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Abstract. In this paper a counterpart of the classical Poisson integral
formula is found for a class of standard weighted Laplace differential operators
in the unit disc. In the process the corresponding Dirichlet boundary value
problem is solved for arbitrary distributional boundary data. Boundary limits
and representations of the associated solutions are studied within a frame-
work of homogeneous Banach spaces. Special emphasis is put on the so-called
relative completion of a homogeneous Banach space.

0. Introduction.

Let Ω be a domain in the complex plane C equipped with a weight function
w : Ω → (0,∞) which provides us with a way to calculate weighted area using the
weighted area element

dAw(z) = w(z)dA(z), z = x + iy ∈ Ω, (0.1)

where dA(z) = dxdy is the usual planar Lebesgue area measure. By geometric con-
siderations the area element (0.1) is the area element induced by the (Riemannian)
metric

dsw(z)2 = w(z)|dz|2, z ∈ Ω, (0.2)

where |dz| is the usual arclength element of the complex plane. We mention
here Kobayashi and Nomizu [24], [25] as an extensive background on differential
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geometry.
A fundamental object of study in complex analysis is the Cauchy-Riemann

differential operator

∂̄z =
∂

∂z̄
=

1
2

(
∂

∂x
− 1

i

∂

∂y

)
, z = x + iy ∈ C,

which we can think of as a vector field C 3 z 7→ ∂̄z over the complex plane. The
metric (0.2) suggests us to consider the weighted Cauchy-Riemann differential
operator

∂̄w,z = w(z)−1/2∂̄z, z ∈ Ω.

A straightforward calculation shows that the formal adjoint (∂̄w)∗ of ∂̄w with
respect to the hermitian pairing

(u, v) =
∫∫

C
u(z)v(z)dA(z)

is the differential operator

(∂̄w)∗z = −∂zw(z)−1/2, z ∈ Ω.

At this point it is natural to consider the second order operator (∂̄w)∗∂̄w given by
(∂̄w)∗∂̄w = −∆w, where ∆w is the weighted Laplacian

∆w,z = ∂zw(z)−1∂̄z, z ∈ Ω. (0.3)

We mention that weighted Laplacians of the form (0.3) seem first to have been
systematically studied by Paul Garabedian [12].

In the study of Bergman spaces of the unit disc D one often considers so-called
standard weights which are weight functions of the form

wα(z) = (1− |z|2)α, z ∈ D,

where α > −1 is a real parameter. For an account of recent developments in
Bergman space theory we mention the monograph [17] by Hedenmalm, Korenblum
and Zhu. The case α = 0 is commonly referred to as the unweighted case, whereas
the case α = 1 has attracted special attention recently with contributions by
Hedenmalm, Shimorin and others (see for instance [18], [19], [20], [32]).
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To simplify notation let us denote by ∆α the weighted Laplace operator cor-
responding to the weight wα:

∆α,z = ∂z(1− |z|2)−α∂̄z, z ∈ D,

where α > −1. Note that for α 6= 0 the differential operator ∆α has a certain
singular or degenerate behavior on the boundary T = ∂D. Of particular interest
is the α-harmonic equation

∆αu = 0 in D,

and its associated Dirichlet boundary value problem

{
∆αu = 0 in D,

u = f on T.
(0.4)

Here the boundary data f ∈ D′(T) is a distribution on T, and the boundary
condition in (0.4) is to be understood as ur → f in D′(T) as r → 1, where we for
a function u in D employ the notation

ur(eiθ) = u(reiθ), eiθ ∈ T, (0.5)

for 0 ≤ r < 1.
We show that the Poisson kernel for the α-harmonic Dirichlet problem (0.4)

is the function given by the formula

Pα(z) =
(1− |z|2)α+1

(1− z)(1− z̄)α+1
, z ∈ D,

where as above α > −1 is a real parameter (see Section 2). By this we mean that
for every f ∈ D′(T) the distributional Dirichlet problem (0.4) is uniquely solvable
by the Poisson integral

u(z) = Pα[f ](z) = Pα,r ∗ f(eiθ), z = reiθ ∈ D,

where ∗ denotes convolution of distributions on T and Pα,r(eiθ) = Pα(reiθ) for 0 ≤
r < 1 and eiθ ∈ T as in (0.5). We also calculate an associated homogeneous power
series expansion of the α-harmonic Poisson kernel Pα. The individual terms eα,k

for k < 0 in this homogeneous expansion are closely related to certain incomplete
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beta function ratios appearing in statistics (see Section 1).
To discuss boundary limits and representations of α-harmonic functions we

consider so-called homogeneous Banach spaces. Let us fix some terminology. By
a Banach space of distributions on T we mean a Banach space X continuously
embedded in D′(T). We say that the space X is translation invariant if it has
the property that feiθ ∈ X and ‖feiθ‖X = ‖f‖X whenever f ∈ X and eiθ ∈ T;
here the translation feiθ of f ∈ D′(T) is defined in the usual sense of distribution
theory. By a homogeneous Banach space on T we mean a Banach space B of
distributions on T which is translation invariant and has the property that for
every element f ∈ B the translation T 3 eiθ 7→ feiθ is a continuous B-valued map
on T. Examples of homogeneous Banach spaces are plentiful (see Section 3). An
influential treatment of homogeneous Banach spaces is Katznelson [23].

The kernel Pα has a property of bounded L1-means

sup
0≤r<1

1
2π

∫

T
|Pα(reiθ)|dθ = lim

r→1

1
2π

∫

T
|Pα(reiθ)|dθ =

Γ(α + 1)
Γ(α/2 + 1)2

, (0.6)

where Γ is the Gamma function and α > −1 (see Section 2). If B is a homogeneous
Banach space on T and f ∈ B, then standard arguments show that the above L1-
means bound (0.6) leads to the regularizing property limr→1 ur = f in B when
u = Pα[f ] and ur is as in (0.5) (see Sections 3 and 5).

In order to discuss Poisson integral representations of α-harmonic functions
we use the so-called relative completion B̃ of a homogeneous Banach space B on
T. We show that an α-harmonic function u in D has the property that ur ∈ B for
0 ≤ r < 1 and

sup
0≤r<1

‖ur‖B < ∞

if and only if it has the form of a Poisson integral u = Pα[f ] of some element f ∈ B̃

(see Section 5). For α = 0 this result unifies classical results on Poisson integral
representation of harmonic functions in the unit disc dating back to Herglotz and
F. Riesz.

Let B be a homogeneous Banach space on T. The relative completion B̃

of B is a translation invariant Banach space of distributions on T containing B

isometrically having the same Fourier spectra as B and an additional property of
relative completeness:

• If fn ∈ B̃, ‖fn‖B̃ ≤ C for n ≥ 1 and fn → f in D′(T), then f ∈ B̃ and
‖f‖B̃ ≤ C.
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We show that every homogeneous Banach space B on T has a relative completion
and that this relative completion is uniquely determined by its defining properties
(see Section 4). We also discuss a canonical predual of the relative completion B̃

which in general is not a space of distributions on T.
The relative completion seems first to have been introduced by Gagliardo [11]

and then further studied by Braun and Feichtinger [8], and others. We mention
that Braun and Feichtinger [8] consider function spaces living on more general
topological groups and use an assumption of double module structures. It is ev-
ident that such an assumption of double module structures is not fulfilled in our
setup of a general homogeneous Banach space B on T where the Fourier spectrum
of B has to be taken into account in the analysis. As a matter of convenience
we consider in this paper homogeneous Banach spaces continuously embedded in
D′(T). Of course, other choices of embeddings are possible.

Here we also wish to mention the general study of existence and uniqueness of
preduals initiated by Dixmier [10] and Grothendieck [15] and further pursued by
Godefroy and others (see [14] for a survey); see also Kaijser [22]. We mention also
that preduals of Qp spaces have recently been investigated by Aleman, Carlsson
and Persson [3], [4] using Cauchy duality.

The term Fatou theorems is commonly used for results that guarantee ex-
istence of non-tangential boundary values almost everywhere. We provide some
basic results of this type for α-harmonic functions (see Section 6). The proofs of
these results depend on a good control of kernels of the form

Kα(z) = |Pα(z)| = (1− |z|2)α+1

|1− z|α+2
, z ∈ D,

where α > −1, which allows us to apply known techniques from the study of Fatou
theorems for harmonic functions.

1. Power series expansion of α-harmonic functions.

In this section we prove power series expansion formulas for α-harmonic func-
tions. We begin with a lemma.

Lemma 1.1. Let α ∈ R. For a positive integer k ∈ Z+, denote by ẽα,−k the
function

ẽα,−k(z) =
( ∫ 1

0

tk−1(1− t|z|2)αdt

)
z̄k, z ∈ D.

Then ẽα,−k solves the ∂̄-problem
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∂̄ẽα,−k(z) = wα(z)z̄k−1, z ∈ D.

Proof. Introduce the function pα,k given by

pα,k(x) =
∫ 1

0

tk−1(1− tx)αdt, −1 < x < 1, (1.1)

for k ∈ Z+. Now ẽα,−k(z) = pα,k(|z|2)z̄k for z ∈ D, and a differentiation gives

∂̄ẽα,−k(z) = p′α,k(|z|2)zz̄k + pα,k(|z|2)kz̄k−1

=
(|z|2p′α,k(|z|2) + kpα,k(|z|2))z̄k−1, z ∈ D.

By the last equality we see that the conclusion of the lemma will follow if pα,k

satisfies the ordinary differential equation

xp′α,k(x) + kpα,k(x) = (1− x)α, −1 < x < 1.

By differentiation under the integral we have

p′α,k(x) = −
∫ 1

0

tkα(1− tx)α−1dt, (1.2)

and an integration by parts gives

xp′α,k(x) = (1− x)α − k

∫ 1

0

tk−1(1− tx)αdt.

This completes the proof of the lemma. ¤

To ensure convergence of the power series expansion in Theorem 1.2 below
we shall need some estimates of the functions pα,k defined by (1.1) for α ∈ R and
k ∈ Z+. Recall by (1.2) that

p′α,k(x) = −αpα−1,k+1(x). (1.3)

When α ≥ 0 and 0 ≤ r < 1 we have the estimate

|pα,k(x)| ≤ (1 + r)α

∫ 1

0

tk−1dt =
(1 + r)α

k
, |x| ≤ r,
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and when α < 0 we have |(1− tx)α| ≤ (1− r)α if |x| ≤ r and t ∈ [0, 1]. Thus, for
any α ∈ R and 0 ≤ r < 1 we have

|pα,k(x)| ≤ Cα/k for |x| ≤ r, (1.4)

where Cα = max{(1 + r)α, (1− r)α}.

Theorem 1.2. A function u in D is α-harmonic if and only if it is given
by a convergent power series expansion of the form

u(z) =
∞∑

k=1

c−k

( ∫ 1

0

tk−1(1− t|z|2)αdt

)
z̄k +

∞∑

k=0

ckzk, z ∈ D, (1.5)

for some sequence {ck}∞k=−∞ of complex numbers such that

lim sup
|k|→∞

|ck|1/|k| ≤ 1.

Proof. It is straightforward to check using Lemma 1.1 that every function
u of the form (1.5) is α-harmonic.

Assume next that u is α-harmonic. Then the function w−1
α ∂̄u is conjugate-

analytic, and therefore has a power series expansion of the form

wα(z)−1∂̄u(z) =
∞∑

k=0

akz̄k, z ∈ D,

where lim supk→∞|ak|1/k ≤ 1. Consider now the function f given by

f(z) = u(z)−
∞∑

k=1

c−kẽα,−k(z), z ∈ D, (1.6)

where the functions ẽα,−k are as in Lemma 1.1 and c−k = ak−1 for k ≥ 1. A
differentiation using Lemma 1.1 gives

∂̄f(z) =
∞∑

k=0

akwα(z)z̄k −
∞∑

k=1

ak−1wα(z)z̄k−1 = 0, z ∈ D,

showing that the function f is analytic in D. Solving for u in (1.6) we obtain
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u(z) =
∞∑

k=1

c−kẽα,−k(z) + f(z) =
∞∑

k=1

c−kẽα,−k(z) +
∞∑

k=0

ckzk, z ∈ D.

This completes the proof of the theorem. ¤

Remark 1.3. Recall that the space C∞(D) is naturally equipped with the
topology given by all the semi-norms of the form

PN (u) = max{|∂n∂̄mu(z)| : z ∈ KN , n + m ≤ N}, u ∈ C∞(D), (1.7)

where n,m ≥ 0 and the Ki form a nested sequence of compact sets growing to D.
In view of (1.3) and the estimates (1.4) for the functions pα,k it is then clear that
the power series expansion (1.5) converges in C∞(D).

Remark 1.4. We mention also that the power series expansion in Theorem
1.2 can be viewed as a special instance of a homogeneous expansion with respect
to the group of rotations of the disc. Indeed, let the group action be given by

Reiθu(z) = u(eiθz), z ∈ D,

for u ∈ C∞(D) and eiθ ∈ T. It is well-known that every function u ∈ C∞(D)
admits a unique expansion of the form

u(z) =
∞∑

k=−∞
uk(z), z ∈ D,

convergent in C∞(D), where uk is homogeneous of degree k with respect to rota-
tions in the sense that Reiθuk(z) = eikθuk(z) for all eiθ ∈ T. Moreover, uk is given
by

uk(z) =
1
2π

∫ π

−π

u(eiθz)e−ikθdθ, z ∈ D,

and PN (uk) ≤ Cm/(1+k2)m for m = 1, 2, . . ., where Cm = Cm,N does not depend
on k, and the semi-norms PN are given by (1.7). We leave it to the reader to
confirm that this holds for the functions in the expansion (1.5).

We shall throughout this paper let φk denote the exponential monomials on
T, that is,
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φk(eiθ) = eikθ, eiθ ∈ T, (1.8)

for k ∈ Z. The following proposition exemplifies the fact that the restriction
α > −1 in the parameter range is essential for a satisfactory existence theory for
the α-harmonic Dirichlet problem (0.4).

Proposition 1.5. Let α ∈ R. Assume that there exists an α-harmonic
function u in D such that limr→1 ur = φk in D′(T), where k < 0 is a negative
integer and φk is given by (1.8). Then α > −1.

Proof. Consider the power series expansion (1.5) from Theorem 1.2. By
assumption we have that 〈ur, φ−k〉 → 1 as r → 1, where 〈·, ·〉 indicates distribu-
tional pairing. A calculation shows that

〈ur, φ−k〉 = c−kẽα,k(r)

for 0 ≤ r < 1, where the function ẽα,k is as in Lemma 1.1. The result now follows
from the fact that ẽα,k(r) →∞ as r → 1 if α ≤ −1 by the monotone convergence
theorem. ¤

From now on we will only treat the case α > −1. For integers k < 0 we
introduce the functions

eα,k(z) =
Γ(|k|+ α + 1)
Γ(|k|)Γ(α + 1)

( ∫ 1

0

t|k|−1(1− t|z|2)αdt

)
z̄|k|, z ∈ D, (1.9)

where Γ(x) =
∫∞
0

tx−1e−tdt is the Gamma function. For integers k ≥ 0 we set

eα,k(z) = zk. (1.10)

Note that with the functions eα,k, k ∈ Z, the power series expansion of an α-
harmonic function u takes the form

u(z) =
∞∑

k=−∞
ckeα,k(z), z ∈ D, (1.11)

by Theorem 1.2. Note also that the term ckeα,k in (1.11) is the k-th homogeneous
part of u in the terminology of Remark 1.4.

Factors of normalization are sometimes conveniently described using the Beta
integral
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B(x, y) =
∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)
Γ(x + y)

, x, y > 0

(see [5, Theorem 1.1.4]). Using this formula it is easy to see that the factor of
normalization in (1.9) ensures that eα,k(eiθ) = φk(eiθ) for eiθ ∈ T. Recall in this
context also the generalized binomial coefficients given by

(
x

y

)
=

Γ(x + 1)
Γ(y + 1)Γ(x− y + 1)

=
1

(x + 1)B(x− y + 1, y + 1)
, (1.12)

as well as the standard power series expansion

1
(1− z)β

=
∞∑

n=0

(
n + β − 1

n

)
zn =

∞∑
n=0

Γ(n + β)
n!Γ(β)

zn, z ∈ D, (1.13)

valid when Reβ > 0.
We next turn to the calculation of the functions eα,k. For this we need a few

lemmas.

Lemma 1.6. Let α > −1 and let k ≥ 1 be a positive integer. Denote by u

the function

u(z) =
( ∞∑

n=0

(
n + k − 1

n

)
(1−|z|2)n−(1−|z|2)α+1

∞∑
n=0

(
n + α + k

n + α + 1

)
(1−|z|2)n

)
z̄k

for z ∈ D \ {0}. Then

∂̄u(z) =
Γ(α + k + 1)

Γ(α + 1)(k − 1)!
(1− |z|2)αz̄k−1, z ∈ D \ {0}.

Proof. By (1.13) we have

( ∞∑
n=0

(
n + k − 1

n

)
(1− |z|2)n

)
z̄k =

z̄k

|z|2k
=

1
zk

for z ∈ D \ {0}. Introduce the auxiliary function

fα(t) = tα+1
∞∑

n=0

(
n + α + k

n + α + 1

)
tn, 0 < t < 1.
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With this notation, u takes the form

u(z) =
1
zk
− fα(1− |z|2)z̄k, z ∈ D \ {0}. (1.14)

Differentiating this identity we obtain

∂̄u(z) =
(
(1− (1− |z|2))f ′α(1− |z|2)− kfα(1− |z|2))z̄k−1, z ∈ D \ {0}. (1.15)

A straightforward calculation using (1.12) now shows that

(1− t)f ′α(t)− kfα(t) =
Γ(α + k + 1)

Γ(α + 1)(k − 1)!
tα

for 0 < t < 1. By (1.15) this yields the conclusion of the lemma. ¤

The following lemma relates eα,−k to the function u in Lemma 1.6.

Lemma 1.7. Let the function u be as in Lemma 1.6. Then

u(z) = eα,−k(z) + c/zk, z ∈ D \ {0},

for some complex number c.

Proof. Let f = u − eα,−k in D \ {0}. In view of (1.9) we have ∂̄f = 0 in
D \ {0} by Lemmas 1.1 and 1.6. Hence f is analytic in the punctured disc D \ {0}
by Weil’s lemma. Note also that f is homogeneous of degree −k with respect to
rotations in the sense that f(eiθz) = e−ikθf(z) for eiθ ∈ T and z ∈ D \ {0}. Using
this homogeneity property we conclude that the Laurent series expansion of f in
D \ {0} has the form c/zk for some complex number c. This completes the proof.

¤

We next investigate the limit behavior of u(z) as z → 0.

Lemma 1.8. Let u be as in Lemma 1.6. Then limz→0 zku(z) = 0.

Proof. Consider the function fα from the proof of Lemma 1.6. Note that
the generalized binomial coefficient given by (1.12) can also be written as

(
n + α + k

n + α + 1

)
=

1
(k − 1)!

k−1∏

j=1

(n + α + 1 + j).
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Hence it is a polynomial in n of degree k− 1 with leading coefficient 1/(k− 1)!. It
is also increasing in α for α > −1. This leads to the estimates

(
n + k − 1

n

)
≤

(
n + α + k

n + α + 1

)
≤

(
n + k − 1

n

)
+ c

(
n + k − 2

n

)

for n = 0, 1, 2, . . . , where c = cα,k is a positive constant. For the function fα this
gives the estimates

1
(1− t)k

≤ fα(t)
tα+1

≤ 1
(1− t)k

+
c

(1− t)k−1

for 0 < t < 1. Passing to the function u using (1.14) we have the asymptotics

u(z) =
1
zk
− fα(1− |z|2)z̄k =

1
zk
− (1− |z|2)α+1

(
1

|z|2k
+O(|z|−2k+2)

)
z̄k

= (1− (1− |z|2)α+1)
1
zk

+O(|z|−k+2) = O(|z|−k+2)

as z → 0. This gives the conclusion of the lemma. ¤

We can now finish the calculation of eα,k.

Theorem 1.9. Let α > −1 and let k ≥ 1 be a positive integer. Then

eα,−k(z) =
( ∞∑

n=0

(
n + k − 1

n

)
(1− |z|2)n

− (1− |z|2)α+1
∞∑

n=0

(
n + α + k

n + α + 1

)
(1− |z|2)n

)
z̄k (1.16)

for z ∈ D \ {0}.

Proof. Let u be as in Lemma 1.6. By Lemma 1.7 we have that

u(z) = eα,−k(z) + c/zk, z ∈ D \ {0},

for some complex number c. In view of Lemma 1.8 it follows that c = 0. ¤

When α is a non-negative integer we have cancellation in (1.16).
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Corollary 1.10. Let α be a non-negative integer and let k ≥ 1. Then

eα,−k(z) =
( α∑

n=0

(
n + k − 1

n

)
(1− |z|2)n

)
z̄k, z ∈ D.

Proof. The result follows by Theorem 1.9. ¤

Let α > −1 and let k ≥ 1 be a positive integer. Recall formula (1.9). A
change of variables shows that

eα,−k(z) = I|z|2(k, α + 1)
1
zk

, z ∈ D \ {0},

where

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt, 0 ≤ x ≤ 1,

is the incomplete Beta function ratio appearing in statistics. Using known proper-
ties of incomplete Beta functions we can give an alternative derivation of Theorem
1.9 (see [2, formulas (26.5.2) and (26.5.4)]). We omit the details. Further infor-
mation on the Beta distribution can be found in [16].

Theorem 1.9 has the following consequence concerning boundary regularity
of α-harmonic functions.

Theorem 1.11. Assume that α > −1 is not an integer and let u be an
α-harmonic function in D. If u ∈ Cm(D̄) and m > α + 1, then u is analytic in D.

Proof. Let k < 0 be a negative integer. In view of Remark 1.4 and equation
(1.11) the k-th homogeneous part uk of u has the form uk = ckeα,k for some
complex number ck. Also uk ∈ Cm(D̄) since u ∈ Cm(D̄). By Theorem 1.9 the
function eα,k is not in Cm(D̄) since m > α+1 and α is not an integer. We conclude
that ck = 0 for k < 0. Therefore u is analytic. ¤

We mention that the lack of regularity alluded to in Theorem 1.11 sits in the
radial component. Tangentially the kernel Pα has good regularizing properties
(see Sections 5 and 6 below).

2. The α-harmonic Poisson kernel.

In this section we introduce the α-harmonic Poisson kernel and study some
of its basic properties such as boundedness of L1-means.
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Definition 2.1. Let α > −1. Define the α-harmonic Poisson kernel by

Pα(z) =
∞∑

k=−∞
eα,k(z), z ∈ D.

Note that the function Pα is α-harmonic by Theorem 1.2, and that the sum
defining Pα is convergent in C∞(D) by Remark 1.3.

We have the following auxiliary integral formula for Pα.

Proposition 2.2. Let α > −1. Then the α-harmonic Poisson kernel Pα is
given by the formula

Pα(z) =
1

1− z
+ (α + 1)z̄

∫ 1

0

(1− t|z|2)α

(1− tz̄)α+2
dt, z ∈ D.

Proof. Recall the power series expansion (1.13). By (1.9) we have that

Pα(z) =
1

1− z
+ (α + 1)z̄

∞∑

k=0

Γ(k + α + 2)
k!Γ(α + 2)

∫ 1

0

tkz̄k(1− t|z|2)αdt

=
1

1− z
+ (α + 1)z̄

∫ 1

0

(1− t|z|2)α

(1− tz̄)α+2
dt, z ∈ D.

This completes the proof of the proposition. ¤

The following estimation will prove useful.

Lemma 2.3. Let β > 0. Then

1
2π

∫

T

(1− r2)β

|1− reiθ|β+1
dθ ≤ Γ(β)

Γ((β + 1)/2)2

for 0 ≤ r < 1, where Γ is the Gamma function.

Proof. By Parseval’s formula and (1.13) it follows that

1
2π

∫

T

dθ

|1− reiθ|β+1
=

∞∑

k=0

(
Γ(k + (β + 1)/2)
k!Γ((β + 1)/2)

)2

r2k

for 0 ≤ r < 1. By log-convexity of the Gamma function we have that Γ(k + (β +
1)/2)2 ≤ k!Γ(k + β) for k ≥ 0 (see [6, Theorem 2.1]). We now conclude that
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1
2π

∫

T

dθ

|1− reiθ|β+1
≤

∞∑

k=0

Γ(k + β)
k!Γ((β + 1)/2)2

r2k =
Γ(β)

Γ((β + 1)/2)2
· 1
(1− r2)β

for 0 ≤ r < 1, where the last equality follows by (1.13). ¤

Remark 2.4. Note that the log-convexity estimate in the proof of Lemma
2.3 is sharp in the limit in the sense that

lim
k→∞

Γ(k + (β + 1)/2)2

k!Γ(k + β)
= 1 (2.1)

which follows by a calculation using Stirling’s formula

Γ(z) =

√
2π

z

(
z

e

)z(
1 +O

(
1
z

))

as Re z →∞ (see [5, Section 1.4]).

Note also that for β = 1 we have equality in the estimate in Lemma 2.3 for
all 0 ≤ r < 1. We next calculate Pα.

Theorem 2.5. Let α > −1. Then the Poisson kernel Pα is given by the
formula

Pα(z) =
(1− |z|2)α+1

(1− z)(1− z̄)α+1
, z ∈ D.

Proof. Consider the function

u(z) =
(1− |z|2)α+1

(1− z)(1− z̄)α+1
, z ∈ D.

In order to prove that u = Pα, we first show that u is α-harmonic. By straight-
forward differentiation we have

∂̄u(z) = (α + 1)
(1− |z|2)α

(1− z̄)α+2
, z ∈ D.

By this formula it is clear that the function w−1
α ∂̄u is conjugate-analytic. Therefore

u is α-harmonic.
We next show that
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1
2π

∫

T
u(reiθ)dθ = 1

for 0 ≤ r < 1. Recall the power series expansion (1.13). An application of
Parseval’s formula now yields

1
2π

∫

T
u(reiθ)dθ = (1− r2)α+1

∞∑

k=0

(
k + α

k

)
r2k = 1

for 0 ≤ r < 1, where the last equality again follows by (1.13).
By Lemma 2.3 we have the L1-bound

1
2π

∫

T
|u(reiθ)|dθ ≤ Γ(α + 1)/Γ(α/2 + 1)2

for 0 ≤ r < 1, where Γ is the Gamma function. By Helly’s theorem there exists
a sequence rj → 1 and a measure µ such that urj → µ in the weak∗ topology of
measures, where the function ur is given by (0.5) for 0 ≤ r < 1. Next consider such
a weak∗ limit point urj

→ µ. Since ur → 0 uniformly away from the singleton
set {1} we find that µ = cδ1 for some constant c by a standard distribution
theoretical argument (see Hörmander [21, Theorem 2.3.4]). The result of the
previous paragraph then implies that c = 1. By this we conclude that ur → δ1

as r → 1 in the weak∗ topology of measures. In particular, ur → δ1 as r → 1 in
D′(T).

We now show that u = Pα. Recall the power series expansion (1.11) provided
by Theorem 1.2. Note in particular that

ur(eiθ) =
∞∑

k=−∞
ckeα,k(r)eikθ, eiθ ∈ T,

for 0 ≤ r < 1 in view of the homogeneity of the eα,k’s. A calculation of Fourier
coefficients gives that ûr(k) = ckeα,k(r) for k ∈ Z and 0 ≤ r < 1. Letting r → 1
we see that ck = 1 for all k ∈ Z since ur → δ1 in D′(T). By (1.11) we conclude
that u = Pα. This completes the proof. ¤

The following structure formula is of some interest.

Proposition 2.6. Let α > −1. Then

Pα(z) =
1

1− z
+

z̄

1− z̄
fα

(
1− |z|2
1− z̄

)
, z ∈ D,
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where fα(w) = (1− wα+1)/(1− w) using the principal branch of the logarithm.

Proof. Use Theorem 2.5 and decompose the function Pα as

Pα(z) =
1

1− z
+

1
1− z

((
1− |z|2
1− z̄

)α+1

− 1
)

, z ∈ D.

Note that

1− |z|2
1− z̄

− 1 =
z̄(1− z)
1− z̄

(2.2)

which follows by straightforward calculation. By this observation we get

Pα(z) =
1

1− z
+

1
1− z

(
1− |z|2
1− z̄

− 1
)

fα

(
1− |z|2
1− z̄

)

=
1

1− z
+

z̄

1− z̄
fα

(
1− |z|2
1− z̄

)
,

where the last equality follows by cancellation using (2.2). ¤

We remark that for α = 0 the result of Proposition 2.6 simplifies to the
well-known formula

1− |z|2
|1− z|2 =

1
1− z

+
z̄

1− z̄

for the classical Poisson kernel.
We next show that the estimate of Lemma 2.3 is sharp in the limit as r → 1.

Proposition 2.7. Let β > 0. Then

lim
r→1

1
2π

∫

T

(1− r2)β

|1− reiθ|β+1
dθ =

Γ(β)
Γ((β + 1)/2)2

,

where Γ is the Gamma function.

Proof. By Lemma 2.3 it suffices to show that

lim inf
r→1

1
2π

∫

T

(1− r2)β

|1− reiθ|β+1
dθ ≥ Γ(β)

Γ((β + 1)/2)2
. (2.3)
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Moreover, as in the proof of Lemma 2.3 we have that

1
2π

∫

T

(1− r2)β

|1− reiθ|β+1
dθ = (1− r2)β

∞∑

k=0

(
Γ(k + (β + 1)/2)
k!Γ((β + 1)/2)

)2

r2k (2.4)

for 0 ≤ r < 1 by Parseval’s formula and (1.13).
Let 0 < c < 1. By (2.1) there exists kc ≥ 0 such that Γ(k + (β + 1)/2)2 ≥

ck!Γ(k + β) for all k ≥ kc. Now by (2.4) we have

1
2π

∫

T

(1− r2)β

|1− reiθ|β+1
dθ ≥ c(1− r2)β Γ(β)

Γ((β + 1)/2)2

∞∑

k=kc

Γ(k + β)
k!Γ(β)

r2k

= c(1− r2)β Γ(β)
Γ((β + 1)/2)2

(
1

(1− r2)β
−

kc−1∑

k=0

Γ(k + β)
k!Γ(β)

r2k

)

for 0 ≤ r < 1, where the last equality follows by (1.13). Passing to the limit as
r → 1 we get

lim inf
r→1

1
2π

∫

T

(1− r2)β

|1− reiθ|β+1
dθ ≥ cΓ(β)

Γ((β + 1)/2)2
.

Letting c → 1, the inequality (2.3) follows. ¤

We now return to the function Pα.

Corollary 2.8. Let α > −1. For 0 ≤ r < 1 we have

1
2π

∫

T
|Pα(reiθ)|dθ ≤ Γ(α + 1)

Γ((α + 2)/2)2
and

lim
r→1

1
2π

∫

T
|Pα(reiθ)|dθ =

Γ(α + 1)
Γ((α + 2)/2)2

,

where Γ is the Gamma function.

Proof. If we set z = reiθ, then the two statements immediately follow from
Theorem 2.5 together with Lemma 2.3 and Proposition 2.7, respectively. ¤

Let us comment on the size of the L1-means bound of Pα from Corollary 2.8.

Proposition 2.9. Consider the function
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M(α) =
Γ(α + 1)

Γ((α + 2)/2)2
, α > −1,

where Γ is the Gamma function. Then the function M is strictly decreasing on
(−1, 0), strictly increasing on (0,∞) and M(0) = 1. Furthermore,

lim
α→−1

(α + 1)M(α) =
1
π

and lim
α→∞

√
α

2α
M(α) =

√
2
π

.

Proof. It is evident that M(0) = 1. Let us check the monotonicity prop-
erties of the function M . Recall the formula

Γ′(z)
Γ(z)

= −γ − 1
z

+
∞∑

k=1

(
1
k
− 1

z + k

)

for the logarithmic derivative of the Gamma function (see Artin [6, formula
(2.10)]); here γ is Euler’s constant. A straightforward calculation using this for-
mula gives that

d

dα
log M(α) = α

∞∑

k=0

1
(α + 1 + k)(α + 2 + 2k)

for α > −1. Analyzing the sign of the logarithmic derivative of M , the asserted
monotonicity properties of M are evident.

Let us turn to the asymptotic behavior of M . Using the functional equation
for the Gamma function we have that

lim
α→−1

(α + 1)M(α) = lim
α→−1

Γ(α + 2)/Γ(α/2 + 1)2 = Γ(1)/Γ(1/2)2 = 1/π

since Γ(1/2) =
√

π.
Consider next the asymptotics of M(α) as α → ∞. Recall the duplication

formula

Γ(2z) =
22z−1

√
π

Γ(z)Γ(z + 1/2)

for the Gamma function (see [5, Section 1.5]). A straightforward calculation using
this formula gives
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M(α) =
2α

√
π

Γ((α + 1)/2)
Γ((α + 2)/2)

for α > −1. An application of Stirling’s formula now gives the asymptotics of
M(α) as α →∞ (see Remark 2.4). ¤

3. Distributions and homogeneous Banach spaces.

The purpose of this section is to recall some basic facts from distribution
theory and homogeneous Banach spaces. A standard reference for homogeneous
Banach spaces is Katznelson [23]; see also Shapiro [31, Chapter 9]. A standard
reference for distribution theory is Hörmander [21]; see also [23].

A distribution u ∈ D′m(T) on T of order less than or equal to m ≥ 0 is a
linear form u on C∞(T) such that

|〈u, ϕ〉| ≤ C‖ϕ‖Cm , ϕ ∈ C∞(T),

where ‖·‖Cm is the norm of m times continuously differentiable functions on T. A
function f ∈ L1(T) is identified with the distribution of order 0 given by

〈f, ϕ〉 =
1
2π

∫

T
ϕ(eiθ)f(eiθ)dθ, ϕ ∈ C∞(T).

Note that the space D′m(T) is naturally identified with the dual of Cm(T). We
identify D′0(T) with the space M(T) of complex measures on T equipped with the
norm of total variation of measures which is natural in view of a classical result
going back to F. Riesz (see [30, Chapters 2 and 6]).

A distribution u ∈ D′(T) on T is an element u in D′m(T) for some m ≥ 0,
that is, D′(T) =

⋃
m≥0D′m(T). The space of distributions D′(T) is topologized

by means of the semi-norms

D′(T) 3 u 7→ |〈u, ϕ〉|

for ϕ ∈ C∞(T). Note that uj → u in D′(T) means that 〈uj , ϕ〉 → 〈u, ϕ〉 for every
ϕ ∈ C∞(T).

By a Banach space of distributions on T we mean a Banach space X which
is continuously embedded in D′(T). Note that this continuity requirement means
that if uj → u in X then uj → u in D′(T). The following lemma is convenient to
have available.

Lemma 3.1. Let X be a Banach space of distributions on T. Then there
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exists an integer m ≥ 0 such that X ⊂ D′m(T) and

‖f‖D′m ≤ C‖f‖X , f ∈ X,

where ‖ · ‖D′m is the norm on the dual of Cm(T).

Proof. Set

Xm,N = {f ∈ X : f ∈ D′m(T) and ‖f‖D′m ≤ N}

for integers m ≥ 0 and N ≥ 1. Since every f ∈ X is a distribution of finite order, it
is clear that X =

⋃
m,N Xm,N . It is straightforward to check that every set Xm,N

is closed in X. An application of Baire’s category theorem yields the existence of
numbers m and N such that the set Xm,N has an interior point f0, that is, there
is an ε > 0 such that f ∈ X and ‖f − f0‖X < ε implies f ∈ Xm,N .

The proof is completed by a symmetrization argument. For f ∈ X with
‖f‖X < 1, we have 2εf = (f0 + εf)− (f0 − εf) and an estimation gives

2ε‖f‖D′m ≤ ‖f0 + εf‖D′m + ‖f0 − εf‖D′m ≤ 2N,

showing that the conclusion of the lemma holds with constant C = N/ε. ¤

Let us recall some more constructions from distribution theory. The Fourier
coefficients of a distribution u ∈ D′(T) are defined by

û(k) = 〈u, φ−k〉, k ∈ Z,

where the φk’s are given by (1.8). It is well-known that the Fourier series
∑

û(k)φk

converges to u in D′(T) in the usual sense, thus

〈u, ϕ〉 =
∞∑

k=−∞
û(k)ϕ̂(−k), ϕ ∈ C∞(T).

A trigonometric series
∑

ckφk is the Fourier series for some u ∈ D′(T) if and
only if the sequence {ck}k∈Z of coefficients is of polynomial growth, that is, |ck| ≤
C(1 + |k|)N , k ∈ Z, for some positive constants C and N .

The convolution of two distributions u and v in D′(T) is the distribution u∗v

in D′(T) uniquely determined by the property that

(u ∗ v)̂ (k) = û(k)v̂(k), k ∈ Z. (3.1)
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The translation of u ∈ D′(T) by eiθ ∈ T is the distribution Teiθu = ueiθ uniquely
determined by the property that (ueiθ )̂ (k) = e−ikθû(k) for k ∈ Z. Note that

〈ueiθ , ϕ〉 = 〈u, ϕe−iθ 〉, ϕ ∈ C∞(T),

where ϕeiθ (eiτ ) = ϕ(ei(τ−θ)) for eiτ ∈ T. Note also that ueiθ = u ∗ δeiθ , where δeiθ

is the unit Dirac measure at eiθ ∈ T.
Recall from the introduction the definition of a homogeneous Banach space.

Such spaces enjoy the following approximation property.

Proposition 3.2. Let B be a homogeneous Banach space on T. If µ ∈ M(T)
is a complex measure and f ∈ B, then µ ∗ f ∈ B and ‖µ ∗ f‖B ≤ ‖µ‖‖f‖B, where
‖µ‖ is the norm of total variation of µ. Furthermore, if µn → µ in the weak∗

topology of measures and f ∈ B, then µn ∗ f → µ ∗ f in B.

The result of Proposition 3.2 is well-known (see Katznelson [23, Chapter I]).
In particular, we have that σn(f) = Kn ∗ f → f in B if f ∈ B, where

Kn(eiθ) =
1

n + 1

(
sin((n + 1)θ/2)

sin(θ/2)

)2

=
n∑

k=−n

(
1− |k|

n + 1

)
eikθ, eiθ ∈ T, (3.2)

for n = 1, 2, . . . are the Fejér kernels.
For a Banach space X of distributions on T we let

Spec X = {k ∈ Z : f̂(k) 6= 0 for some f ∈ X} (3.3)

denote its Fourier spectrum. Note that if B is a homogeneous Banach space then

Spec B = {k ∈ Z : φk ∈ B}

by Proposition 3.2. Indeed, if f ∈ B, then f̂(k)φk = f ∗ φk belongs to B which
proves the assertion. Note also that a trigonometric polynomial p belongs to B if
and only if supp p̂ ⊂ Spec B. Here supp f̂ = {k ∈ Z : f̂(k) 6= 0} is the support of
the Fourier transform f̂ .

Let B be a homogeneous Banach space on T and consider its dual B∗ con-
sisting of all continuous linear functionals on B normed in the usual way. We
set

Spec B∗ = {−k : k ∈ Spec B}.
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The Fourier coefficients of a continuous linear functional ` ∈ B∗ are defined by

ˆ̀(k) =

{
`(φ−k) if k ∈ Spec B∗,

0 if k ∈ Z \ Spec B∗.

In view of Proposition 3.2, the action of ` is recovered from its Fourier coefficients
by

`(f) = (f, `) = lim
n→∞

n∑

k=−n

(
1− |k|

n + 1

)
f̂(k)ˆ̀(−k), f ∈ B, (3.4)

using Cesàro summation, where the symbol (·, ·) indicates dual pairing. We can
consider a trigonometric polynomial p with supp p̂ ⊂ Spec B∗ as an element in B∗

by defining

p(f) = 〈f, p〉 =
∑

k∈Spec B

f̂(k)p̂(−k), f ∈ B.

By (3.4) it is clear that the space of trigonometric polynomials p with supp p̂ ⊂
Spec B∗ forms a weak∗ dense subspace of B∗. We denote by (B∗)c the norm
closure in B∗ of the trigonometric polynomials p with supp p̂ ⊂ Spec B∗. In view
of the above considerations it is natural to associate to an element ` ∈ (B∗)c its
Fourier series

` ∼
∑

k∈Spec B∗

ˆ̀(k)φk. (3.5)

We point out that the formal series in (3.5) is in general not the Fourier series of
a distribution, see Proposition 4.13 below.

The group of translation operators T : T 3 eiθ 7→ Teiθ ∈ L(B) induces
translation operators on B∗ by

(Teiθ`)(f) = (Te−iθf, `), f ∈ B,

for ` ∈ B∗ and eiθ ∈ T using transposed action. Note that translation invariance
of B gives translation invariance of B∗ in the sense that ‖Teiθ`‖B∗ = ‖`‖B∗ for
` ∈ B∗ and eiθ ∈ T. Note also that this group action T : T 3 eiθ 7→ Teiθ ∈ L(B∗)
has the continuity property that for every ` ∈ B∗ the map T 3 eiθ 7→ Teiθ` is
continuous in the weak∗ topology on B∗ inherited from B. We mention also that
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the space (B∗)c admits the alternative description

(B∗)c =
{

` ∈ B∗ : lim
eiθ→1

‖Teiθ`− `‖B∗ = 0
}

using the group of translations (see Katznelson [23, Chapter I] for details).

4. The relative completion.

Let X be a Banach space of distributions on T. We say that the space X is
translation invariant if it has the property that Teiθf ∈ X and ‖Teiθf‖X = ‖f‖X if
f ∈ X and eiθ ∈ T, where the translation operators T : T 3 eiθ 7→ Teiθ are defined
in the usual way in the sense of distribution theory (see Section 3). We say that
the space X is relatively complete if it has the property, henceforth referred to as
the relative completeness property, that

(i) fn ∈ X, ‖fn‖X ≤ C for n ≥ 1 and fn → f in D′(T) implies f ∈ X and
‖f‖X ≤ C.

By a relatively complete translation invariant Banach space of distributions on T
we mean a Banach space of distributions on T which is both translation invariant
and relatively complete in the sense explained above.

Remark 4.1. Note that if X is a Banach space of distributions on T, then
X is relatively complete if and only if

(i)′ fn ∈ X, fn → f in D′(T) and lim infn→∞‖fn‖X < ∞ implies f ∈ X and
‖f‖X ≤ lim infn→∞‖fn‖X .

We leave the straightforward proof of this claim to the reader.

We first show that a homogeneous Banach space can always be isometrically
embedded in a relatively complete translation invariant Banach space of distribu-
tions on T. As a matter of convenience we use the Cesàro summability method:
σn(f) = Kn ∗ f , where Kn is the Fejér kernel given by (3.2).

Theorem 4.2. Let B be a homogeneous Banach space on T. Set

X = {f ∈ D′(T) : σn(f) ∈ B for n ≥ 1 and sup
n≥1

‖σn(f)‖B < ∞},

and equip the space X with the norm

‖f‖X = sup
n≥1

‖σn(f)‖B , f ∈ X.
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Then the space X is a relatively complete translation invariant Banach space of
distributions on T such that B embeds isometrically in X and the Fourier spec-
trums of B and X coincide, Spec B = Spec X.

Proof. It is easy to see that the map X 3 f 7→ {σn(f)} embeds X isomet-
rically as a closed subspace of `∞(B). It is also straightforward to check that if B

embeds in D′m(T), then X also embeds in D′m(T). This shows that X is a Banach
space of distributions on T. The translation invariance of X is inherited from the
translation invariance of B by the choice of norm. An application of Proposition
3.2 shows that the space B embeds isometrically in X. It is straightforward to
check that Spec B = Spec X.

We proceed to check the relative completeness property of X. For this purpose
let {fk} be a sequence in X such that ‖fk‖X ≤ C for k ≥ 1 and fk → f in D′(T).
Now σn(fk) ∈ B for all n, k ≥ 1 and it is easy to see that σn(fk) → σn(f) in B

as k →∞ since only finitely many nonzero Fourier coefficients are involved. This
gives that σn(f) ∈ B for n ≥ 1 and ‖σn(f)‖B = limk‖σn(fk)‖B ≤ C. Thus f ∈ X

and ‖f‖X ≤ C. ¤

We proceed to discuss uniqueness properties of the space X constructed in
Theorem 4.2. First we need a lemma.

Lemma 4.3. Let µ ∈ M(T) be a complex measure. Then there exists a
sequence {µn}∞n=1 of discrete measures such that µn → µ in the weak∗ topology of
measures and ‖µn‖ ≤ ‖µ‖ for n ≥ 1, where ‖·‖ is the norm of total variation.

Proof. Let n ≥ 1 be a positive integer and divide the circle T into n

disjoint half-open arcs

In,k = {eiθ ∈ T : 2πk/n ≤ θ < 2π(k + 1)/n}

for 0 ≤ k ≤ n− 1. Consider next the discrete measures

µn =
n−1∑

k=0

µ(In,k)δei2πk/n

for n = 1, 2, . . . , where δeiτ is a unit Dirac mass at eiτ ∈ T. It is straightforward
to check using uniform continuity that

∫
T ϕdµn →

∫
T ϕdµ for ϕ ∈ C(T). The total

variation estimate ‖µn‖ ≤ ‖µ‖ for n ≥ 1 is evident by construction. ¤

We next consider convolution with a general measure.
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Theorem 4.4. Let X be a relatively complete translation invariant Banach
space of distributions on T. If µ ∈ M(T) is a complex measure and f ∈ X, then
the convolution µ ∗ f belongs to X and the norm inequality ‖µ ∗ f‖X ≤ ‖µ‖‖f‖X

holds.

Proof. Assume first that µ ∈ M(T) is discrete, µ =
∑n

k=1 akδeiθk . Then
the convolution

µ ∗ f =
n∑

k=1

akTeiθk f

belongs to X and

‖µ ∗ f‖X ≤
n∑

k=1

|ak|‖Teiθk f‖X =
( n∑

k=1

|ak|
)
‖f‖X = ‖µ‖‖f‖X

by the triangle inequality using translation invariance.
Consider next the case when µ ∈ M(T) is a general complex measure. By

Lemma 4.3 there exists a sequence {µn}∞n=1 of discrete measures such that µn → µ

in the weak∗ topology of measures and ‖µn‖ ≤ ‖µ‖ for n ≥ 1. By the first
part of the proof we have that µn ∗ f ∈ X and ‖µn ∗ f‖X ≤ ‖µ‖‖f‖X . Since
µn ∗ f → µ ∗ f in D′(T) and X is relatively complete, we conclude that µ ∗ f ∈ X

and ‖µ ∗ f‖X ≤ ‖µ‖‖f‖X . ¤

Note that if X is as in Theorem 4.4, then

Spec X = {k ∈ Z : φk ∈ X}.

Indeed, if f ∈ X, then f̂(k)φk = f ∗ φk belongs to X which proves the assertion.
Note also that a trigonometric polynomial p belongs to X if and only if supp p̂ ⊂
Spec X.

The following lemma will be used to calculate norms in the proof of Theorem
4.6 below.

Lemma 4.5. Let X be as in Theorem 4.4. Then

lim
n→∞

‖σn(f)‖X = ‖f‖X , f ∈ X.

Proof. By Remark 4.1 we have that ‖f‖X ≤ lim infn→∞‖σn(f)‖X . Since
σn(f) = Kn ∗ f , we have by Theorem 4.4 that ‖σn(f)‖X ≤ ‖Kn‖L1‖f‖X = ‖f‖X .
This gives that lim supn→∞‖σn(f)‖X ≤ ‖f‖X . ¤
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We can now prove the following uniqueness property of the space constructed
in Theorem 4.2.

Theorem 4.6. Let X1 and X2 be relatively complete translation invariant
Banach spaces of distributions on T such that Spec X1 = Spec X2. Assume that

‖p‖X1 = ‖p‖X2

for every trigonometric polynomial p with supp p̂ ⊂ Spec X1 = Spec X2. Then
X1 = X2 with equality of norms.

Proof. By symmetry, we only have to show that X1 is isometrically con-
tained in X2. To this end, let f ∈ X1. By the spectral assumption, the Cesàro
means σn(f) = Kn ∗ f belong to Xj for j = 1, 2 and

‖σn(f)‖X1 = ‖σn(f)‖X2 , n = 1, 2, 3 . . . . (4.1)

An application of Lemma 4.5 yields ‖f‖X1 = limn→∞ ‖σn(f)‖X1 , which implies
that {σn(f)} is a bounded sequence in X2 in view of (4.1). Since σn(f) → f in
D′(T), it follows by relative completeness of X2 that f ∈ X2. Thus X1 ⊂ X2 as
sets. Moreover, applying Lemma 4.5 also to f ∈ X2 yields ‖f‖X1 = ‖f‖X2 in view
of (4.1). This completes the proof. ¤

We next define the relative completion mentioned in the introduction.

Definition 4.7. Let B be a homogeneous Banach space on T. The relative
completion B̃ of B is the relatively complete translation invariant Banach space
of distributions on T containing B isometrically such that Spec B̃ = Spec B.

By Theorems 4.2 and 4.6 this notion of relative completion exists and is
uniquely determined by its defining properties. Note also that with this terminol-
ogy a homogeneous Banach space B is relatively complete if and only if it is equal
to its own relative completion, that is, B = B̃.

Some easy examples of relative completions are: C(T)̃ = L∞(T), L1(T)̃ =
M(T), Lp(T)̃ = Lp(T) for 1 < p < ∞, and lipα(T)̃ = Lipα(T) for 0 < α ≤ 1
(Lipschitz/Hölder spaces) as follows by the Ascoli-Arzelà theorem.

As a consequence of the isometric embedding of B into B̃, the relative com-
pletion as defined originally in Gagliardo [11] and further studied in Braun and
Feichtinger [8] coincides with our notion when B is a homogeneous Banach space.

Let X be a translation invariant Banach space of distributions on T and
consider the subspace
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Xc =
{

f ∈ X : lim
eiθ→1

‖Teiθf − f‖X = 0
}

.

It is straightforward to check that the subspace Xc of X is a homogeneous Banach
space on T (see Katznelson [23, Chapter I] for details).

Corollary 4.8. If X is a relatively complete translation invariant Banach
space of distributions on T, then X is the relative completion of Xc, that is, X =
(Xc)̃ . Also, if B is a homogeneous Banach space on T, then B = (B̃)c.

Proof. For the first part note that SpecX = SpecXc and apply Theo-
rem 4.6. Since Spec B = Spec B̃, the second assertion follows by denseness of
trigonometric polynomials in homogeneous Banach spaces. ¤

Operators commuting with translations are usually referred to as Fourier mul-
tipliers or convolution operators. The following proposition is included for the sake
of completeness.

Proposition 4.9. Let B be a homogeneous Banach space on T. A bounded
operator M ∈ L(L1(T), B) commutes with translations if and only if it has the
form M = Mf for some f ∈ B̃, where

Mfg = f ∗ g, g ∈ L1(T).

The operator Mf has norm ‖Mf‖ = ‖f‖B̃ and is compact if and only if f ∈ B.

Proof. Let f ∈ B̃ and let p be a trigonometric polynomial. Note that
f ∗ p ∈ B since f ∗ p is a trigonometric polynomial and supp(f ∗ p)̂ ⊂ supp f̂ ⊂
Spec B. Also, by Theorem 4.4 we have the inequality ‖f∗p‖B ≤ ‖f‖B̃‖p‖L1 since B

is isometrically contained in B̃. By an approximation argument we conclude that
the operator Mf is bounded from L1(T) into B and ‖Mf‖ ≤ ‖f‖B̃ if f ∈ B̃. It is
evident that the operator Mf commutes with translations since it is a convolution
operator.

Assume next that M ∈ L(L1(T), B) is a bounded operator that commutes
with translations. Note first that Teiθφk = e−ikθφk for eiθ ∈ T. Applying the
operator M we have that TeiθMφk = MTeiθφk = e−ikθMφk for eiθ ∈ T. A
straightforward calculation gives that Mφk = mkφk for some mk ∈ C. Note also
that |mk| ≤ ‖M‖ for k ∈ Z. By a standard approximation argument we conclude
that the operator M has the form

Mg = f ∗ g, g ∈ L1(T),
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where f =
∑

mkφk in D′(T). Choosing g = Kn as the Fejér kernel, we have that
σn(f) ∈ B and ‖σn(f)‖B ≤ ‖M‖ for n ≥ 1. Relative completeness of B̃ now gives
that f ∈ B̃ and ‖f‖B̃ ≤ ‖M‖, so that M = Mf for some f ∈ B̃. As a byproduct
we have that ‖f‖B̃ ≤ ‖Mf‖ if f ∈ B̃.

Note that Mf is compact if f is a trigonometric polynomial in B. Compactness
of Mf for f ∈ B follows by polynomial approximation in B. Conversely, if Mf is
compact, then, arguing as in the previous paragraph, we see that the set {σn(f) :
n ≥ 1} is relatively compact in B, which implies that f ∈ B. ¤

We shall next identify the relative completion as a certain canonical Banach
space dual. Let B be a homogeneous Banach space and recall from Section 3 the
discussion about its dual B∗. An element f in the relative completion B̃ naturally
induces a continuous linear functional on the space (B∗)c by setting

(p, f) = 〈f, p〉 =
∑

k∈Spec B

f̂(k)p̂(−k) (4.2)

for each trigonometric polynomial p ∈ B∗, where the symbol (·, ·) indicates dual
pairing. Indeed,

|〈σn(f), p〉| ≤ ‖σn(f)‖B‖p‖B∗ ≤ ‖f‖B̃‖p‖B∗

so passing to the limit gives the norm bound |〈f, p〉| ≤ ‖f‖B̃‖p‖B∗ for f ∈ B̃ and
each trigonometric polynomial p ∈ B∗, showing that (4.2) extends uniquely to a
continuous linear functional on (B∗)c of norm less than or equal to ‖f‖B̃ .

Theorem 4.10. Let B be a homogeneous Banach space on T. Then the
relative completion B̃ is naturally identified with the dual of the space (B∗)c by
means of the pairing (4.2). Furthermore

‖f‖B̃ = sup
‖p‖B∗≤1

|〈f, p〉|, f ∈ B̃,

where the supremum is taken over all trigonometric polynomials p with supp p̂ ⊂
Spec B∗.

Proof. We first explain how elements in the dual ((B∗)c)∗ can be identified
with distributions on T. We associate to ` ∈ ((B∗)c)∗ the formal trigonometric
series S` =

∑
k∈Spec B

ˆ̀(k)φk, where
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ˆ̀(k) =

{
(φ−k, `) if k ∈ Spec B,

0 if k ∈ Z \ Spec B.

Note that |(φ−k, `)| ≤ ‖`‖‖φ−k‖B∗ and

‖φ−k‖B∗ = sup
‖f‖B≤1

|〈f, φ−k〉| ≤ C‖φ−k‖Cm ≤ C ′(1 + |k|)m

for k ∈ Spec B using the embedding of B into D′m(T) provided by Lemma
3.1. These estimations imply that the correspondence ` 7→ S` embeds the
space ((B∗)c)∗ continuously as a Banach space of distributions on T. Note that
〈S`, p〉 = (p, `) if p is a trigonometric polynomial with supp p̂ ⊂ Spec B∗.

It is clear by construction that Spec((B∗)c)∗ = Spec B. Since translations in
duals are defined by transposed action, it follows by construction that the space
((B∗)c)∗ is translation invariant.

We next check relative completeness of ((B∗)c)∗. Let {`n} be a sequence
in ((B∗)c)∗ such that ‖`n‖((B∗)c)∗ ≤ C for all n and S`n → f in D′(T). Since
S`n → f in D′(T), we have that the limit of (p, `n) as n → ∞ exists for every
trigonometric polynomial p in (B∗)c. Since trigonometric polynomials in B∗ are
dense in (B∗)c a standard argument gives the existence of ` ∈ ((B∗)c)∗ such that
`n → ` in the weak∗ topolgy on ((B∗)c)∗ and ‖`‖((B∗)c)∗ ≤ C. In particular,
S` = f , so ((B∗)c)∗ is relatively complete.

We next show that B is isometrically contained in ((B∗)c)∗. Recall by
(4.2) that an element f ∈ B acts on a trigonometric polynomial p ∈ (B∗)c by
(p, f) = 〈f, p〉 using the distributional pairing. In the same paragraph preced-
ing the theorem it was shown that ‖f‖((B∗)c)∗ ≤ ‖f‖B for f ∈ B. For the
reverse inequality, fix f ∈ B. By the Hahn-Banach theorem there exists an
` ∈ B∗ with ‖`‖B∗ = 1 such that `(f) = ‖f‖B . Since σn(f) → f in B, we
have `(f) = limn `(σn(f)) = limn (f, σ′n(`)), where σ′n(`) is defined by transposed
pairing. Note that σ′n(`) ∈ (B∗)c and ‖σ′n(`)‖B∗ ≤ 1. An estimation now gives
‖f‖B ≤ ‖f‖((B∗)c)∗ for f ∈ B. By an application of Theorem 4.6 we conclude that
((B∗)c)∗ = B̃. ¤

We remark that the proof of Theorem 4.10 gives an alternative existence
proof of the relative completion B̃.

Corollary 4.11. Let X be a relatively complete translation invariant
Banach space of distributions on T. Then X has a separable predual.

Proof. The predual ((Xc)∗)c of (Xc)̃ constructed using the recipe in The-
orem 4.10 is clearly separable. Since (Xc)̃ = X by Corollary 4.8, this completes
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the proof. ¤

Corollary 4.12. Let B be a homogeneous Banach space on T. If B is
relatively complete, then B is the dual of (B∗)c.

Proof. In this case B = B̃ and the result is evident by Theorem 4.10. ¤

An interesting example of a relatively complete homogeneous Banach space is
the Hardy space H1(T). The relative completeness property of H1(T) is a straight-
forward reformulation of a classical result by F. and M. Riesz often formulated as
saying that if µ ∈ M(T) and µ̂(n) = 0 for n < 0 then µ is absolutely continuous
(see Katznelson [23, Theorem III.3.13] or Zygmund [34, Theorem VII.8.2]). The
predual (dual) of H1(T) with respect to Cauchy duality is the space VMOA(T)
(BMOA(T)) which is the content of a well-known result by Sarason (Fefferman-
Stein), see Garnett [13, Chapter VI]. We mention also that preduals of Qp spaces
have recently been investigated by Aleman, Carlsson and Persson [3], [4].

We next discuss when the predual (B∗)c of B̃ is a space of distributions. For
a set Λ ⊂ Z we write

C∞Λ (T) = {ϕ ∈ C∞(T) : supp ϕ̂ ⊂ Λ}

for the space of smooth functions spectral in Λ.

Proposition 4.13. Let B be a homogeneous Banach space on T and set
Λ = Spec B. Then the following assertions are equivalent :

(1) The inclusion C∞Λ (T) ⊂ B holds.
(2) The dual B∗ embeds continuously in D′(T).
(3) The space (B∗)c embeds continuously in D′(T).
(4) The estimate

‖φk‖B ≤ C(1 + |k|)m, k ∈ Λ,

holds for some constants C and m ≥ 0.

Furthermore, under the above conditions, the dual B∗ of B is naturally identified
with the distributions u ∈ D′(T) such that

|u(ϕ)| ≤ C ′‖ϕ‖B , ϕ ∈ C∞Λ (T),

and supp û ⊂ −Λ, where the best constant C ′ is the norm ‖u‖B∗ .
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Sketch of proof. Assume (1). By the closed graph theorem, the space
C∞Λ (T) is continuously embedded in B, which gives an estimate ‖ϕ‖B ≤ C‖ϕ‖Cm

for ϕ ∈ C∞Λ (T). Using this estimate it is straightforward to check that the Fourier
coefficients of an element ` ∈ B∗ satisfy a growth estimate

|ˆ̀(k)| ≤ C‖`‖B∗(1 + |k|)m, k ∈ Spec B∗,

for some new constant C. This proves (2). It is evident that (2) implies (3).
Assume (3). By Lemma 3.1 there exists m ≥ 0 and constant C such that

‖ϕ‖D′m ≤ C‖ϕ‖B∗ for ϕ ∈ (B∗)c. We now use Theorem 4.10 and duality to verify
(4).

Assume (4). For ϕ ∈ C∞Λ (T) we have
∑|ϕ̂(k)|‖φk‖B < ∞, showing that

ϕ ∈ B by completeness of B. This proves (1). The last assertion is self-explanatory.
¤

Let 1 ≤ p < ∞ and let ω = {ωk}∞k=−∞ be a doubly infinite positive weight
sequence such that 1/ωk is of at most polynomial growth as |k| → ∞. Denote by
Ap

ω the space of all f ∈ D′(T) with finite norm

‖f‖p
p,ω =

∞∑

k=−∞
|f̂(k)|pωk < ∞.

It is straightforward to check that the space Ap
ω is a homogeneous Banach space on

T and also that Ap
ω is relatively complete, (Ap

ω )̃ = Ap
ω. Note that ‖φk‖p,ω = ω

1/p
k

for k ∈ Z. If the weight ωk grows more than any polynomial, then B = Ap
ω does

not satisfy condition (4) in Proposition 4.13 showing that the canonical predual
((Ap

ω)∗)c of Ap
ω is not a space of distributions. Note however that ((Ap

ω)∗)c has a
natural description as a sequence space. We omit the details.

5. An analysis of the α-harmonic Dirichlet problem.

In this section we discuss the α-harmonic Dirichlet problem. Let us first define
the α-harmonic Poisson integral.

Definition 5.1. Let α > −1 and f ∈ D′(T). The α-harmonic Poisson
integral of f is the function

Pα[f ](z) = Pα,r ∗ f(eiθ), z = reiθ ∈ D,

where Pα,r(eiθ) = Pα(reiθ) for eiθ ∈ T in accordance with (0.5).
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We next calculate the power series expansion of the Poisson integral.

Proposition 5.2. Let α > −1 and f ∈ D′(T). Then the function Pα[f ] has
the power series expansion

Pα[f ](z) =
∞∑

k=−∞
f̂(k)eα,k(z), z ∈ D,

where f̂(k), k ∈ Z, are the Fourier coefficients of f and the functions eα,k are
given by (1.9) and (1.10).

Proof. In view of Definition 5.1 and the identity (3.1) for Fourier coeffi-
cients we have that

(Pα,r ∗ f )̂ (k) = eα,k(r)f̂(k), k ∈ Z,

where the Fourier coefficients of Pα,r are calculated using the power series expan-
sion from Definition 2.1. This yields

Pα[f ](z) =
∞∑

k=−∞
f̂(k)eα,k(r)eikθ =

∞∑

k=−∞
f̂(k)eα,k(z), z = reiθ ∈ D,

where the last equality follows by homogeneity of the eα,k’s. ¤

Note that the power series in Proposition 5.2 converges in C∞(D) since the
Fourier coefficients f̂(k), k ∈ Z, are of polynomial growth, so Pα[f ] is α-harmonic
by Theorem 1.2.

Theorem 5.3. Let α > −1. Let u be an α-harmonic function, and suppose
that for some sequence of numbers 0 ≤ rn < 1 with limn→∞ rn = 1 we have
urn → f in D′(T) as n →∞, where urn is given by (0.5). Then

u(z) = Pα[f ](z), z ∈ D.

Proof. Recall the power series expansion (1.11) of u provided by Theorem
1.2. Note in particular that

ur(eiθ) =
∞∑

k=−∞
ckeα,k(r)eikθ, eiθ ∈ T,
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for 0 ≤ r < 1 in view of the homogeneity of the eα,k’s. A calculation of Fourier
coefficients gives that ûr(k) = ckeα,k(r) for k ∈ Z and 0 ≤ r < 1. Now urn

→ f in
D′(T) so passing to the limit as n → ∞ shows that ck = f̂(k) for k ∈ Z. In view
of Proposition 5.2 we conclude that u = Pα[f ]. ¤

Note that Theorem 5.3 yields uniqueness of solutions to the Dirichlet problem
(0.4). We next calculate the boundary limit of the α-harmonic Poisson integral.

Theorem 5.4. Let α > −1 and let B be a homogeneous Banach space on
T. Let f ∈ B and set u = Pα[f ]. Then limr→1 ur = f in B, where ur is given by
(0.5) for 0 ≤ r < 1.

Proof. It is straightforward to check using Proposition 5.2 that the limit
assertion of the theorem holds true when f = p is a trigonometric polynomial
in B. By Corollary 2.8 we have that ‖Pα,r‖L1 ≤ C for 0 ≤ r < 1, where C =
Γ(α + 1)/Γ((α + 2)/2)2. By denseness of trigonometric polynomials in B we can
find a trigonometric polynomial p ∈ B such that ‖f − p‖B < ε/(C + 2). Since
Pα,r ∗ f − f = Pα,r ∗ (f − p) + (Pα,r ∗ p− p) + (p− f), we have that

‖Pα,r ∗ f − f‖B ≤ ‖Pα,r‖L1‖f − p‖B + ‖Pα,r ∗ p− p‖B + ‖p− f‖B < ε

for r close to 1. This completes the proof. ¤

We end this section with a representation theorem for α-harmonic functions.

Theorem 5.5. Let α > −1 and let B be a homogeneous Banach space on
T. Then an α-harmonic function u in D is such that ur ∈ B for 0 ≤ r < 1 and

sup
0≤r<1

‖ur‖B < ∞ (5.1)

if and only if it has the form of a Poisson integral u = Pα[f ] of some f ∈ B̃, where
B̃ is the relative completion of B.

Proof. If u = Pα[f ] for some f ∈ B̃, then (5.1) holds by Proposition 4.9
since the Poisson kernel Pα has bounded L1-means by Corollary 2.8.

To prove the converse, recall the power series expansion (1.11) provided by
Theorem 1.2. A straightforward calculation shows that ûr(k) = eα,k(r)ck → ck

as r → 1 for every k ∈ Z. By an application of Lemma 3.1 it follows that the
family of functions ur, 0 ≤ r < 1, is uniformly bounded in D′m(T) for some m ≥ 0.
A standard approximation argument now gives that limr→1 ur = f in the weak∗

topology of D′m(T), where f =
∑

ckφk in D′(T). By the relative completeness
property we conclude that f ∈ B̃. By Theorem 5.3 we have that u = Pα[f ]. ¤
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Remark 5.6. For B = L1(T) the result of Theorem 5.5 gives a well-known
characterization of Poisson integrals of complex measures on T. For B = Lp(T),
1 < p < ∞, the result of Theorem 5.5 gives a well-known characterization of
Poisson integrals of functions from Lp(T), 1 < p < ∞. For B = C(T) the result of
Theorem 5.5 gives a well-known characterization of Poisson integrals of functions
from L∞(T). See for instance Rudin [30, Chapter 11], Stein [33, Section VII.1],
Zygmund [34, Section IV.6] or Axler et al [7, Theorem 6.12].

We remark that there is an analogous theory for the formal adjoint ∆∗
α =

∂̄w−1
α ∂ of ∆α. We refrain from developing this direction further.

6. Fatou theorems.

In this section we shall discuss pointwise boundary limits almost everywhere
of α-harmonic functions in non-tangential approach regions of the form

Γβ(eiθ0) = {reiθ ∈ D : |θ − θ0| < β(1− r), r ≥ 0, θ ∈ R},

where eiθ0 ∈ T and β > 0 is a positive constant. Approach regions of this type are
often called Stolz angles and the terminology Fatou theorem refers to a classical
result by Fatou (see Zygmund [34, Theorem III.7.9]). A standard reference is Stein
[33]; see also [7, Chapter 6] or [30, Chapter 11]. We mention also Carlsson [9]
and an interesting paper by Nagel and Stein [26] on related maximal estimates.

Let α > −1, and consider the function

Kα(z) =
(1− |z|2)α+1

|1− z|α+2
, z ∈ D. (6.1)

Recall that Kα(z) = |Pα(z)| by Theorem 2.5. It is evident that for 0 ≤ r < 1
fixed, the quantity Kα(reiθ) is even in θ ∈ (−π, π) and decreasing in θ ∈ (0, π).

Lemma 6.1. Let α > −1, and consider the function Kα given by (6.1). Then

Kα(z) ≤ (1 + β)α+2Kα(reiθ0)

for z = reiθ ∈ Γβ(eiθ0) and β > 0.

Proof. By the triangle inequality we have that

|1− reiθ0 | ≤ |1− reiθ|+ |reiθ − reiθ0 | ≤ |1− reiθ|+ |θ − θ0|,
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where the last inequality follows by a geometric consideration. Using the inequality
|θ − θ0| < β(1− r) we obtain

|1− reiθ0 | ≤ |1− reiθ|+ β(1− r) ≤ (1 + β)|1− reiθ|,

which leads to the estimation

Kα(reiθ) =
(1− r2)α+1

|1− reiθ|α+2
≤ (1 + β)α+2 (1− r2)α+1

|1− reiθ0 |α+2
= (1 + β)α+2Kα(reiθ0)

for reiθ ∈ Γβ(eiθ0). ¤

For eiθ ∈ T and 0 < h ≤ π we denote by A(eiθ, h) the open arc

A(eiθ, h) = {eiτ ∈ T : |τ − θ| < h}.

Recall that the maximal function Mµ of a complex measure µ ∈ M(T) is defined
by

Mµ(eiθ) = sup
0<h≤π

1
2h
|µ|(A(eiθ, h)),

where |µ| is the total variation of µ. The symmetric derivative of a measure
µ ∈ M(T) at the point eiθ ∈ T is defined by

Dµ(eiθ) = lim
h→0+

π

h
µ(A(eiθ, h))

whenever the limit exists. It is known that Dµ(eiθ) = 0 for a.e. eiθ ∈ T if
µ ∈ M(T) is singular with respect to Lebesgue measure on T (see [30, Theorem
7.13]).

Theorem 6.2. Let α > −1. Let µ ∈ M(T) and set u = Pα[µ]. Assume that
eiθ0 ∈ T is such that D|µ|(eiθ0) = 0. Then

lim
Γβ(eiθ0 )3z→eiθ0

u(z) = 0

for every β > 0.

Proof. Let ε > 0 be given. Since D|µ|(eiθ0) = 0, there exists δ > 0 such
that
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1
2h
|µ|(A(eiθ0 , h)) < ε

for 0 < h ≤ δ. Let µ1 be the restriction of |µ| to the arc A(eiθ0 , δ) and set
µ2 = |µ| − µ1. Observe that Mµ1(eiθ0) ≤ ε by construction. By the triangle
inequality we have that

|u(z)| ≤
∫

T
Kα(ze−iτ )dµ1(eiτ ) +

∫

T
Kα(ze−iτ )dµ2(eiτ ). (6.2)

Since the support of µ2 is at a positive distance away from the point eiθ0 we have
that

∫

T
Kα(ze−iτ )dµ2(eiτ ) → 0

as D 3 z → eiθ0 by uniform convergence. We next estimate the leftmost integral
on the right-hand side in (6.2). By Lemma 6.1 we have

∫

T
Kα(ze−iτ )dµ1(eiτ ) ≤ (1 + β)α+2

∫

T
Kα(rei(θ0−τ))dµ1(eiτ )

= (1 + β)α+2(Kα,r ∗ µ1)(eiθ0)

for z = reiθ ∈ Γβ(eiθ0) using the notation (0.5). Now apply [23, Lemma III.2.4]
to conclude that

∫

T
Kα(ze−iτ )dµ1(eiτ ) ≤ (1 + β)α+2‖Kα,r‖L1Mµ1(eiθ0) ≤ Cαβε

for z = reiθ ∈ Γβ(eiθ0), where Cαβ = (1 + β)α+2Γ(α + 1)/Γ(α/2 + 1)2. By (6.2)
we have that

lim sup
Γβ(eiθ0 )3z→eiθ0

|u(z)| ≤ Cαβε.

Since ε > 0 was arbitrary, the conclusion of the theorem follows. ¤

Recall that a point eiθ0 ∈ T is called a Lebesgue point for f ∈ L1(T) if

lim
h→0

1
h

∫ θ0+h

θ0−h

|f(eiθ)− f(eiθ0)|dθ = 0.
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It is well-known that almost every eiθ0 ∈ T is a Lebesgue point for f ∈ L1(T) (see
[33, Section I.1]).

Corollary 6.3. Let α > −1. Let f ∈ L1(T) and set u = Pα[f ]. Assume
that eiθ0 ∈ T is a Lebesgue point for f . Then

lim
Γβ(eiθ0 )3z→eiθ0

u(z) = f(eiθ0)

for every β > 0.

Proof. Set dµ(eiθ) = (f(eiθ)− f(eiθ0))dθ/(2π) and apply Theorem 6.2. ¤

The following corollary gives the non-tangential boundary behavior almost
everywhere of an α-harmonic function with bounded L1-means.

Corollary 6.4. Let α > −1. Let µ ∈ M(T) be a complex measure and
consider its Lebesgue decomposition

dµ(eiθ) = f(eiθ)dθ/(2π) + dµs(eiθ), eiθ ∈ T,

where f ∈ L1(T) and the measure µs is singular with respect to Lebesgue measure
on T. Set u = Pα[µ]. Then for almost every eiθ ∈ T it holds that

lim
Γβ(eiθ)3z→eiθ

u(z) = f(eiθ)

for every β > 0.

Proof. It is well-known that every µ ∈ M(T) has a Lebesgue decomposi-
tion (see [30, Theorem 6.10]). Since µs is singular, so is its total variation |µs|.
The result follows by Theorem 6.2, Corollary 6.3 and comments made above. ¤

It is known that, even for analytic functions, the non-tangential convergence
regions in Fatou’s theorem can not be extended to larger tangential Jordan regions
(see for instance Zygmund [34, Theorem VII.7.44]).

Note that the essential property of Pα used in this section is that it is pointwise
majorized by the function Kα. We mention that kernels of the form Kα appear
naturally in the study of integral representations of solutions of Dirichlet problems
for higher order Laplacians (see for instance [1], [27], [28], [29]).
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[15] A. Grothendieck, Une caractérisation vectorielle-métrique des espaces L1, Canad. J.

Math., 7 (1955), 552–561.

[16] A. K. Gupta and S. Nadarajah, Handbook of Beta Distribution and Its Applications,

Statist. Textbooks Monogr., 174, Marcel Dekker, Inc., New York, 2004.

[17] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Springer-Verlag,

2000.

[18] H. Hedenmalm and A. Olofsson, Hele-Shaw flow on weakly hyperbolic surfaces, Indiana

Univ. Math. J., 54 (2005), 1161–1180.

[19] H. Hedenmalm and Y. Perdomo G., Mean value surfaces with prescribed curvature form,

J. Math. Pures Appl., 83 (2004), 1075–1107.

[20] H. Hedenmalm and S. Shimorin, Hele-Shaw flow on hyperbolic surfaces, J. Math. Pures

Appl. (9), 81 (2002), 187–222.

http://dx.doi.org/10.1080/17476930701273515
http://dx.doi.org/10.1080/17476930701272764
http://dx.doi.org/10.1016/0022-1236(83)90025-3
http://dx.doi.org/10.1215/S0012-7094-48-01595-6
http://dx.doi.org/10.2140/pjm.1951.1.485
http://dx.doi.org/10.4153/CJM-1955-060-6
http://dx.doi.org/10.1512/iumj.2005.54.2651


486 A. Olofsson and J. Wittsten

[21] L. Hörmander, The Analysis of Linear Partial Differential Operators. I, Springer-Verlag,

1990.

[22] S. Kaijser, A note on dual Banach spaces, Math. Scand., 41 (1977), 325–330.

[23] Y. Katznelson, An Introduction to Harmonic Analysis, Dover, 1976.

[24] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I, Wiley, 1963.

[25] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. II, Wiley, 1969.

[26] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. in

Math., 54 (1984), 83–106.

[27] A. Olofsson, A representation formula for radially weighted biharmonic functions in the

unit disc, Publ. Mat., 49 (2005), 393–415.

[28] A. Olofsson, Regularity in a singular biharmonic Dirichlet problem, Monatsh. Math., 148

(2006), 229–239.

[29] A. Olofsson, A computation of Poisson kernels for some standard weighted biharmonic

operators in the unit disc, Complex Var. Elliptic Equ., 53 (2008), 545–564.

[30] W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, 1987.

[31] H. S. Shapiro, Topics in Approximation Theory, Lecture Notes in Math., 187, Springer-

Verlag, 1971.

[32] S. Shimorin, On Beurling-type theorems in weighted `2 and Bergman spaces, Proc. Amer.

Math. Soc., 131 (2003), 1777–1787.

[33] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton

Math. Ser., 30, Princeton University Press, 1970.

[34] A. Zygmund, Trigonometric Series: Vol. I, II, Cambridge University Press, 1968.

Anders Olofsson

Mathematics

Faculty of Science

Lund University

P.O.Box 118

SE-221 00 Lund, Sweden

E-mail: olofsson@maths.lth.se

Jens Wittsten

Mathematics

Faculty of Science

Lund University

P.O.Box 118

SE-221 00 Lund, Sweden

Current address:

Graduate School of Human and Environmental Studies

Kyoto University

Yoshida Nihonmatsu-cho, Sakyo-ku

Kyoto 606-8501, Japan

E-mail: jensw@maths.lth.se

http://dx.doi.org/10.1016/0001-8708(84)90038-0
http://dx.doi.org/10.1007/s00605-005-0359-3
http://dx.doi.org/10.1080/17476930701861798
http://dx.doi.org/10.1090/S0002-9939-02-06721-7

