λ, x, y)χQk

(y),

‖G0,±ε,≥(λ)u‖L3
w(Qj) ≤

∑

k

‖Fj,kχQk
u‖L3(Qj) ≤

∑

k

〈j − k〉−1+ε‖u‖L1(Qk),
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‖G0,±ε,≥(λ)u‖L∞(Qj) ≤
∑

k

‖Fj,kχQk
u‖L∞(Qj) ≤

∑

k

〈j − k〉−1+ε‖u‖L3/2,1(Qk).

It follows by virtue of the discrete version of (2.2) that

‖G0,±ε,≥(λ)u‖
`
3/(1−ε)
w (L3

w)
≤ C‖u‖1, (2.17)

‖G0,±ε,≥(λ)u‖
`
3/(1−ε)
w (L∞)

≤ C‖u‖`1(L3/2,1). (2.18)

The combination of (2.13) with (2.17) (resp. (2.15) with (2.18)) and the inclusion
relation (1.3) of amalgam spaces imply that G0,±ε(λ) is a bounded function of
λ ∈ C+

with values in the first (resp. second) space of (2.6). Then, the duality
implies that G0,±ε(λ) satisfies the same as a function with values in spaces in (2.7).
Recall that `∞w = `∞ = (`1)∗.

The integral kernels of ∆σG0,±ε,≤(λ) and ∆σG0,±ε,≥ satisfy

|∆σG0,±ε,≤(λ, x, y)| ≤ C|σ|γ |x− y|−1χ(|x− y|/2),

sup
x,y∈R3

|χQj
(x)∆σG0,±ε,≥(λ, x, y)χQk

(y)| ≤ C|σ|γ〈j − k〉−1+ε+γ .

Thus, the argument above for G0,±ε(λ) implies that |σ|−γ∆σG0,±ε(λ) is bounded
with respect to (λ, σ) ∈ C+ × R as a function with values in any of the spaces of
(2.6) and of (2.7). This proves the estimate (2.5) for the cases in the statement (2).
Then, interpolation theory implies the same for statements (3) and (1). We next
prove the strong continuity in the statement (1) for the case γ = 0. If u ∈ C∞0 (R3),
then G0,±ε(λ)u(x) is smooth with respect to (λ, x) ∈ C+×R3, the derivatives are
bounded in every compact sets, and we have that

|G0,±ε(λ)u(x)| ≤ C〈x〉−1+ε
, λ ∈ C+

.

Since 〈x〉−1+ε ∈ `s̃(Ls) for 1 ≤ s ≤ ∞ and s̃ > 3/(1 − ε), Lebesgue’s dominated
convergence theorem implies that G0,±ε(λ)u is an `s̃(Ls) valued continuous func-
tion of λ ∈ C+

. Since C∞0 (R3) is dense in `r(Ls) if 1 ≤ r, s < ∞, the desired
strong continuity of G0,±ε(λ) follows. The strong or the weak continuities in other
statements may be proved similarly. ¤

The following is the weighted version of the well-known Lp-estimates of Kenig-
Ruiz-Sogge (Theorem 2.3 in [13]) and the proof patterns after their argument.
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Lemma 2.2. For 3/2 ≤ ρ ≤ 2, let

r(ρ) =
2ρ

ρ + 1
, s(ρ) =

2ρ

ρ− 1
and 0 ≤ ε ≤ 2

ρ
− 1. (2.19)

Then, G0,±ε(λ) is bounded from Lr(ρ) to Ls(ρ) for any λ ∈ C+ \ {0}. For any
0 < c, there exists a constant Cc,ρ such that for λ ∈ C+

with |λ| ≥ c > 0,

‖G0,±ε(λ)u‖s(ρ) ≤ Cc,ρ|λ|−(2−(3/ρ))‖u‖r(ρ). (2.20)

Proof. We prove +ε case only. Since 1/r(ρ) + 1/s(ρ) = 1 and G0(λ)∗ =
G0(−λ), the other case follows by the duality. We define closed strip S by

S = {z ∈ C : − 2 ≤ <z ≤ 0}

and, for λ ∈ C+, consider analytic family of operators T (z) = mz(−i∂x) defined
for z ∈ S via the Fourier multipliers

mz(ξ) =
ez2

(ξ2 − λ2)z

Γ(z + (3/2))

so that G0(λ) = Γ(1/2)e−1T (−1). For u, v ∈ S(R3), 〈T (z)u, v〉 is continuous for
z ∈ S, analytic in the interior of S and

|〈T (iτ)u, v〉| ≤ C‖u‖2‖v‖2, τ ∈ R.

The Fourier transform of mz is given by

m̂z(x) =
ez2

2z+1

Γ(−z)Γ((3/2) + z)

(
λ

i|x|
)(3/2)+z

K(3/2)+z(−iλ|x|),

where Kν(−is) = (iπ/2)eiνπ/2H
(1)
ν (s), H

(1)
ν (s) being Hankel function of the first

kind, and, as is shown in (2.23) and (2.26) in page 339 of [13], we have

|eν2
νKν(w)| ≤ C|w|−|<ν|, |w| ≤ 1, <w ≥ 0; (2.21)

|Kν(w)| ≤ C<νe−<w|w|−1/2, |w| ≥ 1, <w ≥ 0. (2.22)

This implies for λ ∈ C+ and for −2 ≤ <z = −ρ ≤ −3/2 that
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|m̂z(x)| ≤ C|λ|3−2ρ

{
1, |λ||x| ≤ 1,

(|λ||x|)ρ−2, |λ||x| ≥ 1

}
≤ C|λ|3−2ρ〈|λ|x〉ρ−2. (2.23)

Thus, ‖T (z)u‖∞ ≤ C|λ|3−2ρ‖u‖1 for −2 ≤ <z = −ρ ≤ −3/2 and Stein’s theorem
of complex interpolation implies

‖G0(λ)u‖s(ρ) = Γ(1/2)e−1‖T (−1)u‖s(ρ) ≤ C|λ|(3/ρ)−2‖u‖r(ρ). (2.24)

We then fix ρ ∈ [3/2, 2] and define another analytic family of operators:

T̃ρ(z) = 〈|λ|x〉−z((2/ρ)−1)T (z)〈|λ|x〉z((2/ρ)−1).

By virtue of (2.23), it satisfies

∥∥T̃ρ(z)u
∥∥

2
≤ C‖u‖2, <z = 0;

∥∥T̃ρ(z)u
∥∥
∞ ≤ C|λ|3−2ρ‖u‖1, <z = −ρ.

It follows again by Stein’s analytic interpolation theorem that

‖〈|λ|x〉((2/ρ)−1)G0(λ)u‖s(ρ) ≤ C|λ|(3/ρ)−2‖〈|λ|x〉((2/ρ)−1)u‖r(ρ). (2.25)

Write ε∗ = (2/ρ) − 1. We have 〈x〉 ≤ 21/2|λ|−1〈|λ|x〉 if |x| ≥ 1, and 〈x〉 ≥
2−1/2|λ|−1〈|λ|x〉 if |λ||x| ≥ 1. Hence, for |λ| ≥ c > 0, (2.24) and (2.25) imply the
following with r(ρ) = r and s(ρ) = s:

‖〈x〉ε∗G0(λ)u‖s

≤ 2ε∗/2‖G0(λ)u‖s + 2ε∗/2|λ|−ε∗‖〈|λ||x|〉ε∗G0(λ)u‖s

≤ C|λ|(3/ρ)−2(‖u‖r + |λ|−ε∗‖〈|λ|x〉ε∗u‖r)

≤ C|λ|(3/ρ)−2{(1 + |λ|−ε∗)‖u‖r + |λ|−ε∗‖(1− χ(|λ|x))〈|λ|x〉ε∗u‖r}
≤ C{(1 + |λ|−ε∗)|λ|(3/ρ)−2‖u‖r + ‖〈x〉ε∗u‖r} ≤ C(1 + c−ε∗)|λ|(3/ρ)−2‖〈x〉ε∗u‖r.

The last estimate is (2.20) with ε = ε∗ and (2.24) is that with ε = 0. Thus, the
desired estimate (2.20) follows by interpolation. ¤

We now interpolate estimates on G0,±ε(λ) obtained in the last two lemmas.
There are various ways to interpolate them and results are not necessarily compa-
rable. We have chosen the following which we think fits best for our purpose. We
arbitrarily fix 3/2 ≤ ρ ≤ 2 so that we have by (2.20):
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‖〈x〉±ε
G0(λ)u‖s(ρ) ≤ Cκ,ρ|λ|−δ∗‖〈x〉±ε

u‖r(ρ), 0 ≤ ε ≤ ε∗(ρ) (2.26)

with r(ρ) = 2ρ/(ρ + 1) and s(ρ) = 2ρ/(ρ− 1). Here and hereafter we define

ε∗(ρ) =
2
ρ
− 1, δ∗(ρ) = 2− 3

ρ
. (2.27)

When ρ increases from 3/2 to 2, ε∗(ρ) decreases from 1/3 to 0 whereas δ∗(ρ)
increases from 0 to 1/2.

For 0 ≤ ε, γ such that 0 ≤ κ = ε + γ ≤ 1 we define two closed triangles

Dρ ≡ 4PρQR \ {Q,R} and Dρ(ε, γ) ≡ 4PρQκRκ \ {Qκ, Rκ}

with two vertices removed in the (1/r, 1/s) plane, where

Pρ =
(

1
r(ρ)

,
1

s(ρ)

)
, Q =

(
2
3
, 0

)
, R =

(
1,

1
3

)
,

Qκ =
(

2 + κ

3
, 0

)
, Rκ =

(
1,

1− κ

3

)
.

Lines QR and QκRκ are parallel to each other and QR = L(0) and QκRκ = L(κ)
in the previous notation. We note that Pρ is on the line (1/r)− (1/s) = 1/ρ and
define for 0 ≤ θ ≤ 1 two lines

Lθ(ρ) = Dρ ∩
{(

1
r
,
1
s

)
:

1
r
− 1

s
=

1− θ

ρ
+

2θ

3

}
,

Lε,γ,θ(ρ) = Dρ(ε, γ) ∩
{(

1
r
,
1
s

)
:

1
r
− 1

s
=

1− θ

ρ
+

(2 + κ)θ
3

}
, κ = ε + γ

which are respectively parallel to QR and QκRκ and divide triangles Dρ and
Dρ(ε, γ) into the ratio θ to 1− θ.

We remark that all estimates in what follows remain valid when ε∗(ρ) is
replaced by any ε1 such that 0 ≤ ε1 ≤ ε∗(ρ) because this is true for Theorem
2.3 and because estimates in what follows are obtained by interpolating those of
Theorem 2.3 and those which are independent of ε∗(ρ). We denote

ε(ρ, θ) = θε + (1− θ)ε∗(ρ).

Theorem 2.3. Let 3/2 ≤ ρ ≤ 2, 0 ≤ ε ≤ 1, 0 < θ < 1 and let 0 ≤ γ be such
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Figure 1.

that ε + γ ≤ 1. Let (1/r, 1/s) ∈ Lθ(ρ) and (1/r̃, 1/s̃) ∈ Lε,γ,θ(ρ). Then, we have
the following statements:

(1) For every λ ∈ C+, G0,±ε(ρ,θ)(λ) is bounded from `r̃(Lr) to `s̃(Ls). For c > 0,
there exists a constant C > 0 such that

‖G0,±ε(ρ,θ)(λ)u‖B(`r̃(Lr),`s̃(Ls)) ≤ C|λ|−(1−θ)δ∗(ρ) (2.28)

for λ ∈ C+ \ {0} with |λ| ≥ c.
(2) As a B(`r̃(Lr), `s̃(Ls))-valued function of λ, it is analytic in C+ and it extends

to C+ \ {0} as a strongly continuous function. If γ > 0, then it is a locally
Hölder function of λ ∈ C+ \{0} of order θγ. For c > 0, there exists a constant
C > 0 such that

‖∆σG0,±ε(ρ,θ)(λ)u‖B(`r̃(Lr),`s̃(Ls)) ≤ C|λ|−(1−θ)δ∗(ρ)|σ|θγ (2.29)

for |λ| > c and |σ| < |λ|/2.

Proof. We interpolate estimates in Lemma 2.1 and that in Lemma 2.2
with ε = ε∗(ρ) by applying real or/and complex interpolation theories ([2]). This
immediately produces (2.28) and proves statement (1).

We omit the proof of the analyticity and the strong continuity in statement
(2) which is similar to that of the corresponding part of Lemma 2.1. For proving
estimate (2.29), we interpolate

‖(∆ρG0,±ε∗(ρ))(λ)‖s(ρ) ≤ Cc|λ|−δ∗(ρ)‖u‖r(ρ), (2.30)

which is valid for |λ| ≥ c and which trivially follows from (2.20), and the estimate
(2.5):
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‖(∆σG0,±ε)(λ)u‖`s̃(Ls) ≤ C|σ|γ‖u‖`r̃(Lr) (2.31)

for (1/r, 1/s) ∈ L(0) and (1/r̃, 1/s̃) ∈ L(γ + ε) and its modification at end points.
Then, (2.29) follows as in the proof of (2.28). ¤

We next prove that G0,±ε(ρ,θ)(λ) becomes continuous upto λ = 0 if the weights
on both sides are suitably increased. In the following proposition we omit the
variable λ from G0,±ε(ρ,θ)(λ).

Proposition 2.4. Let ρ, ε, γ and θ be as in Theorem 2.3. Let (1/r, 1/s) ∈
Lθ(ρ) and (1/r̃, 1/s̃) ∈ Lε,γ,θ(ρ). Suppose that µ > 1/2(1 − (1/ρ)). Then, there
exists a constant C > 0 such that, for λ ∈ C+

and 0 < |σ| ≤ 1,

∥∥〈x〉−µ
G0,±ε(ρ,θ)〈x〉−µ

u
∥∥

`s̃(Ls)
+ |σ|−γθ

∥∥〈x〉−µ∆σG0,±ε(ρ,θ)〈x〉−µ
u
∥∥

`s̃(Ls)

≤ C〈λ〉−(1−θ)δ∗(ρ)‖u‖`r̃(Lr). (2.32)

Proof. In view of interpolation, it suffices to show (2.32) for θ = 0 and
θ = 1. If θ = 1, then (2.32) a fortiori holds since it is already true when µ = 0 by
virtue of Lemma 2.1. For θ = 0, it suffices to show

∥∥〈x〉−µ
G0,±ε(λ)〈x〉−µ

u
∥∥

s(ρ)
≤ C〈λ〉−δ∗(ρ)‖u‖r(ρ) (2.33)

for all 0 ≤ ε ≤ ε∗. This is evident from (2.20) for |λ| ≥ 1 and we may assume
|λ| ≤ 1. Decompose the integral kernel of 〈x〉−µ

G0,±ε(λ)〈x〉−µ as

〈x〉−µ±ε

(
eiλ|x−y|χ(|x− y|)

4π|x− y| +
eiλ|x−y|(1− χ(|x− y|))

4π|x− y|
)
〈y〉−µ∓ε

and denote the operators with respective kernels by T≤(λ) and T≥(λ). Then,

∣∣∣∣
〈x〉−µ±ε

eiλ|x−y|〈y〉−µ∓ε
χ(|x− y|)

4π|x− y|

∣∣∣∣ ≤ C
χ(|x− y|)
|x− y|

and ‖T≤(λ)‖B(Lr(ρ),Ls(ρ)) ≤ C by Young’s inequality. For T≥(λ), we have

∣∣∣∣
〈x〉−µ±ε

eiλ|x−y|〈y〉−µ∓ε(1− χ(|x− y|))
4π|x− y|

∣∣∣∣ ≤ C〈x〉−µ〈x− y〉ε−1〈y〉−µ
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and (µ/3)+((1−ε)/3)+(µ/3) ≥ 1−(1/ρ) = 1+((ρ−1)/2ρ)−((ρ+1)/2ρ) since ε ≤
ε∗(ρ). It follows again by virtue of Young’s inequality that ‖T≥(λ)‖B(Lr(ρ),Ls(ρ)) ≤
C for |λ| ≤ 1. This completes the proof. ¤

Recall that ε(ρ, θ) = θε + (1− θ)ε∗(ρ). To simplify notation we write

Kl,±ε(λ) = 〈x〉−l
G0,±ε(λ)〈x〉−l

, l = 0, 1, . . . .

Theorem 2.5. Let ρ, ε, γ and θ be as in Theorem 2.3. Let (1/r, 1/s) ∈
Lθ(ρ), (1/r̃, 1/s̃) ∈ Lε,γ,θ(ρ) and l = 1, 2, . . . . Then, Kl,±ε(ρ,θ)(λ) is analytic as

a B(`r̃(Lr), `s̃(Ls))-valued function of λ ∈ C+, and it extends to λ ∈ C+
as a

function of class Cl. There exists a constant C > 0 independent of u and λ ∈ C+

such that

l∑

j=1

∥∥K
(j)
l,±ε(ρ,θ)(λ)u

∥∥
`s̃(Ls)

+ sup
σ 6=0

|σ|−γθ
∥∥∆σK

(l)
l,±ε(ρ,θ)(λ)u

∥∥
`s̃(Ls)

≤ C〈λ〉−(1−θ)δ∗(ρ)‖u‖`r̃(Lr). (2.34)

Proof. Differentiating under the sign of integration, we obtain for simple
functions u that

∂j
λG0(λ)u(x) =

ij

4π

∫

R3

eiλ|x−y||x− y|j
|x− y| u(y)dy, (2.35)

and the integral kernels of K
(j)
l,±ε for j = 1, . . . , l and that of ∆σK

(l)
l,±ε are bounded

respectively by

C〈x〉−1±ε〈y〉−1∓ε ≤ C〈x− y〉−1+ε, (2.36)

C|σ|γ〈x〉−1±ε〈y〉−1∓ε|x− y|γ ≤ C|σ|γ〈x− y〉−1+ε+γ (2.37)

for any 0 ≤ γ ≤ 1. It follows by the argument of the proof of Lemma 2.1 that
Kl,±ε(ρ,θ)(λ) satisfies (2.34) when θ = 1. If θ = 0, using (2.36) and Hölder’s
inequality, we have for 0 ≤ ε ≤ ε∗ that

∥∥K
(j)
l,±ε(λ)u

∥∥
s(ρ)

≤ C
∥∥〈x〉−1+ε‖2s(ρ)‖u

∥∥
r(ρ)

≤ C‖u‖r(ρ), j = 1, . . . , l,

since (1− ε)s(ρ) ≥ (1− ε∗(ρ))s(ρ) = 4. Thus, in view of the interpolation theory,
it suffices to prove for all 0 ≤ ε ≤ ε∗ and for |λ| > 10 that
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∥∥K
(j)
l,±ε(λ)u

∥∥
s(ρ)

≤ C〈λ〉−δ∗(ρ)‖u‖r(ρ), j = 1, . . . , l. (2.38)

Since (x− y)2m is a sum of monomials xαyβ , |α + β| = 2m, we have

∂2m+k
λ G0(λ)u(x) =

∑

|α+β|=2m

Cαβxα∂k
λG0(λ)(xβu) (2.39)

and (2.38) for even j = 2m follows immediately from (2.28). Thus, by virtue of
(2.39) we have only to prove (2.38) for l = 1. We deal with K

(1)
1,ε (λ) only. The

other may be dealt with similarly. We write λ = µ + iκ with κ > 0, |λ| ≥ 10.
Since the case |κ| ≥ |λ|/10 is much easier to dealt with (see below), we assume
|κ| ≤ |λ|/10 and we further assume µ > 0 since the case −µ < 0 may be treated
similarly. Write uε(x) = 〈x〉−1+ε

u(x) and v−ε(x) = 〈x〉−1−ε
v(x). Then,

d

dλ
〈G0(λ)uε, v−ε〉

=
d

dλ

∫
ûε(ξ)v̂−ε(ξ)
|ξ|2 − λ2

dξ =
∫

2λûε(ξ)v̂−ε(ξ)
(|ξ|2 − λ2)2

dξ

=
1
λ

[
d

dθ

∫
ûε(ξ)v̂−ε(ξ)
|ξ|2 − e2θλ2

dξ

]∣∣∣∣
θ=0

=
1
λ

[
d

dθ

∫
eθûε(eθξ)v̂−ε(eθξ)

|ξ|2 − λ2
dξ

]∣∣∣∣
θ=0

=
1
λ

∫
ûε(ξ)v̂−ε(ξ)
|ξ|2 − λ2

dξ +
1
λ

∫
ξ · ∇ξ(ûε(ξ)v̂−ε(ξ))

|ξ|2 − λ2
dξ. (2.40)

The first term on the right is equal to λ−1〈G0(λ)uε, v−ε〉 and, by virtue of (2.20),
it is bounded in modulus by C|λ|−1−δ∗(ρ)‖u‖r(ρ)‖v‖r(ρ). We take ϕ ∈ C∞0 (R3)
such that ϕ(ξ) = 1 when 1/2 ≤ |ξ| ≤ 2 and ϕ(ξ) = 0 outside 1/4 ≤ |ξ| ≤ 4 and
decompose the second term of (2.40) as

µ

λ

3∑

j=1

∫
ϕ(ξ/µ)(ξj/µ) · (∂ξj

ûε(ξ)v̂−ε(ξ) + ûε(ξ)∂ξj
v̂−ε(ξ))

|ξ|2 − λ2
dξ

+
1
λ

3∑

j=1

∫
ϕ≥(ξ/µ)ξj · ∂ξj

(ûε(ξ)v̂−ε(ξ))
|ξ|2 − λ2

dξ (2.41)

where ϕ≥(ξ) = 1 − ϕ(ξ). For j = 1, 2, 3, we may write F{ϕ(ξ/µ)(ξj/µ)}(x) =
µ3hj(µx) with hj ∈ S(R3). Define hjµ(x) ≡ µ3hj(µx). Then, for any τ ∈ R,
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〈x〉τµ3|hj(µ(x− y))|〈y〉−τ ≤ Cµ3|hj(µ(x− y))|〈µ(x− y)〉τ

for µ > 1 and the operator of convolution with hjµ(x), µ ≥ 1 is uniformly bounded
in 〈x〉τLr(R3). The first term of (2.41) may be written in the form

µ

λ

3∑

j=1

{
(G0(λ)(hjµ ∗ (xjuε)), v−ε)− (G0(λ)uε, hjµ ∗ (xjv−ε))

}

and it is bounded by C|λ|−δ∗(ρ)‖u‖r(ρ)‖v‖r(ρ) by virtue of (2.20). Integration by
parts implies that the second term of (2.41) is a sum over j = 1, 2, 3 of

− 1
λ

∫ {(∂/∂ξj)(ϕ≥(ξ/µ)ξj)}ûε(ξ)v̂ε(ξ)
|ξ|2 − λ

dξ +
1
λ

∫ 2ϕ≥(ξ/µ)ξ2
j

|ξ|2 − λ

ûε(ξ)v̂ε(ξ)
|ξ|2 − λ2

dξ.

In the last two integrals, both Fourier multipliers

∂

∂ξj

(
ϕ≥

(
ξ

µ

)
ξj

)
=

∂ϕ≥
∂ξj

(
ξ

µ

)
ξj

µ
+ ϕ≥

(
ξ

µ

)
,

2ϕ≥(ξ/µ)ξ2
j

|ξ|2 − λ

satisfy the Mikhlin-Hörmander condition uniformly with respect to |µ| > |λ|/2,
|λ| > 10. Hence the second term is estimated as in the previous case by
C|λ|−1−δ∗(ρ)‖u‖r(ρ)‖v‖r(ρ). This completes the proof. ¤

For 0 ≤ ε, γ such that 0 ≤ (ε + γ)/3 < (1/p)− (2/3) ≤ 1/3, we define p∗ by

1
p∗

= 1−
(

1
p
− 2 + ε + γ

3

)
. (2.42)

We have that 1 < p∗ ≤ 3/(2 + ε + γ).

Lemma 2.6. Suppose that V ∈ `p(Lq) for 1 ≤ p < 3/2 < q ≤ ∞. Let
0 ≤ ε, γ be such that (ε + γ) < 3((1/p)− (2/3)). Then:

(1) Let 1 ≤ r < 3q/(q + 3). Then, for l = 0, . . . , we have

l∑

j=0

∥∥V K
(j)
l,±ε(λ)u

∥∥
Lr + sup

σ 6=0
|σ|−γ

∥∥∆σV K
(l)
l,±ε(λ)u

∥∥
Lr ≤ C‖V ‖`p(Lq)‖u‖L1 ,

(2.43)

where the constant C > 0 is independent of λ ∈ C+
, u and V .
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(2) Let 1 ≤ r ≤ p∗. Then, for l = 0, . . . , we have

l∑

j=0

∥∥V K
(j)
l,±ε(λ)u

∥∥
L1 + sup

σ 6=0
|σ|−γ

∥∥∆σV K
(l)
l,±ε(λ)u

∥∥
L1 ≤ C‖V ‖`p(Lq)‖u‖Lr ,

(2.44)

where the constant C > 0 is independent of λ ∈ C+
, u and V .

(3) Let 3/2 ≤ ρ ≤ 2. Define r−(θ) and r+(θ) for 0 ≤ θ ≤ 1 by

1
r−(θ)

=
ρ + 1
2ρ

(1− θ) + θ,
1

r+(θ)
=

ρ + 1
2ρ

(1− θ) +
2 + ε + γ

3
θ.

Let θ0 = 0 if q ≥ ρ and θ0 be such that 1/q = ((1− θ0)/ρ) + (2θ0/3) if q < ρ.
Then, for θ0 ≤ θ ≤ 1, the following is satisfied for r−(θ) ≤ r ≤ r+(θ) :
(a) For any c > 0, there exists a constant C such that

∥∥V G0,±ε(ρ,θ)(λ)u
∥∥

r
+ |σ|−γθ

∥∥∆σG0,±ε(ρ,θ)(λ)u
∥∥

r

≤ C|λ|−(1−θ)δ∗(ρ)‖u‖r (2.45)

for |λ| ≥ c and |σ| ≤ |λ|/2. If θ = 1, then (2.45) holds for all λ ∈ C+
and

σ ∈ R \ {0}.
(b) For l = 1, . . . , k, we have for a constant C > 0 that

l∑

j=0

∥∥K
(j)
l,±ε(ρ,θ)(λ)u

∥∥
r
+ |σ|−γθ

∥∥∆σV K
(l)
l,±ε(ρ,θ)(λ)u

∥∥
r

≤ C〈λ〉−(1−θ)δ∗(ρ)‖u‖r (2.46)

for λ ∈ R and σ 6= 0.

Proof. We prove statements and estimates for the case l = 0 only. The
proof for the case l ≥ 1 may be given similarly by using Theorem 2.5 in place of
Lemma 2.1 or Theorem 2.3. The proof of statements (1) and (2) uses only Lemma
2.1 and Hölder’s inequality.

(1) By virtue of Lemma 2.1, for any s̃ such that 0 ≤ 1/s̃ < (1 − (ε + γ))/3,
G0,±ε(λ) maps L1 continuously into `s̃(L3

w) and

‖G0,±ε(λ)u‖`s̃(L3
w) + sup

σ∈R
|σ|−γ‖∆σG0,±ε(λ)u‖`s̃(L3

w) ≤ C‖u‖L1 . (2.47)
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By Hölder’s inequality we have Lq(Q) ·L3
w(Q) ⊂ Lr(Q) whenever (1/3) + (1/q) <

1/r. Likewise, `p · `s̃ ⊂ `r if (1/p) + (1/s̃) ≥ 1/r and such an s̃ with 0 ≤ 1/s̃ <

(1− (ε + γ))/3 may be found since (1/p) + ((1− (ε + γ))/3) > 1. This with (2.47)
implies (2.43).

(2) We may assume r > 1 as the case r = 1 is proven in (1). Recall that
1/p∗ > (2 + ε + γ)/3. Then, G0,±ε(λ) maps Lr, 1 < r ≤ p∗, continuously into
`s̃(Ls) for 1/s = (1/r)− (2/3) and 1/s̃ = (1/r)− ((2 + ε + γ)/3) and

‖G0,±ε(λ)u‖`s̃(Ls) + sup
σ∈R

|σ|−γ‖∆sG0,±ε(λ)u‖`s̃(Ls) ≤ C‖u‖Lr . (2.48)

Since (1/r)− (2/3) + (1/q) < 1 and r ≤ p∗ implies

1
r

+
1
p
− 2 + ε + γ

3
≥ 1

p∗
+

1
p
− 2 + ε + γ

3
= 1,

Hölder’s inequality and the inclusion relation for amalgam spaces produce the
desired estimate (2.44).

(3) For 0 ≤ θ < 1, (1/r, 1/s) ∈ Lθ(ρ) and (1/r̃, 1/s̃) ∈ Lε,γ,θ(ρ), we have

‖G0,±ε(ρ,θ)u‖`s̃(Ls) + |σ|−θγ‖∆σG0,±ε(ρ,θ)u‖`s̃(Ls)

≤ Cc|λ|−(1−θ)δ∗(ρ)‖u‖`r̃(Lr) (2.49)

for |λ| > c and |σ| < |λ|/2 by virtue of Theorem 2.3; if θ = 1, then this holds
for all λ ∈ C+

and σ ∈ R \ {0} by virtue of Lemma 2.1. Note that 1/r+(θ) is
the common 1/r-coordinates of the right ends of Lθ(ρ) and Lε,γ,θ(ρ), and 1/r−(θ)
is the one of the left end of Lε,γ,θ(ρ) which is larger than that of Lθ(ρ). Hence,
(1/r, 1/s) ∈ Lθ(ρ) and (1/r, 1/s̃) ∈ Lε,γ,θ(ρ) simultaneously for some 1/s and 1/s̃

if and only if r−(θ) ≤ r ≤ r+(θ). Then, we have

1
s

+
1
q

=
1
r
− 1− θ

ρ
− 2θ

3
+

1
q
≤ 1

r

for θ ≥ θ0. On the other hand, since 1/ρ ≤ 2/3 and, by assumption, (2+ε+γ)/3 <

1/p, we have for any 0 ≤ θ ≤ 1 that

1
s̃

+
1
p

=
1
r
− 1− θ

ρ
− (2 + ε + γ)θ

3
+

1
p
≥ 1

r
− 2 + ε + γ

3
+

1
p

>
1
r
.

Thus, (a) follows from (2.49) via the help of Hölder’s inequality as previously. ¤
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In view of Lemma 2.6, we define

rmax = min
(

p∗,
3q

q + 3

)
and κmax = 3

(
1
p
− 2

3

)
. (2.50)

Proposition 2.7. Let 0 ≤ ε, γ be such that ε + γ < κmax and 3/2 ≤ ρ ≤ 2.
Let 1 < r < rmax. Then, there exists 0 < θ∗ = θ∗(ρ, ε, γ, r) < 1 such that, for
all θ∗ ≤ θ ≤ 1, estimates (2.43), (2.44), (2.45) and (2.46) of Lemma 2.6 are all
satisfied with ε(ρ, θ) being replaced by ε.

Proof. We recall that all estimates which contain ε∗(ρ) are valid when it
is replaced by smaller non-negative numbers. Note that

r−(θ) → 1, r+(θ) → 3/(2 + ε + γ) ≥ p∗ (θ → 1). (2.51)

Thus, the proposition is obvious if ε∗(ρ) ≥ ε. If ε∗(ρ) < ε, we take an ε′ > ε such
that ε′+γ < κmax and r < 3/(2+ε′+γ) and apply Lemma 2.6 (3) with ε′ in place
of ε. We let r′+(θ) be the r+(θ) for the triplet (ρ, ε′, γ). Then, by virtue of (2.51),
we can find θ0 ≤ θ∗ < 1 such that (1 − θ)ε′ + θε∗(ρ) > ε and r−(θ) < r < r′+(θ)
for all θ∗ ≤ θ ≤ 1. This completes the proof. ¤

Remark 2.8. If V ∈ `p(Lq) for some 1 ≤ p < 3/2 < q ≤ ∞, then the proof
of statements (1) and (2) of Lemma 2.6 shows that integral operators K whose
kernels satisfy

|K(x, y)| ≤ C|V (x)| 〈x− y〉ρ
|x− y| (2.52)

for ρ < κmax are bounded in L1(R3). We shall use this fact in the proof of
Proposition 3.3.

Lemma 2.9. Suppose that V ∈ `p(Lq) for some 1 ≤ p < 3/2 < q ≤ ∞.
Let 0 ≤ ε < κmax and 1 ≤ r < rmax. Then, V G0,±ε(λ) ∈ B(Lr) is compact
and is norm continuous with respect to λ ∈ C+

. For l = 1, . . . and j = 0, . . . , l,
〈x〉−l

V G
(j)
0,±ε(λ)〈x〉−l ∈ B(Lr) satisfies the same property.

Proof. We prove the lemma for l = 0 only by the same reason as before.
We set θ = 1 in (a) of Lemma 2.6 (3). Then, (2.45) with θ = 1 is satisfied for all
1 < r ≤ rmax. This holds also for r = 1 as, then, it is the same as (2.43) or/and
(2.44). Since the constant C on the right of (2.45) is bounded by a constant times
‖V ‖`p(Lq) and C∞0 (R3) is dense in `p(Lq), it suffices to prove the lemma when
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V ∈ C∞0 (R3). Suppose, then, that V (x) = 0 outside BR = {x ∈ R3 : |x| < R}.
Then, V G0,±ε(λ) maps Lr(R3) continuously into W 2,r(BR) and Rellich’s theorem
implies that V G0,±ε(λ) is a compact operator in Lr(R3). The norm continuity is
obvious since we still may take γ > 0 such that ε + γ < κmax. Then, it is locally
Hölder continuous of order γ. This completes the proof. ¤

Lemma 2.10. Suppose that 〈x〉kV ∈ `p(Lq) for an integer k ≥ 0 and that H

is of generic type. Let 0 ≤ ε, γ satisfy ε + γ < κmax and 1 ≤ r < rmax. Then, the
following statements are satisfied for l = 0, 1, . . . , k :

(1) The inverse (1 + V G0(λ))−1 exists in 〈x〉−l±ε
Lr for all λ ∈ R and is norm

continuous.
(2) Let u ∈ 〈x〉−l±ε

Lr. Then, u(λ) = (1 + V G0(λ))−1u is an 〈x〉±ε
Lr valued

function of λ ∈ R of class Cl.
(3) There exits a constant C such that for λ ∈ R

l∑

j=0

‖〈x〉±ε
u(j)(λ)‖r + sup

0<|σ|≤1

|σ|−γ‖〈x〉±ε∆σu(l)(λ)‖r ≤ C‖〈x〉l±ε
u‖r. (2.53)

For the proof we need the following lemma. It probably is known, but we give
a proof as we were not able to find a reference. In the proof we write X〈u, x∗〉X∗

for x∗(u) and etc. when u ∈ X and x∗ ∈ X∗.

Lemma 2.11. Let X and Y are Banach spaces. Suppose that there exists a
linear topological space X such that X ⊂ X and Y ⊂ X and that X ∩ Y ⊂ X is a
dense and continuous embedding, where X ∩Y is the Banach space with the norm
‖u‖X + ‖u‖Y . Suppose that an operator A is compact both in X and Y . Then,
KerX(1 + A) 6= {0} implies KerY (1 + A) 6= {0}.

Proof. We write AX and etc. when the operator A is considered as the
one from X to X. With respect to the coupling

〈u, x∗ + y∗〉 = X〈u, x∗〉X∗ + Y 〈u, y∗〉Y ∗ ,

we have (X ∩ Y )∗ = X∗ + Y ∗, the right being the sum space of Banach spaces
X∗ and Y ∗, and X∗ ⊂ X∗ + Y ∗ is a dense continuous embedding since so is
X ∩ Y ⊂ X. By the assumption AX∩Y is compact in X ∩ Y . It follows by virtue
of Banach’s theorem that A∗X∩Y is also a compact operator in X∗ + Y ∗. Suppose
that KerX(1 + A) 6= {0}. Then, Ker(1 + A∗X) 6= {0}. Let u∗ ∈ X∗ \ {0} satisfy
u∗ + A∗Xu∗ = 0. Then, with the left most and the right most couplings being
understood as the ones between X ∩ Y and X∗ + Y ∗, we have for any u ∈ X ∩ Y



Resolvent estimates in amalgam spaces and asymptotic expansions 585

that

〈AX∩Y u, u∗〉 = X〈AXu, u∗〉X∗ = X〈u,A∗Xu∗〉X∗ = −X〈u, u∗〉X∗ = −〈u, u∗〉.

This implies u∗ + (AX∩Y )∗u∗ = 0 and, as u∗ 6= 0 in X∗ + Y ∗ as well, −1 ∈
σ((AX∩Y )∗) = σ(AX∩Y ). Thus, KerY (1 + A) 6= {0}. ¤

Proof of Lemma 2.10. By Lemma 2.9 V G0(λ) = 〈x〉−l(〈x〉lV )G0(λ) ∈
B(〈x〉−l±ε

Lr) is compact for any l = 0, . . . , k. It follows that (1 + V G0(λ)) is
invertible in 〈x〉−l±ε

Lr if and only if Ker(1 + V G0(λ)) = {0}. Goldberg-Schlag
[9] and Goldberg [7] have proven that, if KerLr (1 + V G0(λ)) 6= {0} for λ ∈
R \ {0}, then λ2 > 0 is an eigenvalue of H. It follows by virtue of the absence of
positive eigenvalues for H proven by Ionescu-Jerison [10] and by the assumption
that H is of generic type that (1 + V G0(λ))−1 exists in B(Lr) for every λ ∈ R.
Then, the same is true for Ker〈x〉−l±εLr (1 + V G0(λ)) by virtue of Lemma 2.11

and (1 + V G0(λ))−1 exists in B(〈x〉−l±ε
Lr) for every λ ∈ R. It satisfies the

stated norm continuity and differentiability properties by virtue of Lemma 2.9.
For proving (3), we take θ∗ ≤ θ < 1 of Proposition 2.7. Then, if r > 1, (2.53)
follows from (2.45) and (2.46). If r = 1, we take r−(θ) < r∗ < r+(θ). Then, we
may estimate ‖(V G0(λ))3‖B(〈x〉−l±εL1) by

‖V G0(λ)‖B(〈x〉−l±εL1,〈x〉−l±εLr∗ )‖V G0(λ)‖B(〈x〉−l±εLr∗ )

× ‖V G0(λ)‖B(〈x〉−l±εLr∗ ,〈x〉−l±εL1) ≤ C〈λ〉−(1−θ)δ∗(ρ) (2.54)

and, for large λ, we may write (1 + V G0(λ))−1 in the form

(1 + V G0(λ))−1 = (1− V G0(λ) + (V G0(λ))2)(1 + V G0(λ))−3.

Then, the estimate (2.53) follows from Lemma 2.6. ¤

3. High energy estimates.

In this section we study the high energy part of propagator e−itHPac(H). We
set, for large λ0 ≤ L,

hL,λ0(λ) = χ≥(λ/λ0)χ(λ/L) (3.1)

and prove the following theorem. In what follows we always assume 〈x〉kV ∈
`p(Lq) for 1 ≤ p < 3/2 < q ≤ ∞, and define κmax = 3(1/p − 2/3) and rmax =
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min(p∗, 3q/(q + 3)) as previously.

Theorem 3.1. There exists λ0 > 0 such that, for any 0 < ε < κmax,

∣∣(e−itHhL,λ0(
√

H)Pacu, v
)∣∣ ≤ C|t|−k−(3/2)−(ε/2)‖〈x〉k+ε

u‖1‖〈x〉k+ε
v‖1 (3.2)

for |t| ≥ 1 with C > 0 independent of L ≥ 10λ0 and u, v ∈ 〈x〉k+ε
L1(R3).

The proof consists of several steps.

3.1. Stationary representation.
It suffices to prove Theorem 3.1 for u, v ∈ S(R3) which we assume in what

follows. Define uL,high by

uL,high(λ) = h2L,λ0/2(λ)(1 + V G0(λ))−1u (3.3)

and vL,high by the same formula with v replacing u. These are 〈x〉εL1(R3) valued
functions of λ ∈ R of class Ck+γ , ε + γ < κmax by virtue of Lemma 2.10. Using
that G′0(λ) is weakly-∗ continuous from L1 to L∞, we then define

(U1,L,high(t)u, v) = − 1
2tπ

∫

R
e−itλ2

hL,λ0(λ)〈G′0(λ)uL,high(λ), vL,high(−λ)〉dλ;

(3.4)

(U2,L,high(t)u, v) = − 1
2tπ

∫

R
e−itλ2

h′L,λ0
(λ)〈G(λ)u, v〉dλ. (3.5)

Lemma 3.2. We have

(
e−itHhL,λ0(

√
H)Pacu, v

)
= (U1,L,high(t)u, v) + (U2,L,high(t)u, v).

Proof. The well-known Stone formula implies

(
e−itHhL,λ0(

√
H)Pacu, v

)
=

1
iπ

lim
η↓0

∫

R
hL,λ0(λ)e−itλ2

(G(λ + iη)u, v)λdλ.

We apply integration by parts to the right hand side and take the limit η ↓ 0. For
=λ > 0 we have as in (1.13)

〈G′(λ)u, v〉 =
〈
G′0(λ)(1 + V G0(λ))−1u, (1 + V G0(−λ))−1v

〉
.
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This extends to real λ by the weak-∗ continuities of G′0(λ) ∈ B(L1, L∞) and the
smoothness property of (1 + V G0(λ))−1u and (1 + V G0(−λ))−1v. Lemma easily
follows from this. ¤

We often write h(λ) for hL,λ0(λ), suppressing indices L and λ0. We prove

|(Uj,L,high(t)u, v)| ≤ Ct−k−(3/2)−(ε/2)‖〈x〉k+ε
u‖1‖〈x〉k+ε

v‖1 (3.6)

for j = 1 and j = 2.

3.2. Key lemma.
The following proposition, which is an improvement of Goldberg’s estimate

([7]) and of Lemma 1.4 in the introduction, plays an essential role in what follows.
F is the partial Fourier transform with respect to the λ variable.

Proposition 3.3. Let 0 ≤ τ, ε satisfy τ + ε < κmax. Then, there exists
Λ > 0 such that whenever λ0 ≥ Λ, FuL,high(ρ, x) satisfies that

k∑

l=0

∫∫

R2
〈σ〉τ 〈x〉k−l+ε∣∣Fλ→σu

(l)
L,high(σ, x)

∣∣dxdσ ≤ C‖〈x〉k+ε
u‖L1(R3), (3.7)

where the constant C is independent of u, λ0 ≥ Λ and L > λ0.

We prove the proposition by modifying the argument in [7]. In the sequel,
we choose and fix 1 ≤ r < rmax and θ∗ < θ < 1 as in Proposition 2.7. Then,
for l = 0, . . . , k, we may estimate ‖(V G0(λ))3‖B(〈x〉−l±εL1) as in (2.54) and, if λ0

is large enough, for λ in the support of hL,λ0 we may expand as

(1 + V G0(λ))−1 =
∞∑

n=0

(−1)nGn(λ), Gn(λ) ≡ (V G0(λ))n

in the space B(〈x〉−l±ε
L1). The proof of the proposition consists of the following

two lemmas.

Lemma 3.4. Let 0 ≤ ε ≤ 1 and τ ≥ 0 satisfy ε+τ < κmax. Then, there exists
Λ such that the following statement is satisfied : For a constant C independent of
0 ≤ α + β ≤ l ≤ k, n and L > λ0 ≥ Λ, we have

∫

R4
〈σ〉τ 〈x〉k−l+ε∣∣F(h(α)

L,λ0
(λ)G(β)

n (λ)u)(σ, x)
∣∣dσdx ≤ Cn‖〈x〉k+ε

u‖1. (3.8)
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Proof. Following Rodnianski and Schlag ([18]), we write Gn(λ)u(x) as an
integral over R3n and, differentiate under the sign of integration. We have that,
with x0 = y, x = xn and Σ =

∑n
j=1 |xj − xj−1|,

G(β)
n (λ)u(x) =

∫

R3n

(iΣ)βeiλΣ
∏n

j=1 V (xj)∏n
j=1 4π|xj − xj−1| u(y)dydx1 · · · dxn−1. (3.9)

Here the integral on the right is absolutely convergent as the proof of Lemma 2.6
shows, and using Fubini’s theorem, we have

F(h(α)(λ)G(β)
n (λ)u)(σ, x)

=
∫

R3n

(iΣ)β(Fh(α))(σ − Σ)
∏n

j=1 V (xj)∏n
j=1 4π|xj − xj−1| u(y)dydx1 · · · dxn−1. (3.10)

We use the following lemma (see Proposition 8 of [7]):

Lemma 3.5. With a constant independent of L ≥ 1, we have for ρ ≥ 0 that

∫
〈σ〉ρL|(Fχ(α))(L(σ − Σ))|dσ ≤ Cρ〈Σ〉ρ. (3.11)

Proof. Since 〈σ + Σ〉ρ ≤ Cρ(〈σ〉ρ + 〈Σ〉ρ) and 〈σ/L〉 ≤ 〈σ〉 for L ≥ 1, we
have

∫
〈σ〉ρ∣∣L(Fχ(α))(L(σ − Σ))

∣∣dσ

=
∫
〈σ + Σ〉ρ∣∣L(Fχ(α))(Lσ)

∣∣dσ

≤ Cρ

(
〈Σ〉ρ +

∫
〈σ/L〉ρ∣∣(Fχ(α))(σ)

∣∣dσ

)
≤ C(1 + 〈Σ〉ρ).

This proves the lemma. ¤

Continuation of the proof of Lemma 3.4. Since 〈σ〉 ≤ C〈µ〉〈σ − µ〉,
we see from (3.11) that, for λ0 ≥ 2,

∫

R
〈σ〉τ

( ∫

R
λ0

∣∣χ̂(β)(λ0µ)Lχ̂(α)(L(σ − µ− Σ))
∣∣dµ

)
dσ ≤ C〈Σ〉τ . (3.12)
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This implies that

∫
〈σ〉τ

∣∣F(h(α)(λ)G(β)
n (λ)u)(σ, x)

∣∣dσ

≤ Cλ0

∫

R3n

|Σ|β〈Σ〉τ ∏n
j=1 |V (xj)|∏n

j=1 4π|xj − xj−1| |u(y)|dydx1 · · · dxn−1. (3.13)

We estimate |Σ|β〈Σ〉τ ≤ 〈Σ〉β+τ by C〈n〉β+τ times

n∑

j=1

〈xj − xj−1〉β+τ ≤ C
n∑

j=1

〈xj〉β〈xj−1〉β〈xj − xj−1〉τ (3.14)

and replace |Σ|β〈Σ〉τ on the right of (3.13) by the right of (3.14). This produces
following bound for (3.13):

Cλ0〈n〉β+τ

((
Kn−1

1 K4|u|
)
(x) +

n−2∑

j=0

(
Kj

1K3K2K
n−j−2
1 |u|)(x)

)
, (3.15)

where K1,K2,K3 and K4 respectively are integral operators with the kernels

K1(x, y) =
V (x)

4π|x− y| , K2(x, y) =
V (x)〈x〉β
4π|x− y| ,

K3(x, y) =
V (x)〈x〉β〈x− y〉τ

4π|x− y| , K4(x, y) =
V (x)〈x〉β〈x− y〉τ 〈y〉β

4π|x− y| .

Since 〈x〉k−l〈x〉βV ∈ `p(Lq) for any |β| ≤ l, Remark 2.8 implies that operators

〈x〉kK1, K2, 〈x〉k−l
K3, K4〈x〉−l

,

are all bounded in 〈x〉εL1 for ε+ τ < κmax. Estimating as nα ≤ Cn for n ≥ 1 with
a suitable constant C, we obtain the lemma. ¤

Lemma 3.6. Let 0 ≤ ε + γ < κmax and 3/2 ≤ ρ ≤ 2. Then, there exists
0 < θ∗ < 1 such that the following statement is satisfied for any θ∗ ≤ θ < 1 : There
exists a constant C independent of u, n ≥ 1, 0 ≤ α + β ≤ l ≤ k and 1 ≤ λ0 ≤ L

such that
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sup
σ∈R

∥∥〈x〉k−l+ε〈σ〉θγF(h(α)
L,λ0

(λ)G(β)
n (λ)u)(x, σ)

∥∥
1

≤ Cnλ
1−(n−2)(1−θ)δ∗(ρ)
0 ‖〈x〉k+ε

u‖L1 . (3.16)

Proof. We arbitrarily take 1 < r < rmax and then choose θ∗ = θ(ρ, ε, γ, r)
as in Proposition 2.7. Using Leibniz’ law, we write G

(β)
n (λ) as a linear combination

of V G
(j1)
0 (λ) · · ·V G

(jn)
0 (λ) with j1 + · · · + jn = β. We apply (2.43) and (2.44) to

the right most and to the left most factors respectively and (2.45) and (2.46) to
the remaining n− 2 factors in between. Noticing that l ≥ j1 and k− ji−1 ≥ ji for
i = 2, . . . , n− 1, we obtain

∥∥〈x〉k−l+ε
V G

(j1)
0 (λ) · · ·V G

(jn)
0 (λ)u

∥∥
L1

≤ ∥∥〈x〉k−l+ε
V G

(j1)
0 〈x〉−j1−ε∥∥

B(Lr,L1)

n−1∏

i=2

∥∥〈x〉ji−1+ε
V G

(ji)
0 〈x〉−ji−ε∥∥

B(Lr)

× ∥∥〈x〉jn+ε
V G

(jn)
0 (λ)u

∥∥
L1

≤ C(C/λ)(n−2)(1−θδ∗(ρ))‖〈x〉−k−ε
u‖1, (3.17)

and likewise estimate for difference quotient with respect to λ:

sup
0<|σ|≤1

|σ|−θγ
∥∥∆σ〈x〉k−l+ε

V G
(j1)
0 (λ) · · ·V G

(jn)
0 (λ)u

∥∥
L1

≤ Cn(C/λ)(n−2)(1−θδ∗(ρ))‖〈x〉−k−ε
u‖1. (3.18)

We have for any integrable functions that

∫ ∞

−∞
eiλσf(λ)dλ =

1
2

∫ ∞

−∞
eiλσ(f(λ)− f(λ− π/σ))dλ. (3.19)

We integrate e−iλσh(α)(λ)G(β)
n (λ)u with respect λ ∈ R and apply (3.17) and (3.18).

We obtain the lemma by using (3.19) and the fact that h(α)(λ) is uniformly Lips-
chitz continuous with respect to 1 ≤ λ0 < L. ¤

Proof of Proposition 3.3. For given ε, τ ≥ 0 such that ε + τ < κmax

we take γ > 0 such that ε + (τ + γ) < κmax. Take Λ and θ∗ as in Lemma 3.4 and
in Lemma 3.6 respectively with τ being placed by τ + γ and let θ∗ < θ < 1. Let
〈x〉k+ε

u ∈ L1. Then, (3.17) implies that



Resolvent estimates in amalgam spaces and asymptotic expansions 591

〈x〉k−l+ε(1 + V G0(λ))−1u =
∞∑

n=0

(−1)n〈x〉k−l+ε(−1)nGn(λ)u

converges in L1(R3) uniformly with respect to λ ≥ λ0 and that it is l-times term-
wise differentiable in L1(R3). We write, for l = 0, . . . , k,

fl,n(σ) =
∥∥〈x〉k−l+εF((h(λ) ·Gn(λ))(l)u)(σ, x)

∥∥
L1(R3

x)
. (3.20)

Summing up (3.8) with τ being replaced by τ + γ over (α, β) with α + β = l, we
obtain that

∥∥〈σ〉τ+γfl,n

∥∥
1
≤ Cn‖〈x〉k+ε

u‖1, (3.21)

and likewise from (3.16) that

∥∥〈σ〉θγfl,n

∥∥
∞ ≤ Cnλ

1−(n−2)ω
0 ‖〈x〉k+ε

u‖L1 (3.22)

with ω = (1− θ)δ∗(ρ) > 0. We choose µ < γ close enough to γ such that

µ(τ + γ − γθ)
γ − µ

> 1

and set

r =
τ + γ − γθ

τ + µ− γθ
.

Then, r(τ + µ) = τ + γ + (r − 1)θγ, r > 1 and we have sµ > 1 for s = r/(r − 1).
It follows by Hölder’s inequality, (3.21) and (3.22) that

∫

R
〈σ〉τfl,n(σ)dσ ≤

( ∫

R
fl,n(σ)r〈σ〉r(τ+µ)dσ

)1/r( ∫

R
〈σ〉−sµdσ

)1/s

≤ C
∥∥〈σ〉τ+γfl,n

∥∥1/r

1

∥∥〈σ〉θγfl,n

∥∥(r−1)/r

∞

≤ Cnλ
(1−(n−2)ω)(r−1)/r
0 ‖〈x〉k+ε

u‖L1 . (3.23)

If λ0 > (2C)r/ω(r−1), then Cnλ
−nω(r−1)/r
0 ≤ 2−n produces an exponential fall-off

as n → ∞ and we may sum up (3.23) for n = 0, 1, . . . , producing the desired
estimate (3.7). This proves the proposition. ¤
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Proof of Theorem 3.1. Using that (−2itλ)−1∂λe−itλ2
= e−itλ2

, we ap-
ply integration by parts k-times with respect to λ to the integral (3.4). We obtain

(U1,L,high(t)u, v) = − 1
2tπ

∫

R
e−itλ2

h(λ)
〈
G′0(λ)uL,high(λ), vL,high(−λ)

〉
dλ

= − 1
(2t)k+1ikπ

∫

R
e−itλ2

(
∂

∂λ
· 1
λ

)k

h(λ)

× 〈
G′0(λ)uL,high(λ), vL,high(−λ)

〉
dλ. (3.24)

It is elementary to check that, with suitable constants Ckl,

(
∂

∂λ
· 1
λ

)k

=
k∑

l=0

(
∂

∂λ

)l
Ckl

λ2k−l
, k = 0, 1, . . . . (3.25)

Define hl(λ) = −(Ckl/ik2k+1λ2k−l
0 π)χ(λ/L)(λ/λ0)l−2kχ≥(2λ/λ0) for 0 ≤ l ≤ k

and write the right of (3.24) as a sum over l = 0, . . . , k of

Fl,L(t) = t−k−1

∫

R
e−itλ2

∂l
λ

{
hl(λ)

〈
G′0(λ)uL,high(λ), vL,high(−λ)

〉}
dλ. (3.26)

Note that λl−2kχ≥(λ) is smooth and |λl−2kχ≥(λ)| ≤ C〈λ〉−k.

Lemma 3.7. Let 0 ≤ ε < κmax. Suppose that, for every integer 0 ≤ l ≤ k,
〈x〉k−l+ε

u(λ, ·) is an L1(R3)-valued function of compact support of λ ∈ R of class
Cl and that it satisfies

∫

R

∥∥(〈σ〉ε + 〈x〉ε)〈x〉k−l(Fu(l))(σ, x)
∥∥

1
dσ ≤ M(u). (3.27)

Suppose that v(λ, ·) satisfies the same property with v in place of u. Define

g(λ) = a(λ)
〈
G′0(λ)u(λ, ·), v(λ, ·)〉

for a(λ) ∈ C∞0 (R). Then, g(λ) is a function of class Ck and it satisfies

∫

R
〈σ〉ε|(Fg(l))(σ)| ≤ CCl(a)M(u)M(v), l = 0, 1, . . . , k, (3.28)

where Cl(a) = ‖〈σ〉l+εâ(σ)‖1 and C > 0 is a constant independent of u, v and a.
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Proof. By Leibniz’ rule g(l)(λ) is a linear combination of

gijmn(λ) = a(i)(λ)
〈
G

(j+1)
0 (λ)u(m)(λ, ·), v(n)(λ, ·)〉, i + j + m + n = l.

Since the kernel of G
(j+1)
0 (λ) equals ij+1eiλ|x−y||x− y|j/4π, the Fourier transform

ĝijmn(σ) may be given by a constant times

∫∫
â(i)(σ − |x− y| − µ− ρ)|x− y|j û(m)(µ, y)v̂(n)(ρ, x)dydxdµdρ.

Since
∫
R〈σ〉ε|â(i)(σ − µ)|dσ ≤ CCl(a)〈µ〉ε and

〈|x− y|+ µ + ρ〉ε ≤ Cε(〈x− y〉ε + 〈µ〉ε + 〈ρ〉ε),

it follows that
∫
R〈σ〉ε|ĝijmn(σ)|dσ is bounded by CCl(h) times

∫∫
(〈x− y〉ε + 〈µ〉ε + 〈ρ〉ε)|x− y|j∣∣û(m)(µ, y)v̂(n)(ρ, x)

∣∣dydxdµdρ.

Estimating as |x−y|j ≤ (〈x〉j +〈y〉j) and remembering that j ≤ min(k−m, k−n),
we obtain

∫

R
〈σ〉ε|ĝijmn(σ)|dσ ≤ CCl(a)

( ∫ ∥∥(〈µ〉ε + 〈x〉ε)〈x〉k−m
û(m)(µ, x)

∥∥
1
dµ

)

×
( ∫ ∥∥(〈ρ〉ε + 〈x〉ε)〈x〉k−n

v̂(n)(ρ, x)
∥∥

1
dρ

)

≤ CCl(a)M(u)M(v). (3.29)

Lemma follows by summing (3.29) over (i, j,m, n) with i + j + m + n = l. ¤

Proposition 3.8. Let Fl,L(t), l = 0, 1, . . . , k be defined by (3.26). Then for
any 0 ≤ ε < κmax, there exists a constant C > 0 independent of λ0 ≥ Λ, L ≥ λ0

and u, v such that

|Fl,L(t)| ≤ Ct−k−(3/2)−(ε/2)‖〈x〉k+ε
u‖‖〈x〉k+ε

v‖. (3.30)

Proof. If we define g(λ) = a(λ)〈G′0(λ)u(λ), v(λ)〉 as in Lemma 3.7 with
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u(λ, ·) = uL,high(λ, ·), v(λ, ·) = vL,high(−λ, ·), and a(λ) = hl(λ)

then, we have the representation

Fl,L(t) = t−k−1

∫

R
e−itλ2

g(l)(λ)dλ.

Proposition 3.3 implies that u(λ, ·) and v(λ, ·) satisfy conditions of Lemma 3.7
with M(u) = C‖〈x〉k+ε

u‖ and M(v) = C‖〈x〉k+ε
v‖ and, by virtue of (3.11) and

(3.12), Cl(hl) ≤ C with a constant C independent of L > λ0 ≥ Λ. It follows that g

satisfies (3.28) and, by definition, g(l)(0) = 0. Hence, by virtue of Fourier-Parseval
identity as in (1.18), we obtain from (3.28) that

|Fl,L(t)| ≤ Ct−k−(3/2)

∣∣∣∣
∫

R

(
e−iσ2/4t − 1

)
ĝ(l)(σ)dσ

∣∣∣∣

≤ Ct−k−(3/2)−(ε/2)
∥∥〈σ〉εĝ(l)(σ)

∥∥
1

≤ Ct−k−(3/2)−(ε/2)‖〈x〉k+ε
u‖1‖〈x〉k+ε

v‖1. (3.31)

This completes the proof of Proposition 3.8. ¤

Completion of the proof of Theorem 3.1. We still have to estimate
(U2,L,high(t)u, v). We rewrite it as follows (cf. [7]): We have h′(−λ) = −h′(λ)
and G(λ)−G(−λ) = (1 + G0(−λ)V )−1{G0(λ)−G0(−λ)}(1 + V G0(λ))−1 by the
resolvent equation. It follows by writing G̃′0(λ) for (G0(λ)−G0(−λ))

(U2,L,high(t)u, v)

= − 1
4tπ

∫

R
e−itλ2

h̃′(λ)〈G(λ)−G(−λ)u, v〉dλ

= − 1
4tπ

∫

R
e−itλ2

h̃′(λ)
〈
G̃′0(λ)(1 + V G0(λ))−1u, (1 + V G0(λ))−1v

〉
dλ.

We then insert h2L,λ0/2(λ)2 which is 1 on the support of h̃′(λ) and write as

(U2,L,high(t)u, v) = − 1
4tπ

∫

R
e−itλ2

h̃′(λ)
〈
G̃′0(λ)uL,high(λ), vL,high(λ)

〉
dλ. (3.32)

Here G̃′0(λ)u may be written as
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G̃′0(λ)u(x) =
i

2π

∫

R

sinλ|x− y|
|x− y| u(y)dy. (3.33)

We note that for L À λ0 h′(λ) = λ−1µL(λ) + τ(λ) where

µL(λ) = (λ/L)χ′(λ/L)χ(λ/λ0), τ(λ) = (1/λ0)χ′(λ/λ0)

and, substituting this for h′(λ), we write (U2,L,high(t)u, v) as the sum

− 1
4tπ

∫

R
e−itλ2

µL(λ)
〈
λ−1G̃′0(λ)uL,high(λ), vL,high(λ)

〉
dλ (3.34)

− 1
4tπ

∫

R
e−itλ2

λτ(λ)
〈
λ−1G̃′0(λ)uL,high(λ), vL,high(λ)

〉
dλ. (3.35)

Here the integral kernel of λ−1G̃′0(λ) is given by

G1(λ, x, y) =
i sinλ|x− y|
2πλ|x− y| =

1
4πi

∫ 1

−1

eiθλ|x−y|dθ

and in (3.35) λτ(λ) is L-independent compactly supported smooth function sup-
ported far outside a neighborhood of 0. Thus, the argument used for studying
(U1,L,high(t)u, v) applies to (3.34) and (3.35) with eiλ(θ|x−y|) replacing the role of
eiλ|x−y| and produces the estimate

|(U2,L,high(t)u, v)| ≤ Ct−k−(3/2)−(ε/2)‖〈x〉k+ε
u‖1‖〈x〉k+ε

v‖1. (3.36)

This completes the proof of the theorem. ¤

4. Low energy estimate.

We now analyze the low energy part e−itHχ(
√

H/λ0)Pac. We define

ulow(λ) = χ(λ/2λ0)(1 + V G0(λ))−1u (4.1)

and, as in the previous section, express (e−itHχ(
√

H/λ0)u, v) as

e−itHχ
(√

H/λ0

)
u = (U1,low(t)u, v) + (U2,low(t)u, v),

where, with the notation G̃′0(λ) of the previous section,
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(U1,low(t)u, v) = − 1
2tπ

∫

R
e−itλ2

χ(λ/λ0)
〈
G′0(λ)ulow(λ), vlow(−λ)

〉
dλ; (4.2)

(U2,low(t)u, v) = − 1
4tπ

∫

R
e−itλ2

λ−1
0 χ′(λ/λ0)

〈
G̃′0(λ)ulow(λ), vlow(λ)

〉
dλ. (4.3)

The following proposition will play for the low energy part what Proposition 3.3
did for the high energy part.

Proposition 4.1. Let 0 < τ, ε be such that τ + ε < κmax. Then, the partial
Fourier transform ûlow(σ, x) = (Fλ→ρulow)(σ, x) satisfies

∫∫

R4
〈σ〉τ 〈x〉k−`+ε∣∣û(`)

low(σ, x)
∣∣dxdσ ≤ C‖〈x〉k+ε

u‖L1(R3) (4.4)

for every 0 ≤ ` ≤ k, where the constant C is independent of u.

For the proof of Proposition 4.1, we again borrow the basic strategy from [7].
Define B(λ, µ) = G0(λ)−G0(µ). Next lemma may be found in [7]:

Lemma 4.2. Let 0 ≤ ε + θ < κmax. Then, there exists a constant C > 0
independent of λ, µ ∈ R such that ‖〈x〉k+ε

V B(λ, µ)〈x〉−ε‖B(L1) ≤ C|λ− µ|θ.

Proof. The integral kernel of 〈x〉εB(λ, µ)〈x〉−ε is bounded by

∣∣∣∣
〈x〉ε(eλ|x−y| − eµ|x−y|)〈y〉−ε

4π|x− y|

∣∣∣∣ ≤ C|λ− µ|θ 〈x− y〉ε+θ

|x− y|

and Remark 2.8 implies the lemma. ¤

For ` = 0, 1, . . . , k, (1 + V G0(λ))−1 exists in B(〈x〉−`−ε
L1) and is norm con-

tinuous with respect to λ. Write S(µ) = (1 + V G0(µ))−1 so that

S(λ) = (1 + V G0(λ))−1 = (1 + S(µ)V B(λ, µ))−1S(µ). (4.5)

Lemma 4.2 guarantees that we can find d0 > 0 such that, for l = 0, . . . , k, and
|λ|, |µ| ≤ 2λ0 with |λ− µ| < 4d0, we have

‖S(µ)V B(λ, µ)‖B(〈x〉−l−εL1) < 1/2. (4.6)

For 0 < d < d0 and µj = 3jd, j = −n, . . . , n, n = [2(λ0 + d)/3d] + 1, we have
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χ(λ/2λ0) =
n∑

j=−n

χj,d(λ), χj,d(λ) ≡ χ((λ− µj)/d)χ(λ/2λ0). (4.7)

Using this, we decompose as

ulow(λ) =
n∑

j=1

χj,d(λ)S(λ)u ≡
n∑

j=1

ulow,j . (4.8)

We have for λ such that χj,d(λ) 6= 0 that

S(λ) =
(
1 + χ((λ− µj)/2d)S(µj)V B(λ, µj)

)−1
S(µj)

and, by virtue of (4.6), we may expand the right hand side as

S(λ) =
∞∑

m=0

(−1)m
(
χ((λ− µj)/2d)S(µj)V B(λ, µj)

)m
S(µj) (4.9)

in the space B(〈x〉−l−ε
L1), 0 ≤ l ≤ k and 0 ≤ ε < κmax, uniformly on the support

of χj,d(λ). We define for |µ| ≤ 2λ0

Tµ(λ) = χ((λ− µ)/2d)S(µ)V B(λ, µ).

Lemma 4.3. Let 0 ≤ ε + τ < κmax and let 0 ≤ θ < κmax − (ε + τ). Then,
for 0 < d < 1, we have

∫

R
〈σ〉τ∥∥〈x〉k−`+εF(T (`)

µ (λ)u)(σ, x)
∥∥

1
dσ ≤ Cd−`+θ‖〈x〉`+ε

u‖1 (4.10)

for ` = 0, . . . , k, where C does not depend on |µ| ≤ 2λ0 or 0 < d < 1.

For the proof we need the following lemma.

Lemma 4.4. Let 0 ≤ ε, θ ≤ 1 be such that 0 ≤ θ + ε ≤ 1. Then, there exists
a constant C > 0 such that for 0 < a ≤ 1 and 0 < ρ < ∞ we have

a

∫
〈σ〉ε|χ̂(a(σ − ρ))− χ̂(aσ)|dσ ≤ Caθ〈ρ〉θ+ε. (4.11)

When ε = 0, we may replace 〈ρ〉θ on the right by |ρ|θ.
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Proof. We split the domain of integration into |σ| ≤ 10ρ and |σ| > 10ρ.
The integral over |σ| ≤ 10ρ is bounded by both of

〈10ρ〉εa
∫

|σ|≤10ρ

|χ̂(a(σ − ρ))− χ̂(aσ)|dσ ≤ 2〈10ρ〉ε‖χ̂‖1, (4.12)

2a‖χ̂‖∞
∫

|σ|<10ρ

〈σ〉εdσ ≤ Ca〈10ρ〉1+ε‖χ̂‖∞, (4.13)

and, hence, by the right of (4.11). When |σ| > 10ρ, we apply mean value theorem
and obtain that, for any 0 ≤ N < ∞,

|χ̂(aσ − aρ)− χ̂(aσ)| = aρ|χ̂′(aσ − aξρ)| ≤ CNaρ〈aσ〉−N , 0 < ξ < 1.

It follows by taking N = 2 − θ that the integral over |σ| > 10ρ may be bounded
by a constant times

aρ

∫

|σ|≥10aρ

〈
σ

a

〉ε

〈σ〉−2+θdσ ≤ Caρ

(
1 +

1
aε

)
〈aρ〉θ+ε−1 ≤ Ca1−ερ〈aρ〉θ+ε−1.

The right hand side is bounded again by Caθ〈ρ〉θ+ε because

(
aρ

〈aρ〉
)1−ε−θ

< 1 <

( 〈ρ〉
ρ

)ε+θ

.

For ε = 0 the statement follows easily via the mean value theorem. ¤

Proof of Lemma 4.3. Since S(µ) ∈ B(〈x〉−l−ε
L1) for l = 0, . . . , k and it

is independent of λ, it suffices to prove (4.10) for χ((λ− µ)/2d)V B(λ, µ) in place
of Tµ(λ). We have

Fλ→σ{χ((λ− µ)/2d)V B(λ, µ)u}(σ, x) =
∫

R3
K(σ, x, y)u(y)dy,

K(σ, x, y) = 2de−iµ(σ−|x−y|)V (x)
(

χ̂(2d(σ − |x− y|))− χ̂(2dσ)
4π|x− y|

)
.

Lemma 4.4 and 〈x〉ε〈y〉−ε ≤ Cε〈x− y〉ε imply that, for any 0 ≤ τ + θ ≤ 1,

∫
〈σ〉τ |〈x〉k+ε

K(σ, x, y)〈y〉−ε|dσ ≤ C|〈x〉kV (x)|dθ 〈x− y〉τ+ε+θ

|x− y| . (4.14)
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Since 〈x〉kV ∈ `p(Lq) and τ + ε + θ < κmax, Remark 2.8 implies that the operator
with integral kernel given by the right side of (4.14) is bounded in L1(R3) with
norm bounded by dθ. This proves (4.10) for ` = 0. We now let ` ≥ 1. By Leibniz’
rule, we have

(χ((λ− µ)/2d)V B(λ, µ))(`)u

= (1/2d)`χ(`)((λ− µ)/2d)V B(λ, µ)u

+
∑̀

l=1

(1/2d)(`−l)χ(`−l)((λ− µ)/2d)V G
(l)
0 (λ)u. (4.15)

The argument for the case ` = 0 applies to the first term on the right, and we
conclude that it satisfies the estimate (4.10). We have by Fubini’s theorem that

Fλ→σ

{
(2d)l−`χ(`−l)((λ− µ)/2d)V G

(l)
0 (λ)u(x)

}
(σ)

=
∫

R3
(2d)l−`+1ile−iµ(σ−|x−y|)V (x)

χ̂(`−l)(2d(σ − |x− y|))
4π|x− y|1−l

u(y)dy.

We denote the integral kernel on the right by K`l(σ, x, y). We have that

2d

∫

R
〈σ〉τ ∣∣χ̂(`−l)(2d(σ − |x− y|))∣∣dσ

≤ C

(
〈x− y〉τ +

∫

R

(
1 +

∣∣∣∣
σ

d

∣∣∣∣
τ)∣∣χ̂(`−l)(σ)

∣∣dσ

)
≤ Cd−τ 〈x− y〉τ

for 0 < d < 1. It follows that

∫
〈σ〉τ 〈x〉k−`+ε|K`,l(σ, x, y)|〈y〉−`−ε

dσ ≤ Cdl−`−τ 〈x〉k|V (x)|〈x− y〉ε+τ

|x− y|

and, as previously, the right side is the kernel of a bounded operator in L1 with
the norm bounded by Cdl−`−τ ≤ Cdθ−`, l = 1, . . . , k. This completes the proof.

¤

We continue to write f̂(σ, x) = (Fλ→σf)(σ, x).

Lemma 4.5. Let 0 ≤ ε, τ and θ satisfy 0 ≤ ε+ τ + θ < κmax. Let 0 < d < 1.
Suppose that S1(λ), . . . , Sn(λ) are B(L1(R3))-valued functions of λ ∈ R which are
strongly C` class and are compactly supported. Write for u ∈ L1(R3)
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(Slu)(λ, x) = Sl(λ)u(x) ∈ L1
(
R4

(λ,x)

)
.

Suppose further that derivatives S
(`)
l u, ` = 0, . . . , k, satisfy

∫

R
〈σ〉τ

∥∥∥〈x〉k−`+ε
Ŝ

(`)
l u(σ, x)

∥∥∥
1
dσ ≤ Ckd−`+θ‖〈x〉`+ε

u‖1. (4.16)

Then, for ` = 0, . . . , k, Tn(λ) ≡ Sn(λ) · · ·S1(λ) satisfies

∫

R
〈σ〉τ

∥∥∥〈x〉k−`+ε
T̂

(`)
n u(σ, x)

∥∥∥
1
dσ ≤ Cn

( n∏

k=1

Ck

)
d−`+nθ‖〈x〉`+ε

u‖1, (4.17)

where C is independent of n, C1, . . . , Cn, d and u.

Proof. We prove the lemma by induction. For n = 1, (4.17) holds trivially.
We assume that it holds upto n− 1 and prove that it holds also for n. Define for
u ∈ L1(R3)

(Tn,σu)(λ, x) = {Sn(λ)ûn−1(σ)}(x) ûn−1(σ, x) = T̂n−1u(σ, x).

Since the Fourier inversion formula is satisfied for L1-valued functions f(λ) such
that f, f̂ ∈ L1(R, L1(R3)), we have

Tn−1u(λ, x) =
1√
2π

∫

R
eiλσûn−1(σ, x)dσ.

It follows after applying Fubini’s theorem that

T̂nu(ρ, x) =
1
2π

∫

R

( ∫

R
e−iλ(ρ−σ){Sn(λ)ûn−1(σ)}(x)dλ

)
dσ

=
1√
2π

∫

R
T̂n,σu(ρ− σ, x)dσ. (4.18)

Thus, Minkowski’s inequality and the assumption on Sn(λ) imply

∫

R
〈ρ〉τ

∥∥∥〈x〉k+ε
T̂nu(ρ)

∥∥∥
1
dρ

≤ 1√
2π

∫

R

( ∫

R
〈ρ〉τ

∥∥∥〈x〉k+ε
T̂n,σu(ρ− σ)

∥∥∥
1
dρ

)
dσ
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≤ Cτ√
2π

∫

R

( ∫

R
〈ρ〉τ

∥∥∥〈x〉k+ε
T̂n,σu(ρ)

∥∥∥
1
dρ + 〈σ〉τ

∫

R

∥∥∥〈x〉k+ε
T̂n,σu(ρ)

∥∥∥
1
dρ

)
dσ

≤ CεCndθ

√
2π

( ∫

R
‖〈x〉εûn−1(σ)‖1dσ +

∫

R
〈σ〉τ‖〈x〉εûn−1(σ)‖1dσ

)
.

Then, the induction hypothesis implies that (4.17) holds if ` = 0. For derivatives
we proceed similarly and argument goes almost in parallel. In view of Leibniz’s
rule it suffices to prove (4.17) for

T (`,l)
n (λ) ≡ S(l)

n (λ)T (`−l)
n−1 (λ), l = 0, . . . , `

in place of T
(`)
n (λ). If we define T

(`,l)
n,σ u(λ) = S

(l)
n (λ)T̂ (`−l)

n−1 u(σ), then

T̂
(`,l)
n u(ρ) =

1√
2π

∫

R
T̂

(`,l)
n,σ u(ρ− σ)dσ (4.19)

as in (4.18), and Minkowski’s inequality and the assumption (4.16) imply

∫

R
〈ρ〉τ

∥∥∥〈x〉k−`+ε
T̂

(`,l)
n u(ρ)

∥∥∥
1
dρ

≤ 1√
2π

∫

R

( ∫

R
〈ρ〉τ

∥∥∥〈x〉k−l+ε
T̂

(`,l)
n,σ u(ρ− σ)

∥∥∥
1
dρ

)
dσ

≤ CεCnd θ−l

( ∫

R

∥∥∥〈x〉l+ε
T̂

(`−l)
n−1 u(σ)

∥∥∥dσ +
∫

R
〈σ〉τ

∥∥∥〈x〉l+ε
T̂

(`−l)
n−1 u(σ)

∥∥∥
1
dσ

)

as previously. Since l ≤ k− (`− l), the induction hypothesis implies that the right
side is bounded by

CεCnd θ−l · Cn−1

( n−1∏

j=1

Cj

)
d−(`−l)+(n−1)θ‖〈x〉`−l+ε

u‖1.

This implies (4.17) for n and completes the proof. ¤

Proof of Proposition 4.1. We apply Lemma 4.5 to

S1(λ) = · · · = Sm(λ) ≡ Tµj
(λ), µj = 3jd, j = −n, . . . , n.

Lemma 4.3 implies that S1(λ), · · · , Sm(λ) satisfy the assumption of Lemma 4.5
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and we have

∫

R
〈σ〉τ

∥∥〈x〉k−`+εF({Tµj (λ)mu}(`))(σ, x)
∥∥

1
dσ ≤ Cmdmθ−`‖〈x〉`+ε

u‖1 (4.20)

for ` = 0, . . . , k, where C is independent of 0 < d < 1, j and u. Choose d so that
Cdθ < 1/2 and we sum up both sides of (4.20) for m = 0, 1, . . . . It follows by
virtue of (4.9) that all terms ulow,j in the right of (4.8) satisfy

∫

R
〈σ〉τ

∥∥〈x〉k−`+εF(u(`)
low,j)(σ, x)

∥∥
1
dσ ≤ C`‖〈x〉`+ε

u‖1, ` = 0, . . . , k. (4.21)

Hence, by summing up (4.21) over j = −n, . . . , n, we see that the same is true for
ulow. This proves Proposition 4.1. ¤

5. Proof of Theorem 1.2.

By virtue of Proposition 4.1, the entirely the same argument used for proving
Theorem 3.1 implies that, for any 0 ≤ ε < κmax,

|(U2,low(t)u, v)| ≤ Ct−k−(3/2)−(ε/2)‖〈x〉k+ε
u‖‖〈x〉k+ε

v‖. (5.1)

Thus, we have only to deal with (U1,low(t)u, v). We replace ulow in (4.2) by the
right of (4.8) and vlow by the corresponding formula. This produces

(U1,low(t)u, v) = −
n∑

a,b=−n

1
2tπ

∫

R
e−itλ2

χ(λ/λ0)
〈
G′0(λ)ulow,a(λ), vlow,b(−λ)

〉
dλ.

(5.2)

Then, unless a = b = 0, the integrand vanishes in a neighborhood of λ = 0.
Hence all terms except the one with a = b = 0 in (5.2) are bounded by
Ct−k−(3/2)−(ε/2)‖〈x〉k+ε

u‖‖〈x〉k+ε
v‖ and we may put them into the remainder.

We are left with

−1
2tπ

∫

R
e−itλ2

χ(λ/λ0)
〈
G′0(λ)ulow,0(λ), vlow,0(−λ)

〉
dλ

which we write, using the Parseval formula, in the following form:

e∓3π/4

(2|t|)3/2iπ

∫

R
eiσ2/4tF{

χ(λ/λ0)
〈
G′0(λ)ulow,0(λ), vlow,0(−λ)

〉}
(σ)dσ. (5.3)
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We write f(λ) = χ(λ/λ0)〈G′0(λ)ulow,0(λ), vlow,0(−λ)〉 for shortening the formula.
We expand eiσ2/4t via Taylor’s formula

[k/2]∑
s=0

1
s!

(
i
σ2

4t

)s

+
1

([k/2]− 1)!

(
i
σ2

4t

)[k/2] ∫ 1

0

(1− θ)[k/2]−1
(
eiθ(σ2/4t) − 1

)
dθ.

(5.4)

Inserting the remainder term of (5.4) into (5.3) yields

C

|t|3/2+[k/2]

∫ 1

0

(1− θ)[k/2]−1

( ∫

R
σ2[k/2]

(
eiθ(σ2/4t) − 1

)
f̂(σ)dσ

)
dθ. (5.5)

We estimate |eiθ(σ2/4t) − 1| by C|σ2/4t|ε/2 if k is even and by C|σ2/4t|(1+ε)/2 if k

is odd and estimate the modulus of (5.5) by

C

|t|(k+3+ε)/2

∫

R
|σ|k+ε|f̂(σ)|dσ ≤ C

|t|(k+3+ε)/2

∫

R
〈σ〉ε∣∣f̂ (k)(σ)

∣∣dσ.

Then, Lemma 3.7 and Proposition 4.1 imply that the right side is bounded by
C|t|(k+3+ε)/2‖〈x〉k+ε

u‖1‖〈x〉k+ε
v‖1 and the contribution from the remainder term

(5.5) may also be put into the remainder. Replacing eiσ2/4t in (5.3) by the first
term of (5.4) produces

[k/2]∑
s=0

1
s!

√
2e∓3π/4is

(2|t|)3/2(4t)si
√

π

1√
2π

∫

R
σ2sf̂(σ)dσ

=
[k/2]∑
s=0

√
2e∓3π/4is

(2|t|)3/2(4t)si
√

πs!
(
(−∂2

λ)sf
)
(0).

Recalling that (1 + G0(λ)V )−1G′0(λ)(1 + V G0(λ))−1 = G′(λ), we see that
((−∂2

λ)sf)(0) = (−1)s〈G(2s+1)(0)u, v〉 in the right hand side and the leading terms
in the expansion are expressed in the form

[k/2]∑
s=0

√
2e∓3π/4(−i)s

(2|t|)3/2(4t)si
√

πs!
〈G(2s+1)(0)u, v〉.

Thus, the proof of Theorem 1.2 is completed by the following lemma.
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Lemma 5.1. When j is even, operator G(j+1)(0) is of finite rank.

Proof. Write Q(λ) = (1 + G0(λ)V )−1. We have (1 + V G0(λ)V )−1 =
Q(−λ)∗. Differentiating (1.13) β times by using Leibniz’ rule, we have

G(j+1)(0) =
∑

α+β+γ=j

(−1)γ l!
α!β!γ!

Q(α)(0)G(β+1)
0 (0)Q(0)∗(γ).

If β is even, then G
(β+1)
0 (0) is of finite rank. If β is odd, then either α or γ is odd.

If α is odd, Q(α)(0) is of finite rank, since Q(α)(0) is a linear combination of

QG
(l1)
0 V QG

(l2)
0 V Q · · ·G(ln)

0 V Q, l1 + · · ·+ ln = α,

where the variable λ = 0 is omitted, and at least one of lj is odd. Likewise,
Q∗(γ)(0) is of finite rank if γ is odd. The lemma follows. ¤
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