On a bound of λ and the vanishing of μ of $\mathbb{Z}_{\boldsymbol{p}}$-extensions of an imaginary quadratic field

By Satoshi FujII

(Received July 7, 2011)

Abstract

Let p be an odd prime number. To ask the behavior of λ - and μ-invariants is a basic problem in Iwasawa theory of \mathbb{Z}_{p}-extensions. Sands showed that if p does not divide the class number of an imaginary quadratic field k and if the λ-invariant of the cyclotomic \mathbb{Z}_{p}-extension of k is 2 , then μ-invariants vanish for all \mathbb{Z}_{p}-extensions of k, and λ-invariants are less than or equal to 2 for \mathbb{Z}_{p}-extensions of k in which all primes above p are totally ramified. In this article, we show results similar to Sands' results without the assumption that p does not divide the class number of k. When μ-invariants vanish, we also give an explicit upper bound of λ-invariants of all \mathbb{Z}_{p}-extensions.

1. Introduction.

Let k / \mathbb{Q} be a finite extension, h_{k} the class number of k and p a prime number. In this article, all algebraic extensions of \mathbb{Q} are assumed to be contained in a fixed algebraic closure of \mathbb{Q}. Let k_{∞} / k be a \mathbb{Z}_{p}-extension and k_{n} its n-th layer, that is, the unique intermediate field of k_{∞} / k such that $\left[k_{n}: k\right]=p^{n}$, here we let \mathbb{Z}_{p} the ring of p-adic integers. By Iwasawa's class number formula, there are non-negative integers $\lambda\left(k_{\infty} / k\right), \mu\left(k_{\infty} / k\right)$ and an integer $\nu\left(k_{\infty} / k\right)$ depending only on k_{∞} / k such that the p-exponent of $h_{k_{n}}$ is described as

$$
\lambda\left(k_{\infty} / k\right) n+\mu\left(k_{\infty} / k\right) p^{n}+\nu\left(k_{\infty} / k\right)
$$

for all sufficiently large n. These invariants are called the Iwasawa λ-, μ - and ν-invariant. Especially, the invariants λ and μ are important, these are structure invariants of ideal class groups as Galois modules. Then the following problem has been considered.

[^0]Problem. For a fixed finite extension k / \mathbb{Q} and a prime number p, how do invariants $\lambda\left(k_{\infty} / k\right)$ and $\mu\left(k_{\infty} / k\right)$ behave as k_{∞} runs \mathbb{Z}_{p}-extensions of k ?

Some studies on the above problem for imaginary quadratic fields have been done by several authors, for example, Bloom-Gerth [2], Sands [7] and Ozaki [6], and so on. Let k be an imaginary quadratic field. Then there is a unique \mathbb{Z}_{p}^{2} extension \widetilde{k} of k. Hence there exist infinitely many \mathbb{Z}_{p}-extensions of k. Typical examples of \mathbb{Z}_{p}-extensions are:

- The cyclotomic \mathbb{Z}_{p}-extension k_{∞}^{c}.
- The anti-cyclotomic \mathbb{Z}_{p}-extension k_{∞}^{a} when p is an odd prime number.
- Suppose that p splits in k, that is, $p=\mathfrak{p p}^{\prime}$. Then there are the \mathfrak{p} - and the \mathfrak{p}^{\prime}-ramified \mathbb{Z}_{p}-extensions N_{∞} and N_{∞}^{\prime}.

When p is an odd prime number, the \mathbb{Z}_{p}-extensions k_{∞}^{c} and k_{∞}^{a} are Galois extensions over \mathbb{Q}, and if k_{∞} / \mathbb{Q} is a Galois extension then $k_{\infty}=k_{\infty}^{c}$ or k_{∞}^{a}. Note that $k_{\infty}^{c} / \mathbb{Q}$ is abelian and that $k_{\infty}^{a} / \mathbb{Q}$ is non-abelian.

We show here completely determined cases, Sands' and Ozaki's results for our problem.

Theorem A (Completely determined cases). Let p be an odd prime number and k an imaginary quadratic field.
(1) Suppose that p does not split in k and that $\lambda\left(k_{\infty}^{c} / k\right)=0$. Then $\lambda\left(k_{\infty} / k\right)=$ $\mu\left(k_{\infty} / k\right)=\nu\left(k_{\infty} / k\right)=0$ for all \mathbb{Z}_{p}-extensions k_{∞}.
(2) Suppose that p splits in k and that $\lambda\left(k_{\infty}^{c} / k\right)=1$. Then, $\lambda\left(N_{\infty} / k\right)=$ $\lambda\left(N_{\infty}^{\prime} / k\right)=0, \lambda\left(k_{\infty} / k\right)=1$ for each \mathbb{Z}_{p}-extension k_{∞} with $k_{\infty} \neq N_{\infty}, N_{\infty}^{\prime}$, and $\mu\left(k_{\infty} / k\right)=0$ for all \mathbb{Z}_{p}-extensions k_{∞}.

Sands [7] stated a part of Theorem A. We will prove Theorem A in the last section. However, there are no contributions by the author. Theorem A is shown by combining arguments which are already known.

Theorem B (Sands [7]). Let p be an odd prime number and k an imaginary quadratic field in which p splits. Suppose that $p \nmid h_{k}$ and that $\lambda\left(k_{\infty}^{c} / k\right)=2$. Then, $\lambda\left(k_{\infty} / k\right) \leq 2$ for each \mathbb{Z}_{p}-extension k_{∞} with $k_{\infty} \cap N_{\infty}=k_{\infty} \cap N_{\infty}^{\prime}=k$, and $\mu\left(k_{\infty} / k\right)=0$ for all \mathbb{Z}_{p}-extensions k_{∞}.

Theorem C (Ozaki [6]). Let p be an odd prime number and k an imaginary quadratic field in which p splits. Suppose that $p \nmid h_{k}$. Then $\lambda\left(k_{\infty} / k\right)=1$ and $\mu\left(k_{\infty} / k\right)=0$ for all but finite k_{∞}.

In this article, we show results similar to Theorem B without the condition that $p \nmid h_{k}$.

Theorem 1. Let p be an odd prime number and k an imaginary quadratic field.
(1) Suppose that p splits in k and that $\lambda\left(k_{\infty}^{c} / k\right)=2$. Then, $\lambda\left(k_{\infty} / k\right) \leq 2$ for each \mathbb{Z}_{p}-extension k_{∞} such that $k_{\infty} \cap k_{\infty}^{a}=k$ and that $k_{\infty} \neq N_{\infty}, N_{\infty}^{\prime}$.
(2) Suppose that p does not split in k and that $\lambda\left(k_{\infty}^{c} / k\right)=1$. Then, $\lambda\left(k_{\infty} / k\right) \leq 1$ for each \mathbb{Z}_{p}-extension k_{∞} such that $k_{\infty} \cap k_{\infty}^{a}=k$.

Here we give some remarks.
(1) By Bloom-Gerth's result [2], under the assumption on $\lambda\left(k_{\infty}^{c} / k\right)$ in Theorem 1 , it is known that $\mu\left(k_{\infty} / k\right)=0$ for each k_{∞} except for k_{∞}^{a}, which will be explained lator.
(2) The proof of Theorem 1 is very similar to a method used in Bloom [1]. By using the action of the complex conjugation, we can obtain a detailed conclusion.
As a corollary to Theorem 1 and results which had already been obtained by several authors, we can give a partial answer to our problem.

Corollary. Let p be an odd prime number and k an imaginary quadratic field in which p splits. Suppose that $p \nmid h_{k}$ and that $\lambda\left(k_{\infty}^{c} / k\right)=2$.
(1) For all \mathbb{Z}_{p}-extensions $k_{\infty}, \mu\left(k_{\infty} / k\right)=0$.
(2) $\lambda\left(N_{\infty} / k\right)=\lambda\left(N_{\infty}^{\prime} / k\right)=0$.
(3) $\lambda\left(k_{\infty} / k\right)=1$ for all but finite k_{∞}.
(4) For finite exceptional \mathbb{Z}_{p}-extensions k_{∞} in (3) with $k_{\infty} \neq N_{\infty}, N_{\infty}^{\prime}$, $\lambda\left(k_{\infty} / k\right)=2$.
In particular, $\lambda\left(k_{\infty} / k\right) \leq 2$ for all \mathbb{Z}_{p}-extensions k_{∞}.
The assertion (1) is a part of Theorem B. Let N_{n} be the unique intermediate subfield of N_{∞} / k with $\left[N_{n}: k\right]=p^{n}$ for each non-negative integer n. Since N_{∞} / k is totally ramified at \mathfrak{p} and $p \nmid h_{k}$, we have $p \nmid h_{N_{n}}$. This shows (2). The assertion (3) is a special case of Theorem C. Suppose that $k_{\infty} \neq N_{\infty}, N_{\infty}^{\prime}$. If $k_{\infty} \cap k_{\infty}^{a} \supsetneq k$, then $k_{\infty} \cap N_{\infty}=k_{\infty} \cap N_{\infty}^{\prime}=k$ since $p \nmid h_{k}$. By Theorem $\mathrm{B}, \lambda\left(k_{\infty} / k\right) \leq 2$. If $k_{\infty} \cap k_{\infty}^{a}=k$, then $\lambda\left(k_{\infty} / k\right) \leq 2$ by Theorem 1. This shows (4).

Next we show a result which concern an upper bound of λ and the vanishing of μ. If $p \nmid h_{k}$ and $\lambda\left(k_{\infty}^{c} / k\right)=2$, then we already know $\mu\left(k_{\infty} / k\right)=0$ and $\lambda\left(k_{\infty} / k\right) \leq 2$ for all \mathbb{Z}_{p}-extensions k_{∞} from the above corollary. We then deal with the case where $p \mid h_{k}$.

Theorem 2. Let p be an odd prime number and k an imaginary quadratic field in which p splits. Suppose the following conditions:
(1) $\lambda\left(k_{\infty}^{c} / k\right)=2$.
(2) The p-Hilbert class field L_{k} of k is contained in \widetilde{k}.
(3) $[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}]=p$, where we denote by \mathfrak{D} the decomposition group in $\operatorname{Gal}(\widetilde{k} / k)$ of a prime lying above p.

Then $\lambda\left(k_{\infty} / k\right) \leq p$ and $\mu\left(k_{\infty} / k\right)=0$ for all \mathbb{Z}_{p}-extensions k_{∞}.
In fact, we will show a somewhat more general statement including the case where p does not split in k. One will see that $\lambda\left(k_{\infty} / k\right) \leq p$ is the best possible bound if $p \mid h_{k}$. We show some examples.

- Let $p=3$. Let $k=\mathbb{Q}(\sqrt{-461})$ or $\mathbb{Q}(\sqrt{-743})$, then the prime 3 splits in k. We can check that $3 \mid h_{k}, \lambda\left(k_{\infty}^{c} / k\right)=2, L_{k} \subseteq \widetilde{k}$ and $[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}]=3$. Hence $\lambda\left(k_{\infty} / k\right) \leq 3$ and $\mu\left(k_{\infty} / k\right)=0$ for all \mathbb{Z}_{3}-extensions k_{∞}.
- Let $p=5$ and $k=\mathbb{Q}(\sqrt{-1214})$, then 5 splits in k. We can check that $5 \mid h_{k}$, $\lambda\left(k_{\infty}^{c} / k\right)=2, L_{k} \subseteq \widetilde{k}$ and $[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}]=5$. Hence $\lambda\left(k_{\infty} / k\right) \leq 5$ and $\mu\left(k_{\infty} / k\right)=0$ for all \mathbb{Z}_{5}-extensions k_{∞}.

2. Preliminaries.

This section consists of notations and affirmations of fundamental properties of Iwasawa modules. In what follows, let p and k be an odd prime number and an imaginary quadratic field respectively. As mentioned in Section 1, there is a unique \mathbb{Z}_{p}^{2}-extension \widetilde{k} of k. Note that all \mathbb{Z}_{p}-extensions of k are contained in \widetilde{k}. Note also that all primes of k lying above p are ramified in k_{∞} / k (not necessary totally ramified) except for $k_{\infty}=N_{\infty}$ or N_{∞}^{\prime}. Let L_{k} / k be the maximal unramified abelian pro- p extension, which is also called the p-Hilbert class field. Let K / k be a \mathbb{Z}_{p}-extension or the \mathbb{Z}_{p}^{2}-extension and X_{K} the Galois group $\operatorname{Gal}\left(L_{K} / K\right)$ of the maximal unramified abelian pro-p extension L_{K} / K. When $K=\widetilde{k}$ we put $X=X_{\widetilde{k}}$. The Galois group $\operatorname{Gal}(K / k)$ acts on X_{K} in the manner $g(x)=\bar{g} x \bar{g}^{-1}$, where we let $g \in \operatorname{Gal}(K / k), x \in X_{K}$ and \bar{g} a lift of g to $\operatorname{Gal}\left(L_{K} / k\right)$. Then the completed group ring $\mathbb{Z}_{p}[[\operatorname{Gal}(K / k)]]$ acts on X_{K}, and it is known that X_{K} is a finitely generated torsion $\mathbb{Z}_{p}[[\operatorname{Gal}(K / k)]]$-module. For $K=\widetilde{k}$, we set a more precise notation. We choose a basis of $\operatorname{Gal}(\widetilde{k} / k)$ as follows. Since the cyclotomic \mathbb{Z}_{p}-extension k_{∞}^{c} and the anti-cyclotomic \mathbb{Z}_{p}-extension k_{∞}^{a} are disjoint over k, we know that $\widetilde{k}=k_{\infty}^{c} k_{\infty}^{a}$, and hence $\operatorname{Gal}(\widetilde{k} / k)$ is a direct product of $\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)$ and $\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right)$. Let σ and τ be topological generators of $\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)$ and $\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right)$ respectively. Put $\langle J\rangle=\operatorname{Gal}(k / \mathbb{Q})$. Then J acts on $\operatorname{Gal}(\widetilde{k} / k)$ since $\widetilde{k} / \mathbb{Q}$ is a Galois extension. The action of J on $\operatorname{Gal}(\widetilde{k} / k)$ is given by $J(x)=\bar{J} x \bar{J}^{-1}$ for $x \in \operatorname{Gal}(\widetilde{k} / k)$, here $\bar{J} \in \operatorname{Gal}(\widetilde{k} / \mathbb{Q})$ is a lift of J. Since $k_{\infty}^{c} / \mathbb{Q}$ is abelian and $k_{\infty}^{a} / \mathbb{Q}$ is non-abelian, one sees that $J(\sigma)=\sigma^{-1}$ and $J(\tau)=\tau$. We then fix
an isomorphism between the completed group $\operatorname{ring} \mathbb{Z}_{p}[[\operatorname{Gal}(\widetilde{k} / k)]]$ and the formal power series ring $\Lambda=\mathbb{Z}_{p}[[S, T]]$ in two variables given by $\sigma \leftrightarrow 1+S$ and $\tau \leftrightarrow 1+T$. So we regard X a Λ-module. Note that Λ is a complete noetherian local integral domain with the maximal ideal (S, T, p). We also use the power series rings $\mathbb{Z}_{p}[[S]]$ and $\mathbb{Z}_{p}[[T]]$ in one variable as a sub- or a quotient ring of Λ. For a commutative ring A, denote by A^{\times}the unit group of A. Note that $\Lambda^{\times}=\Lambda-(S, T, p)$ and $\mathbb{Z}_{p}[[S]]^{\times}=\mathbb{Z}_{p}[[S]]-(S, p)$. Let M be a finitely generated torsion $\mathbb{Z}_{p}[[S]]$-module. By the structure theorem of $\mathbb{Z}_{p}[[S]]$-modules, M is pseudo-isomorphic to a module of the form $\bigoplus_{i=1}^{r} \mathbb{Z}_{p}[[S]] / \mathfrak{q}^{m_{i}}$, where r and $m_{i}(1 \leq i \leq r)$ are non-negative integers, and $\mathfrak{q}_{i} S$ are prime ideals of $\mathbb{Z}_{p}[[S]]$ of height 1 . Then the ideal

$$
\operatorname{char}_{\left.\left.\mathbb{Z}_{p}[S]\right]\right]}(M)=\prod_{i=1}^{r} \mathfrak{q}^{m_{i}}
$$

is called the characteristic ideal of M.
For a profinite group H and a profinite H-module M, let M_{H} be the H coinvariant module of M, namely, $M_{H}=M / \overline{\sum_{h \in H}(h-1) M}$. If $H=\overline{\langle h\rangle}$, then $M_{H}=M /(h-1) M$. Let k_{∞} be a \mathbb{Z}_{p}-extension and $\overline{\left\langle\sigma^{\alpha} \tau^{\beta}\right\rangle}$ the corresponding subgroup of $\operatorname{Gal}(\widetilde{k} / k)$ to k_{∞}, where $(\alpha, \beta) \in \mathbb{Z}_{p}^{2}-p \mathbb{Z}_{p}^{2}$. Since $\sigma^{\alpha} \tau^{\beta}$ corresponds to $(1+S)^{\alpha}(1+T)^{\beta}$, we have

$$
X_{\operatorname{Gal}\left(\widetilde{k} / k_{\infty}\right)}=X /\left(\sigma^{\alpha} \tau^{\beta}-1\right) X=X /\left((1+S)^{\alpha}(1+T)^{\beta}-1\right) X
$$

In this article, we use frequently such coinvariant modules, so we put $Y_{k_{\infty}}=$ $X_{\operatorname{Gal}\left(\widetilde{k} / k_{\infty}\right)}$ for \mathbb{Z}_{p}-extensions k_{∞}.

Lemma 2.1. Let F_{∞} / F be a \mathbb{Z}_{p}-extension of a number field F.
(1) $\lambda\left(F_{\infty} / F\right)=\operatorname{rank}_{\mathbb{Z}_{p}}\left(X_{F_{\infty}}\right)$.
(2) $\mu\left(F_{\infty} / F\right)=0$ if and only if $X_{F_{\infty}}$ is finitely generated over \mathbb{Z}_{p}.
(3) Let $g \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, here $\overline{\mathbb{Q}}$ is a fixed algebraic closure of \mathbb{Q}. Then $\lambda\left(F_{\infty} / F\right)=$ $\lambda\left(g\left(F_{\infty}\right) / g(F)\right)$ and $\mu\left(F_{\infty} / F\right)=\mu\left(g\left(F_{\infty}\right) / g(F)\right)$.

Proof. For (1) and (2), see sections $13-2$ and -3 of $[\mathbf{8}]$. Let F_{n} be the n-th layer of F_{∞} / F for each non-negative integer n. Then $g\left(F_{n}\right)$ is the n-th layer of a \mathbb{Z}_{p}-extension $g\left(F_{\infty}\right) / g(F)$, and $h_{F_{n}}=h_{g\left(F_{n}\right)}$. By Iwasawa's class number formula, we have

$$
\begin{aligned}
& \lambda\left(F_{\infty} / F\right) n+\mu\left(F_{\infty} / F\right) p^{n}+\nu\left(F_{\infty} / F\right) \\
& \quad=\lambda\left(g\left(F_{\infty}\right) / g(F)\right) n+\mu\left(g\left(F_{\infty}\right) / g(F)\right) p^{n}+\nu\left(g\left(F_{\infty}\right) / g(F)\right)
\end{aligned}
$$

for all sufficiently large n. Since $\lim _{n \rightarrow \infty} n / p^{n}=0$, we have

$$
\mu\left(F_{\infty} / F\right)=\mu\left(g\left(F_{\infty}\right) / g(F)\right) .
$$

Similarly, it follows that $\lambda\left(F_{\infty} / F\right)=\lambda\left(g\left(F_{\infty}\right) / g(F)\right)$.
Lemma 2.2. Let p be an odd prime number and k an imaginary quadratic field. Then $L_{k} \cap \widetilde{k}$ is contained in k_{∞}^{a}.

Proof. Let $C l_{k}$ be the ideal class group of k. Then, by class field theory, the Artin map induces an isomorphism $C l_{k} \otimes \mathbb{Z}_{p} \simeq \operatorname{Gal}\left(L_{k} / k\right)$, in particular, this isomorphism and the action of the complex conjugation J are compatible. Since $h_{\mathbb{Q}}=1, J$ acts as inverse on $C l_{k} \otimes \mathbb{Z}_{p}$, and hence J also acts as inverse on $\operatorname{Gal}\left(L_{k} / k\right)$. Thus $L_{k} \cap \widetilde{k} / \mathbb{Q}$ is a Galois extension and J acts as inverse on $\operatorname{Gal}\left(L_{k} \cap \widetilde{k} / k\right)$. This shows that the image from $\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right)$ to $\operatorname{Gal}\left(L_{k} \cap \widetilde{k} / k\right)$ with respect to the restriction map is trivial. Hence $L_{k} \cap \widetilde{k}$ is fixed by $\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right)$, and therefore $L_{k} \cap \widetilde{k}$ is contained in k_{∞}^{a}.

3. Proof of Theorem 1.

First we show an explicit relation between X and $X_{k_{\infty}}$.
Lemma 3.1 (See for example Lemma 1 of Ozaki [6]). Suppose one of the following two conditions.
(1) The prime p splits in k and $k_{\infty} \neq N_{\infty}, N_{\infty}^{\prime}$.
(2) The prime p does not split in k and k_{∞} / k is totally ramified at the prime lying above p.

Then there is an exact sequence

$$
0 \longrightarrow Y_{k_{\infty}} \longrightarrow X_{k_{\infty}} \longrightarrow \operatorname{Gal}\left(\widetilde{k} \cap L_{k_{\infty}} / k_{\infty}\right) \longrightarrow 0
$$

of $\mathbb{Z}_{p}\left[\left[\operatorname{Gal}\left(k_{\infty} / k\right)\right]\right]$-modules. Here, $\operatorname{Gal}\left(\widetilde{k} \cap L_{k_{\infty}} / k_{\infty}\right)$ is isomorphic to \mathbb{Z}_{p} if p splits in k since $\widetilde{k} \subseteq L_{k_{\infty}}$, and is finite cyclic otherwise.

Remark. The cyclotomic \mathbb{Z}_{p}-extension k_{∞}^{c} satisfies the condition of Lemma 3.1. If p does not split in k and if $k_{\infty} \cap k_{\infty}^{a}=k$, then k_{∞} / k is totally ramified. Indeed, let k_{1} be the 1 -st layer of k_{∞} / k. if k_{1} / k is unramified at prime lying above p, then is unramified at all primes of k. Hence k_{1} is contained in L_{k}. Therefore $k_{1} \subseteq k_{\infty}^{a}$ by Lemma 2.2.

From Lemma 3.1, we have

$$
\lambda\left(k_{\infty} / k\right)=\operatorname{rank}_{\mathbb{Z}_{p}}\left(X_{k_{\infty}}\right)= \begin{cases}\operatorname{rank}_{\mathbb{Z}_{p}}\left(Y_{k_{\infty}}\right)+1 & \text { if } p \text { splits in } k, \\ \operatorname{rank}_{\mathbb{Z}_{p}}\left(Y_{k_{\infty}}\right) & \text { otherwise }\end{cases}
$$

for suitable \mathbb{Z}_{p}-extensions.
Lemma 3.2. Suppose that $\lambda\left(k_{\infty}^{c} / k\right)=2$ if p splits in k, and $\lambda\left(k_{\infty}^{c} / k\right)=1$ otherwise. Then there are a power series $f(S) \in \mathbb{Z}_{p}[[S]]$ and a surjective morphism $\Lambda /(T-f(S)) \rightarrow X$ of Λ-modules.

Proof. By Lemma 3.1, there is the following exact sequence

$$
0 \longrightarrow Y_{k_{\infty}^{c}} \longrightarrow X_{k_{\infty}^{c}} \longrightarrow \operatorname{Gal}\left(L_{k_{\infty}^{c}} \cap \widetilde{k} / k_{\infty}^{c}\right) \longrightarrow 0
$$

of $\mathbb{Z}_{p}\left[\left[\operatorname{Gal}\left(k_{\infty}^{c} / k\right)\right]\right]$-modules. From the fact that $X_{k_{\infty}^{c}}$ is a free \mathbb{Z}_{p}-module of rank $\lambda\left(k_{\infty}^{c} / k\right)$ (see for example corollary 13.29 of $[\mathbf{8}]$), we find that $Y_{k_{\infty}^{c}}=X / S X \simeq \mathbb{Z}_{p}$. By topological version of Nakayama's lemma, there is $x \in X$ such that $X=$ $\mathbb{Z}_{p}[[S]] x$. Then there is a power series $f(S) \in \mathbb{Z}_{p}[[S]]$ such that $T x=f(S) x$, and $(T-f(S)) X=0$. Therefore, there is a surjective morphism

$$
\Lambda /(T-f(S)) \rightarrow X, F(S, T) \mapsto F(S, T) x
$$

of Λ-modules.
Note that the uniqueness of a power series $f(S)$ is unknown, but we fix one $f(S)$. The uniqueness of $f(S)$ is related to so called Greenberg's generalized conjecture. The properties of $f(S)$ are also not known almost. However, we can show at least that $S \nmid f(S)$. Indeed, there is a surjective morphism $\Lambda /(S, T-f(S)) \rightarrow Y_{k_{\infty}^{c}}$. If $S \mid f(S)$ then $\operatorname{Gal}\left(k_{\infty}^{c} / k\right)$ acts on $Y_{k_{\infty}^{c}}$ trivially. But it is known that $\operatorname{Gal}\left(k_{\infty}^{c} / k\right)$ acts on $Y_{k_{\infty}^{c}}$ non-trivially, see for example Lemma 5 of Ozaki [6]. Therefore, S does not divide $f(S)$. By the p-adic version of Weierstrass preparation theorem, there are a non-negative integer m, a distinguished polynomial $g(S) \in \mathbb{Z}_{p}[S]$ and a unit power series $U(S) \in \mathbb{Z}_{p}[[S]]^{\times}$such that $f(S)=p^{m} g(S) U(S)$. Here a polynomial $\varphi(S)$ with coefficients in \mathbb{Z}_{p} is called distinguished polynomial if $\varphi(S)$ is monic and $\varphi(S) \equiv S^{\operatorname{deg} \varphi(S)} \bmod p$.

Let k_{∞} / k be a \mathbb{Z}_{p}-extension. Then there is a pair $(\alpha, \beta) \in \mathbb{Z}_{p}^{2}-p \mathbb{Z}_{p}^{2}$ such that $k_{\infty}=\widetilde{k}^{\overline{\left.\sigma^{\alpha} \tau^{\beta}\right\rangle}}$. Suppose that k_{∞} satisfies the assumption of Lemma 3.1. Then by Lemma 3.2, we have an exact sequence

$$
\Lambda /\left((1+S)^{\alpha}(1+T)^{\beta}-1, T-f(S)\right) \longrightarrow X_{k_{\infty}} \longrightarrow \operatorname{Gal}\left(L_{k_{\infty}} \cap \widetilde{k} / k_{\infty}\right) \longrightarrow 0
$$

Put

$$
I_{\alpha, \beta}=\left((1+S)^{\alpha}(1+T)^{\beta}-1, T-f(S), p\right) .
$$

If $I_{\alpha, \beta}=(S, T, p)$, then

$$
\Lambda / I_{\alpha, \beta} \simeq \mathbb{Z} / p, F(S, T) \bmod I_{\alpha, \beta} \mapsto F(0,0) \bmod p
$$

This leads the assertion of Theorem 1 by Lemma 2.1. We analyze when $I_{\alpha, \beta}=$ (S, T, p).

Lemma 3.3. If $p \nmid \alpha$ and $p \nmid \alpha+\beta U(0)$, then $I_{\alpha, \beta}=(S, T, p)$, here $U(S)$ is a unit power series associated to $f(S)$.

Proof. Recall $f(S)=p^{m} g(S) U(S)$. We prove by splitting into 2 cases.
(i) Suppose that $m \geq 1$. Suppose also that $\alpha=p^{n} \alpha^{\prime}$ for some non-negative integer n and $\alpha^{\prime} \in \mathbb{Z}_{p}$. Then

$$
\begin{aligned}
I_{\alpha, \beta} & =\left((1+S)^{\alpha}(1+T)^{\beta}-1, T-p^{m} g(S) U(S), p\right) \\
& =\left(\left(1+S^{p^{n}}\right)^{\alpha^{\prime}}(1+T)^{\beta}-1, T, p\right) \\
& =\left(S^{p^{n}}\left(\sum_{k=1}^{\infty}\binom{\alpha^{\prime}}{k} S^{p^{n}(k-1)}\right), T, p\right) \\
& \subseteq\left(S^{p^{n}}, T, p\right)
\end{aligned}
$$

Also, if $p \nmid \alpha$ then $n=0$ and $\sum_{k=1}^{\infty}\binom{\alpha}{k} S^{k-1}$ is a unit of $\mathbb{Z}_{p}[[S]]$. Hence, in this case, $I_{\alpha, \beta}=(S, T, p)$ if and only if $p \nmid \alpha$.
(ii) Suppose that $m=0$. Then $f(S)=g(S) U(S)$. Let $d \geq 1$ be the degree of a distinguished polynomial $g(S)$. Note that $g(S) \equiv S^{d} \bmod p$. Then

$$
\begin{aligned}
I_{\alpha, \beta} & =\left((1+S)^{\alpha}(1+T)^{\beta}-1, T-S^{d} U(S), p\right) \\
& =\left((1+S)^{\alpha}\left(1+S^{d} U(S)\right)^{\beta}-1, T-S^{d} U(S), p\right) \\
& =\left(\sum_{n=1}^{\infty} \sum_{k=0}^{n}\binom{\alpha}{k}\binom{\beta}{n-k} S^{k+(n-k) d} U(S)^{n-k}, T-S^{d} U(S), p\right)
\end{aligned}
$$

$$
=\left(S \sum_{n=1}^{\infty} \sum_{k=0}^{n}\binom{\alpha}{k}\binom{\beta}{n-k} S^{n d-k(d-1)-1} U(S)^{n-k}, T-S^{d} U(S), p\right)
$$

Put $h(S)=\sum_{n=1}^{\infty} \sum_{k=0}^{n}\binom{\alpha}{k}\binom{\beta}{n-k} S^{n d-k(d-1)-1} U(S)^{n-k}$. Since

$$
n d-k(d-1)-1 \geq n d-n(d-1)-1=n-1,
$$

we have

$$
\begin{aligned}
h(0) & =\sum_{k=0}^{1}\binom{\alpha}{k}\binom{\beta}{1-k}\left[S^{d-k(d-1)-1}\right]_{S=0} U(0)^{1-k} \\
& = \begin{cases}\alpha+\beta U(0) & \text { if } d=1, \\
\alpha & \text { if } d \geq 2 .\end{cases}
\end{aligned}
$$

Suppose that $p \nmid \alpha$ and $p \nmid \alpha+\beta U(0)$. Then $h(S)$ is a unit power series of $\mathbb{Z}_{p}[[S]]$. Therefore,

$$
I_{\alpha, \beta}=\left(S h(S), T-S^{d} U(S), p\right)=\left(S, T-S^{d} U(S), p\right)=(S, T, p) .
$$

This completes the proof of Lemma 3.3.
Recall that $k_{\infty}=\widetilde{k}^{\overline{\left\langle\sigma^{\alpha} \tau^{\beta}\right\rangle}}$ with $(\alpha, \beta) \in \mathbb{Z}_{p}^{2}-p \mathbb{Z}_{p}^{2}$.
LEMMA 3.4. $\quad p \nmid \alpha$ if and only if $k_{\infty} \cap k_{\infty}^{a}=k$.
Proof. Let k_{1}^{a} be the 1-st layer of k_{∞}^{a} / k. Then $k_{\infty} \cap k_{\infty}^{a}=k$ if and only if $k_{1}^{a} \nsubseteq k_{\infty}$ since k_{∞} / k is a \mathbb{Z}_{p}-extension. By the choices of σ and τ, k_{1}^{a} is fixed by τ and σ^{p}, whence $\operatorname{Gal}\left(\widetilde{k} / k_{1}^{a}\right)=\overline{\left\langle\sigma^{p}\right\rangle} \oplus \overline{\langle\tau\rangle}$. This shows that $k_{1}^{a} \nsubseteq k_{\infty}$ if and only if $p \nmid \alpha$.

Suppose that $p \nmid \alpha$, hence $k_{\infty} \cap k_{\infty}^{a}=k$. When p splits in k, suppose further that $k_{\infty} \neq N_{\infty}, N_{\infty}^{\prime}$. Assume that $p \mid \beta$. Then $\alpha+\beta U(0) \equiv \alpha \not \equiv 0 \bmod p$, and hence $I_{\alpha, \beta}=(S, T, p)$ by Lemma 3.3. Assume that $p \nmid \beta$. If $\alpha+\beta U(0) \not \equiv 0 \bmod p$, then $I_{\alpha, \beta}=(S, T, p)$ by Lemma 3.3. Suppose that $\alpha+\beta U(0) \equiv 0 \bmod p$. Since $p \nmid \alpha \beta U(0)$ and p is an odd prime number, we find that $-\alpha+\beta U(0) \not \equiv 0 \bmod p$. Recall $\langle J\rangle=\operatorname{Gal}(k / \mathbb{Q})$ and let $\bar{J} \in \operatorname{Gal}(\widetilde{k} / \mathbb{Q})$ be a lift of J. Then

$$
\begin{aligned}
\bar{J}\left(k_{\infty}\right) & =\bar{J}\left(\widetilde{k}^{\overline{\left\langle\sigma^{\alpha} \tau^{\beta}\right\rangle}}\right) \\
& =\widetilde{k}^{\bar{J} \overline{\left\langle\sigma^{\alpha} \tau^{\beta}\right\rangle} \bar{J}^{-1}} \\
& =\widetilde{k}^{\overline{\left\langle\sigma^{-\alpha} \tau^{\beta}\right\rangle}}
\end{aligned}
$$

From the congruence $-\alpha+\beta U(0) \not \equiv 0 \bmod p$ and Lemma 3.3, we know that $\lambda\left(\bar{J}\left(k_{\infty}\right) / k\right) \leq 2$ if p splits in k and $\lambda\left(\bar{J}\left(k_{\infty}\right) / k\right) \leq 1$ otherwise. Note that $\bar{J}\left(k_{\infty}\right) \neq$ $N_{\infty}, N_{\infty}^{\prime}$ since $\bar{J}\left(N_{\infty}\right)=N_{\infty}^{\prime}$. From Lemma 2.1 (3), we conclude that

$$
\lambda\left(k_{\infty} / k\right)=\lambda\left(\bar{J}\left(k_{\infty}\right) / k\right) \leq \begin{cases}2 & \text { if } p \text { splits in } k \\ 1 & \text { otherwise }\end{cases}
$$

This completes the proof of Theorem 1.

4. Proof of Theorem 2.

We show in this section the following.
Theorem 4.1. Let $\mathfrak{D} \subseteq \operatorname{Gal}(\widetilde{k} / k)$ be the decomposition group of a prime lying above p. Suppose that $L_{k} \subseteq \widetilde{k}$, and that one of the following two conditions (S) or (NS) holds.
(S) $\quad p$ splits in $k, \lambda\left(k_{\infty}^{c} / k\right)=2$ and \mathfrak{D} is normal in $\operatorname{Gal}(\widetilde{k} / \mathbb{Q})$.
(NS) $p \geq 5$, p does not split in k and $\lambda\left(k_{\infty}^{c} / k\right)=1$.
Then $\lambda\left(k_{\infty} / k\right) \leq[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}]$ and $\mu\left(k_{\infty} / k\right)=0$ for all \mathbb{Z}_{p}-extensions k_{∞}.
Here we give some remarks.
(1) We can show that if p does not split in k and $L_{k} \subseteq \widetilde{k}$, then $\lambda\left(k_{\infty} / k\right)=$ $\mu\left(k_{\infty} / k\right)=0$ for each k_{∞} with $L_{k} \subseteq k_{\infty}$ independent with the value $\lambda\left(k_{\infty}^{c} / k\right)$. To explain this, we need the following formula (see Lemma 4.1 of Chapter 13 in [4]): Let n be a positive integer and K / F a cyclic extension of degree n. Let $e(K / F)$ be the product of the ramification indeces in K / F for all primes (finite and infinite) of F. Let $C l_{K}$ be the ideal class group of K and E_{F} the unit group of F. Then we have

$$
\# C l_{K}^{\operatorname{Gal}(K / F)}=\frac{e(K / F) h_{F}}{[K: F]\left[E_{F}: E_{F} \cap\left(N_{K / F} K^{\times}\right)\right]},
$$

here we let $C l_{K}^{\operatorname{Gal}(K / F)}=\left\{a \in C l_{K} \mid g(a)=a\right.$ for all $\left.g \in \operatorname{Gal}(K / F)\right\}$. Assume that p does not split in k and that $L_{k} \subseteq \widetilde{k}$. First, let $p=3$ and $k=\mathbb{Q}(\sqrt{-3})$.

Since $3 \nmid h_{k}$, for each \mathbb{Z}_{3}-extension $k_{\infty} / k, k_{\infty} / k$ is totally ramified at the prime lying above 3. Then we have $\left(X_{k_{\infty}}\right)_{\operatorname{Gal}\left(k_{\infty} / k\right)} \simeq C l_{k} \otimes \mathbb{Z}_{3}=0$, and so $X_{k_{\infty}}=0$ by Nakayama's lemma. Hence $\lambda\left(k_{\infty} / k\right)=\mu\left(k_{\infty} / k\right)=0$. Next, suppose that $p \geq 5$, or, $p=3$ and $k \neq \mathbb{Q}(\sqrt{-3})$. Let k_{∞} / k be a \mathbb{Z}_{p}-extension which contains L_{k}. Choose a positive integer n with $L_{k} \subseteq k_{n}$. Since k has only one prime lying above p and k_{n} / k is unramified outside primes lying above p, one sees that $e\left(k_{n} / k\right)=\left[k_{n}: k\right] /\left[L_{k}: k\right]$. Because E_{k} is finite and k has no primitive p-th roots of unity in this case, p does not divide $\left[E_{k}: E_{k} \cap\left(N_{k_{n} / k} k_{n}^{\times}\right)\right]$. Hence from the above formula, we have

$$
\#\left(C l_{k_{n}} \otimes \mathbb{Z}_{p}\right)^{\operatorname{Gal}\left(k_{n} / k\right)}=\frac{\left(\left[k_{n}: k\right] /\left[L_{k}: k\right]\right)\left[L_{k}: k\right]}{\left[k_{n}: k\right]}=1 .
$$

This implies that $C l_{k_{n}} \otimes \mathbb{Z}_{p}=0$ for all sufficiently large n, and hence $X_{k_{\infty}}=$ 0 . Therefore, $\lambda\left(k_{\infty} / k\right)=\mu\left(k_{\infty} / k\right)=0$. Specifically, we have $\mu\left(k_{\infty}^{a} / k\right)=0$. Suppose further that $\lambda\left(k_{\infty}^{c} / k\right)=1$. By Bloom-Gerth's result [2], the number of \mathbb{Z}_{p}-extensions k_{∞} with $\mu\left(k_{\infty} / k\right)>0$ is at most $\lambda\left(k_{\infty}^{c} / k\right)=1$ since p does not split in k. Suppose that $\mu\left(k_{\infty} / k\right)>0$. Then it also holds that $\mu\left(\bar{J}\left(k_{\infty}\right) / k\right)>0$. It follows that $\bar{J}\left(k_{\infty}\right)=k_{\infty}$, and this implies that k_{∞} / \mathbb{Q} is a Galois extension. Hence $k_{\infty}=k_{\infty}^{c}$ or k_{∞}^{a}. But we already know $\mu\left(k_{\infty}^{c} / k\right)=0$, and we have proved $\mu\left(k_{\infty}^{a} / k\right)=0$ here. Thus, $\mu\left(k_{\infty} / k\right)=0$ for all \mathbb{Z}_{p}-extensions k_{∞}. Hence, for the vanishing of μ-invariants, there is nothing new when p does not split in k. In particular, if $\lambda\left(k_{\infty}^{c} / k\right)=1, L_{k} \subseteq \widetilde{k}$ and $\left[L_{k}: k\right]=p$, then $\mu\left(k_{\infty} / k\right)=0$ and $\lambda\left(k_{\infty} / k\right)=0$ for each k_{∞} with $k_{\infty} \cap k_{\infty}^{a} \neq k$ since $L_{k} \cap k_{\infty}=k_{\infty}^{a} \cap k_{\infty}$ from Lemma 2.2.
(2) Suppose the assumptions of Theorem 2. If further $p \mid h_{k}$, then the conditions of Theorem $4.1(\mathrm{~S})$ are satisfied. To check this, it suffices to show only that if $L_{k} \subseteq \widetilde{k}, p \mid h_{k}$ and $[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}]=p$, then \mathfrak{D} is normal in $\operatorname{Gal}(\widetilde{k} / \mathbb{Q})$. Let F be the fixed field of \mathfrak{D}. Then $k \subseteq F \subseteq \widetilde{k}$ and $[F: k]=p$. Let k_{1}^{a} be the 1-st layer of k_{∞}^{a} / k. Since $p \mid h_{k}$ and $L_{k} \subseteq \widetilde{k}, k_{1}^{a} / k$ is unramified by Lemma 2.2. Assume that $F \neq k_{1}^{a}$. Then $F k_{1}^{a} / k$ is the composite of 1 -st layers of all \mathbb{Z}_{p}-extensions of k and is unramified at a prime lying above p. This contradicts to the fact that k_{∞}^{c} / k is totally ramified at all primes lying above p since $\left(F k_{1}^{a}\right) \cap k_{\infty}^{c} \neq k$. Hence $F=k_{1}^{a}$. Since k_{1}^{a} / \mathbb{Q} is a Galois extension, \mathfrak{D} is normal in $\operatorname{Gal}(\widetilde{k} / \mathbb{Q})$. When $p \nmid h_{k}$, as mentioned in the above of Theorem 2, we already have a stricter result (see corollary of Theorem 1.)

From here we start to prove Theorem 4.1. As discussed in the previous section, since $\lambda\left(k_{\infty}^{c} / k\right)=2$ if p splits in k, and $\lambda\left(k_{\infty}^{c} / k\right)=1$ otherwise, there are a power series $f(S)=p^{m} g(S) U(S)$ in $\mathbb{Z}_{p}[[S]]$ and a surjective morphism

$$
\Lambda /(T-f(S)) \rightarrow X
$$

Proposition 4.1. $\quad[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}]=\# \mathbb{Z}_{p} / f(0) \mathbb{Z}_{p}$.
Proof. By isomorphisms

$$
\begin{aligned}
& \Lambda /(S) \simeq \mathbb{Z}_{p}[[T]] \simeq \mathbb{Z}_{p}\left[\left[\operatorname{Gal}\left(k_{\infty}^{c} / k\right)\right]\right], \\
& F(S, T) \mapsto F(0, T) \mapsto F\left(0, \tau \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)-1\right),
\end{aligned}
$$

we identify these rings. Recall that $Y_{k_{\infty}^{c}} \simeq \mathbb{Z}_{p}$. Since

$$
\begin{aligned}
\Lambda /(S, T-f(S)) & =\Lambda /(S, T-f(0)) \\
& \simeq \mathbb{Z}_{p}[[T]] /(T-f(0)) \\
& \simeq \mathbb{Z}_{p}
\end{aligned}
$$

as \mathbb{Z}_{p}-module, one sees that

$$
\begin{aligned}
\Lambda /(S, T-f(S)) & \simeq \mathbb{Z}_{p}[[T]] /(T-f(0)) \\
& \simeq Y_{k_{\infty}^{c}}
\end{aligned}
$$

as $\mathbb{Z}_{p}\left[\left[\operatorname{Gal}\left(k_{\infty}^{c} / k\right)\right]\right]$-modules. Applying Lemma 3.1 for k_{∞}^{c}, there is the following exact sequence

$$
0 \longrightarrow \mathbb{Z}_{p}[[T]] /(T-f(0)) \longrightarrow X_{k_{\infty}^{c}} \longrightarrow \operatorname{Gal}\left(\widetilde{k} \cap L_{k_{\infty}^{c}} / k_{\infty}^{c}\right) \longrightarrow 0
$$

of $\mathbb{Z}_{p}\left[\left[\operatorname{Gal}\left(k_{\infty}^{c} / k\right)\right]\right]$-modules. Suppose the conditions (S). Then $\operatorname{Gal}\left(\widetilde{k} \cap L_{k_{\infty}^{c}} /\right.$ $\left.k_{\infty}^{c}\right)=\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)$. Since $f(0) \neq 0$ as mentioned the above, it follows that

$$
\left(\mathbb{Z}_{p}[[T]] /(T-f(0))\right)^{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)}=0,
$$

here we let $M^{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)}$ the invariant submodule of a $\operatorname{Gal}\left(k_{\infty}^{c} / k\right)$-module M. Also, since \widetilde{k} / k is abelian, it follows that

$$
\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)^{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)}=\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)
$$

and

$$
\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)_{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)} \simeq \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)
$$

Hence we have an exact sequence

$$
\begin{gathered}
0 \longrightarrow X_{k_{\infty}^{c}}^{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)} \longrightarrow \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right) \\
\longrightarrow \mathbb{Z}_{p} / f(0) \mathbb{Z}_{p} \longrightarrow\left(X_{k_{\infty}^{c}}\right)_{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)} \longrightarrow \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right) \longrightarrow 0
\end{gathered}
$$

of \mathbb{Z}_{p}-modules since $\mathbb{Z}_{p}[[T]] /(T, T-f(0)) \simeq \mathbb{Z}_{p} / f(0) \mathbb{Z}_{p}$. By Lemma 4.1 of Okano [5], we know that $X_{k_{\infty}^{c}}^{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)}=D_{k_{\infty}^{c}}$, which is the decomposition group in $X_{k_{\infty}^{c}}=$ $\operatorname{Gal}\left(L_{k_{\infty}^{c}} / k_{\infty}^{c}\right)$ of a prime lying above p. Let M_{k} / k be the maximal pro- p abelian extension unramified outside all primes lying above p and L the fixed field of $L_{k_{\infty}^{c}}$ by $T X_{k_{\infty}^{c}}$. We claim that $\widetilde{k}=M_{k}=L$. By class field theory, see for example Theorem 13.4 and Corollary 13.6 of [$\mathbf{8}]$, there is an isomorphism

$$
\operatorname{Tor}_{\mathbb{Z}_{p}} \operatorname{Gal}\left(M_{k} / k\right) \simeq \operatorname{Gal}\left(L_{k} / L_{k} \cap \widetilde{k}\right)
$$

of finite abelian groups, where $\operatorname{Tor}_{\mathbb{Z}_{p}} \operatorname{Gal}\left(M_{k} / k\right)$ is the \mathbb{Z}_{p}-torsion submodule of $\operatorname{Gal}\left(M_{k} / k\right)$. By our assumption that $L_{k} \subseteq \widetilde{k}$, it follows that

$$
\operatorname{Tor}_{\mathbb{Z}_{p}} \operatorname{Gal}\left(M_{k} / k\right) \simeq \operatorname{Gal}\left(L_{k} / L_{k} \cap \widetilde{k}\right)=\operatorname{Gal}\left(L_{k} / L_{k}\right)=0
$$

This implies that $M_{k}=\widetilde{k}$. It follows from the fact that M_{k} / k_{∞}^{c} is unramified that $M_{k} \subseteq L$. Since L / k is abelian and unramified outside all primes lying above p, we have $L \subseteq M_{k}$. Therefore, $L=M_{k}=\widetilde{k}$. This shows that $\left(X_{k_{\infty}^{c}}\right)_{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)} \simeq$ $\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)$. Hence we obtain the following exact sequence

$$
0 \longrightarrow D_{k_{\infty}^{c}} \longrightarrow \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right) \longrightarrow \mathbb{Z}_{p} / f(0) \mathbb{Z}_{p} \longrightarrow 0
$$

of \mathbb{Z}_{p}-modules. Note that

$$
\operatorname{Image}\left(D_{k_{\infty}^{c}} \rightarrow \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)\right)=\mathfrak{D} \cap \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)
$$

since $D_{k_{\infty}^{c}}$ is not depending on the choice of a prime lying above p. Since k_{∞}^{c} / k is totally ramified at all primes lying above p, by combining the above arguments, we have

$$
\begin{aligned}
{[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}] } & =\# \operatorname{Gal}(\widetilde{k} / k) / \mathfrak{D} \\
& =\# \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right) \mathfrak{D} / \mathfrak{D} \\
& =\# \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right) / \mathfrak{D} \cap \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right) \\
& =\# \operatorname{Coker}\left(D_{k_{\infty}^{c}} \rightarrow \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{c}\right)\right) \\
& =\# \mathbb{Z}_{p} / f(0) \mathbb{Z}_{p} .
\end{aligned}
$$

Suppose the conditions (NS). Recall $X_{k_{\infty}^{c}}$ is isomorphic to \mathbb{Z}_{p} as \mathbb{Z}_{p}-modules. Since $Y_{k_{\infty}^{c}} \simeq \mathbb{Z}[[T]] /(T-f(0))$, it follows that

$$
\left(X_{k_{\infty}^{c}}\right)_{\mathrm{Gal}\left(k_{\infty}^{c} / k\right)} \simeq \mathbb{Z}_{p} / f(0) \mathbb{Z}_{p} .
$$

Since k_{∞}^{c} has the unique prime lying above p, we also have

$$
\left(X_{k_{\infty}^{c}}\right)_{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)} \simeq \operatorname{Gal}\left(L_{k} / k\right) .
$$

By the condition that $p \geq 5$, we have $M_{k}=\widetilde{k}$ since the completion at the prime lying above p has no primitive p-th root of unity. It follows that the fixed field of \widetilde{k} by \mathfrak{D} is L_{k} by class field theory because the order of the ideal class containing the prime above is prime to p. Therefore, we have

$$
\begin{aligned}
{[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}] } & =\# \operatorname{Gal}\left(L_{k} / k\right) \\
& =\#\left(X_{k_{\infty}^{c}}\right)_{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)} \\
& =\# \mathbb{Z}_{p} / f(0) \mathbb{Z}_{p}
\end{aligned}
$$

This completes the proof.
Let $p^{n_{0}}=[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}]$ and put $\nu_{n_{0}}(S)=\left((1+S)^{p^{n_{0}}}-1\right) / S$.
Proposition 4.2. $\quad f(S)=\nu_{n_{0}}(S) U(S)$.
Proof. For each non-negative integer n, denote by k_{n}^{a} the n-th layer of k_{∞}^{a}. Since \mathfrak{D} is normal in $\operatorname{Gal}(\widetilde{k} / \mathbb{Q})$, the fixed field of \mathfrak{D} is a Galois extension over \mathbb{Q}, and is unramified over k. This shows that the fixed field is $k_{n_{0}}^{a}$ by Lemma 2.2. Let $\widetilde{k_{n_{0}}^{a}}$ be the composite of all \mathbb{Z}_{p}-extensions of $k_{n_{0}}^{a}$. Then it is known that $\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{n_{0}}^{a}\right) \simeq \mathbb{Z}_{p}^{p^{n}+1}$, see $[\mathbf{3}]$ and Section $5-5$ of $[\mathbf{8}]$. We show $\nu_{n_{0}}(S) \mid f(S)$.

Suppose the condition (S). Let $\mathfrak{I}_{n_{0}} \subseteq \operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{n_{0}}^{a}\right)$ be the inertia subgroup
of a prime of $k_{n_{0}}^{a}$ lying above p. Since the prime number p splits completely in $k_{n_{0}}^{a} / \mathbb{Q}$, we have $\Im_{n_{0}} \simeq \mathbb{Z}_{p}$. Also, since $k_{\infty}^{a} / \mathbb{Q}$ is a Galois extension, all primes of k_{∞}^{a} are ramified in k_{∞}^{a} / k. This shows that $\Im_{n_{0}} \cap \operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right)=1$, and hence $\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}$ is unramified at all primes of k_{∞}^{a} because $\widetilde{k_{n_{0}}^{a}} / k_{n_{0}}^{a}$ is unramified outside the all primes lying above p. Consider the natural surjective morphism

$$
X_{k_{\infty}^{a}} \rightarrow \operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right) \simeq \mathbb{Z}_{p}^{p^{n_{0}}}
$$

Since $\widetilde{k_{n_{0}}^{a}}$ contains $\widetilde{k}=M_{k}$, we have

$$
\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right)_{\operatorname{Gal}\left(k_{\infty}^{a} / k\right)} \simeq \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right)
$$

By isomorphisms

$$
\begin{aligned}
& \Lambda /(T) \simeq \mathbb{Z}_{p}[[S]] \simeq \mathbb{Z}_{p}\left[\left[\operatorname{Gal}\left(k_{\infty}^{a} / k\right)\right]\right], \\
& F(S, T) \mapsto F(S, 0) \mapsto F\left(\sigma \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right)-1,0\right),
\end{aligned}
$$

we identify these rings. Since $\widetilde{k_{n_{0}}^{a}} / k_{n_{0}}^{a}$ is abelian, $\sigma^{p^{n_{0}}} \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right)=(1+S)^{p^{n_{0}}}$ acts on $\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right)$ trivially. Since also $\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right) \simeq \mathbb{Z}_{p}^{p_{0}}$ as \mathbb{Z}_{p}-modules, we have

$$
\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right) \simeq \mathbb{Z}_{p}[[S]] /\left((1+S)^{p^{n_{0}}}-1\right)
$$

Recall the characteristic ideal $\operatorname{char}_{\mathbb{Z}_{p}[[S]]}(M)$ of a finitely generated torsion $\mathbb{Z}_{p}[[S]]$ module M. The above isomorphism and the surjective morphism $X_{k_{\infty}^{a}} \rightarrow$ $\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right)$ implies that

$$
\operatorname{char}_{\mathbb{Z}_{p}[[S]]}\left(X_{k_{\infty}^{a}}\right) \subseteq\left((1+S)^{p^{n_{0}}}-1\right)
$$

Also, from the exact sequence

$$
0 \longrightarrow Y_{k_{\infty}^{a}} \longrightarrow X_{k_{\infty}^{a}} \longrightarrow \operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right) \longrightarrow 0
$$

we have

$$
\begin{aligned}
\operatorname{char}_{\left.\mathbb{Z}_{p}[S S]\right]}\left(X_{k_{\infty}^{a}}\right) & =\operatorname{char}_{\mathbb{Z}_{p}[[S]]}\left(\operatorname{Gal}\left(\widetilde{k} / k_{\infty}^{a}\right)\right) \operatorname{char}_{\left.\mathbb{Z}_{p}[S S]\right]}\left(Y_{k_{\infty}^{a}}\right) \\
& =S \operatorname{char}_{\mathbb{Z}_{p}[[S]]}\left(Y_{k_{\infty}^{a}}\right) \\
& \subseteq\left((1+S)^{p^{n_{0}}}-1\right) \\
& =S\left(\nu_{n_{0}}(S)\right) .
\end{aligned}
$$

Since S and $\nu_{n_{0}}(S)$ are relatively prime, we have $\operatorname{char}_{\mathbb{Z}_{p}[[S]]}\left(Y_{k_{\infty}^{a}}\right) \subseteq\left(\nu_{n_{0}}(S)\right)$. Finally, from the surjective morphism

$$
\mathbb{Z}_{p}[[S]] /(f(S)) \longrightarrow Y_{k_{\infty}^{a}},
$$

we have $(f(S)) \subseteq\left(\nu_{n_{0}}(S)\right)$ and hence $\nu_{n_{0}}(S)$ divides $f(S)$.
Suppose the condition (NS). Let \mathfrak{I}_{0} and $\Im_{n_{0}}$ be the inertia subgroups in \widetilde{k} / k and $\widetilde{k_{n_{0}}^{a}} / k_{n_{0}}^{a}$ of a prime of k and $k_{n_{0}}^{a}$ lying above p, respectively. Since $k_{n_{0}}^{a} / k$ is unramified, we have $\mathfrak{I}_{0} \subseteq \operatorname{Gal}\left(\widetilde{k} / k_{n_{0}}^{a}\right)$ and \mathfrak{I}_{0} is the inertia subgroup in $\widetilde{k} / k_{n_{0}}^{a}$. Also, since there is only one prime of k lying above p, \Im_{0} is isomorphic to \mathbb{Z}_{p}^{2}. Note that $\mathfrak{I}_{n_{0}}$ maps to \mathfrak{I}_{0} surjectively. Let $\mathfrak{p}_{n_{0}}$ be a prime of $k_{n_{0}}^{a}$ lying above p such that $\mathfrak{I}_{n_{0}}$ is the inertia subgroup of $\mathfrak{p}_{n_{0}}$ in $\widetilde{k_{n_{0}}^{a}} / k_{n_{0}}^{a}$. Let $U_{n_{0}}$ be the local principal unit group at $\mathfrak{p}_{n_{0}}$. Since p does not split in k and the all primes lying above p decomposed completely in $k_{n_{0}} / k$, we find that $U_{\mathfrak{p}_{n_{0}}} \simeq \mathbb{Z}_{p}^{2}$. By class field theory, there is a surjective map $U_{\mathfrak{p}_{n_{0}}} \rightarrow \mathfrak{I}_{n_{0}}$. Hence we find that $\mathfrak{I}_{n_{0}} \simeq \mathbb{Z}_{p}^{2}$ and therefore $\mathfrak{I}_{n_{0}} \simeq \mathfrak{I}_{0}$. This shows that $\mathfrak{I}_{n_{0}}$ maps to $\operatorname{Gal}(\widetilde{k} / k)$ injectively, and hence $\Im_{n_{0}} \cap \operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / \widetilde{k}\right)=1$. Thus $\widetilde{k_{n_{0}}^{a}} / \widetilde{k}$ is an abelian unramified extension. Let L / k_{∞}^{a} be the maximal abelian subextension of $L_{\widetilde{k}} / k_{\infty}^{a}$, we then have $\operatorname{Gal}(L / \widetilde{k})=Y_{k_{\infty}^{a}}$. Since $\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}$ is abelian and $\widetilde{k_{n_{0}}^{a}} \subseteq L_{\widetilde{k}}$, we have $\widetilde{k_{n_{0}}^{a}} \subseteq L$. From a surjective morphism

$$
\operatorname{Gal}(L / \widetilde{k})=Y_{k_{\infty}^{a}} \longrightarrow \operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / \widetilde{k}\right)
$$

it follows that

$$
\operatorname{char}_{\left.\left.\mathbb{Z}_{p}[S]\right]\right]}\left(Y_{k_{\infty}^{a}}\right) \subseteq \operatorname{char}_{\left.\left.\mathbb{Z}_{p}[S]\right]\right]}\left(\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / \widetilde{k}\right)\right)
$$

By doing the same argument to the case (S), we have

$$
\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right) \simeq \mathbb{Z}_{p}[[S]] /\left((1+S)^{p^{p_{0}}}-1\right)
$$

since $p \geq 5$ and $M_{k}=\widetilde{k}$. Thus $\operatorname{char}_{\mathbb{Z}_{p}[[S]]}\left(\operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / \widetilde{k}\right)\right)=\left(\nu_{n_{0}}(S)\right)$, and hence
$\operatorname{char}_{\mathbb{Z}_{p}[[S]]}\left(Y_{k_{\infty}^{a}}\right) \subseteq\left(\nu_{n_{0}}(S)\right)$. Therefore we also have $\nu_{n_{0}}(S) \mid f(S)$.
Rewrite $f(S)=p^{m} \nu_{n_{0}}(S) g(S) U(S)$ with a distinguished polynomial $g(S)$. Note that $\nu_{n_{0}}(0)=p^{n_{0}}$. Then we have

$$
\begin{aligned}
p^{n_{0}} & =[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}] \\
& =\# \mathbb{Z}_{p} / f(0) \mathbb{Z}_{p} \\
& =\# \mathbb{Z}_{p} / p^{m} \cdot p^{n_{0}} \cdot g(0) \mathbb{Z}_{p} .
\end{aligned}
$$

Hence $m=0$ and $p \nmid g(0)$, and therefore $f(S)=\nu_{n_{0}}(S) U(S)$.
We finish the proof of Theorem 4.1. Suppose the condition (S). If $k_{\infty} \neq$ $N_{\infty}, N_{\infty}^{\prime}$ then

$$
\lambda\left(k_{\infty} / k\right)=\operatorname{rank}_{\mathbb{Z}_{p}}\left(Y_{k_{\infty}}\right)+1
$$

by Lemma 3.1. Suppose the condition (NS). Let k_{∞} be a \mathbb{Z}_{p}-extension and L / k_{∞} the maximal abelian subextension of $L_{\widetilde{k}} / k_{\infty}$. Then $L_{k_{\infty}} \widetilde{k}$ is contained in L. Hence there is an exact sequence

$$
Y_{k_{\infty}} \longrightarrow X_{k_{\infty}} \longrightarrow \operatorname{Gal}\left(\widetilde{k} \cap L_{k_{\infty}} / k_{\infty}\right) \longrightarrow 0
$$

of $\mathbb{Z}_{p}\left[\left[\operatorname{Gal}\left(k_{\infty} / k\right)\right]\right]$-modules. Since \mathfrak{D} is equal to the inertia subgroup in $\operatorname{Gal}(\widetilde{k} / k)$ and $[\operatorname{Gal}(\widetilde{k} / k): \mathfrak{D}]=\left[L_{k}: k\right]<\infty$, we find that

$$
\left[\widetilde{k} \cap L_{k_{\infty}}: k_{\infty}\right]=\left[\operatorname{Gal}\left(\widetilde{k} / k_{\infty}\right): \mathfrak{D} \cap \operatorname{Gal}\left(\widetilde{k} / k_{\infty}\right)\right]<\infty .
$$

Therefore we have

$$
\lambda\left(k_{\infty} / k\right) \leq \operatorname{rank}_{\mathbb{Z}_{p}}\left(Y_{k_{\infty}}\right)
$$

for all \mathbb{Z}_{p}-extensions k_{∞}.
Let $k_{\infty}=k_{\infty}^{a}$ and suppose the condition (S). Note that $k_{\infty}^{a}=\widetilde{k}^{\overline{\langle\tau}}$. Then, by Proposition 4.2,

$$
I_{0,1}=\left(T, T-S^{p^{n_{0}}-1} U(S), p\right)=\left(S^{p^{n_{0}}-1}, T, p\right)
$$

and $\Lambda / I_{0,1} \simeq(\mathbb{Z} / p)^{p^{n_{0}}-1}$. This implies $\mu\left(k_{\infty}^{a} / k\right)=0$ and

$$
\lambda\left(k_{\infty}^{a} / k\right)=\operatorname{rank}_{\mathbb{Z}_{p}}\left(Y_{k_{\infty}^{a}}\right)+1 \leq p^{n_{0}}
$$

from Lemma 2.1. Suppose the condition (NS). Then $\lambda\left(k_{\infty}^{a} / k\right)=\mu\left(k_{\infty}^{a} / k\right)=0$ as mentioned in the above. In particular, $\mu\left(k_{\infty} / k\right)=0$ for all k_{∞} by Bloom-Gerth [2] (In fact, we also can show $\mu=0$ by our argument.)

Assume that $k_{\infty} \cap k_{\infty}^{a}=k$. Then

$$
\lambda\left(k_{\infty} / k\right) \leq \begin{cases}2 & (\mathbf{S}) \\ 1 & (\mathbf{N S})\end{cases}
$$

by Theorem 1. Thus $\lambda\left(k_{\infty} / k\right) \leq 2 \leq p^{n_{0}}$.
Suppose the condition (S) and let $k_{\infty}=N_{\infty}$. Since $L_{k} \subseteq N_{\infty}$, we have $\lambda\left(N_{\infty} / k\right)=\mu\left(N_{\infty} / k\right)=0$ by the formula stated in the remark (1) of Theorem 4.1.

Let k_{∞} be a \mathbb{Z}_{p}-extension such that $k_{\infty} \cap k_{\infty}^{a} \neq k, k_{\infty} \neq k_{\infty}^{a}$, and that $k_{\infty} \neq N_{\infty}, N_{\infty}^{\prime}$ if p splits in k. Choose $(\alpha, \beta) \in \mathbb{Z}_{p}^{2}-p \mathbb{Z}_{p}^{2}$ so that $k_{\infty}=\widetilde{k}^{\overline{\left.\sigma^{\alpha} \tau^{\beta}\right\rangle}}$. Then $p \mid \alpha$, so put $\alpha=p^{s} \alpha^{\prime}$ for $s \in \mathbb{Z}_{\geq 1}$ and $\alpha^{\prime} \in \mathbb{Z}_{p}^{\times}$. We calculate $I_{\alpha, \beta}$.

$$
\begin{aligned}
I_{\alpha, \beta} & =\left((1+S)^{\alpha}(1+T)^{\beta}-1, T-S^{p^{n_{0}}-1} U(S), p\right) \\
& =\left(\left(1+S^{p^{s}}\right)^{\alpha^{\prime}}\left(1+S^{p^{n_{0}}-1} U(S)\right)^{\beta}-1, T-S^{p^{n_{0}}-1} U(S), p\right) \\
& =\left(\left(\sum_{k=0}^{\infty}\binom{\alpha^{\prime}}{k} S^{k p^{s}}\right)\left(\sum_{l=0}^{\infty}\binom{\beta}{l} S^{l\left(p^{n_{0}}-1\right)} U(S)^{l}\right)-1, T-S^{p^{n_{0}}-1} U(S), p\right) \\
& =\left(\sum_{n=1}^{\infty} \sum_{k=0}^{n}\binom{\alpha^{\prime}}{k}\binom{\beta}{n-k} S^{k p^{s}+(n-k)\left(p^{n_{0}}-1\right)} U(S)^{n-k}, T-S^{p^{n_{0}}-1} U(S), p\right) .
\end{aligned}
$$

First suppose that $p^{n_{0}}-1<p^{s}$. Note that

$$
k p^{s}+(n-k)\left(p^{n_{0}}-1\right)=n\left(p^{n_{0}}-1\right)+k\left(p^{s}-\left(p^{n_{0}}-1\right)\right) \geq n\left(p^{n_{0}}-1\right)
$$

Thus $\sum_{n=1}^{\infty} \sum_{k=0}^{n}\binom{\alpha^{\prime}}{k}\binom{\beta}{n-k} S^{k p^{s}+(n-k)\left(p^{n_{0}}-1\right)} U(S)^{n-k}$ is divided by $S^{p^{n_{0}}-1}$. Put

$$
h_{0}(S)=\sum_{n=1}^{\infty} \sum_{k=0}^{n}\binom{\alpha^{\prime}}{k}\binom{\beta}{n-k} S^{k p^{s}+(n-k)\left(p^{n_{0}}-1\right)-\left(p^{n_{0}}-1\right)} U(S)^{n-k} .
$$

Since $k p^{s}+(n-k)\left(p^{n_{0}}-1\right)-\left(p^{n_{0}}-1\right) \geq(n-1)\left(p^{n_{0}}-1\right)$, we have

$$
\begin{aligned}
h_{0}(0) & =\sum_{k=0}^{1}\binom{\alpha^{\prime}}{k}\binom{\beta}{1-k}\left[S^{k p^{s}+(1-k)\left(p^{n_{0}}-1\right)-\left(p^{n_{0}}-1\right)}\right]_{S=0} U(0)^{1-k} \\
& =\binom{\alpha^{\prime}}{0}\binom{\beta}{1} U(0)=\beta U(0) \in \mathbb{Z}_{p}^{\times} .
\end{aligned}
$$

This shows that

$$
\begin{aligned}
I_{\alpha, \beta} & =\left(S^{p^{n_{0}}-1} h_{0}(S), T-S^{p^{n_{0}}-1} U(S), p\right) \\
& =\left(S^{p^{n_{0}}-1}, T, p\right),
\end{aligned}
$$

and hence

$$
\Lambda / I_{\alpha, \beta} \simeq(\mathbb{Z} / p)^{p^{n_{0}}-1}
$$

Therefore $\lambda\left(k_{\infty} / k\right) \leq p^{n_{0}}$.
Next suppose that $p^{n_{0}}-1>p^{s}$. Since

$$
\begin{aligned}
k p^{s}+(n-k)\left(p^{n_{0}}-1\right) & =n\left(p^{n_{0}}-1\right)+k\left(p^{s}-\left(p^{n_{0}}-1\right)\right) \\
& \geq n\left(p^{n_{0}}-1\right)+n\left(p^{s}-\left(p^{n_{0}}-1\right)\right) \\
& =n p^{s},
\end{aligned}
$$

$\sum_{n=1}^{\infty} \sum_{k=0}^{n}\binom{\alpha^{\prime}}{k}\binom{\beta}{n-k} S^{k p^{s}+(n-k)\left(p^{n_{0}}-1\right)} U(S)^{n-k}$ is divided by $S^{p^{s}}$. Put

$$
h_{1}(S)=\sum_{n=1}^{\infty} \sum_{k=0}^{n}\binom{\alpha^{\prime}}{k}\binom{\beta}{n-k} S^{k p^{s}+(n-k)\left(p^{n_{0}}-1\right)-p^{s}} U(S)^{n-k}
$$

Since $k p^{s}+(n-k)\left(p^{n_{0}}-1\right)-p^{s} \geq(n-1) p^{s}$, we have

$$
\begin{aligned}
h_{1}(0) & =\sum_{k=0}^{1}\binom{\alpha^{\prime}}{k}\binom{\beta}{1-k}\left[S^{k p^{s}+(1-k)\left(p^{n_{0}}-1\right)-p^{s}}\right]_{S=0} U(0)^{1-k} \\
& =\binom{\alpha^{\prime}}{1}\binom{\beta}{0}=\alpha^{\prime} \in \mathbb{Z}_{p}^{\times} .
\end{aligned}
$$

This shows that

$$
\begin{aligned}
I_{\alpha, \beta} & =\left(S^{p^{s}} h_{1}(S), T-S^{p^{n_{0}}-1} U(S), p\right) \\
& =\left(S^{p^{s}}, T, p\right),
\end{aligned}
$$

and hence

$$
\Lambda / I_{\alpha, \beta} \simeq(\mathbb{Z} / p)^{p^{s}}
$$

Therefore $\lambda\left(k_{\infty} / k\right) \leq p^{s}+1 \leq p^{n_{0}}$. This completes the proof of Theorem 4.1.
As an application to Proposition 4.2, we can obtain the following results.
Theorem 4.2. Under the condition (S), $X_{k_{\infty}^{a}} \simeq \mathbb{Z}_{p}[[S]] /\left((1+S)^{p^{n_{0}}}-1\right)$ as $\mathbb{Z}_{p}[[S]]$-modules.

Proof. Recall a surjective morphism $X_{k_{\infty}^{a}} \rightarrow \operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{n_{0}}^{a}\right) \simeq \mathbb{Z}_{p}^{p^{n_{0}}}$. It follows that $p^{n_{0}} \leq \operatorname{rank}_{\mathbb{Z}_{p}}\left(X_{k_{\infty}^{a}}\right)=\operatorname{rank}_{\mathbb{Z}_{p}}\left(Y_{k_{\infty}^{a}}\right)+1$ and hence we have $p^{n_{0}}-1 \leq$ $\operatorname{rank}_{\mathbb{Z}_{p}}\left(Y_{k_{\infty}^{a}}\right)$. Recall also a surjective morphism $\mathbb{Z}_{p}[[S]] /\left(\nu_{n_{0}}(S)\right) \rightarrow Y_{k_{\infty}^{a}}$. Since

$$
\begin{aligned}
p^{n_{0}-1} & =\operatorname{rank}_{\mathbb{Z}_{p}}\left(\mathbb{Z}_{p}[[S]] /\left(\nu_{n_{0}}(S)\right)\right) \\
& \geq \operatorname{rank}_{\mathbb{Z}_{p}}\left(Y_{k_{\infty}^{a}}\right) \\
& \geq p^{n_{0}}-1,
\end{aligned}
$$

we have $\mathbb{Z}_{p}[[S]] /\left(\nu_{n_{0}}(S)\right) \simeq Y_{k_{\infty}^{a}} \simeq \mathbb{Z}_{p}^{p^{n_{0}}-1}$, and hence $X_{k_{\infty}^{a}} \simeq \mathbb{Z}_{p}^{p^{n_{0}}}$. Therefore we have $L_{k_{\infty}^{a}}=\widetilde{k_{n_{0}}^{a}}$ and

$$
X_{k_{\infty}^{a}} \simeq \operatorname{Gal}\left(\widetilde{k_{n_{0}}^{a}} / k_{\infty}^{a}\right) \simeq \mathbb{Z}_{p}[[S]] /\left((1+S)^{p^{n_{0}}}-1\right)
$$

This completes the proof.
This isomorphism says that k_{∞}^{a} has only trivially known unramified abelian pro- p extensions.

Corollary 4.1. $\quad\left(T-\nu_{n_{0}}(S) U(S)\right) X=0$.
Remark. As mentioned in the below of Lemma 3.2, the uniqueness of $f(S)$ is unknown. Under the assumption of Theorem 4.1, we conclude that the uniqueness of $U(S)$ is unknown, namely, if a power series $F(S) \in \mathbb{Z}_{p}[[S]]$ satisfies $T x=F(S) x$, then $F(S)=\nu_{n_{0}}(S)(U(S)+G(S))$ with $G(S) \in(S, p)$.

5. Some Discussions.

We give a proof of Theorem A here as mentioned in Section 1. Suppose that p does not split in k and $\lambda\left(k_{\infty}^{c} / k\right)=0$. Since k_{∞}^{c} has the unique prime lying above p and k_{∞}^{c} / k is totally ramified at the prime lying above $p,\left(X_{k_{\infty}^{c}}\right)_{\operatorname{Gal}\left(k_{\infty}^{c} / k\right)} \simeq$ $\operatorname{Gal}\left(L_{k} / k\right)$. It is known that $X_{k_{\infty}^{c}}$ is a finitely generated free \mathbb{Z}_{p}-module of rank $\lambda\left(k_{\infty}^{c} / k\right)$. Hence $\operatorname{Gal}\left(L_{k} / k\right)=0$ since $\lambda\left(k_{\infty}^{c} / k\right)=0$. Thus $\left(X_{k_{\infty}}\right)_{\operatorname{Gal}\left(k_{\infty} / k\right)} \simeq$ $\operatorname{Gal}\left(L_{k} / k\right)=0$, and therefore $X_{k_{\infty}}=0$ for each k_{∞}. This shows $\lambda\left(k_{\infty} / k\right)=$ $\mu\left(k_{\infty} / k\right)=\nu\left(k_{\infty} / k\right)=0$ for each k_{∞}.

Suppose that p splits in k and $\lambda\left(k_{\infty}^{c} / k\right)=1$. Then by Lemma 3.1, $Y_{k_{\infty}^{c}}=0$ and hence $X=0$. This shows that $X_{k_{\infty}}=\operatorname{Gal}\left(\widetilde{k} / k_{\infty}\right) \simeq \mathbb{Z}_{p}$ for each k_{∞} with $k_{\infty} \neq N_{\infty}, N_{\infty}^{\prime}$, and therefore $\lambda\left(k_{\infty} / k\right)=1$ and $\mu\left(k_{\infty} / k\right)=0$. Next we show that $\lambda\left(N_{\infty} / k\right)=\lambda\left(N_{\infty}^{\prime} / k\right)=\mu\left(N_{\infty} / k\right)=\mu\left(N_{\infty}^{\prime} / k\right)=0$. Since $X=0$, one sees that $\operatorname{Gal}\left(L_{N_{\infty}} \widetilde{k} / \widetilde{k}\right)=0$. Since also $\widetilde{k} / N_{\infty}$ is ramified at primes lying above \mathfrak{p}^{\prime}, $\operatorname{Gal}\left(\widetilde{k} \cap L_{N_{\infty}} / N_{\infty}\right)$ is finite. From the exact sequence

$$
0 \rightarrow \operatorname{Gal}\left(L_{N_{\infty}} \widetilde{k} / \widetilde{k}\right) \rightarrow X_{N_{\infty}} \rightarrow \operatorname{Gal}\left(L_{N_{\infty}} \cap \widetilde{k} / N_{\infty}\right) \rightarrow 0
$$

we conclude that $X_{N_{\infty}}$ is finite. Therefore, $\lambda\left(N_{\infty} / k\right)=\mu\left(N_{\infty} / k\right)=0$. By the same argument, we also have $\lambda\left(N_{\infty}^{\prime} / k\right)=\mu\left(N_{\infty}^{\prime} / k\right)=0$. This completes the proof of Theorem A.

On the proof of Theorem 1 , when p does not split in k, we do not use individualities of imaginary quadratic fields, it was needed that k has the complex conjugation J as an automorphism (i.e. k is a CM-field), $X_{k_{\infty}^{c}} \simeq \mathbb{Z}_{p}$ and that k_{∞}^{c} has only one prime lying above p. Hence we can obtain a more general result.

Proposition 5.1. Let p be an odd prime number, k a $C M$-field and k^{+}the maximal totally real subfield of k. Suppose that k_{∞}^{c} has the unique prime lying above $p, X_{k_{\infty}^{c}} \simeq \mathbb{Z}_{p}$ and that k_{∞}^{c} / k is totally ramified at the prime above p. Let k_{∞}^{a} / k be an anti-cyclotomic \mathbb{Z}_{p}-extension of k, namely, k_{∞}^{a} / k^{+}is a Galois extension such that $\operatorname{Gal}\left(k_{\infty}^{a} / k^{+}\right)$is non-abelian. Put $K=k_{\infty}^{c} k_{\infty}^{a}$. Then $\lambda\left(k_{\infty} / k\right) \leq 1$ for each \mathbb{Z}_{p}-extension k_{∞} such that $k_{\infty} \subseteq K$ and that $k_{\infty} \cap k_{\infty}^{a}=k$.

For example, let $p=37,59$ or 67 . Then the p-th cyclotomic field $k=\mathbb{Q}\left(\mu_{p}\right)$ satisfies the assumption of Proposition 5.1.

References

[1] J. R. Bloom, On the invariants of some \boldsymbol{Z}_{l}-extensions, J. Number Theory, 11 (1979), 239-256.
[2] J. R. Bloom and F. Gerth, III, The Iwasawa invariant μ in the composite of two \boldsymbol{Z}_{l} extensions, J. Number Theory, 13 (1981), 262-267.
[3] A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967), 121-124.
[4] S. Lang, Cyclotomic Fields I and II, Grad. Texts in Math., 121, Springer-Verlag, New York, 1990.
[5] K. Okano, Abelian p-class field towers over the cyclotomic \mathbb{Z}_{p}-extensions of imaginary quadratic fields, Acta Arith., 125 (2006), 363-381.
[6] M. Ozaki, Iwasawa invariants of \mathbb{Z}_{p}-extensions over an imaginary quadratic field, In: Class Field Theory-Its Centenary and Prospect, (ed. K. Miyake), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, pp. 387-399.
[7] J. W. Sands, On small Iwasawa invariants and imaginary quadratic fields, Proc. Amer. Math. Soc., 112 (1991), 671-684.
[8] L. C. Washington, Introduction to cyclotomic fields. Second edition, Grad. Texts in Math., 83, Springer-Verlag, New York, 1997.

Satoshi FujiI

Department of Mathematical Sciences School of Science and Engineering
Keio University
Hiyoshi, Kohoku-ku
Yokohama 223-8522, Japan
E-mail: moph@a2.keio.jp

[^0]: 2010 Mathematics Subject Classification. Primary 11R23; Secondary 11R11.
 Key Words and Phrases. Iwasawa invariants, \mathbb{Z}_{p}-extensions, \mathbb{Z}_{p}^{2}-extensions, imaginary quadratic fields.

 This research was supported by Grant-in-Aid for JSPS Fellows (22-5731) from Japan Society for the Promotion of Science.

