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Abstract. We show that the intersections of two real forms, certain
totally geodesic Lagrangian submanifolds, in Hermitian symmetric spaces of
compact type are antipodal sets. The intersection number of two real forms
is invariant under the replacement of the two real forms by congruent ones. If
two real forms are congruent, then their intersection is a great antipodal set of
them. It implies that any real form in Hermitian symmetric spaces of compact
type is a globally tight Lagrangian submanifold. Moreover we describe the
intersection of two real forms in the irreducible Hermitian symmetric spaces
of compact type.

1. Introduction.

Let M̄ be a Hermitian symmetric space. A submanifold M is called a real form
of M̄ , if there exists an involutive anti-holomorphic isometry σ of M̄ satisfying

M = {x ∈ M̄ | σ(x) = x}.

Any real form M is a totally geodesic Lagrangian submanifold of M̄ , which follows
from Leung [7] or Lemma 1.1 in Takeuchi [13]. Leung [7] and Takeuchi [13]
classified real forms of Hermitian symmetric spaces of compact type.

A subset S in a Riemannian symmetric space M is called an antipodal set,
if the geodesic symmetry sx fixes every point of S for every point x of S. The
2-number #2M of M is the supremum of the cardinalities of antipodal sets of
M . We call an antipodal set in M great if its cardinality attains #2M . These
were introduced by Chen and Nagano [3]. Takeuchi [14] proved that if M is a
symmetric R-space, then

#2M = dim H∗(M, Z2), (1.1)
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where H∗(M, Z2) denotes the homology group of M with coefficient Z2. A com-
pact Riemannian symmetric space is called a symmetric R-space if it is an orbit
of the linear isotropy action of a Riemannian symmetric pair of semisimple type.
We note that any real form of Hermitian symmetric spaces of compact type is a
symmetric R-space, which is shown in [13].

Theorem 1.1. Let M be a Hermitian symmetric space of compact type. If
two real forms L1 and L2 of M intersect transversally, then L1∩L2 is an antipodal
set of L1 and L2.

For a connected Riemannian manifold M we denote by I0(M) the identity
component of the group of all isometries on M . We say that two submanifolds in a
Hermitian symmetric space of compact type M are congruent, if one is transformed
to another by an element of I0(M). Each element of I0(M) is a holomorphic
isometry.

Theorem 1.2. Let M be a Hermitian symmetric space of compact type and
let L1, L2, L

′
1, L

′
2 be real forms of M . We assume that L1, L

′
1 are congruent and

that L2, L
′
2 are congruent. If L1, L2 intersect transversally and if L′1, L

′
2 intersect

transversally, then #(L1 ∩ L2) = #(L′1 ∩ L′2).

Theorem 1.3. Let M be a Hermitian symmetric space of compact type and
let L1 and L2 be real forms of M which are congruent to each other and intersect
transversally. Then L1 ∩ L2 is a great antipodal set of L1 and L2. That is,
#(L1 ∩ L2) = #2L1 = #2L2.

Theorem 1.4. Let M be an irreducible Hermitian symmetric space of com-
pact type and let L1 and L2 be two real forms of M which intersect transversally.

(1) If M = GC
2m(C4m) (m ≥ 2), L1 is congruent to GH

m (H2m) and L2 is congru-
ent to U(2m), then

#(L1 ∩ L2) = 2m <

(
2m

m

)
= #2L1 < 22m = #2L2.

(2) Otherwise, L1 ∩ L2 is a great antipodal set of one of Li’s whose 2-number is
less than or equal to another and we have

#(L1 ∩ L2) = min{#2L1,#2L2}.

Remark 1.5. In the complex projective space CPn, any real form is con-
gruent to the real projective space RPn naturally embedded in CPn. Howard es-
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sentially showed the following statement in [5, pp. 26–27]. If two real forms L1 and
L2 of CPn intersect transversally, then there exists a unitary basis u1, . . . , un+1

of Cn+1 satisfying

L1 ∩ L2 = {Cu1, . . . ,Cun+1}.

In particular L1∩L2 is a great antipodal set of L1 and L2, because #2RPn = n+1.
Thus Theorems stated above are generalizations of this statement. In this case
L1 ∩ L2 is also a great antipodal set of CPn, because #2CPn = n + 1.

Oh [10] introduced the notion of global tightness of Lagrangian submani-
folds in a Hermitian symmetric space. We call a Lagrangian submanifold L of a
Hermitian symmetric space M globally tight, if L satisfies

#(L ∩ g · L) = dimH∗(L,Z2)

for any g ∈ I0(M) with property that L intersects transversally with g · L. We
obtain the following corollary from (1.1) and Theorem 1.3.

Corollary 1.6. Any real form of a Hermitian symmetric space of compact
type is a globally tight Lagrangian submanifold.

Remark 1.7. We denote by Qn(C) the complex hyperquadric of complex
dimension n, which is holomorphically isometric to the real oriented Grassmann
manifold G̃R

2 (Rn+2). We regard G̃R
2 (Rn+2) as a submanifold in ∧2Rn+2 in a

natural way and define a real form Sk,n−k of G̃R
2 (Rn+2) by

Sk,n−k = Sk(Re1 + · · ·+ Rek+1) ∧ Sn−k(Rek+2 + · · ·+ Ren+2),

where Sm(V ) is the unit sphere of a real Euclidean space V of dimension m + 1.
Q1(C) = CP 1 = S2 and its real form is a great circle, so its global tightness is
well known. Q2(C) = CP 1 × CP 1 = S2 × S2 and its real forms S0,2 and S1,1

are globally tight, which Iriyeh and Sakai [6] proved in a different way. Recently
they also proved that S0,n and S1,n−1 are globally tight in Qn(C). After that
the second author showed in [15] that the intersection of two real forms in Qn(C)
is an antipodal set whose cardinality attains the smaller one of the 2-numbers of
the two real forms. It is a corollary of the result that any real form in Qn(C)
is a globally tight Lagrangian submanifold. The results in the present paper are
generalizations of the results obtained in [15].

The organization of this paper is as follows. In Section 2 we briefly review some
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fundamental results on compact Riemannian symmetric spaces we need later. We
prepare some properties of maximal tori of compact Riemannian symmetric spaces
in Section 3. In Section 4 using properties of maximal tori obtained in Sections
2 and 3 we prove Theorem 1.1. The notion of polars of compact Riemannian
symmetric spaces plays an essential role in the proofs of Theorems 1.2, 1.3 and 1.4.
A relation between real forms and polars stated in Lemma 4.2 makes it possible to
prove Theorem 1.3 by induction on polars. In Section 5 we prove Theorem 1.4 in
each case of two real forms in irreducible Hermitian symmetric spaces of compact
type using their classifications. In Section 6 we show some explicit descriptions of
the intersections of two real forms in the complex Grassmann manifolds.

The authors would like to thank Hiroshi Iriyeh, Osamu Ikawa and Takashi
Sakai for useful conversations. They are also indebted to the referee, whose com-
ments improved the manuscript.

2. Preliminaries.

We briefly review some fundamental results on compact Riemannian symmet-
ric spaces in this section. After that we recall a result of Takeuchi [12] on maximal
tori and a result of Sakai [11] on cut loci.

Let (G,K) be a compact symmetric pair with respect to an involutive auto-
morphism θ of G. We denote by g and k the Lie algebras of G and K respectively.
The involutive automorphism of g induced from θ is also denoted by θ. Take an
inner product 〈 , 〉 on g which is invariant under θ and the adjoint representation of
G. This inner product induces a Riemannian metric on the homogeneous manifold
M = G/K. With respect to this metric M is a compact Riemannian symmetric
space and any compact Riemannian symmetric space is obtained in this way. We
have

k = {X ∈ g | θ(X) = X}.

Set

m = {X ∈ g | θ(X) = −X},

then we have a canonical orthogonal direct sum decomposition

g = k + m.

We identify the tangent space of M at the origin o with m and denote by
Exp : m → M the exponential map. Take a maximal abelian subspace a in m.
It is known that A = Exp a is a maximal totally geodesic flat submanifold of M ,
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which is called a maximal torus. For λ ∈ a we define root spaces

mλ = {X ∈ m | [H, [H, X]] = −〈λ,H〉2X (H ∈ a)},
kλ = {X ∈ k | [H, [H, X]] = −〈λ,H〉2X (H ∈ a)}

and define the root system R of (g, k) by

R = {λ ∈ a− {0} | mλ 6= {0}}.

We take a fundamental system Π of R and denote by R+ the set of positive roots
with respect to Π. We have orthogonal direct sum decompositions ([4]):

k = k0 +
∑

λ∈R+

kλ, m = a +
∑

λ∈R+

mλ,

where k0 = {X ∈ k | [X, a] = 0}. We denote by δi (1 ≤ i ≤ s) the highest root of
each irreducible factor of R and set

R# = {δi | 1 ≤ i ≤ s}, Π# = Π ∪R#.

For ∆ ⊂ Π# we define

S∆ =
{
H ∈ a | 〈α, H〉 > 0 (α ∈ ∆ ∩Π), 〈β, H〉 = 0 (β ∈ Π−∆),

〈δi,H〉 < π (δi ∈ ∆ ∩R#), 〈δj ,H〉 = π (δj ∈ R# −∆)
}
.

Let S = SΠ#
. We have

M =
⋃

k∈K

k Exp(S̄), S̄ =
⋃

∆⊂Π#

S∆,

where S̄ is the closure of S. We denote by W̄ the affine Weyl group which is the
semidirect product of the Weyl group of (G,K) and the lattice

Γ(A) = {H ∈ a | ExpH = o}

of the maximal torus A. W̄ naturally acts on a. We set

W̄S = {τ ∈ W̄ | τS = S}.
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Lemma 2.1 (Takeuchi [12, Lemma 1.7]). If k ExpH1 = ExpH2 holds for
∆1, ∆2 ⊂ Π#, H1 ∈ S∆1 , H2 ∈ S∆2 and k ∈ K, then there exists τ ∈ W̄S

satisfying

(1) τS∆1 = S∆2 ,
(2) for any H ∈ S∆1 , k ExpH = Exp τH,
(3) τH1 = H2.

In particular, k ExpS∆1 = ExpS∆2 .

For a compact Riemannian manifold X and p ∈ X, we denote by Cp(X)
and C̃p(X) the cut locus and the tangential cut locus of X with respect to p

respectively.

Theorem 2.2 (Sakai [11]). For a maximal torus A through the origin o of
a compact Riemannian symmetric space M = G/K we have

C̃o(A) = a ∩ C̃o(M), C̃o(M) =
⋃

k∈K

Ad(k)C̃o(A),

Co(A) = A ∩ Co(M), Co(M) =
⋃

k∈K

kCo(A).

3. Maximal tori.

We describe a maximal torus of the fixed point set of an involutive isometry
of a symmetric R-space by the use of a canonical coordinate defined in Definition
3.2. We also show a property of the intersection of two maximal tori of a compact
Riemannian symmetric space. For a Riemannian manifold X and an isometry φ of
X we denote by F (φ,X) the fixed point set of φ. It is known that each connected
component of F (φ,X) is a totally geodesic submanifold of X.

Lemma 3.1. Let M be a compact Riemannian symmetric space. We assume
that τ is an involutive isometry of M satisfying τ(o) = o. We take the connected
component M1 of F (τ, M) through o and a maximal torus A1 of M1 through o.
For a maximal torus A of M including A1, we have τ(A) = A.

Proof. We denote by m1, a1 and a the tangent spaces of M1, A1 and A at
o respectively. We consider the space

b1 = {X ∈ m1 | 〈X, a1〉 = {0}}.

If a1 = m1, we have b1 = {0} ⊂ a⊥. We shall show that b1 ⊂ a⊥ even in the case
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where a1 6= m1. In this case b1 is described by the root spaces of M1 as follows:

b1 =
∑

λ∈(R1)+

(m1)λ.

For λ ∈ R1 we can take H1 ∈ a1 satisfying 〈λ,H1〉 6= 0. For any X ∈ (m1)λ we
have (adH1)2X = −〈λ,H1〉2X, so

X = − 1
〈λ,H1〉2 (adH1)2X.

Since a1 ⊂ a are abelian, for any H2 ∈ a

〈H2, X〉 = − 1
〈λ,H1〉2 〈H2, (adH1)2X〉

= − 1
〈λ,H1〉2 〈(adH1)2H2, X〉 = 0.

Hence we have X ∈ a⊥ and (m1)λ ⊂ a⊥. Therefore we obtain b1 ⊂ a⊥.
By the definition of M1

m1 = {X ∈ m | dτo(X) = X}.

Since τ is an involutive isometry,

m⊥1 = {X ∈ m | dτo(X) = −X}.

We have showed m1 = a1 + b1, a1 ⊂ a, and b1 ⊂ a⊥, thus

a = a1 + a ∩m⊥1 .

For any X ∈ a we can express X = X1 + X2 (X1 ∈ a1, X2 ∈ a ∩m⊥1 ) and obtain

dτo(X) = dτo(X1 + X2) = X1 −X2 ∈ a.

Therefore τ(A) = A holds. ¤

Definition 3.2. A compact Riemannian symmetric space M is said to be
cubic, if its maximal torus A has an orthonormal basis of the lattice Γ(A) for a
suitable invariant metric. For a maximal torus A of a cubic compact Riemannian
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symmetric space we call a coordinate x1, . . . , xr of a satisfying

Γ(A) = {(x1, . . . , xr) | xi ∈ πZ}

a canonical coordinate of A.

A compact Riemannian symmetric space is cubic if and only if it is a sym-
metric R-space by Sätze 5 and 6 in Loos [8].

Proposition 3.3. Let M2 be a cubic compact Riemannian symmetric space
and τ be an involutive isometry of M2 fixing the origin o. Let M1 be the connected
component of F (τ, M2) through o. We take maximal tori Ai of Mi through o

satisfying A1 ⊂ A2. There exists a canonical coordinate x1, . . . , xr of A2 satisfying

dτo(x1, . . . , xr) = (x2, x1, . . . , x2p, x2p−1, x2p+1, . . . , xq,−xq+1, . . . ,−xr),

a1 = {(x1, . . . , xr) | x1 = x2, . . . , x2p−1 = x2p, xq+1 = · · · = xr = 0}.

Proof. We have τ(A2) = A2 by Lemma 3.1. We assume that the rank
of M2 is equal to r. Since M2 is cubic, A2 is isometric to the Riemann product
S1

1 ×· · ·×S1
r of r copies of S1. Each component xi of a canonical coordinate of A2

is a canonical coordinate of S1
i . The image of S1

i under τ is the same S1
i or another

S1
j . If the image of S1

i is S1
j (j 6= i), we change the order of the coordinate such

that the image of S1
2i−1 is S1

2i for 1 ≤ i ≤ p. If the image of S1
i is S1

i itself, τ on
S1

i is the identity or reverses the orientation of S1
i . Thus dτo maps xi 7→ ±xi. We

change the order of the coordinate such that dτo maps xi 7→ xi for 2p + 1 ≤ i ≤ q

and that dτo maps xj 7→ −xj for q + 1 ≤ j ≤ r. By the change of the coordinate
we have

dτo(x1, . . . , xr) = (x2, x1, . . . , x2p, x2p−1, x2p+1, . . . , xq,−xq+1, . . . ,−xr).

Since a1 is the 1-eigenspace of dτo, we have

a1 = {(x1, . . . , xr) | x1 = x2, . . . , x2p−1 = x2p, xq+1 = · · · = xr = 0}. ¤

Since a Hermitian symmetric space of compact type is cubic, we can apply
Proposition 3.3 to it.

Proposition 3.4. Under the assumption of Proposition 3.3, if M2 is a
Hermitian symmetric space of compact type and if M1 is a real form of M2, then
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a1 = {(x1, . . . , x2p, x2p+1, . . . , xr) | x2i−1 = x2i (1 ≤ i ≤ p)}.

Remark 3.5. Any real form M1 of an irreducible Hermitian symmetric
space of compact type M2 is of maximal rank or satisfies rank(M1) = rank(M2)/2
and

a1 = {(x1, . . . , x2p) | x2i−1 = x2i (1 ≤ i ≤ p)}.

Proof. Let τ be an involutive anti-holomorphic isometry of M2 which de-
termines M1 as its fixed point set. Lemma 3.1 implies τ(A2) = A2. The maximal
torus A2 has a complexification AC

2 = CP 1 × · · · × CP 1 in M2, that is, A2 is
a real form of AC

2 . Each factor CP 1 in AC
2 is holomorphically isometric to each

other. dτo leaves To(AC
2 ) invariant, so we have τ(AC

2 ) = AC
2 . The image of each

factor CP 1 of AC
2 under τ is (1) itself or (2) another CP 1. In the case of (1) τ

induces an involutive anti-holomorphic isometry of CP 1 and its fixed point set is
a great circle. In the case of (2) τ induces an involutive anti-holomorphic isometry
of CP 1 × CP 1 ∼= Q2(C) and its fixed point set is congruent to S0,2 in Q2(C).
Thus by a suitable change of the order of the coordinate of a2 we have

a1 = {(x1, . . . , x2p, x2p+1, . . . , xr) | x2i−1 = x2i (1 ≤ i ≤ p)}. ¤

Lemma 3.6. Let A1, A2 be two maximal tori of a compact Riemannian
symmetric space through the origin o. We define the root system from A2 and
determine S ⊂ a2. If A1 ∩ A2 ∩ ExpS∆ 6= ∅ for a subset ∆ ⊂ Π#, then
ExpS∆ ⊂ A1 ∩A2.

Proof. We take a point ExpH2 (H2 ∈ S∆) in A1 ∩ A2 ∩ ExpS∆. Since
this point also belongs to A1, we can express it as Exp H2 = ExpX1 (X1 ∈ a1).
Moreover we can take X1 with ‖X1‖ = ‖H2‖ by Theorem 2.2. Since all maximal
tori are conjugate, there exists k ∈ K satisfying Ad(k−1)a1 = a2 and Ad(k−1)X1 ∈
S̄. We set H1 = Ad(k−1)X1 ∈ S̄. We have k ExpH1 = ExpX1 = ExpH2. We
take H1 ∈ S∆1 satisfying ∆1 ⊂ Π#. Lemma 2.1 implies k ExpS∆1 = ExpS∆ ⊂
A1 ∩A2. ¤

4. The intersection of two real forms.

In this section we prove Theorem 1.1, using properties of maximal tori ob-
tained in Sections 2 and 3. We recall the notion of polars of compact Riemannian
symmetric spaces and show a relation between real forms and polars stated in
Lemma 4.2. According to this, we can prove Theorem 1.3 by induction on polars.
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Proof of Theorem 1.1. The holomorphic sectional curvature of M is
positive, so L1 ∩ L2 6= ∅ by Lemma 3.1 in [15]. If L1 ∩ L2 consists of one point,
there is noting to prove. So we assume that #(L1 ∩ L2) ≥ 2 and take any two
points of L1∩L2. We regard the one point as the origin o and denote by p another
point. It is sufficient to prove that o and p are antipodal.

We take maximal tori Ai of Li containing o, p and maximal tori A′i of M

containing Ai. We denote by a′2 the maximal abelian subspace corresponding to
A′2 and take H2 ∈ a′2 satisfying p = ExpH2. We take a fundamental system Π
such that H2 ∈ S̄, where S = SΠ#

. Lemma 3.6 implies p ∈ ExpS∆ ⊂ A′1 ∩A′2.
We show that p ∈ ExpS∆ ⊂ A1 ∩A2 by the use of Proposition 3.4.
We represent a′2 by

a′2 = {(x1, . . . , xr)}

with respect to a canonical coordinate of A2. Proposition 3.4 implies that there
exists an involutive permutation λ of {1, . . . , r} satisfying

a2 = {(x1, . . . , xr) | xi = xλ(i) (1 ≤ i ≤ r)}.

Since each irreducible factor of the root system of M is of type C or BC, we have

S∆ = {(x1, . . . , xr) | π/2 ≥ x1 = · · · = xi1 > xi1+1 = · · · = xr ≥ 0}.

Moreover

S∆ ∩ {(x1, . . . , xr) | xi = xλ(i) (1 ≤ i ≤ r)} 6= ∅.

A point H2 in S∆ satisfies the equation xi = xλ(i) for all i, so every point in S∆

satisfies xi = xλ(i) and we have

S∆ ⊂ {(x1, . . . , xr) | xi = xλ(i) (1 ≤ i ≤ r)}.

We get a similar relation of inclusion with respect to a1, a
′
1, so we have p ∈

ExpS∆ ⊂ A1 ∩A2.
If dim S∆ > 0, the relation p ∈ ExpS∆ ⊂ A1∩A2 contradicts the assumption

that L1 and L2 intersect transversally. Therefore dimS∆ = 0 and S∆ is a vertex
of S̄. Since M is cubic, p is an antipodal point of o. There exist shortest geodesics
joining o and p in L1 and L2, so o and p are antipodal in L1 and L2. ¤
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Definition 4.1. Let M be a compact connected Riemannian symmetric
space and p ∈ M . We decompose the fixed point set F (sp,M) of the geodesic
symmetry sp at the origin p to the disjoint union of its connected components:

F (sp,M) =
r⋃

j=0

M+
j ,

where M+
0 = {p}. We call each connected component M+

j a polar of M with
respect to p.

Any polar is a totally geodesic submanifold. Chen-Nagano [1] introduced
the notion polar. Nagano [9] determined the polars of each irreducible compact
Riemannian symmetric space. Each polar of a Hermitian symmetric space of
compact type is also a Hermitian symmetric space of compact type.

Lemma 4.2. Let M be a Hermitian symmetric space of compact type and L

be a real form of M through o. If a polar M+ satisfies L∩M+ 6= ∅, then L∩M+

is a real form of M+.

Proof. We denote by τ the involutive anti-holomorphic isometry deter-
mining L. Since o ∈ L, we have τ(o) = o and dτo = 1ToL − 1T⊥o L. Thus
d(τ ◦ so)o = d(so ◦ τ)o and τ ◦ so = so ◦ τ . We have so(τ(x)) = τ(so(x)) = τ(x) for
any x ∈ F (so,M), hence we obtain τ(F (so,M)) = F (so,M).

We can take p ∈ L ∩ M+, because of the assumption that L ∩ M+ 6= ∅.
Since τ(p) = p, we have τ(M+) = M+. Therefore τ induces an involutive anti-
holomorphic isometry of M+ and L ∩M+ is a real form of M+. ¤

The following lemma shows that some properties of the intersection of two
real forms of a Hermitian symmetric space of compact type can be reduced to
those of the intersection of two real forms of each polar.

Lemma 4.3. Let M be a Hermitian symmetric space of compact type, and
denote by

F (so,M) =
r⋃

j=0

M+
j

the polars of M with respect to the origin o.

(1) If L is a real form of M through o, then the polars of L with respect to o is
described by
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F (so, L) =
r⋃

j=0

L ∩M+
j ,

and the following equality holds.

#2L =
r∑

j=0

#2

(
L ∩M+

j

)
.

(2) If L1, L2 are real forms of M through o, then we have

L1 ∩ L2 =
r⋃

j=0

{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
,

#(L1 ∩ L2) =
r∑

j=0

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
.

Proof. (1) Since L is a totally geodesic submanifold through o, we have

F (so, L) = L ∩ F (so,M) =
r⋃

j=0

L ∩M+
j .

Lemma 4.2 implies that L ∩ M+
j is a real form of M+

j if L ∩ M+
j is not empty.

Any real form of a Hermitian symmetric space of compact type is connected by
Theorem 3.8 in Leung [7], so L∩M+

j is connected, hence it is a polar of L. L is a
symmetric R-space by a result of Takeuchi [13], and the following equality holds
by results of [14].

#2L =
r∑

j=0

#2

(
L ∩M+

j

)
.

(2) L1∩L2 is antipodal in L1 and L2 by Theorem 1.1. L1∩L2 is also antipodal
in M , so we have L1 ∩ L2 ⊂ F (so,M). Hence we get

L1 ∩ L2 =
r⋃

j=0

{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
,

#(L1 ∩ L2) =
r∑

j=0

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
. ¤
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Proof of Theorem 1.2. There exist φ0, φ1 ∈ I0(M) which satisfy L′1 =
φ0L1 and L′2 = φ1L2. Since L′1 and L′2 intersect transversally, φ−1

0 L′1 = L1 and
φ−1

0 L′2 = φ−1
0 φ1L2 intersect transversally, too. We set g = φ−1

0 φ1 ∈ I0(M). L1

and gL2 intersect transversally and #(L′1 ∩ L′2) = #(L1 ∩ gL2) holds. Thus the
theorem reduces to the following statement.

(A) Assume that real forms L1, L2 in M and g ∈ I0(M) satisfy that L1, L2

intersect transversally and L1, gL2 intersect transversally, too. Then #(L1∩L2) =
#(L1 ∩ gL2).

We can take o ∈ L1 ∩ L2 and p ∈ L1 ∩ gL2 by Lemma 3.1 in [15]. L1

is an orbit of a subgroup of I0(M), so there exists φ2 ∈ I0(M) which satisfies
φ2L1 = L1 and φ2(p) = o. Then φ2L1 = L1 and φ2gL2 intersect transversally.
Since o, φ2g(o) ∈ φ2gL2, there exists φ3 ∈ I0(M) which satisfies φ3φ2gL2 = φ2gL2

and φ3φ2g(o) = o. We denote

K = {φ ∈ I0(M) | φ(o) = o}.

We have φ3φ2g ∈ K and set k = φ3φ2g. L1 and kL2 = φ3φ2gL2 = φ2gL2 intersect
transversally. Since

#(L1 ∩ gL2) = #(φ2(L1 ∩ gL2)) = #(L1 ∩ kL2),

the statement (A) reduces to the following statement.
(B) Let L1, L2 be real forms in M which intersect transversally. If we take

o ∈ L1 ∩ L2 and k ∈ I0(M) which satisfies k(o) = o and that L1, kL2 intersect
transversally, then #(L1 ∩ L2) = #(L1 ∩ kL2).

Now we prove #(L1 ∩ L2) = #(L1 ∩ kL2). According to (2) of Lemma 4.3,
we have

L1 ∩ L2 =
r⋃

j=0

{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
,

L1 ∩ kL2 =
r⋃

j=0

{
(L1 ∩M+

j ) ∩ (kL2 ∩M+
j )

}

and

#(L1 ∩ L2) =
r∑

j=0

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
,
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#(L1 ∩ kL2) =
r∑

j=0

#
{
(L1 ∩M+

j ) ∩ (kL2 ∩M+
j )

}
.

The subsets L2∩M+
j and kL2∩M+

j are congruent in M+
j for each j. So L2∩M+

j

and kL2 ∩M+
j are simultaneously empty, the same point or congruent real forms

in M+
j for each j. In the first case, we have

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
= 0 = #

{
(L1 ∩M+

j ) ∩ (kL2 ∩M+
j )

}
.

In the second case, we have

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
= 1 = #

{
(L1 ∩M+

j ) ∩ (kL2 ∩M+
j )

}
.

In the third case, L2∩M+
j and kL2∩M+

j intersect transversally in M+
j . The action

of k on M+
j is contained in I0(M+

j ), so L2 ∩M+
j and kL2 ∩M+

j = k(L2 ∩M+
j )

are congruent real forms in M+
j . We can apply the argument above to them in

M+
j . We take oj ∈ (L1 ∩M+

j ) ∩ (L2 ∩M+
j ). By the argument above we can take

kj ∈ I0(M+
j ) which satisfies kj(oj) = oj , oj ∈ (L1 ∩M+

j ) ∩ kj(L2 ∩M+
j ) and that

(L1 ∩M+
j ) ∩ (L2 ∩M+

j ) and (L1 ∩M+
j ) ∩ kj(L2 ∩M+

j ) are congruent in M+
j . In

particular we have

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
= #

{
(L1 ∩M+

j ) ∩ kj(L2 ∩M+
j )

}
.

We denote by

F
(
soj

,M+
j

)
=

rj⋃

k=0

M+
jk

the polars of M+
j with respect to oj . According to (2) of Lemma 4.3, we have

(
L1 ∩M+

j

) ∩ (
L2 ∩M+

j

)
=

rj⋃

l=0

{
((L1 ∩M+

j ) ∩M+
jl ) ∩ ((L2 ∩M+

j ) ∩M+
jl )

}
,

(
L1 ∩M+

j

) ∩ kj

(
L2 ∩M+

j

)
=

rj⋃

l=0

{
((L1 ∩M+

j ) ∩M+
jl ) ∩ (kj(L2 ∩M+

j ) ∩M+
jl )

}

and
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#
(
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

)
=

rj∑

l=0

#
{
((L1 ∩M+

j ) ∩M+
jl ) ∩ ((L2 ∩M+

j ) ∩M+
jl )

}
,

#
(
L1 ∩M+

j ) ∩ kj(L2 ∩M+
j

)
=

rj∑

l=0

#
{
((L1 ∩M+

j ) ∩M+
jl ) ∩ (kj(L2 ∩M+

j ) ∩M+
jl )

}
.

The subsets (L2 ∩M+
j ) ∩M+

jl and kj(L2 ∩M+
j ) ∩M+

jl are congruent in M+
jl for

each l. So (L2∩M+
j )∩M+

jl and kj(L2∩M+
j )∩M+

jl are simultaneously empty, the
same point or congruent real forms in M+

jl for each l. In the first and the second
cases, we have

#
{
((L1 ∩M+

j ) ∩M+
jl ) ∩ ((L2 ∩M+

j ) ∩M+
jl )

}

= #
{
((L1 ∩M+

j ) ∩M+
jl ) ∩ (kj(L2 ∩M+

j ) ∩M+
jl )

}
.

In the third case, (L1 ∩M+
j )∩M+

jl and kj(L2 ∩M+
j )∩M+

jl intersect transversally
in M+

jl . If we repeat this argument finitely many times, we reach the first and
the second cases, because dim M+

jl < dimM+
j . Hence we obtain (B) and (A), so

complete the proof of the theorem. ¤

Proof of Theorem 1.3. Because of Theorem 1.1, the intersection L1∩L2

is an antipodal set of L1 and L2. In order to prove the theorem we may show
#(L1 ∩ L2) = #2L1 = #2L2.

We can suppose that o ∈ L1 ∩L2 without loss of generality. According to (2)
of Lemma 4.3, we have

L1 ∩ L2 =
r⋃

j=0

{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
,

#(L1 ∩ L2) =
r∑

j=0

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
.

According to (1) of Lemma 4.3, the polars of Li are described by

F (so, Li) =
r⋃

j=0

Li ∩M+
j

and the following equality for i = 1, 2 holds.
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#2Li =
r∑

j=0

#2

(
Li ∩M+

j

)
.

Since L1 and L2 are congruent, we have #2L1 = #2L2. The subsets L1 ∩ M+
j

and L2 ∩ M+
j are congruent in M+

j for each j. So L1 ∩ M+
j and L2 ∩ M+

j are
simultaneously empty, the same point or congruent real forms in M+

j for each j.
In the first and the second cases, we have

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
= #

(
Li ∩M+

j

)
= #2

(
Li ∩M+

j

)

for i = 1, 2. In the third case, L1 ∩M+
j and L2 ∩M+

j intersect transversally in
M+

j . We can apply the argument above to them in M+
j . We take oj ∈ (L1 ∩

M+
j ) ∩ (L2 ∩M+

j ) and denote by

F
(
soj

,M+
j

)
=

rj⋃

k=0

M+
jk

the polars of M+
j with respect to oj . We have

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}

=
rj∑

k=0

#
{
((L1 ∩M+

j ) ∩M+
jk) ∩ ((L2 ∩M+

j ) ∩M+
jk)

}
.

The subsets (L1∩M+
j )∩M+

jk and (L2∩M+
j )∩M+

jk are simultaneously empty, the
same point or congruent real forms in M+

jk for each k. In the first and the second
cases, we have

#
{
((L1 ∩M+

j ) ∩M+
jk) ∩ ((L2 ∩M+

j ) ∩M+
jk)

}

= #
(
(Li ∩M+

j ) ∩M+
jk

)
= #2

(
(Li ∩M+

j ) ∩M+
jk

)

for i = 1, 2. In the third case, (L1 ∩M+
j ) ∩M+

jk and (L2 ∩M+
j ) ∩M+

jk intersect
transversally in M+

jk. We can apply the argument above to them in M+
jk. If we

repeat this argument finitely many times, we reach the first and the second cases.
Thus we obtain

#(L1 ∩ L2) = #2L1 = #2L2. ¤
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At the last of this section we show an example of real forms.

Example 4.4. Let M = (CP 1)4 and τ1, τ2 : CP 1 → CP 1 be involu-
tive anti-holomorphic isometries of CP 1. τ1, τ2 are conjugate under holomorphic
isometries of CP 1. We assume that the real forms determined by τ1 and τ2 inter-
sect transversally. We define L1, L2 by

L1 = {(x, y, τ1(x), τ1(y)) | x, y ∈ CP 1},
L2 = {(x, τ2(x), y, τ2(y)) | x, y ∈ CP 1}.

Lemma 5.8 implies that L1 and L2 are real forms in M . Moreover L1 and L2

are transformed to each other by a holomorphic isometry of M . Let {o, ō} be the
intersection of the real forms determined by τ1 and τ2 and denote o4 = (o, o, o, o) ∈
M . We have

L1 ∩ F (so4 ,M) = {(o, o, o, o), (o, ō, o, ō), (ō, o, ō, o), (ō, ō, ō, ō)},
L2 ∩ F (so4 ,M) = {(o, o, o, o), (o, o, ō, ō), (ō, ō, o, o), (ō, ō, ō, ō)}.

It implies

L1 ∩ L2 = {(o, o, o, o), (ō, ō, ō, ō)}.

{(o, o, o, o), (o, ō, o, ō), (ō, o, ō, o), (ō, ō, ō, ō)} is a great antipodal set of L1 and
{(o, o, o, o), (o, o, ō, ō), (ō, ō, o, o), (ō, ō, ō, ō)} is a great antipodal set of L2. There-
fore we obtain

#(L1 ∩ L2) = 2 < 4 = #2L1 = #2L2.

5. Irreducible Hermitian symmetric spaces of compact type.

We treat the intersection of two real forms which are not congruent in irre-
ducible Hermitian symmetric spaces of compact type in this section.

Proof of Theorem 1.4. We apply Lemma 4.3 to two real forms which are
not congruent in each irreducible Hermitian symmetric space of compact type and
compare their intersection number with their 2-numbers. The list of irreducible
Hermitian symmetric spaces of compact type and their real forms which we have
to show the statements of the theorem is, according to the results of Leung [7] or
Takeuchi [13], as follows:
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M L1 L2

Qn(C) Sk,n−k Sl,n−l

GC
2q(C

2m+2q) GH
q (Hm+q) GR

2q(R
2m+2q)

GC
n (C2n) U(n) GR

n (R2n)

GC
2m(C4m) GH

m (H2m) U(2m)

Sp(2m)/U(2m) Sp(m) U(2m)/O(2m)

SO(4m)/U(2m) U(2m)/Sp(m) SO(2m)

E6/T · Spin(10) F4/Spin(9) GH
2 (H4)/Z2

E7/T · E6 T · (E6/F4) (SU(8)/Sp(4))/Z2

In the case of the complex hyperquadric Qn(C), the statement of (2) was already
obtained in [15]. The other cases are showed in Theorems 5.1–5.7. ¤

Theorem 5.1. If real forms L1 congruent to GH
q (Hm+q) and L2 congruent

to GR
2q(R

2m+2q) in GC
2q(C

2m+2q) intersect transversally, then their intersection
L1 ∩ L2 is a great antipodal set of L1 and

#(L1 ∩ L2) = #2L1 =
(

m + q

q

)
≤

(
2m + 2q

2q

)
= #2L2.

Theorem 5.2. If real forms L1 congruent to U(n) and L2 congruent to
GR

n (R2n) in GC
n (C2n) intersect transversally, then their intersection L1 ∩L2 is a

great antipodal set of L1 and

#(L1 ∩ L2) = #2L1 = 2n ≤
(

2n

n

)
= #2L2.

Theorem 5.3. If real forms L1 congruent to GH
m (H2m) and L2 congruent

to U(2m) in GC
2m(C4m) intersect transversally, then

#(L1 ∩ L2) = 2m, min{#2L1,#2L2} =
(

2m

m

)
.

If m = 1, then #(L1∩L2) = min{#2L1,#2L2} holds. If m ≥ 2, then #(L1∩L2) <

min{#2L1,#2L2} holds.
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Theorem 5.4. If real forms L1 congruent to Sp(m) and L2 congruent to
U(2m)/O(2m) in Sp(2m)/U(2m) intersect transversally, then their intersection
L1 ∩ L2 is a great antipodal set of L1 and

#(L1 ∩ L2) = #2L1 = 2m ≤ 22m = #2L2.

Theorem 5.5. If real forms L1 congruent to U(2m)/Sp(m) and L2 congru-
ent to SO(2m) in SO(4m)/U(2m) intersect transversally, then their intersection
L1 ∩ L2 is a great antipodal set of L1 and

#(L1 ∩ L2) = #2L1 = 2m ≤ 22m−1 = #2L2.

Theorem 5.6. If real forms L1 congruent to F4/Spin(9) and L2 congruent
to GH

2 (H4)/Z2 in E6/T · Spin(10) intersect transversally, then their intersection
L1 ∩ L2 is a great antipodal set of L1 and

#(L1 ∩ L2) = #2L1 = 3 < 27 = #2L2.

Theorem 5.7. If real forms L1 congruent to T · (E6/F4) and L2 congruent
to (SU(8)/Sp(4))/Z2 in E7/T · E6 intersect transversally, then their intersection
L1 ∩ L2 is a great antipodal set of L1 and

#(L1 ∩ L2) = #2L1 = 8 < 56 = #2L2.

Polars of irreducible Hermitian symmetric spaces of compact type are not
irreducible in general. In order to treat their real forms we prepare the following
Lemma 5.8 and Proposition 5.9.

Lemma 5.8. Let M be a Hermitian symmetric space of compact type and τ :
M → M be an involutive anti-holomorphic isometry. The transformation defined
by (x, y) 7→ (τ(y), τ(x)) is an involutive anti-holomorphic isometry of M ×M . Its
fixed point set is given by

Dτ (M) = {(x, τ(x)) | x ∈ M}.

The conclusions of Lemma 5.8 directly follow from the assumptions, so we
omit its proof.

Proposition 5.9. (1) Let M1,M2 be Hermitian symmetric spaces of com-
pact type, L1, L

′
1 two real forms of M1, and L2, L

′
2 two real forms of M2.
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Then L1 × L2 and L′1 × L′2 are real forms of M1 × M2 and we have
(L1 × L2) ∩ (L′1 × L′2) = (L1 ∩ L′1) × (L2 ∩ L′2). If L1, L

′
1 intersect transver-

sally and if L2, L
′
2 intersect transversally, then L1×L2 and L′1×L′2 intersect

transversally and we have #{(L1×L2)∩ (L′1×L′2)} = #(L1∩L′1)#(L2∩L′2).
(2) Let L1, L2 be real forms of a Hermitian symmetric space M of compact type

and τ : M → M an involutive anti-holomorphic isometry. We have

(L1 × L2) ∩Dτ (M) = {(x, τ(x)) | x ∈ L1 ∩ τ−1(L2)}.

Two real forms L1 ×L2 and Dτ (M) of M ×M intersect transversally, if and
only if L1 and τ−1(L2) intersect transversally. In this case, we have

#{(L1 × L2) ∩Dτ (M)} = #{L1 ∩ τ−1(L2)}.

Here τ−1(L2) and L2 are congruent.
(3) If M is a Hermitian symmetric space of compact type and if τ1, τ2 : M → M

are involutive anti-holomorphic isometries which are conjugate with respect to
holomorphic isometries, then Dτ1(M) and Dτ2(M) are congruent. Moreover
if Dτ1(M) and Dτ2(M) transversally intersect, then #(Dτ1(M) ∩Dτ2(M)) =
#2M .

Proof. (1) The conclusions of (1) directly follow from the assumptions.
(2) The intersection of L1 × L2 and Dτ (M) is given by

(L1 × L2) ∩Dτ (M) = {(x, τ(x)) | x ∈ L1 ∩ τ−1(L2)}.

This equality implies that L1 × L2 and Dτ (M) intersect transversally in M ×M

if and only if L1 and τ−1(L2) intersect transversally in M . In this case, we have

#{(L1 × L2) ∩Dτ (M)} = #{L1 ∩ τ−1(L2)}.

Let τi be the involutive anti-holomorphic isometry determining Li. We have
τ−1(L2) = τ−1 ◦ τ2(L2) and τ−1 ◦ τ2 is a holomorphic isometry of M . Hence
τ−1(L2) and L2 are congruent.

(3) By the assumption there exists an holomorphic isometry g satisfying τ2 =
gτ1g

−1. Any point in Dτi(M) is equal to (x, τi(x)) for x ∈ M , thus

(x, τ2(x)) = (g × g)(g−1(x), τ1g
−1(x)).

This implies Dτ2(M) = (g × g)Dτ1(M) and Dτ1(M) and Dτ2(M) are congru-
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ent. Moreover if Dτ1(M) and Dτ2(M) transversally intersect, then according to
Theorem 1.3

#(Dτ1(M) ∩Dτ2(M)) = #2(Dτ1(M)) = #2M. ¤

Proof of Theorem 5.1. We prove the theorem by induction on q, m. If
q = m = 1, then GC

2 (C4) is holomorphically isometric to the complex hyper-
quadric Q3(C), and real forms GH

1 (H2) and GR
2 (R4) in GC

2 (C4) are respectively
congruent to S0,4 and S2,2 in Q3(C). According to the result in [15], L1 ∩ L2 is
a great antipodal set of L1 and

#(L1 ∩ L2) = #2L1 = 2 < 6 = #2L2.

Next we consider the case of general q, m. By [9, (3.12)] the polars of
GC

2q(C
2m+2q) are given by

M+
j = GC

j (C2q)×GC
2q−j(C

2m) (0 ≤ j ≤ 2q)

and the polars of GH
q (Hm+q) and of GR

2q(R
2m+2q) are given by

GH
k (Hq)×GH

q−k(Hm) (0 ≤ k ≤ q),

and

GR
k (R2q)×GR

2q−k(R2m) (0 ≤ k ≤ 2q)

respectively. By Lemma 4.2 for 0 ≤ j ≤ 2q we have

GH
q (Hm+q) ∩M+

j =

{∅ (j : odd)

GH
k (Hq)×GH

q−k(Hm) (j = 2k)

GR
2q(R

2m+2q) ∩M+
j = GR

j (R2q)×GR
2q−j(R

2m).

L1 and L2 are congruent to GH
q (Hm+q) and GR

2q(R
2m+2q) by the action of the

isotropy subgroup K of GC
2q(C

2m+2q) at the origin respectively. We note that K

is connected. Each of M+
j is invariant under the action of K, the intersections

L1∩M+
j and L2∩M+

j are congruent to GH
q (Hm+q)∩M+

j and GR
2q(R

2m+2q)∩M+
j

in M+
j respectively. By the assumption of induction we have
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#
{
(L1 ∩M+

2k) ∩ (L2 ∩M+
2k)

}
=

(
q

k

)(
m

q − k

)
.

Lemma 4.3 implies

#(L1 ∩ L2) =
q∑

k=0

#
{
(L1 ∩M+

2k) ∩ (L2 ∩M+
2k)

}
=

q∑

k=0

(
q

k

)(
m

q − k

)
.

This is equal to the coefficient of xq when we expand (1 + x)q(1 + x)m, thus

#(L1 ∩ L2) =
(

m + q

q

)
= #2L1 <

(
2m + 2q

2q

)
= #2L2. ¤

Proof of Theorem 5.2. By [9, (3.12)] the polars of GC
n (C2n) are given

by

M+
j = GC

j (Cn)×GC
n−j(C

n) (0 ≤ j ≤ n)

and the polars of GR
n (R2n) are given by

GR
k (Rn)×GR

n−k(Rn) (0 ≤ k ≤ n).

By [9, (3.3)] the polars of U(n) are given by

GC
k (Cn) (0 ≤ k ≤ n).

We note that GC
j (Cn) and GC

n−j(C
n) are holomorphically isometric. By Lemma

4.2 for 0 ≤ j ≤ n we have

U(n) ∩M+
j = Dτj

(
GC

j (Cn)
)

GR
n (R2n) ∩M+

j = GR
j (Rn)×GR

n−j(R
n).

Since L1 and L2 are congruent to U(n) and GR
n (R2n) in GC

n (C2n) respectively,
L1 ∩M+

j and L2 ∩M+
j are congruent to U(n) ∩M+

j and GR
n (R2n) ∩M+

j in M+
j

respectively. Lemma 5.8 and Theorem 1.3 imply
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#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}

= #
{
(GR

j (Rn)×GR
n−j(R

n)) ∩Dτj
(GC

j (Cn))
}

=
(

n

j

)
.

Lemma 4.3 implies

#(L1 ∩ L2) =
n∑

j=0

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
=

n∑

k=0

(
n

k

)
= 2n.

On the other hand

#2U(n) = 2n ≤
(

2n

n

)
= #2G

R
n (R2n),

so we have

min{#2L1,#2L2} = 2n. ¤

Proof of Theorem 5.3. By [9, (3.12)] the polars of GC
2m(C4m) are given

by

M+
j = GC

j (C2m)×GC
2m−j(C

2m) (0 ≤ j ≤ 2m).

We note that GC
j (C2m) and GC

2m−j(C
2m) are holomorphically isometric. By [9,

(3.3)] the polars of U(2m) are given by

GC
k (C2m) (0 ≤ k ≤ 2m)

and by [9, (3.12)] the polars of GH
m (H2m) are given by

GH
k (Hm)×GH

m−k(Hm) (0 ≤ k ≤ m).

By Lemma 4.2 for 0 ≤ j ≤ 2m

GH
m (H2m) ∩M+

j =

{∅ (j : odd)

GH
k (Hm)×GH

m−k(Hm) (j = 2k)

U(2m) ∩M+
j = Dτj

(
GC

j (C2m)
)
.
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Since L1 and L2 are congruent to GH
m (H2m) and U(2m) in GC

2m(C4m) respectively,
L1 ∩M+

j and L2 ∩M+
j are congruent to GH

m (H2m) ∩M+
j and U(2m) ∩M+

j in
M+

j respectively. Lemma 5.8 and Theorem 1.3 imply

#
{
(L1 ∩M+

2k) ∩ (L2 ∩M+
2k)

}

= #
{
(GH

k (Hm)×GH
m−k(Hm)) ∩Dτ2k

(GC
2k(C2m))

}
=

(
m

k

)
.

Lemma 4.3 implies

#(L1 ∩ L2) =
m∑

k=0

#
{
(L1 ∩M+

2k) ∩ (L2 ∩M+
2k)

}
=

m∑

k=0

(
m

k

)
= 2m.

On the other hand

#2G
H
m (H2m) =

(
2m

m

)
≤ 22m = #2U(2m),

so we have

min{#2L1,#2L2} =
(

2m

m

)
. ¤

Proof of Theorem 5.4. By [9, (3.21)] the polars of Sp(2m)/U(2m) are
given by

M+
j = GC

j (C2m) (0 ≤ j ≤ 2m).

By [9, (3.10)] the polars of Sp(m) are given by

GH
k (Hm) (0 ≤ k ≤ m)

and by [9, (3.17)] the polars of U(2m)/O(2m) are given by

GR
k (R2m) (0 ≤ k ≤ 2m).

By Lemma 4.2 for 0 ≤ j ≤ 2m
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Sp(m) ∩M+
j =

{∅ (j : odd)

GH
k (Hm) (j = 2k)

(U(2m)/O(2m)) ∩M+
j = GR

j (R2m).

Since L1 and L2 are congruent to Sp(m) and U(2m)/O(2m) in Sp(2m)/U(2m)
respectively, L1 ∩ M+

j and L2 ∩ M+
j are congruent to Sp(m) ∩ M+

j and
(U(2m)/O(2m)) ∩M+

j in M+
j respectively. Thus by Theorem 5.1 we have

#
{
(L1 ∩M+

2k) ∩ (L2 ∩M+
2k)

}
=

(
m

k

)
.

Lemma 4.3 implies

#(L1 ∩ L2) =
m∑

k=0

#
{
(L1 ∩M+

2k) ∩ (L2 ∩M+
2k)

}
=

m∑

k=0

(
m

k

)
= 2m.

On the other hand

#2Sp(m) = 2m ≤ 22m = #2(U(2m)/O(2m)),

so we have

min{#2L1,#2L2} = 2m. ¤

Proof of Theorem 5.5. By [9, (3.20)] the polars of SO(4m)/U(2m) are
given by

M+
j = GC

2j(C
2m) (0 ≤ j ≤ m).

By [9, (3.19)] the polars of U(2m)/Sp(m) are given by

GH
k (Hm) (0 ≤ k ≤ m)

and by [9, (3.6)] the polars of SO(2m) are given by

GR
2k(R2m) (0 ≤ k ≤ m).

By Lemma 4.2 for 0 ≤ j ≤ m



1322 M. S. Tanaka and H. Tasaki

(U(2m)/Sp(m)) ∩M+
j = GH

j (Hm)

SO(2m) ∩M+
j = GR

2j(R
2m).

Since L1 and L2 are congruent to U(2m)/Sp(m) and SO(2m) in SO(4m)/U(2m)
respectively, L1 ∩M+

j and L2 ∩M+
j are congruent to (U(2m)/Sp(m)) ∩M+

j and
SO(2m) ∩M+

j in M+
j respectively. Thus by Theorem 5.1 we have

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
=

(
m

j

)
.

Lemma 4.3 implies

#(L1 ∩ L2) =
m∑

j=0

#
{
(L1 ∩M+

j ) ∩ (L2 ∩M+
j )

}
=

m∑

j=0

(
m

j

)
= 2m.

On the other hand

#2(U(2m)/Sp(m)) = 2m ≤ 22m−1 = #2SO(2m),

so we have

min{#2L1,#2L2} = 2m. ¤

Before the proofs of Theorem 5.6 and Theorem 5.7 we make some preparation
for treating the cases of exceptional type. Let M = M1×M2 be a Riemann product
of compact symmetric spaces M1 and M2. Since the geodesic symmetry so at o =
(o1, o2) ∈ M1×M2 is defined by so(x) = (so1(x1), so2(x2)) for (x1, x2) ∈ M1×M2,
we have

F (so,M1 ×M2) = F (so1 ,M1)× F (so2 ,M2). (5.2)

We assume that a discrete subgroup Zµ of the isometry group of a compact
symmetric space M acts freely on M and the quotient space M/Zµ is a symmetric
space. Let π : M → M/Zµ be the projection. Then we have sπ(x)(π(y)) =
π(sx(y)) for x, y ∈ M . If µ = 2kn where n is an odd number, π is a composition of
k double covering maps and a n-fold covering map. Hence, it is enough to consider
the cases where µ is odd and where µ = 2 for knowing the polars of M/Zµ.

Definition 5.10. Let M be a compact connected Riemannian symmetric
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space and p ∈ M . If p̄ ∈ M is an isolated point in F (sp,M) − {p}, p̄ is called
a pole with respect to p. When there is a pole p̄ with respect to p in M , the
set of midpoints of the geodesic segments from p to p̄ is called the centrosome
with respect to p and p̄ and denoted by C(p, p̄). Each connected component of a
centrosome is called a centriole.

Lemma 5.11. Let M be a compact connected Riemannian symmetric space.
Assume that a discrete subgroup Z2 of the isometry group of M acts freely on M

and the quotient space M/Z2 is a symmetric space. Let π : M → M/Z2 be the
projection. Then, if π(x) = π(y) for x, y ∈ M , either x = y or y is a pole with
respect to x.

Proof. We show that if π(x) = π(y) and x 6= y, y is a pole with respect
to x. The geodesic symmetry sx preserves π−1(π(x)) = {x, y} and fixes x, so sx

fixes y. We can take a neighborhood U of π(x) so that each connected component
Ũi (i = 1, 2) of π−1(U) is homeomorphic to U under π with x ∈ Ũ1 and y ∈ Ũ2

and that π(x) is the only fixed point of sπ(x) on U . Then y is the only fixed point
of sx on Ũ2. In fact, if sx(y′) = y′ for y′ 6= y, then π(y′) ∈ U and π(y′) 6= π(x)
and sπ(x)(π(y′)) = π(sx(y′)) = π(y′). This contradicts that π(x) is the only fixed
point of sπ(x) on U . Hence y is a pole with respect to x. ¤

Lemma 5.12. Let M be a compact connected Riemannian symmetric space.
Assume that a discrete subgroup Zµ of the isometry group of M acts freely on M

and the quotient space M/Zµ is a symmetric space. Let π : M → M/Zµ be the
projection and let [x] denote π(x) for x ∈ M .

(1) If µ = 2, for every polar (M/Z2)+ in M/Z2 with respect to [o] there exists
either a polar M+ in M with respect to o or a centriole C in M with respect
to o and ō satisfying π−1([o]) = {o, ō} which π maps onto (M/Z2)+.

(2) If µ is odd, for every polar (M/Zµ)+ in M/Zµ with respect to [o] there exists
a polar M+ in M with respect to o such that π(M+) = (M/Zµ)+. Moreover,
the restriction of π to M+ is an isomorphism.

Proof. For x ∈ M , [x] ∈ F (s[o],M/Zµ) if and only if [so(x)] = [x].
(1) If [x] ∈ F (s[o],M/Z2), we have either sx(x) = x or so(x) = x̄ by Lemma

5.11, where x̄ is a pole with respect to x and π−1([x]) = {x, x̄}. Let (M/Z2)+ be
a polar through [x] in M/Z2. When so(x) = x, if we take a polar M+ through x

in M , we have π(M+) = (M/Z2)+. When so(x) = x̄, we have

so ◦ sx = so ◦ sx ◦ so ◦ so = sso(x) ◦ so = sx̄ ◦ so = sx ◦ so

because x̄ is a pole with respect to x, which is equivalent to sx̄ = sx. Hence x
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belongs to the centrosome C(o, ō) by [3, Proposition 3.4]. If we take a centriole C

through x in M , we have π(C) = (M/Z2)+.
(2) In the proof of [3, Proposition 3.1], it is shown that if s[o]([x]) = ([x]), then

so fixes the one point x′ in π−1([x]). If we take a polar M+ through x′, we have
π(M+) = (M/Zµ)+ for a polar (M/Zµ)+ through [x] in M/Zµ. If π(x) = π(y)
for x, y ∈ M+, then y ∈ π−1([x]) and x = y follows what is stated above. Hence
the restriction of π to M+ is injective, so it is an isomorphism. ¤

Definition 5.13. Let M be a compact connected Riemannian symmetric
space and p ∈ M . For any x ∈ F (sp,M) we denote by M+

(x) the connected
component of F (sp,M) through x. We call the connected component of F (sx ◦
sp,M) through x the meridian to M+

(x) at x and denote it by M−
(x).

Lemma 5.14 ([2, Theorem 2.9]). Let N be a compact connected Riemannian
symmetric space and let M be a totally geodesic submanifold of N . Let M+

(x) be
a polar of M through x with respect to o ∈ M . Then, there is a polar N+

(x) of N

with respect to o such that M+
(x) = N+

(x) ∩M . Moreover, M+
(x) (resp. M−

(x)) is a
totally geodesic submanifold of N+

(x) (resp. N−
(x)).

Proof of Theorem 5.6. The polars of E6/T · Spin(10) with respect to
the origin o are given by

M+
0 = {o}, M+

1 = Q8(C), M+
2 = SO(10)/U(5)

by [9, (4.9)]. On the other hand, the polars of F4/Spin(9) with respect to the
origin o are {o} and S8 by [9, (4.9)] and the polars of GH

2 (H4)/Z2 with respect
to the origin o are {o}, S4,4 and SO(5) by [9, (3.13)]. Then by Lemma 5.14 we
have

(F4/Spin(9)) ∩M+
0 = {o}

(F4/Spin(9)) ∩M+
1 = S8

(F4/Spin(9)) ∩M+
2 = ∅,

and

(
GH

2 (H4)/Z2

) ∩M+
0 = {o}

(
GH

2 (H4)/Z2

) ∩M+
1 = S4,4

(
GH

2 (H4)/Z2

) ∩M+
2 = SO(5).
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Since L1 and L2 are congruent to F4/Spin(9) and GH
2 (H4)/Z2 in E6/T ·Spin(10)

respectively, L1 ∩ M+
j and L2 ∩ M+

j are congruent to (F4/Spin(9)) ∩ M+
j and

(GH
2 (H4)/Z2) ∩M+

j in M+
j respectively. Thus by Theorem 1 in [15] we have

#
{
(L1 ∩M+

1 ) ∩ (L2 ∩M+
1 )

}
= 2.

Lemma 4.3 implies

#(L1 ∩ L2) = 1 + 2 = 3.

On the other hand

#2(F4/Spin(9)) = 3 < 27 = #2

(
GH

2 (H4)/Z2

)
,

so we have

min{#2L1,#2L2} = 3. ¤

Proof of Theorem 5.7. By [9, (4.8)] the polars of E7/T ·E6 with respect
to the origin o are given by

M+
0 = {o}, M+

1
∼= M+

2 = E6/T · Spin(10), M+
3 = {ō},

where ō is the pole of o. On the other hand, the polars of T ·(E6/F4) with respect to
the origin o are {o, ō} and two copies of F4/Spin(9) by (5.2) and Lemma 5.12, here
we note that T ·(E6/F4) = (T×(E6/F4))/Z3. And the polars of (SU(8)/Sp(4))/Z2

with respect to the origin o are {o, ō} and two copies of GH
2 (H4)/Z2 by Lemma

5.12. Then we have

(T · (E6/F4)) ∩M+
0 = {o}

(T · (E6/F4)) ∩M+
i = F4/Spin(9) (i = 1, 2)

(T · (E6/F4)) ∩M+
3 = {ō}.

We also have

((SU(8)/Sp(4))/Z2) ∩M+
0 = {o}

((SU(8)/Sp(4))/Z2) ∩M+
i = GH

2 (H4)/Z2 (i = 1, 2)

((SU(8)/Sp(4))/Z2) ∩M+
3 = {ō}.
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Since L1 and L2 are congruent to T · (E6/F4) and (SU(8)/Sp(4))/Z2 in E7/T ·E6

respectively, L1 ∩ M+
j and L2 ∩ M+

j are congruent to (T · (E6/F4)) ∩ M+
j and

((SU(8)/Sp(4))/Z2) ∩M+
j in M+

j respectively. Thus by Theorem 5.6 we have

#
{
(L1 ∩M+

i ) ∩ (L2 ∩M+
i )

}
= 3 (i = 1, 2).

Lemma 4.3 implies

#(L1 ∩ L2) = 1 + 3 + 3 + 1 = 8.

On the other hand

#2(T · (E6/F4)) = 8 < 56 = #2((SU(8)/Sp(4))/Z2),

so we have

min{#2L1,#2L2} = 8. ¤

6. Explicit descriptions of the intersections of two real forms.

In this section we explicitly describe the intersections of two real forms congru-
ent to real Grassmann manifolds or quaternionic Grassmann manifolds in complex
Grassmann manifolds.

In order to describe explicitly real forms congruent to GR
r (Rn+r) in

GC
r (Cn+r), we give an explicit description of any Lagrangian subspace in the

complex Euclidean space.

Lemma 6.1. For any Lagrangian subspace V in Cn there exist an orthonor-
mal basis v1, . . . , vn of Rn and θ1, . . . , θn ∈ R satisfying

V =
〈
e
√−1θ1v1, . . . , e

√−1θnvn

〉
R

.

Proof. The Lagrangian subspaces in Cn are naturally corresponding to
the elements in U(n)/O(n). We denote by e1, . . . , en the standard unitary basis
of Cn.

{〈
e
√−1θ1e1, . . . , e

√−1θnen

〉
R

∣∣ θj ∈ R
}

is a maximal torus of U(n)/O(n). For any Lagrangian subspace V in Cn there
exist g ∈ O(n) and θj ∈ R satisfying
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V = g
〈
e
√−1θ1e1, . . . , e

√−1θnen

〉
R

=
〈
e
√−1θ1ge1, . . . , e

√−1θngen

〉
R

.

We put vj = gej . Then v1, . . . , vn is an orthonormal basis of Rn and

V =
〈
e
√−1θ1v1, . . . , e

√−1θnvn

〉
R

. ¤

Theorem 6.2. Let L1, L2 be two real forms congruent to GR
r (Rn+r) in

GC
r (Cn+r). We assume that L1, L2 intersect transversally. There exists a unitary

basis u1, . . . , un+r of Cn+r satisfying

L1 ∩ L2 = {〈ui1 , . . . , uir
〉C | 1 ≤ i1 < · · · < ir ≤ n + r}.

Proof. We first suppose that L1 = GR
r (Rn+r). L2 is congruent to

GR
r (Rn+r), so there exists g ∈ U(n + r) satisfying

L2 = gGR
r (Rn+r) = GR

r (gRn+r).

gRn+r is a Lagrangian subspace in Cn+r, thus by Lemma 6.1 there exist an
orthonormal basis v1, . . . , vn+r of Rn+r and θ1, . . . , θn+r ∈ R satisfying

gRn+r =
〈
e
√−1θ1v1, . . . , e

√−1θn+rvn+r

〉
R

.

Hence we have

L2 = GR
r

(〈
e
√−1θ1v1, . . . , e

√−1θn+rvn+r

〉
R

)
.

For 1 ≤ i1 < · · · < ir ≤ n + r

〈
e
√−1θ1vi1 , . . . , e

√−1θ1vir

〉
C

= 〈vi1 , . . . , vir 〉C

and we obtain

L1 ∩ L2 ⊃ {〈vi1 , . . . , vir 〉C | 1 ≤ i1 < · · · < ir ≤ n + r}.

Since L1, L2 intersect transversally, by Theorem 1.1 L1 ∩ L2 is a great antipodal
set of L1 and L2. Therefore we have

(
n + r

r

)
≤ #(L1 ∩ L2) = #2L1 = #2L2 =

(
n + r

r

)
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and

L1 ∩ L2 = {〈vi1 , . . . , vir
〉C | 1 ≤ i1 < · · · < ir ≤ n + r}.

We suppose that L1 = GR
r (Rn+r), so v1, . . . , vn+r is an orthonormal basis of

Rn+r. In a general case there exists a unitary basis u1, . . . , un+r of Cn+r satisfying

L1 ∩ L2 = {〈ui1 , . . . , uir
〉C | 1 ≤ i1 < · · · < ir ≤ n + r}. ¤

If we regard C2m+2q as a quaternionic vector space of quaternionic dimension
m + q, then we can regard quaternionic subspaces of quaternionic dimension q

as complex subspaces of complex dimension 2q. This induces an embedding of
GH

q (Hm+q) in GC
2q(C

2m+2q).

Theorem 6.3. Let L1, L2 be two real forms congruent to GH
q (Hm+q) in

GC
2q(C

2m+2q). We assume that L1, L2 intersect transversally. There exists a uni-
tary basis v1, . . . , v2m+2q of C2m+2q satisfying

L1 ∩ L2 = {〈v2i1−1, v2i1 , . . . , v2iq−1, v2iq
〉C | 1 ≤ i1 < · · · < iq ≤ m + q}.

Proof. We first consider the case of q = 1 and prove the statement by in-
duction on m. L1, L2 are two real forms congruent to GH

1 (Hm+1) in GC
2 (C2m+2).

In the case of m = 1, GC
2 (C2+2) is holomorphically isometric to the complex hy-

perquadric Q4(C) and L1, L2 in GC
2 (C4) are congruent to S0,4 in Q4(C). The

statement of S0,4 in Q4(C) was already showed in [15]. There exists a unitary basis
v1, . . . , v4 of C4 satisfying that 〈v1, v2〉C and 〈v3, v4〉C are quaternionic subspaces
of quaternionic dimension 1 in C4 = H2 and

L1 ∩ L2 = {〈v1, v2〉C , 〈v3, v4〉C}.

We next consider the case of m ≥ 2. By Lemma 3.1 in [15] we have L1∩L2 6=
∅. We denote by u1, u2, e1, . . . , e2m the standard unitary basis of C2m+2. We can
suppose that o = 〈u1, u2〉C ∈ L1 ∩ L2. The polars of GC

2 (C2m+2) with respect to
o are given by

{o}, GC
1 (〈e1, . . . , e2m〉C)×GC

1 (〈u1, u2〉C), GC
2 (〈e1, . . . , e2m〉C).

We have

GH
1 (Hm+1) ∩ (

GC
1 (C2m)×GC

1 (C2)
)

= ∅,
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thus for j = 1, 2

Lj ∩
(
GC

1 (C2m)×GC
1 (C2)

)
= ∅.

Moreover

GH
1 (Hm+1) ∩GC

2 (C2m) = GH
1 (Hm),

thus Lj ∩GC
2 (C2m) are congruent to GH

1 (Hm) in GC
2 (C2m). By the assumption

of induction L1 ∩ L2 ∩GC
2 (C2m) is congruent to

{〈e1, e2〉C , . . . , 〈e2m−1, e2m〉C}.

Hence we obtain

L1 ∩ L2 ⊃ {o, 〈v1, v2〉C , . . . , 〈v2m−1, v2m〉C}.

Since L1, L2 intersect transversally, by Theorem 1.3 L1 ∩ L2 is a great antipodal
set of L1 and L2. Therefore we have

m + 1 ≤ #(L1 ∩ L2) = #2L1 = #2L2 = m + 1

and

L1 ∩ L2 = {o, 〈v1, v2〉C , . . . , 〈v2m−1, v2m〉C},

which complete the proof in the case of q = 1.
We consider the case of q ≥ 2. By Lemma 3.1 in [15] we have L1 ∩ L2 6= ∅.

We denote by u1, . . . , u2q, e1, . . . , e2m the standard unitary basis of C2m+2q. We
can suppose that o = 〈u1, . . . , u2q〉C ∈ L1 ∩ L2. The polars of GC

2q(C
2m+2q) are

given by

GC
i (〈e1, . . . , e2m〉C)×GC

2q−i(〈u1, . . . , u2q〉C) (0 ≤ i ≤ 2q).

We have

GH
q (Hm+q) ∩ (

GC
1 (C2m)×GC

2q−1(C
2q)

)
= ∅,

thus for j = 1, 2
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Lj ∩
(
GC

1 (C2m)×GC
2q−1(C

2q)
)

= ∅.

Moreover

GH
q (Hm+q) ∩ (

GC
2 (C2m)×GC

2q−2(C
2q)

)
= GH

1 (Hm)×GH
q−1(H

q),

thus Lj ∩ (GC
2 (C2m) × GC

2q−2(C
2q)) are congruent to GH

1 (Hm) × GH
q−1(H

q) in
GC

2 (C2m)×GC
2q−2(C

2q). By the result in the case of q = 1 there exists a unitary
basis v1, . . . , v2m of C2m satisfying that

〈v1, v2〉C , . . . , 〈v2m−1, v2m〉C

are quaternionic subspaces of quaternionic dimension 1 in C2m = Hm, there exists
a unitary basis w1, . . . , w2q of C2q satisfying

〈w1, w2〉C , . . . , 〈w2q−1, w2q〉C

are quaternionic subspaces of quaternionic dimension 1 in C2q = Hq, and they
satisfy

L1 ∩ L2 ∩
(
GC

2 (C2m)×GC
2q−2(C

2q)
)

= {〈v1, v2〉C , . . . , 〈v2m−1, v2m〉C}
× {〈w3, . . . , w2q〉C , 〈w1, w2, ŵ3, ŵ4, . . . , w2q〉C , . . . , 〈w1, . . . , w2q−2〉C}.

L1, L2 are congruent to GH
q (Hm+q), hence we have

L1 ∩ L2 ∩
(
GC

4 (C2m)×GC
2q−4(C

2q)
)

⊃ {〈v2i−1, v2i, v2j−1, v2j〉C | 1 ≤ i < j ≤ m}
× {〈. . . , ŵ2k−1, ŵ2k, . . . , ŵ2l−1, ŵ2l, . . . 〉C | 1 ≤ k < l ≤ q}.

Similar relations of inclusion holds for

L1 ∩ L2 ∩
(
GC

2i(C
2m)×GC

2q−2i(C
2q)

)
(1 ≤ i ≤ q).

Therefore L1 ∩ L2 contains the direct sums of any q subspaces of

〈v1, v2〉C , . . . , 〈v2m−1, v2m〉C , 〈w1, w2〉C , . . . , 〈w2q−1, w2q〉C .
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The unitary basis v1, . . . , v2m, w1, . . . , w2q is renamed v1, . . . , v2m+2q. Then we
obtain

L1 ∩ L2 ⊃ {〈v2i1−1, v2i1 , . . . , v2iq−1, v2iq
〉C | 1 ≤ i1 < · · · < iq ≤ m + q}.

Since L1, L2 intersect transversally, by Theorem 1.3 L1 ∩ L2 is a great antipodal
set of L1 and L2. Therefore we have

(
m + q

q

)
≤ #(L1 ∩ L2) = #2L1 = #2L2 =

(
m + q

q

)

and

L1 ∩ L2 = {〈v2i1−1, v2i1 , . . . , v2iq−1, v2iq
〉C | 1 ≤ i1 < · · · < iq ≤ m + q}. ¤

Theorem 6.4. Let L1 be a real forms congruent to GH
q (Hm+q) and L2 a

real form congruent to GR
2q(R

2m+2q) in GC
2q(C

2m+2q). We assume that L1, L2

intersect transversally. There exists a unitary basis v1, . . . , v2m+2q of C2m+2q

satisfying

L1 ∩ L2 = {〈v2i1−1, v2i1 , . . . , v2iq−1, v2iq
〉C | 1 ≤ i1 < · · · < iq ≤ m + q}.

The proof of the theorem is similar to those of Theorems 6.2 and 6.3, so we
omit it.
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