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On a bound of λ and the vanishing of µ of Zp-extensions

of an imaginary quadratic field
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Abstract. Let p be an odd prime number. To ask the behavior of
λ- and µ-invariants is a basic problem in Iwasawa theory of Zp-extensions.
Sands showed that if p does not divide the class number of an imaginary
quadratic field k and if the λ-invariant of the cyclotomic Zp-extension of k
is 2, then µ-invariants vanish for all Zp-extensions of k, and λ-invariants are
less than or equal to 2 for Zp-extensions of k in which all primes above p
are totally ramified. In this article, we show results similar to Sands’ results
without the assumption that p does not divide the class number of k. When
µ-invariants vanish, we also give an explicit upper bound of λ-invariants of all
Zp-extensions.

1. Introduction.

Let k/Q be a finite extension, hk the class number of k and p a prime number.
In this article, all algebraic extensions of Q are assumed to be contained in a fixed
algebraic closure of Q. Let k∞/k be a Zp-extension and kn its n-th layer, that is,
the unique intermediate field of k∞/k such that [kn : k] = pn, here we let Zp the
ring of p-adic integers. By Iwasawa’s class number formula, there are non-negative
integers λ(k∞/k), µ(k∞/k) and an integer ν(k∞/k) depending only on k∞/k such
that the p-exponent of hkn

is described as

λ(k∞/k)n + µ(k∞/k)pn + ν(k∞/k)

for all sufficiently large n. These invariants are called the Iwasawa λ-, µ- and
ν-invariant. Especially, the invariants λ and µ are important, these are structure
invariants of ideal class groups as Galois modules. Then the following problem has
been considered.
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Problem. For a fixed finite extension k/Q and a prime number p, how do
invariants λ(k∞/k) and µ(k∞/k) behave as k∞ runs Zp-extensions of k?

Some studies on the above problem for imaginary quadratic fields have been
done by several authors, for example, Bloom–Gerth [2], Sands [7] and Ozaki [6],
and so on. Let k be an imaginary quadratic field. Then there is a unique Z2

p-
extension k̃ of k. Hence there exist infinitely many Zp-extensions of k. Typical
examples of Zp-extensions are:

• The cyclotomic Zp-extension kc
∞.

• The anti-cyclotomic Zp-extension ka
∞ when p is an odd prime number.

• Suppose that p splits in k, that is, p = pp′. Then there are the p- and the
p′-ramified Zp-extensions N∞ and N ′

∞.

When p is an odd prime number, the Zp-extensions kc
∞ and ka

∞ are Galois
extensions over Q, and if k∞/Q is a Galois extension then k∞ = kc

∞ or ka
∞. Note

that kc
∞/Q is abelian and that ka

∞/Q is non-abelian.
We show here completely determined cases, Sands’ and Ozaki’s results for our

problem.

Theorem A (Completely determined cases). Let p be an odd prime number
and k an imaginary quadratic field.

(1) Suppose that p does not split in k and that λ(kc
∞/k) = 0. Then λ(k∞/k) =

µ(k∞/k) = ν(k∞/k) = 0 for all Zp-extensions k∞.
(2) Suppose that p splits in k and that λ(kc

∞/k) = 1. Then, λ(N∞/k) =
λ(N ′

∞/k) = 0, λ(k∞/k) = 1 for each Zp-extension k∞ with k∞ 6= N∞, N ′
∞,

and µ(k∞/k) = 0 for all Zp-extensions k∞.

Sands [7] stated a part of Theorem A. We will prove Theorem A in the last
section. However, there are no contributions by the author. Theorem A is shown
by combining arguments which are already known.

Theorem B (Sands [7]). Let p be an odd prime number and k an imaginary
quadratic field in which p splits. Suppose that p - hk and that λ(kc

∞/k) = 2. Then,
λ(k∞/k) ≤ 2 for each Zp-extension k∞ with k∞ ∩ N∞ = k∞ ∩ N ′

∞ = k, and
µ(k∞/k) = 0 for all Zp-extensions k∞.

Theorem C (Ozaki [6]). Let p be an odd prime number and k an imaginary
quadratic field in which p splits. Suppose that p - hk. Then λ(k∞/k) = 1 and
µ(k∞/k) = 0 for all but finite k∞.

In this article, we show results similar to Theorem B without the condition
that p - hk.
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Theorem 1. Let p be an odd prime number and k an imaginary quadratic
field.

(1) Suppose that p splits in k and that λ(kc
∞/k) = 2. Then, λ(k∞/k) ≤ 2 for each

Zp-extension k∞ such that k∞ ∩ ka
∞ = k and that k∞ 6= N∞, N ′

∞.
(2) Suppose that p does not split in k and that λ(kc

∞/k) = 1. Then, λ(k∞/k) ≤ 1
for each Zp-extension k∞ such that k∞ ∩ ka

∞ = k.

Here we give some remarks.

(1) By Bloom–Gerth’s result [2], under the assumption on λ(kc
∞/k) in Theorem

1, it is known that µ(k∞/k) = 0 for each k∞ except for ka
∞, which will be

explained lator.
(2) The proof of Theorem 1 is very similar to a method used in Bloom [1]. By using

the action of the complex conjugation, we can obtain a detailed conclusion.

As a corollary to Theorem 1 and results which had already been obtained by
several authors, we can give a partial answer to our problem.

Corollary. Let p be an odd prime number and k an imaginary quadratic
field in which p splits. Suppose that p - hk and that λ(kc

∞/k) = 2.

(1) For all Zp-extensions k∞, µ(k∞/k) = 0.
(2) λ(N∞/k) = λ(N ′

∞/k) = 0.
(3) λ(k∞/k) = 1 for all but finite k∞.
(4) For finite exceptional Zp-extensions k∞ in (3) with k∞ 6= N∞, N ′

∞,
λ(k∞/k) = 2.

In particular, λ(k∞/k) ≤ 2 for all Zp-extensions k∞.

The assertion (1) is a part of Theorem B. Let Nn be the unique intermediate
subfield of N∞/k with [Nn : k] = pn for each non-negative integer n. Since N∞/k

is totally ramified at p and p - hk, we have p - hNn
. This shows (2). The assertion

(3) is a special case of Theorem C. Suppose that k∞ 6= N∞, N ′
∞. If k∞ ∩ ka

∞ ) k,
then k∞ ∩ N∞ = k∞ ∩ N ′

∞ = k since p - hk. By Theorem B, λ(k∞/k) ≤ 2. If
k∞ ∩ ka

∞ = k, then λ(k∞/k) ≤ 2 by Theorem 1. This shows (4).

Next we show a result which concern an upper bound of λ and the vanishing
of µ. If p - hk and λ(kc

∞/k) = 2, then we already know µ(k∞/k) = 0 and
λ(k∞/k) ≤ 2 for all Zp-extensions k∞ from the above corollary. We then deal
with the case where p | hk.

Theorem 2. Let p be an odd prime number and k an imaginary quadratic
field in which p splits. Suppose the following conditions:



280 S. Fujii

(1) λ(kc
∞/k) = 2.

(2) The p-Hilbert class field Lk of k is contained in k̃.
(3) [Gal(k̃/k) : D] = p, where we denote by D the decomposition group in Gal(k̃/k)

of a prime lying above p.

Then λ(k∞/k) ≤ p and µ(k∞/k) = 0 for all Zp-extensions k∞.

In fact, we will show a somewhat more general statement including the case
where p does not split in k. One will see that λ(k∞/k) ≤ p is the best possible
bound if p | hk. We show some examples.

• Let p = 3. Let k = Q(
√−461) or Q(

√−743), then the prime 3 splits in k.
We can check that 3 | hk, λ(kc

∞/k) = 2, Lk ⊆ k̃ and [Gal(k̃/k) : D] = 3.
Hence λ(k∞/k) ≤ 3 and µ(k∞/k) = 0 for all Z3-extensions k∞.

• Let p = 5 and k = Q(
√−1214), then 5 splits in k. We can check that 5 | hk,

λ(kc
∞/k) = 2, Lk ⊆ k̃ and [Gal(k̃/k) : D] = 5. Hence λ(k∞/k) ≤ 5 and

µ(k∞/k) = 0 for all Z5-extensions k∞.

2. Preliminaries.

This section consists of notations and affirmations of fundamental properties
of Iwasawa modules. In what follows, let p and k be an odd prime number and an
imaginary quadratic field respectively. As mentioned in Section 1, there is a unique
Z2

p-extension k̃ of k. Note that all Zp-extensions of k are contained in k̃. Note
also that all primes of k lying above p are ramified in k∞/k (not necessary totally
ramified) except for k∞ = N∞ or N ′

∞. Let Lk/k be the maximal unramified
abelian pro-p extension, which is also called the p-Hilbert class field. Let K/k

be a Zp-extension or the Z2
p-extension and XK the Galois group Gal(LK/K) of

the maximal unramified abelian pro-p extension LK/K. When K = k̃ we put
X = Xek. The Galois group Gal(K/k) acts on XK in the manner g(x) = gxg−1,
where we let g ∈ Gal(K/k), x ∈ XK and g a lift of g to Gal(LK/k). Then the
completed group ring Zp[[Gal(K/k)]] acts on XK , and it is known that XK is
a finitely generated torsion Zp[[Gal(K/k)]]-module. For K = k̃, we set a more
precise notation. We choose a basis of Gal(k̃/k) as follows. Since the cyclotomic
Zp-extension kc

∞ and the anti-cyclotomic Zp-extension ka
∞ are disjoint over k, we

know that k̃ = kc
∞ka

∞, and hence Gal(k̃/k) is a direct product of Gal(k̃/kc
∞) and

Gal(k̃/ka
∞). Let σ and τ be topological generators of Gal(k̃/kc

∞) and Gal(k̃/ka
∞)

respectively. Put 〈J〉 = Gal(k/Q). Then J acts on Gal(k̃/k) since k̃/Q is a
Galois extension. The action of J on Gal(k̃/k) is given by J(x) = JxJ

−1
for

x ∈ Gal(k̃/k), here J ∈ Gal(k̃/Q) is a lift of J . Since kc
∞/Q is abelian and

ka
∞/Q is non-abelian, one sees that J(σ) = σ−1 and J(τ) = τ . We then fix
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an isomorphism between the completed group ring Zp[[Gal(k̃/k)]] and the formal
power series ring Λ = Zp[[S, T ]] in two variables given by σ ↔ 1+S and τ ↔ 1+T .
So we regard X a Λ-module. Note that Λ is a complete noetherian local integral
domain with the maximal ideal (S, T, p). We also use the power series rings Zp[[S]]
and Zp[[T ]] in one variable as a sub- or a quotient ring of Λ. For a commutative
ring A, denote by A× the unit group of A. Note that Λ× = Λ − (S, T, p) and
Zp[[S]]× = Zp[[S]]− (S, p). Let M be a finitely generated torsion Zp[[S]]-module.
By the structure theorem of Zp[[S]]-modules, M is pseudo-isomorphic to a module
of the form

⊕r
i=1 Zp[[S]]/qmi , where r and mi (1 ≤ i ≤ r) are non-negative

integers, and qis are prime ideals of Zp[[S]] of height 1. Then the ideal

charZp[[S]](M) =
r∏

i=1

qmi

is called the characteristic ideal of M .
For a profinite group H and a profinite H-module M , let MH be the H-

coinvariant module of M , namely, MH = M/
∑

h∈H(h− 1)M . If H = 〈h〉, then
MH = M/(h − 1)M . Let k∞ be a Zp-extension and 〈σατβ〉 the corresponding
subgroup of Gal(k̃/k) to k∞, where (α, β) ∈ Z2

p− pZ2
p. Since σατβ corresponds to

(1 + S)α(1 + T )β , we have

XGal(ek/k∞) = X/(σατβ − 1)X = X/((1 + S)α(1 + T )β − 1)X.

In this article, we use frequently such coinvariant modules, so we put Yk∞ =
XGal(ek/k∞) for Zp-extensions k∞.

Lemma 2.1. Let F∞/F be a Zp-extension of a number field F .

(1) λ(F∞/F ) = rankZp(XF∞).
(2) µ(F∞/F ) = 0 if and only if XF∞ is finitely generated over Zp.
(3) Let g ∈ Gal(Q/Q), here Q is a fixed algebraic closure of Q. Then λ(F∞/F ) =

λ(g(F∞)/g(F )) and µ(F∞/F ) = µ(g(F∞)/g(F )).

Proof. For (1) and (2), see sections 13–2 and –3 of [8]. Let Fn be the n-th
layer of F∞/F for each non-negative integer n. Then g(Fn) is the n-th layer of a
Zp-extension g(F∞)/g(F ), and hFn

= hg(Fn). By Iwasawa’s class number formula,
we have

λ(F∞/F )n + µ(F∞/F )pn + ν(F∞/F )

= λ(g(F∞)/g(F ))n + µ(g(F∞)/g(F ))pn + ν(g(F∞)/g(F ))
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for all sufficiently large n. Since limn→∞ n/pn = 0, we have

µ(F∞/F ) = µ(g(F∞)/g(F )).

Similarly, it follows that λ(F∞/F ) = λ(g(F∞)/g(F )). ¤

Lemma 2.2. Let p be an odd prime number and k an imaginary quadratic
field. Then Lk ∩ k̃ is contained in ka

∞.

Proof. Let Clk be the ideal class group of k. Then, by class field theory,
the Artin map induces an isomorphism Clk ⊗ Zp ' Gal(Lk/k), in particular,
this isomorphism and the action of the complex conjugation J are compatible.
Since hQ = 1, J acts as inverse on Clk ⊗ Zp, and hence J also acts as inverse
on Gal(Lk/k). Thus Lk ∩ k̃/Q is a Galois extension and J acts as inverse on
Gal(Lk ∩ k̃/k). This shows that the image from Gal(k̃/ka

∞) to Gal(Lk ∩ k̃/k) with
respect to the restriction map is trivial. Hence Lk ∩ k̃ is fixed by Gal(k̃/ka

∞), and
therefore Lk ∩ k̃ is contained in ka

∞. ¤

3. Proof of Theorem 1.

First we show an explicit relation between X and Xk∞ .

Lemma 3.1 (See for example Lemma 1 of Ozaki [6]). Suppose one of the
following two conditions.

(1) The prime p splits in k and k∞ 6= N∞, N ′
∞.

(2) The prime p does not split in k and k∞/k is totally ramified at the prime lying
above p.

Then there is an exact sequence

0 −→ Yk∞ −→ Xk∞ −→ Gal(k̃ ∩ Lk∞/k∞) −→ 0

of Zp[[Gal(k∞/k)]]-modules. Here, Gal(k̃∩Lk∞/k∞) is isomorphic to Zp if p splits
in k since k̃ ⊆ Lk∞ , and is finite cyclic otherwise.

Remark. The cyclotomic Zp-extension kc
∞ satisfies the condition of Lemma

3.1. If p does not split in k and if k∞ ∩ ka
∞ = k, then k∞/k is totally ramified.

Indeed, let k1 be the 1-st layer of k∞/k. if k1/k is unramified at prime lying above
p, then is unramified at all primes of k. Hence k1 is contained in Lk. Therefore
k1 ⊆ ka

∞ by Lemma 2.2.
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From Lemma 3.1, we have

λ(k∞/k) = rankZp
(Xk∞) =

{
rankZp

(Yk∞) + 1 if p splits in k,

rankZp
(Yk∞) otherwise

for suitable Zp-extensions.

Lemma 3.2. Suppose that λ(kc
∞/k) = 2 if p splits in k, and λ(kc

∞/k) = 1
otherwise. Then there are a power series f(S) ∈ Zp[[S]] and a surjective morphism
Λ/(T − f(S)) → X of Λ-modules.

Proof. By Lemma 3.1, there is the following exact sequence

0 −→ Ykc∞ −→ Xkc∞ −→ Gal
(
Lkc∞ ∩ k̃/kc

∞
) −→ 0

of Zp[[Gal(kc
∞/k)]]-modules. From the fact that Xkc∞ is a free Zp-module of rank

λ(kc
∞/k) (see for example corollary 13.29 of [8]), we find that Ykc∞ = X/SX ' Zp.

By topological version of Nakayama’s lemma, there is x ∈ X such that X =
Zp[[S]]x. Then there is a power series f(S) ∈ Zp[[S]] such that Tx = f(S)x, and
(T − f(S))X = 0. Therefore, there is a surjective morphism

Λ/(T − f(S)) → X, F (S, T ) 7→ F (S, T )x

of Λ-modules. ¤

Note that the uniqueness of a power series f(S) is unknown, but we fix one
f(S). The uniqueness of f(S) is related to so called Greenberg’s generalized conjec-
ture. The properties of f(S) are also not known almost. However, we can show at
least that S - f(S). Indeed, there is a surjective morphism Λ/(S, T−f(S)) → Ykc∞ .
If S | f(S) then Gal(kc

∞/k) acts on Ykc∞ trivially. But it is known that Gal(kc
∞/k)

acts on Ykc∞ non-trivially, see for example Lemma 5 of Ozaki [6]. Therefore, S does
not divide f(S). By the p-adic version of Weierstrass preparation theorem, there
are a non-negative integer m, a distinguished polynomial g(S) ∈ Zp[S] and a unit
power series U(S) ∈ Zp[[S]]× such that f(S) = pmg(S)U(S). Here a polynomial
ϕ(S) with coefficients in Zp is called distinguished polynomial if ϕ(S) is monic
and ϕ(S) ≡ Sdeg ϕ(S) mod p.

Let k∞/k be a Zp-extension. Then there is a pair (α, β) ∈ Z2
p−pZ2

p such that

k∞ = k̃〈σατβ〉. Suppose that k∞ satisfies the assumption of Lemma 3.1. Then by
Lemma 3.2, we have an exact sequence
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Λ/((1 + S)α(1 + T )β − 1, T − f(S)) −→ Xk∞ −→ Gal
(
Lk∞ ∩ k̃/k∞

) −→ 0.

Put

Iα,β = ((1 + S)α(1 + T )β − 1, T − f(S), p).

If Iα,β = (S, T, p), then

Λ/Iα,β ' Z/p, F (S, T ) mod Iα,β 7→ F (0, 0) mod p.

This leads the assertion of Theorem 1 by Lemma 2.1. We analyze when Iα,β =
(S, T, p).

Lemma 3.3. If p - α and p - α + βU(0), then Iα,β = (S, T, p), here U(S) is
a unit power series associated to f(S).

Proof. Recall f(S) = pmg(S)U(S). We prove by splitting into 2 cases.

( i ) Suppose that m ≥ 1. Suppose also that α = pnα′ for some non-negative
integer n and α′ ∈ Zp. Then

Iα,β = ((1 + S)α(1 + T )β − 1, T − pmg(S)U(S), p)

= ((1 + Spn

)α′(1 + T )β − 1, T, p)

=
(

Spn

( ∞∑

k=1

(
α′

k

)
Spn(k−1)

)
, T, p

)

⊆ (Spn

, T, p).

Also, if p - α then n = 0 and
∑∞

k=1

(
α
k

)
Sk−1 is a unit of Zp[[S]]. Hence, in

this case, Iα,β = (S, T, p) if and only if p - α.
( ii ) Suppose that m = 0. Then f(S) = g(S)U(S). Let d ≥ 1 be the degree of a

distinguished polynomial g(S). Note that g(S) ≡ Sd mod p. Then

Iα,β = ((1 + S)α(1 + T )β − 1, T − SdU(S), p)

= ((1 + S)α(1 + SdU(S))β − 1, T − SdU(S), p)

=
( ∞∑

n=1

n∑

k=0

(
α

k

)(
β

n− k

)
Sk+(n−k)dU(S)n−k, T − SdU(S), p

)
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=
(

S
∞∑

n=1

n∑

k=0

(
α

k

)(
β

n− k

)
Snd−k(d−1)−1U(S)n−k, T − SdU(S), p

)
.

Put h(S) =
∑∞

n=1

∑n
k=0

(
α
k

)(
β

n−k

)
Snd−k(d−1)−1U(S)n−k. Since

nd− k(d− 1)− 1 ≥ nd− n(d− 1)− 1 = n− 1,

we have

h(0) =
1∑

k=0

(
α

k

)(
β

1− k

)[
Sd−k(d−1)−1

]
S=0

U(0)1−k

=

{
α + βU(0) if d = 1,

α if d ≥ 2.

Suppose that p - α and p - α + βU(0). Then h(S) is a unit power series of
Zp[[S]]. Therefore,

Iα,β = (Sh(S), T − SdU(S), p) = (S, T − SdU(S), p) = (S, T, p).

This completes the proof of Lemma 3.3. ¤

Recall that k∞ = k̃ 〈σατβ〉 with (α, β) ∈ Z2
p − pZ2

p.

Lemma 3.4. p - α if and only if k∞ ∩ ka
∞ = k.

Proof. Let ka
1 be the 1-st layer of ka

∞/k. Then k∞ ∩ ka
∞ = k if and only if

ka
1 6⊆ k∞ since k∞/k is a Zp-extension. By the choices of σ and τ , ka

1 is fixed by
τ and σp, whence Gal(k̃/ka

1 ) = 〈σp〉 ⊕ 〈τ〉. This shows that ka
1 6⊆ k∞ if and only

if p - α. ¤

Suppose that p - α, hence k∞ ∩ ka
∞ = k. When p splits in k, suppose further

that k∞ 6= N∞, N ′
∞. Assume that p | β. Then α + βU(0) ≡ α 6≡ 0 mod p, and

hence Iα,β = (S, T, p) by Lemma 3.3. Assume that p - β. If α + βU(0) 6≡ 0 mod p,
then Iα,β = (S, T, p) by Lemma 3.3. Suppose that α + βU(0) ≡ 0 mod p. Since
p - αβU(0) and p is an odd prime number, we find that −α + βU(0) 6≡ 0 mod p.
Recall 〈J〉 = Gal(k/Q) and let J ∈ Gal(k̃/Q) be a lift of J . Then
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J(k∞) = J
(
k̃ 〈σ

ατβ〉)

= k̃ J 〈σατβ〉 J
−1

= k̃ 〈σ
−ατβ〉.

From the congruence −α + βU(0) 6≡ 0 mod p and Lemma 3.3, we know that
λ(J(k∞)/k) ≤ 2 if p splits in k and λ(J(k∞)/k) ≤ 1 otherwise. Note that J(k∞) 6=
N∞, N ′

∞ since J(N∞) = N ′
∞. From Lemma 2.1 (3), we conclude that

λ(k∞/k) = λ(J(k∞)/k) ≤
{

2 if p splits in k,

1 otherwise.

This completes the proof of Theorem 1.

4. Proof of Theorem 2.

We show in this section the following.

Theorem 4.1. Let D ⊆ Gal(k̃/k) be the decomposition group of a prime
lying above p. Suppose that Lk ⊆ k̃, and that one of the following two conditions
(S) or (NS) holds.

(S) p splits in k, λ(kc
∞/k) = 2 and D is normal in Gal(k̃/Q).

(NS) p ≥ 5, p does not split in k and λ(kc
∞/k) = 1.

Then λ(k∞/k) ≤ [Gal(k̃/k) : D] and µ(k∞/k) = 0 for all Zp-extensions k∞.

Here we give some remarks.
(1) We can show that if p does not split in k and Lk ⊆ k̃, then λ(k∞/k) =
µ(k∞/k) = 0 for each k∞ with Lk ⊆ k∞ independent with the value λ(kc

∞/k).
To explain this, we need the following formula (see Lemma 4.1 of Chapter 13 in
[4]): Let n be a positive integer and K/F a cyclic extension of degree n. Let
e(K/F ) be the product of the ramification indeces in K/F for all primes (finite
and infinite) of F . Let ClK be the ideal class group of K and EF the unit group
of F . Then we have

#Cl
Gal(K/F )
K =

e(K/F )hF

[K : F ][EF : EF ∩ (NK/F K×)]
,

here we let Cl
Gal(K/F )
K = {a ∈ ClK | g(a) = a for all g ∈ Gal(K/F )}. Assume

that p does not split in k and that Lk ⊆ k̃. First, let p = 3 and k = Q(
√−3).
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Since 3 - hk, for each Z3-extension k∞/k, k∞/k is totally ramified at the prime
lying above 3. Then we have (Xk∞)Gal(k∞/k) ' Clk ⊗ Z3 = 0, and so Xk∞ = 0
by Nakayama’s lemma. Hence λ(k∞/k) = µ(k∞/k) = 0. Next, suppose that
p ≥ 5, or, p = 3 and k 6= Q(

√−3). Let k∞/k be a Zp-extension which contains
Lk. Choose a positive integer n with Lk ⊆ kn. Since k has only one prime
lying above p and kn/k is unramified outside primes lying above p, one sees that
e(kn/k) = [kn : k]/[Lk : k]. Because Ek is finite and k has no primitive p-th roots
of unity in this case, p does not divide [Ek : Ek ∩ (Nkn/kk×n )]. Hence from the
above formula, we have

#(Clkn
⊗ Zp)Gal(kn/k) =

([kn : k]/[Lk : k])[Lk : k]
[kn : k]

= 1.

This implies that Clkn ⊗ Zp = 0 for all sufficiently large n, and hence Xk∞ =
0. Therefore, λ(k∞/k) = µ(k∞/k) = 0. Specifically, we have µ(ka

∞/k) = 0.
Suppose further that λ(kc

∞/k) = 1. By Bloom–Gerth’s result [2], the number of
Zp-extensions k∞ with µ(k∞/k) > 0 is at most λ(kc

∞/k) = 1 since p does not
split in k. Suppose that µ(k∞/k) > 0. Then it also holds that µ(J(k∞)/k) > 0.
It follows that J(k∞) = k∞, and this implies that k∞/Q is a Galois extension.
Hence k∞ = kc

∞ or ka
∞. But we already know µ(kc

∞/k) = 0, and we have proved
µ(ka

∞/k) = 0 here. Thus, µ(k∞/k) = 0 for all Zp-extensions k∞. Hence, for the
vanishing of µ-invariants, there is nothing new when p does not split in k. In
particular, if λ(kc

∞/k) = 1, Lk ⊆ k̃ and [Lk : k] = p, then µ(k∞/k) = 0 and
λ(k∞/k) = 0 for each k∞ with k∞ ∩ ka

∞ 6= k since Lk ∩ k∞ = ka
∞ ∩ k∞ from

Lemma 2.2.
(2) Suppose the assumptions of Theorem 2. If further p | hk, then the conditions
of Theorem 4.1 (S) are satisfied. To check this, it suffices to show only that if
Lk ⊆ k̃, p | hk and [Gal(k̃/k) : D] = p, then D is normal in Gal(k̃/Q). Let F be
the fixed field of D. Then k ⊆ F ⊆ k̃ and [F : k] = p. Let ka

1 be the 1-st layer
of ka

∞/k. Since p | hk and Lk ⊆ k̃, ka
1/k is unramified by Lemma 2.2. Assume

that F 6= ka
1 . Then Fka

1/k is the composite of 1-st layers of all Zp-extensions of
k and is unramified at a prime lying above p. This contradicts to the fact that
kc
∞/k is totally ramified at all primes lying above p since (Fka

1 ) ∩ kc
∞ 6= k. Hence

F = ka
1 . Since ka

1/Q is a Galois extension, D is normal in Gal(k̃/Q). When p - hk,
as mentioned in the above of Theorem 2, we already have a stricter result (see
corollary of Theorem 1.)

From here we start to prove Theorem 4.1. As discussed in the previous section,
since λ(kc

∞/k) = 2 if p splits in k, and λ(kc
∞/k) = 1 otherwise, there are a power

series f(S) = pmg(S)U(S) in Zp[[S]] and a surjective morphism



288 S. Fujii

Λ/(T − f(S)) → X.

Proposition 4.1. [Gal(k̃/k) : D] = #Zp/f(0)Zp.

Proof. By isomorphisms

Λ/(S) ' Zp[[T ]] ' Zp[[Gal(kc
∞/k)]],

F (S, T ) 7→ F (0, T ) 7→ F (0, τ Gal(k̃/kc
∞)− 1),

we identify these rings. Recall that Ykc∞ ' Zp. Since

Λ/(S, T − f(S)) = Λ/(S, T − f(0))

' Zp[[T ]]/(T − f(0))

' Zp

as Zp-module, one sees that

Λ/(S, T − f(S)) ' Zp[[T ]]/(T − f(0))

' Ykc∞

as Zp[[Gal(kc
∞/k)]]-modules. Applying Lemma 3.1 for kc

∞, there is the following
exact sequence

0 −→ Zp[[T ]]/(T − f(0)) −→ Xkc∞ −→ Gal
(
k̃ ∩ Lkc∞/kc

∞
) −→ 0

of Zp[[Gal(kc
∞/k)]]-modules. Suppose the conditions (S). Then Gal(k̃ ∩ Lkc∞/

kc
∞) = Gal(k̃/kc

∞). Since f(0) 6= 0 as mentioned the above, it follows that

(Zp[[T ]]/(T − f(0)))Gal(kc
∞/k) = 0,

here we let MGal(kc
∞/k) the invariant submodule of a Gal(kc

∞/k)-module M . Also,
since k̃/k is abelian, it follows that

Gal
(
k̃/kc

∞
)Gal(kc

∞/k) = Gal
(
k̃/kc

∞
)

and
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Gal
(
k̃/kc

∞
)
Gal(kc∞/k)

' Gal
(
k̃/kc

∞
)
.

Hence we have an exact sequence

0 // X
Gal(kc

∞/k)
kc∞

// Gal(k̃/kc
∞)

// Zp/f(0)Zp
// (Xkc∞)Gal(kc∞/k)

// Gal(k̃/kc
∞) // 0

of Zp-modules since Zp[[T ]]/(T, T − f(0)) ' Zp/f(0)Zp. By Lemma 4.1 of Okano
[5], we know that X

Gal(kc
∞/k)

kc∞
= Dkc∞ , which is the decomposition group in Xkc∞ =

Gal(Lkc∞/kc
∞) of a prime lying above p. Let Mk/k be the maximal pro-p abelian

extension unramified outside all primes lying above p and L the fixed field of Lkc∞

by TXkc∞ . We claim that k̃ = Mk = L. By class field theory, see for example
Theorem 13.4 and Corollary 13.6 of [8], there is an isomorphism

TorZp
Gal(Mk/k) ' Gal(Lk/Lk ∩ k̃)

of finite abelian groups, where TorZp
Gal(Mk/k) is the Zp-torsion submodule of

Gal(Mk/k). By our assumption that Lk ⊆ k̃, it follows that

TorZp
Gal(Mk/k) ' Gal(Lk/Lk ∩ k̃) = Gal(Lk/Lk) = 0.

This implies that Mk = k̃. It follows from the fact that Mk/kc
∞ is unramified that

Mk ⊆ L. Since L/k is abelian and unramified outside all primes lying above p,
we have L ⊆ Mk. Therefore, L = Mk = k̃. This shows that (Xkc∞)Gal(kc∞/k) '
Gal(k̃/kc

∞). Hence we obtain the following exact sequence

0 −→ Dkc∞ −→ Gal(k̃/kc
∞) −→ Zp/f(0)Zp −→ 0

of Zp-modules. Note that

Image
(
Dkc∞ → Gal(k̃/kc

∞)
)

= D ∩Gal
(
k̃/kc

∞
)

since Dkc∞ is not depending on the choice of a prime lying above p. Since kc
∞/k

is totally ramified at all primes lying above p, by combining the above arguments,
we have
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[Gal(k̃/k) : D] = # Gal(k̃/k)/D

= # Gal(k̃/kc
∞)D/D

= # Gal(k̃/kc
∞)/D ∩Gal(k̃/kc

∞)

= #Coker
(
Dkc∞ → Gal(k̃/kc

∞)
)

= #Zp/f(0)Zp.

Suppose the conditions (NS). Recall Xkc∞ is isomorphic to Zp as Zp-modules.
Since Ykc∞ ' Z[[T ]]/(T − f(0)), it follows that

(Xkc∞)Gal(kc∞/k) ' Zp/f(0)Zp.

Since kc
∞ has the unique prime lying above p, we also have

(Xkc∞)Gal(kc∞/k) ' Gal(Lk/k).

By the condition that p ≥ 5, we have Mk = k̃ since the completion at the prime
lying above p has no primitive p-th root of unity. It follows that the fixed field of
k̃ by D is Lk by class field theory because the order of the ideal class containing
the prime above is prime to p. Therefore, we have

[Gal(k̃/k) : D] = # Gal(Lk/k)

= #(Xkc∞)Gal(kc∞/k)

= #Zp/f(0)Zp.

This completes the proof. ¤

Let pn0 = [Gal(k̃/k) : D] and put νn0(S) = ((1 + S)pn0 − 1)/S.

Proposition 4.2. f(S) = νn0(S)U(S).

Proof. For each non-negative integer n, denote by ka
n the n-th layer of

ka
∞. Since D is normal in Gal(k̃/Q), the fixed field of D is a Galois extension

over Q, and is unramified over k. This shows that the fixed field is ka
n0

by Lemma
2.2. Let k̃a

n0
be the composite of all Zp-extensions of ka

n0
. Then it is known that

Gal(k̃a
n0

/ka
n0

) ' Zpn0+1
p , see [3] and Section 5–5 of [8]. We show νn0(S) | f(S).

Suppose the condition (S). Let In0 ⊆ Gal(k̃a
n0

/ka
n0

) be the inertia subgroup
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of a prime of ka
n0

lying above p. Since the prime number p splits completely in
ka

n0
/Q, we have In0 ' Zp. Also, since ka

∞/Q is a Galois extension, all primes of
ka
∞ are ramified in ka

∞/k. This shows that In0 ∩ Gal(k̃a
n0

/ka
∞) = 1, and hence

k̃a
n0

/ka
∞ is unramified at all primes of ka

∞ because k̃a
n0

/ka
n0

is unramified outside
the all primes lying above p. Consider the natural surjective morphism

Xka∞ → Gal
(
k̃a

n0
/ka
∞

) ' Zpn0

p .

Since k̃a
n0

contains k̃ = Mk, we have

Gal
(
k̃a

n0
/ka
∞

)
Gal(ka∞/k)

' Gal
(
k̃/ka

∞
)
.

By isomorphisms

Λ/(T ) ' Zp[[S]] ' Zp

[[
Gal(ka

∞/k)
]]

,

F (S, T ) 7→ F (S, 0) 7→ F
(
σ Gal(k̃/ka

∞)− 1, 0
)
,

we identify these rings. Since k̃a
n0

/ka
n0

is abelian, σpn0 Gal(k̃/ka
∞) = (1 + S)pn0

acts on Gal(k̃a
n0

/ka
∞) trivially. Since also Gal(k̃a

n0
/ka
∞) ' Zpn0

p as Zp-modules, we
have

Gal
(
k̃a

n0
/ka
∞

) ' Zp[[S]]/((1 + S)pn0 − 1).

Recall the characteristic ideal charZp[[S]](M) of a finitely generated torsion Zp[[S]]-
module M . The above isomorphism and the surjective morphism Xka∞ →
Gal(k̃a

n0
/ka
∞) implies that

charZp[[S]](Xka∞) ⊆ ((1 + S)pn0 − 1).

Also, from the exact sequence

0 −→ Yka∞ −→ Xka∞ −→ Gal(k̃/ka
∞) −→ 0,

we have
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charZp[[S]](Xka∞) = charZp[[S]]

(
Gal(k̃/ka

∞)
)
charZp[[S]](Yka∞)

= ScharZp[[S]](Yka∞)

⊆ ((1 + S)pn0 − 1)

= S(νn0(S)).

Since S and νn0(S) are relatively prime, we have charZp[[S]](Yka∞) ⊆ (νn0(S)).
Finally, from the surjective morphism

Zp[[S]]/(f(S)) −→ Yka∞ ,

we have (f(S)) ⊆ (νn0(S)) and hence νn0(S) divides f(S).
Suppose the condition (NS). Let I0 and In0 be the inertia subgroups in k̃/k

and k̃a
n0

/ka
n0

of a prime of k and ka
n0

lying above p, respectively. Since ka
n0

/k is
unramified, we have I0 ⊆ Gal(k̃/ka

n0
) and I0 is the inertia subgroup in k̃/ka

n0
.

Also, since there is only one prime of k lying above p, I0 is isomorphic to Z2
p.

Note that In0 maps to I0 surjectively. Let pn0 be a prime of ka
n0

lying above
p such that In0 is the inertia subgroup of pn0 in k̃a

n0
/ka

n0
. Let Un0 be the local

principal unit group at pn0 . Since p does not split in k and the all primes lying
above p decomposed completely in kn0/k, we find that Upn0

' Z2
p. By class field

theory, there is a surjective map Upn0
→ In0 . Hence we find that In0 ' Z2

p and
therefore In0 ' I0. This shows that In0 maps to Gal(k̃/k) injectively, and hence
In0 ∩Gal(k̃a

n0
/k̃) = 1. Thus k̃a

n0
/k̃ is an abelian unramified extension. Let L/ka

∞
be the maximal abelian subextension of Lek/ka

∞, we then have Gal(L/k̃) = Yka∞ .
Since k̃a

n0
/ka
∞ is abelian and k̃a

n0
⊆ Lek, we have k̃a

n0
⊆ L. From a surjective

morphism

Gal(L/k̃) = Yka∞ −→ Gal
(
k̃a

n0
/k̃

)
,

it follows that

charZp[[S]](Yka∞) ⊆ charZp[[S]]

(
Gal(k̃a

n0
/k̃)

)
.

By doing the same argument to the case (S), we have

Gal
(
k̃a

n0
/ka
∞

) ' Zp[[S]]/((1 + S)pn0 − 1)

since p ≥ 5 and Mk = k̃. Thus charZp[[S]](Gal(k̃a
n0

/k̃)) = (νn0(S)), and hence
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charZp[[S]](Yka∞) ⊆ (νn0(S)). Therefore we also have νn0(S) | f(S).
Rewrite f(S) = pmνn0(S)g(S)U(S) with a distinguished polynomial g(S).

Note that νn0(0) = pn0 . Then we have

pn0 =
[
Gal(k̃/k) : D

]

= #Zp/f(0)Zp

= #Zp/pm · pn0 · g(0)Zp.

Hence m = 0 and p - g(0), and therefore f(S) = νn0(S)U(S). ¤

We finish the proof of Theorem 4.1. Suppose the condition (S). If k∞ 6=
N∞, N ′

∞ then

λ(k∞/k) = rankZp
(Yk∞) + 1

by Lemma 3.1. Suppose the condition (NS). Let k∞ be a Zp-extension and L/k∞
the maximal abelian subextension of Lek/k∞. Then Lk∞ k̃ is contained in L. Hence
there is an exact sequence

Yk∞ −→ Xk∞ −→ Gal
(
k̃ ∩ Lk∞/k∞

) −→ 0

of Zp[[Gal(k∞/k)]]-modules. Since D is equal to the inertia subgroup in Gal(k̃/k)
and [Gal(k̃/k) : D] = [Lk : k] < ∞, we find that

[
k̃ ∩ Lk∞ : k∞

]
=

[
Gal(k̃/k∞) : D ∩Gal(k̃/k∞)

]
< ∞.

Therefore we have

λ(k∞/k) ≤ rankZp
(Yk∞)

for all Zp-extensions k∞.
Let k∞ = ka

∞ and suppose the condition (S). Note that ka
∞ = k̃〈τ〉. Then, by

Proposition 4.2,

I0,1 =
(
T, T − Spn0−1U(S), p

)
=

(
Spn0−1, T, p

)

and Λ/I0,1 ' (Z/p)pn0−1. This implies µ(ka
∞/k) = 0 and
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λ(ka
∞/k) = rankZp

(Yka∞) + 1 ≤ pn0

from Lemma 2.1. Suppose the condition (NS). Then λ(ka
∞/k) = µ(ka

∞/k) = 0 as
mentioned in the above. In particular, µ(k∞/k) = 0 for all k∞ by Bloom–Gerth
[2] (In fact, we also can show µ = 0 by our argument.)

Assume that k∞ ∩ ka
∞ = k. Then

λ(k∞/k) ≤
{

2 (S),

1 (NS)

by Theorem 1. Thus λ(k∞/k) ≤ 2 ≤ pn0 .
Suppose the condition (S) and let k∞ = N∞. Since Lk ⊆ N∞, we have

λ(N∞/k) = µ(N∞/k) = 0 by the formula stated in the remark (1) of Theorem
4.1.

Let k∞ be a Zp-extension such that k∞ ∩ ka
∞ 6= k, k∞ 6= ka

∞, and that
k∞ 6= N∞, N ′

∞ if p splits in k. Choose (α, β) ∈ Z2
p − pZ2

p so that k∞ = k̃ 〈σατβ〉.
Then p | α, so put α = psα′ for s ∈ Z≥1 and α′ ∈ Z×p . We calculate Iα,β .

Iα,β =
(
(1 + S)α(1 + T )β − 1, T − Spn0−1U(S), p

)

=
(
(1 + Sps

)α′(1 + Spn0−1U(S))β − 1, T − Spn0−1U(S), p
)

=
(( ∞∑

k=0

(
α′

k

)
Skps

)( ∞∑

l=0

(
β

l

)
Sl(pn0−1)U(S)l

)
− 1, T − Spn0−1U(S), p

)

=
( ∞∑

n=1

n∑

k=0

(
α′

k

)(
β

n− k

)
Skps+(n−k)(pn0−1)U(S)n−k, T − Spn0−1U(S), p

)
.

First suppose that pn0 − 1 < ps. Note that

kps + (n− k)(pn0 − 1) = n(pn0 − 1) + k(ps − (pn0 − 1)) ≥ n(pn0 − 1).

Thus
∑∞

n=1

∑n
k=0

(
α′

k

)(
β

n−k

)
Skps+(n−k)(pn0−1)U(S)n−k is divided by Spn0−1. Put

h0(S) =
∞∑

n=1

n∑

k=0

(
α′

k

)(
β

n− k

)
Skps+(n−k)(pn0−1)−(pn0−1)U(S)n−k.

Since kps + (n− k)(pn0 − 1)− (pn0 − 1) ≥ (n− 1)(pn0 − 1), we have
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h0(0) =
1∑

k=0

(
α′

k

)(
β

1− k

)[
Skps+(1−k)(pn0−1)−(pn0−1)

]
S=0

U(0)1−k

=
(

α′

0

)(
β

1

)
U(0) = βU(0) ∈ Z×p .

This shows that

Iα,β =
(
Spn0−1h0(S), T − Spn0−1U(S), p

)

=
(
Spn0−1, T, p

)
,

and hence

Λ/Iα,β ' (Z/p)pn0−1.

Therefore λ(k∞/k) ≤ pn0 .
Next suppose that pn0 − 1 > ps. Since

kps + (n− k)(pn0 − 1) = n(pn0 − 1) + k(ps − (pn0 − 1))

≥ n(pn0 − 1) + n(ps − (pn0 − 1))

= nps,

∑∞
n=1

∑n
k=0

(
α′

k

)(
β

n−k

)
Skps+(n−k)(pn0−1)U(S)n−k is divided by Sps

. Put

h1(S) =
∞∑

n=1

n∑

k=0

(
α′

k

)(
β

n− k

)
Skps+(n−k)(pn0−1)−ps

U(S)n−k.

Since kps + (n− k)(pn0 − 1)− ps ≥ (n− 1)ps, we have

h1(0) =
1∑

k=0

(
α′

k

)(
β

1− k

)[
Skps+(1−k)(pn0−1)−ps]

S=0
U(0)1−k

=
(

α′

1

)(
β

0

)
= α′ ∈ Z×p .

This shows that
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Iα,β =
(
Sps

h1(S), T − Spn0−1U(S), p
)

= (Sps

, T, p),

and hence

Λ/Iα,β ' (Z/p)ps

.

Therefore λ(k∞/k) ≤ ps + 1 ≤ pn0 . This completes the proof of Theorem 4.1. ¤

As an application to Proposition 4.2, we can obtain the following results.

Theorem 4.2. Under the condition (S), Xka∞ ' Zp[[S]]/((1+S)pn0 − 1) as
Zp[[S]]-modules.

Proof. Recall a surjective morphism Xka∞ → Gal(k̃a
n0

/ka
n0

) ' Zpn0

p . It
follows that pn0 ≤ rankZp

(Xka∞) = rankZp
(Yka∞) + 1 and hence we have pn0 − 1 ≤

rankZp(Yka∞). Recall also a surjective morphism Zp[[S]]/(νn0(S)) → Yka∞ . Since

pn0 − 1 = rankZp(Zp[[S]]/(νn0(S)))

≥ rankZp
(Yka∞)

≥ pn0 − 1,

we have Zp[[S]]/(νn0(S)) ' Yka∞ ' Zpn0−1
p , and hence Xka∞ ' Zpn0

p . Therefore we
have Lka∞ = k̃a

n0
and

Xka∞ ' Gal
(
k̃a

n0
/ka
∞

) ' Zp[[S]]/((1 + S)pn0 − 1).

This completes the proof. ¤

This isomorphism says that ka
∞ has only trivially known unramified abelian

pro-p extensions.

Corollary 4.1. (T − νn0(S)U(S))X = 0. ¤

Remark. As mentioned in the below of Lemma 3.2, the uniqueness of
f(S) is unknown. Under the assumption of Theorem 4.1, we conclude that the
uniqueness of U(S) is unknown, namely, if a power series F (S) ∈ Zp[[S]] satisfies
Tx = F (S)x, then F (S) = νn0(S)(U(S) + G(S)) with G(S) ∈ (S, p).
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5. Some Discussions.

We give a proof of Theorem A here as mentioned in Section 1. Suppose that
p does not split in k and λ(kc

∞/k) = 0. Since kc
∞ has the unique prime lying above

p and kc
∞/k is totally ramified at the prime lying above p, (Xkc∞)Gal(kc∞/k) '

Gal(Lk/k). It is known that Xkc∞ is a finitely generated free Zp-module of rank
λ(kc

∞/k). Hence Gal(Lk/k) = 0 since λ(kc
∞/k) = 0. Thus (Xk∞)Gal(k∞/k) '

Gal(Lk/k) = 0, and therefore Xk∞ = 0 for each k∞. This shows λ(k∞/k) =
µ(k∞/k) = ν(k∞/k) = 0 for each k∞.

Suppose that p splits in k and λ(kc
∞/k) = 1. Then by Lemma 3.1, Ykc∞ = 0

and hence X = 0. This shows that Xk∞ = Gal(k̃/k∞) ' Zp for each k∞ with
k∞ 6= N∞, N ′

∞, and therefore λ(k∞/k) = 1 and µ(k∞/k) = 0. Next we show
that λ(N∞/k) = λ(N ′

∞/k) = µ(N∞/k) = µ(N ′
∞/k) = 0. Since X = 0, one sees

that Gal(LN∞ k̃/k̃) = 0. Since also k̃/N∞ is ramified at primes lying above p′,
Gal(k̃ ∩ LN∞/N∞) is finite. From the exact sequence

0 → Gal
(
LN∞ k̃/k̃

) → XN∞ → Gal
(
LN∞ ∩ k̃/N∞

) → 0,

we conclude that XN∞ is finite. Therefore, λ(N∞/k) = µ(N∞/k) = 0. By the
same argument, we also have λ(N ′

∞/k) = µ(N ′
∞/k) = 0. This completes the proof

of Theorem A.
On the proof of Theorem 1, when p does not split in k, we do not use in-

dividualities of imaginary quadratic fields, it was needed that k has the complex
conjugation J as an automorphism (i.e. k is a CM-field), Xkc∞ ' Zp and that kc

∞
has only one prime lying above p. Hence we can obtain a more general result.

Proposition 5.1. Let p be an odd prime number, k a CM-field and k+ the
maximal totally real subfield of k. Suppose that kc

∞ has the unique prime lying
above p, Xkc∞ ' Zp and that kc

∞/k is totally ramified at the prime above p. Let
ka
∞/k be an anti-cyclotomic Zp-extension of k, namely, ka

∞/k+ is a Galois exten-
sion such that Gal(ka

∞/k+) is non-abelian. Put K = kc
∞ka

∞. Then λ(k∞/k) ≤ 1
for each Zp-extension k∞ such that k∞ ⊆ K and that k∞ ∩ ka

∞ = k.

For example, let p = 37, 59 or 67. Then the p-th cyclotomic field k = Q(µp)
satisfies the assumption of Proposition 5.1.
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