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Abstract. We establish the equivalence of the analytic and probabilistic
notions of subharmonicity in the framework of general symmetric Hunt pro-
cesses on locally compact separable metric spaces, extending an earlier work
of the first named author on the equivalence of the analytic and probabilistic
notions of harmonicity. As a corollary, we prove a strong maximum princi-
ple for locally bounded finely continuous subharmonic functions in the space
of functions locally in the domain of the Dirichlet form under some natural
conditions.

1. Introduction.

It is known that a function being subharmonic in a domain D ⊂ Rd can be
defined by ∆u ≤ 0 on D in the distributional sense; that is, u ∈ W 1,2

loc (D) := {u ∈
L2

loc(D) | ∇u ∈ L2
loc(D)} so that

∫

Rd

∇u(x) · ∇v(x) dx ≤ 0 for any non-negative v ∈ C∞c (D),

where C∞c (D) denotes the set of smooth functions on D whose supports are
compact and contained in D. Elements in C∞c (D) can be regarded as func-
tions defined on whole Rd in natural sense. When u is continuous, the above
is equivalent to the following sub-averaging property by running a Brownian mo-
tion X = (Ω, Xt,Px)x∈Rd : for every relatively compact open subset U of D:

u(XτU
) ∈ L1(Px) and u(x) ≤ Ex[u(XτU

)] for every x ∈ U.

Here τU := inf{t > 0 | Xt /∈ U} is the first exit time from U . A function u is
said to be harmonic in D if both u and −u are subharmonic in D. Recently, there
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have been interest from several areas of mathematics in determining whether the
above two notions harmonicity and subharmonicity remain equivalent in a more
general context, such as symmetric Hunt processes on locally compact separable
metric spaces. For instance, due to their importance in theory and applications,
there has been intense interest recently in studying discontinuous processes and
non-local (or integro-differential) operators by both analytical and probabilistic
approaches. See, e.g. [6], [7] and the references therein. So it is important to iden-
tify the connection between the analytic and probabilistic notions of subharmonic
functions. Very recently, in [3] the first named author established the equivalence
between the analytic and probabilistic notions of harmonic functions for symmet-
ric Markov processes. Subsequently, the above equivalence is extended in [20] to
non-symmetric Markov processes associated with sectorial Dirichlet forms.

In this paper, we extend the previous work [3], that is, we address the ques-
tion of the equivalence of the analytic and probabilistic notions of subharmonicity
in the context of symmetric Hunt processes on locally compact separable metric
space (Theorem 2.9). As a byproduct of our result, we prove that strong maximum
principle holds for locally bounded finely continuous E -subharmonic functions un-
der some conditions (Theorem 2.11). Strong maximum principles for subharmonic
functions of second order elliptic operators have been powerful tools for various
fields in analysis and geometry. In [16], the second named author established,
by using analytic method, a strong maximum principle for finely continuous E -
subharmonic functions in the framework of irreducible local semi-Dirichlet forms
whose Hunt processes satisfy the absolute continuity condition with respect to the
underlying measure, which generalize the classical strong maximum principle for
second order elliptic operators (for an extension of strong maximum principle for
subharmonicity in the barrier sense, see also [17]). The strong maximum principle
developed in [15], [16] can be applied to analysis or geometry for geometric singu-
lar spaces; Alexandrov spaces or spaces appeared in the Gromov-Hausdorff limit
of Riemannian manifolds with uniform lower Ricci curvature bounds and so on.
More concretely in [19], we establish splitting theorems for weighted Alexandrov
spaces having measure contraction property, which are striking applications of the
strong maximum principle treated in [15], [16] in terms of symmetric diffusion
processes. The strong maximum principle established in this paper holds for sym-
metric Markov processes, which may possibly have discontinuous sample paths,
on locally compact separable metric spaces, should have useful implications in the
study of non-local operator or jump type symmetric Markov processes.

Let X be an m-symmetric Hunt process on a locally compact separable metric
space E whose associated Dirichlet form (E ,F ) is regular on L2(E;m). Let D

be an open subset of E and τD is the first exit time from D by X. Motivated by
the example at the beginning of this section, loosely speaking (see next section for
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precise statements), there are two ways to define a function u being subharmonic
in D with respect to X: (a) (probabilistically) t 7→ u(Xt∧τD

) is a Px-uniformly
integrable submartingale for quasi-every x ∈ D; (b) (analytically) E (u, g) ≤ 0
for g ∈ F ∩ C+

c (D). Here Cc(D) denotes the set of continuous functions with
compact support in D, and C+

c (D) := {u ∈ Cc(D) | u ≥ 0 on D}. We will
show in Theorem 2.9 below that these two definitions are equivalent under some
integrability conditions as imposed in the previous work [3] by the first author.
Note that even in the Brownian motion case, a function u that is subharmonic in
D is typically not in the domain F of the Dirichlet form. Denote by FD,loc the
family of functions u on E such that for every relatively compact open subset D1

of D, there is a function f ∈ F so that u = f m-a.e. on D1. To show these two
definitions are equivalent, the crux of the difficulty is to

( i ) appropriately extend the definition of E (u, v) to functions u in FD,loc that
satisfy some minimal integrability condition when X is discontinuous so that
E (u, v) is well defined for every v ∈ F ∩ Cc(D);

( ii ) show that if u is subharmonic in D in the probabilistic sense, then u ∈ FD,loc

and E (u, v) ≤ 0 for every non-negative v ∈ F ∩ Cc(D).

The question (i) is solved in the previous work [3]. The main focus of this paper
is to address the second question (ii). For (ii), we establish a Riesz type decom-
position theorem (Lemma 3.6) for E -superharmonic functions, which is a crucial
step in proving our main result.

If one assumes a priori that u ∈ F , then the equivalence of (a) and (b) is easy
to establish. In next section, we give precise definitions, statements of the main
results and their proofs. Four examples are given to illustrate the main results of
this paper. We use “:=” as a way of definition. For two real numbers a and b,
a ∧ b := min{a, b}.

The results of this paper can be extended to non-symmetric Hunt processes
associated with sectorial Dirichlet forms. We will not pursue this generalization
here in this paper.

2. Main result.

Let X = (Ω,F∞,Ft, Xt, ζ,Px, x ∈ E) be an m-symmetric right Markov pro-
cess on a space E, where m is a positive σ-finite measure with full topological
support on E. A cemetery state ∂ is added to E to form E∂ := E ∪ {∂}, and Ω is
the totality of right-continuous, left-limited sample paths from [0,∞) to E∂ that
hold the value ∂ once attaining it. Throughout this paper, every function f on E

is automatically extended to be a function on E∂ by setting f(∂) = 0. For any
ω ∈ Ω, we set Xt(ω) := ω(t). Let ζ(ω) := inf{t ≥ 0 | Xt(ω) = ∂} be the life time
of X. Throughout this paper, we use the convention that X∞(ω) := ∂. As usual,
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F∞ and Ft are the minimal augmented σ-algebras obtained from F0
∞ := σ{Xs |

0 ≤ s < ∞} and F0
t := σ{Xs | 0 ≤ s ≤ t} under {Px : x ∈ E}. For a Borel subset

B of E, τB := inf{t ≥ 0 | Xt /∈ B} (the exit time of B) is an (Ft)-stopping time.
The transition semigroup {Pt : t ≥ 0} of X is defined by

Ptf(x) := Ex[f(Xt)] = Ex[f(Xt) : t < ζ], t ≥ 0.

Each Pt may be viewed as an operator on L2(E;m), and taken as a whole these
operators form a strongly continuous semigroup of self-adjoint contractions. The
Dirichlet form associated with X is the bilinear form

E (u, v) := lim
t↓0

t−1(u− Ptu, v)m

defined on the space

F :=
{

u ∈ L2(E;m)
∣∣∣ sup

t>0
t−1(u− Ptu, u)m < ∞

}
.

Here we use the notation (f, g)m :=
∫

E
f(x)g(x) m(dx) and we shall use ‖f‖2 :=√

(f, f)m for f, g ∈ L2(E;m). Pt is extended to be a strongly continuous semi-
group {Tt; t ≥ 0} on L2(E;m). Without loss of generality, we may assume that
(E ,F ) is a regular Dirichlet form on L2(E;m) and the X is an m-symmetric
Hunt process, where E is a locally compact separable metric space having a one
point compactification E∂ := E∪{∂} and m is a positive Radon measure with full
topological support (see [8]).

A set B ⊂ E∂ is called nearly Borel if for each probability measure µ on
E∂ , there exist Borel sets B1, B2 ⊂ E∂ such that B1 ⊂ B ⊂ B2 and Pµ(Xt ∈
B2 \ B1 for some t ≥ 0) = 0. Any hitting time σB := inf{t > 0 | Xt ∈ B} is
an (Ft)-stopping time for nearly Borel subset of E∂ (see Theorem 10.7 and the
remark after Definition 10.21 in [1]). A subset B of E∂ is said to be X-invariant
if B is nearly Borel and

Px(Xt ∈ B∂ , Xt− ∈ B∂ for all t ≥ 0) = 1 for any x ∈ B.

A set A is finely open if for each x ∈ A there exists a nearly Borel subset B = B(x)
of E such that B ⊃ E \ A and Px(σB > 0) = 1. A set N is called properly
exceptional if E \N is X-invariant and m(N) = 0. A nearly Borel set N is called
m-polar if Pm(σN < ∞) = 0 and any subset N of E is called exceptional if there
exists an m-polar set Ñ containing N . Clearly any properly exceptional set N

is exceptional. A function defined q.e. on an open subset D of E is said to be
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q.e. finely continuous on D if there exists a properly exceptional Borel set N such
that u is Borel measurable and finely continuous on D \N . It is known (cf. [12])
a quasi-continuous function on D is q.e. finely continuous on D.

Let Fe be the family of m-measurable functions u on E such that |u| < ∞m-
a.e. and there exists an E -Cauchy sequence {un} of F such that limn→∞ un =
u m-a.e. We call {un} as above an approximating sequence for u ∈ Fe. For
any u, v ∈ Fe and its approximating sequences {un}, {vn} the limit E (u, v) =
limn→∞ E (un, vn) exists and does not depend on the choices of the approximating
sequences for u, v. It is known that E 1/2 on Fe is a semi-norm and F = Fe ∩
L2(E;m). We call (E ,Fe) the extended Dirichlet space of (E ,F ). Any u ∈ Fe

admits a quasi-continuous m-version ũ. Throughout this paper, we always take
quasi-continuous m-version of the element of Fe, that is, we omit tilde from ũ for
u ∈ Fe.

Let D be an open subset of E. We define

{
FD := {u ∈ F | u = 0 E -q.e. on E \D},
E D(u, v) := E (u, v) for u, v ∈ FD.

Then (E D,FD) is again a regular Dirichlet form on L2(D;m), which is called
the part space in D. Denote by FD,loc (resp. (FD)loc) the space of functions
locally in F on D (resp. the space of functions locally in FD); that is, u ∈ FD,loc

(resp. u ∈ (FD)loc) if and only if for any relatively compact open set U with
U ⊂ D there exists uU ∈ F (resp. uU ∈ FD) such that u = uU m-a.e. on U .
Clearly (FD)loc ⊂ FD,loc and 1D ∈ (FD)loc. Any u ∈ FD,loc admits an m-
version ũ of u which is quasi-continuous on D. As remarked above, we always take
such m-version and omit tilde from ũ for u ∈ FD,loc. We can see that FD,loc ∩
L∞loc(D;m) ⊂ (FD)loc. Indeed, for u ∈ FD,loc ∩ L∞loc(D;m), we can take uU ∈ Fb

such that u = uU m-a.e. on U , because uU = (−‖u‖U,∞)∨(uU ∧‖u‖U,∞) m-a.e. on
U , where ‖u‖U,∞ := m-ess- supU |u|. Taking φ ∈ F ∩Cc(E) with φ = 1 on U and
φ = 0 on Dc. Then uUφ ∈ FD and u = uUφ m-a.e. on U .

Definition 2.1 (Sub/Super-harmonicity). Let D be an open set in E.
We say that a nearly Borel measurable function u defined on E is subharmonic
(resp. superharmonic) in D if for any relatively compact open subset U of D with
U ( D, t 7→ u(Xt∧τU

) is a uniformly integrable right continuous Px-submartingale
(resp. Px-supermartingale) for q.e. x ∈ E. A nearly Borel function u on E is
said to be harmonic in D if u is both superharmonic and subharmonic in D. If
t 7→ u(Xt∧τU

) is a uniformly integrable right continuous Px-submartingale for all
x ∈ E, u is called subharmonic in D without exceptional set. The superharmonic-
ity/harmonicity in D without exceptional set is analogously defined.
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Definition 2.2 (Sub/Super-harmonicity in the weak sense). Let D be an
open set in E. We say that a nearly Borel function u defined on E is subharmonic
(resp. superharmonic) in D in the weak sense if u is q.e. finely continuous in D

and for any relatively compact open subset U with U ( D, Ex[|u|(XτU
)] < ∞ for

q.e. x ∈ E and u(x) ≤ Ex[u(XτU
)] (resp. u(x) ≥ Ex[u(XτU

)]) holds for q.e. x ∈ E.
A nearly Borel measurable function u on E is said to be harmonic in D in the
weak sense if u is both superharmonic and subharmonic in D in the weak sense.
If u is finely continuous (nearly) Borel in D and for any relatively compact open
subset U with U ( D, Ex[|u|(XτU

)] < ∞ for all x ∈ E, and u(x) ≤ Ex[u(XτU
)]

holds for all x ∈ U , then u is called subharmonic in D in the weak sense without
exceptional set. The superharmonicity/harmonicity in D in the weak sense without
exceptional set is analogously defined.

Clearly 1D is superharmonic in D in the weak sense.

Remark 2.3. Our definition on the subharmonicity or superharmonicity in
the weak sense is different from what is defined in the Dynkin’s textbook [11] and is
weaker than it when X is an m-irreducible diffusion process satisfying (2.1) below.
Actually, superharmonicity of u in [11] requires u be locally bounded from below
instead of the Px-integrability of u(XτU

) for any relatively compact open U with
U ⊂ D. Indeed, suppose that X is a diffusion process and u is a superharmonic
function in D in the sense of [11]. Then for U as above, we have

Ex[|u(XτU
)|] ≤ Ex[u(XτU

)] + 2Ex[(−u)+(XτU
)] ≤ u(x) + 2

(
− inf

∂U
u
)+

< ∞

for q.e. x ∈ E. ¤

We introduce the following condition:

For any relatively compact open set U with

U ( D, Px(τU < ∞) > 0 for q.e. x ∈ U. (2.1)

Condition (2.1) is satisfied if (E ,F ) is m-irreducible, that is, any (Tt)-invariant
set B is trivial in the sense that m(B) = 0 or m(Bc) = 0.

It will be shown in Lemma 3.9 that under condition (2.1), every subharmonic
function in D is a subharmonic function in D in the weak sense.

In what follows, all functions denoted by u or ui, (i = 1, 2) are defined on E

and are (nearly) Borel measurable and finite quasi everywhere.
For an open set D ⊂ E, we consider the following conditions for a (nearly)

Borel function u on E that are introduced in [3]. For any relatively compact open
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sets U, V with U ⊂ V ⊂ V ⊂ D,

∫

U×(E\V )

|u(y)|J(dxdy) < ∞ (2.2)

and

1UE·[(1− φV )|u|(XτU
)] ∈ (FU )e, (2.3)

where φV ∈ F ∩ Cc(E) with 0 ≤ φV ≤ 1 and φV = 1 on V .
As is noted in [3], in many concrete cases such as in Examples 2.12–2.14 in

[3] (see also Examples 4.1–4.4 below), one can show that condition (2.2) implies
condition (2.3).

Remark 2.4. ( i ) By [4, Lemma 6.7.6], condition (2.3) is equivalent to

∫

U×(E\V )

Ex[(1− φV )|u|(XτU
)](1− φV (y))|u(y)|J(dxdy) < ∞. (2.4)

( ii ) In view of [3, Lemma 2.3], every nearly Borel bounded function u on E

satisfies both (2.2) and (2.3).
(iii) If u ∈ FD,loc∩L∞loc(D;m), then u is bounded q.e. on any relatively compact

open U with U ⊂ D, so for any U, V as above, (2.2) is equivalent to

∫

U×(E\V )

|u(y)− u(x)|J(dxdy) < ∞ (2.5)

for such u. Clearly, any u ∈ Fe satisfies

∫

U×(E\V )

|u(y)− u(x)|J(dxdy)

≤ J(U × V c)1/2

( ∫

E×E

|u(y)− u(x)|2J(dxdy)
)1/2

< ∞;

that is, (2.5) is satisfied by u ∈ Fe. Furthermore, by Lemma 2.5 of [3], both
(2.2) and (2.3) hold for every u ∈ Fe ∩ L∞loc(D;m). ¤

The following is proved in [3].

Lemma 2.5 (Lemma 2.6 in [3]). Let D be an open set of E. Suppose that
u is a locally bounded function on D such that u belongs to FD,loc and it satis-
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fies condition (2.2). Then for every v ∈ F ∩ Cc(D), each term in the following
expression

1
2
µc
〈u,v〉(D) +

1
2

∫

E×E

(u(x)− u(y))(v(x)− v(y))J(dxdy) +
∫

D

u(x)v(x)κ(dx)

is well-defined and finite; the sum will still be denoted as E (u, v).

If u is a function on E that can be decomposed as u1 + u2, where u1 ∈ Fe

and u2 is a locally bounded function on D such that u belongs to FD,loc and
it satisfies condition (2.2), then we define for every v ∈ F ∩ Cc(D), E (u, v) =
E (u1, v) + E (u2, v). It is easy to see that such E (u, v) is well-defined, whose value
is independent of a particular decomposition of u into u1 + u2.

Definition 2.6 (E -sub/super-harmonicity). Let u ∈ FD,loc ∩ L∞loc(D;m)
be a function satisfying the condition (2.2). We say that u is E -subharmonic
(resp. E -superharmonic) in D if and only if E (u, v) ≤ 0 (resp. E (u, v) ≥ 0) for
every non-negative v ∈ F ∩Cc(D). A function u ∈ FD,loc ∩L∞loc(D;m) satisfying
condition (2.2) is said to be E -harmonic in D if u is both E -superharmonic and
E -subharmonic in D. When D = E, we omit the phrase ‘in D’.

Note that 1D ∈ FD,loc satisfies (2.2) and is E -superharmonic in D. It is
E -harmonic in D provided κ(D) = 0 and J(D, Dc) = 0.

Definition 2.7. For a regular Dirichlet form (E ,F ) on L2(E;m), a linear
subspace C of F ∩ Cc(E) is said to be a special standard core of (E ,F ) if the
following holds:

( i ) C is dense both in (F , ‖ · ‖E1) and in (Cc(E), ‖ · ‖∞);
( ii ) for every ε > 0, there is a function ϕε : R → [−ε, 1 + ε] satisfying ϕε(t) = t

for t ∈ [0, 1] and 0 ≤ ϕε(t)−ϕε(s) ≤ t−s for every s < t so that ϕε(C ) ⊂ C ;
(iii) for any compact set K and relatively compact open set U with K ⊂ U ,

there exists a non-negative function f ∈ C such that f = 1 on K and f = 0
on E \ U .

Clearly F∩Cc(E) is a special standard core of a regular Dirichlet form (E ,F )
on L2(E;m). In the remaining of this paper, we fix a special standard core C of
(E ,F ). Let D be an open subset of E. It is known that (cf. [4, Theorem 3.3.9])
the space CD := {f ∈ C : supp[f ] ⊂ D} is a core of (E D,FD).

Theorem 2.8. Let u ∈ FD,loc∩L∞loc(D;m) be a function satisfying the con-
dition (2.2). Then u is E -subharmonic (resp. E -superharmonic) in D if and only if
there is a special standard core C of (E ,F ) so that E (u, v) ≤ 0 (resp. E (u, v) ≥ 0)
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for every non-negative v ∈ CD.

Proof. We only prove it for the E -subharmonic case, as the E -
superharmonic case is similar. It suffices to prove the ‘if’ part.

Suppose that u ∈ FD,loc ∩ L∞loc(D;m) is a function satisfying the condition
(2.2) and that there is a special standard core C of (E ,F ) so that E (u, v) ≤ 0
for every v ∈ CD. Let U be a relatively compact open subset of D with U ⊂ D.
Take φ ∈ F ∩ CD such that 0 ≤ φ ≤ 1 and φ = 1 on a relatively compact open
neighborhood V of U with V ⊂ D. Define h0(x) := Ex[u(XτU

)]. It is known from
the proof of [3, Theorem 2.7] (more specifically, from (2.11) to (2.13) there) that
h0 is well-defined with u− h0 ∈ (FU )e, h0 − (1− φ)u ∈ Fe and that

E (h0, v) = 0 for every v ∈ F ∩ Cc(U). (2.6)

Consequently, E (u− h0, v) ≤ 0 for every non-negative v ∈ CU . We claim that

E (u− h0, v
+) ≤ 0 for every v ∈ CU . (2.7)

For ε > 0, let ϕε be the contraction function appeared in the definition of special
standard core C . For v ∈ CU with ‖v‖∞ ≤ 1, note that ϕε(v) ∈ CU and that
supp[ϕε(v)] ⊂ supp[v] for every ε > 0. Let ψ ∈ CU so that 0 ≤ ψ ≤ 1 and ψ = 1
on supp[v]. For k ≥ 1, fk := ϕ1/k(v) + (1/k)ψ. Then fk ∈ CD is non-negative,
and the sequence {fk, k ≥ 1} is E -bounded and converges to v+ pointwise on U .
It follows from Banach-Saks theorem that there is a subsequence of {fk, k ≥ 1}
whose Cesàro mean sequence is E1-convergent to v+. It follows that (2.7) holds
for every v ∈ CU with ‖v‖∞ ≤ 1 and hence for every v ∈ CU .

Since CU is a core of (E U ,FU ), for every non-negative v ∈ (FU )e, there is
an E -Cauchy sequence {vn, n ≥ 1} in CU that converges to v m-a.e. on U . Then
{v+

n , n ≥ 1} is E -bounded and converges to v m-a.e. on U . Applying Banach-Saks
theorem again, there is a subsequence of {v+

n , n ≥ 1} whose Cesàro mean sequence
is E1-convergent to v. It follows from (2.7) that E (u− h0, v) ≤ 0. This combined
with (2.6) implies that E (u, v) = 0 for every v ∈ F ∩ Cc(U) and hence for every
v ∈ F ∩ Cc(D). In other words, u is E -subharmonic on D. The proof of the
theorem is now complete. ¤

The harmonic version of the above theorem has been established earlier in [4,
Section 6.7].

We say that X satisfies the absolute continuity condition with respect to m if
the transition kernel Pt(x, dy) of X is absolutely continuous with respect to m(dy)
for any t > 0 and x ∈ E.
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Our main theorem below is an analogy of Theorem 2.11 in [3] for subharmonic
functions.

Theorem 2.9. Let D be an open subset of E. Suppose that a nearly Borel
u ∈ L∞loc(D;m) satisfies conditions (2.2) and (2.3). Then

( i ) u is subharmonic in D if and only if u ∈ (FD)loc and it is E -subharmonic
in D.

( ii ) Assume that (2.1) holds. Then u is subharmonic in D if and only if u is
subharmonic in D in the weak sense, that is, for any relatively compact
open set U with U ( D, u(XτU

) is Px-integrable and u(x) ≤ Ex[u(XτU
)]

for q.e. x ∈ E.

Moreover, if we assume that X satisfies the absolute continuity condition with
respect to m and u is (nearly) Borel finely continuous, then the assertion in (i)
(resp. (ii)) can be strengthened to the subharmonicity in D without exceptional set
(resp. subharmonicity in D in the weak sense without exceptional set).

Theorem 2.9 will be established through Lemma 3.9 and Theorems 3.10–3.12.
As an application of Theorem 2.9, we have the following.

Corollary 2.10. ( i ) Let η ∈ C1(R) be a convex function and u ∈
FD,loc ∩ L∞loc(D;m) be an E -harmonic function in D satisfying conditions
(2.2)–(2.3). Suppose that η has bounded first derivative or u is bounded on
E. Then η(u) ∈ FD,loc and is E -subharmonic in D satisfying conditions
(2.2)–(2.3).

( ii ) The conclusion of (i) remains true if η ∈ C1(R) is an increasing convex
function and u ∈ FD,loc ∩ L∞loc(D;m) is an E -subharmonic function in D

satisfying conditions (2.2)–(2.3).
(iii) Let p ≥ 1 and u ∈ FD,loc be an E -harmonic function in D that is locally

bounded in D and satisfies conditions (2.2)–(2.3). Suppose that |u|p satisfies
conditions (2.2) and (2.3), and that (2.1) holds. Then |u|p ∈ FD,loc and is
E -subharmonic in D.

(iv) Let u1, u2 ∈ FD,loc∩L∞loc(D;m) be E -subharmonic functions in D satisfying
conditions (2.2)–(2.3). Then u1 ∨ u2 ∈ FD,loc satisfies (2.2)–(2.3) and is
E -subharmonic in D.

As a consequence of Corollary 2.10(iv), we have the following strong maximum
principle.

Theorem 2.11 (Strong maximum principle). Assume that D is an open
subset of E, X satisfies the absolute continuity condition with respect to m and
(E D,FD) is m-irreducible. Suppose that u ∈ FD,loc satisfying conditions (2.2)–
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(2.3) is a locally bounded finely continuous E -subharmonic function in D. If u

attains a maximum at a point x0 ∈ D. Then u+ ≡ u+(x0) on D. If in addition
κ(D) = 0, then u ≡ u(x0) on D.

3. Proofs.

In this section, we present proofs for Theorem 2.9, Corollary 2.10 and Theo-
rem 2.11. First we prepare a lemma.

Lemma 3.1. For u ∈ F , the following are equivalent.

( i ) E (u, v) ≤ 0 for every v ∈ F+.
( ii ) Ttu ≥ u m-a.e. on E for every t ≥ 0.

Proof. Clearly (ii) implies (i). The proof of (i)⇒(ii) is quite similar to the
proof of Lemma 2.2 in [16]. So it is omitted. Note that we do not assert that
u ≤ 0 m-a.e. on E. ¤

Lemma 3.2. For u1, u2 ∈ Fe, if u1 and u2 are E -subharmonic, then so is
u1 ∨ u2.

Proof. Let g ∈ L1(E;m) be such that 0 < g ≤ 1 m-a.e. on E and that
u1, u2 ∈ L2(E; gm). The measure gm has full quasi-support with respect to (E ,F )
by Corollary 4.6.1 in [12]. Denote by (Ẽ , F̃ ) the Dirichlet form of the process X

time-changed by the inverse of At :=
∫ t

0
g(Xs)ds. Then by (6.2.22)–(6.2.23) of [12],

(Ẽ , F̃e) = (E ,Fe) and F̃ = F̃e ∩ L2(E; gm). By Theorem 6.2.1 of [12], (Ẽ , F̃ )
is a regular Dirichlet form on L2(E; gm) with core F̃ ∩ Cc(E) = F ∩ Cc(E). So
u1 and u2 are Ẽ -subharmonic functions in F̃ . Let {T̃t, t ≥ 0} be the semigroup
associated with (Ẽ , F̃ ). From Lemma 3.1, we see u1 ≤ T̃tu1 and u2 ≤ T̃tu2 m-
a.e. on E, which implies u1 ∨ u2 ≤ T̃t(u1 ∨ u2). By Lemma 3.1 again, u1 ∨ u2 is
an Ẽ -subharmonic function in F̃ ⊂ F̃e = Fe. The conclusion of the lemma now
follows. ¤

Lemma 3.3. Let v1 be an excessive function of X and v2 ∈ Fe such that
v1 ≤ v2 m-a.e. on E. Then v1 ∈ Fe with E (v1, v1) ≤ E (v2, v2).

Proof. As in the proof of Lemma 3.2, let g ∈ L1(E;m) be such that 0 <

g ≤ 1 m-a.e. on E and that v1, v2 ∈ L2(E; gm). Let (Ẽ , F̃ ) be the time-changed
Dirichlet form with semigroup {T̃t, t ≥ 0} as in the proof of Lemma 3.2. Note that
v2 ∈ F̃e∩L2(E; gm) = F̃ . By Proposition 2.8 in [1], we have Ex[v1(Xτt

)] ≤ v1(x),
where τt := inf{s > 0 | ∫ s

0
g(Xu)du > t}. That is, T̃tv1 ≤ v1. Observe that since

T̃t is a contraction operator on L2(E; gm) for each t > 0, (f, g) 7→ (f, g − T̃tg)gm
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is a non-negative symmetric quadratic form on L2(E; gm). Hence

∣∣(f, g − T̃tg)gm

∣∣ ≤ (
f, f − T̃tf

)1/2

gm
· (g, g − T̃tg

)1/2

gm
.

Since v1 ∈ L2(E; gm) and

(
v1, v1 − T̃tv1

)
gm

≤ (
v2, v1 − T̃tv1

)
gm

=
(
v1, v2 − T̃tv2

)
gm

≤ (
v1, v1 − T̃tv1

)1/2

gm
· (v2, v2 − T̃tv2

)1/2

gm
,

we have

lim
t→0

1
t

(
v1, v1 − T̃tv1

)
gm

≤ lim
t→0

1
t

(
v2, v2 − T̃tv2

)
gm

= Ẽ (v2, v2) < ∞.

It follows that v1 ∈ F̃ ⊂ F̃e = Fe with E (v1, v1) ≤ E (v2, v2). ¤

Lemma 3.4. Let D be an open set of E. Suppose that |u1| ≤ |u2| q.e. on D

and u2 satisfies (2.3). Then u1 satisfies (2.3).

Proof. Let U, V be relatively compact open sets such that U ⊂ V ⊂ V (
D. Note that Ex[u(XτU

)] is excessive with respect to XU for any non-negative
nearly Borel function u. For i = 1, 2 and vi(x) := Ex[(1 − φV )|ui|(XτU

)], by
assumption, v2 ∈ (FU )e and |v1| ≤ |v2| q.e. on U . It follows from Lemma 3.3 that
v1 ∈ (FU )e, namely u1 satisfies (2.3). ¤

The following lemma is needed for the proof of Corollary 3.7 below.

Lemma 3.5. Let φ ∈ L2(E;m) ∩ L1(E;m) and v ∈ Fe ∩ L∞(E;m). Then
Eα(Gαφ, v) =

∫
E

φ v dm for any α > 0.

Proof. Let {vn, n ≥ 1} be an E -Cauchy sequence of F such that
limn→∞ vn = v m-a.e. For each n ≥ 1, define wn = (−‖v‖∞) ∨ vn ∧ ‖v‖∞.
Then {wn, n ≥ 1} is an E -bounded sequence in F and it converges boundedly to
v m-a.e. By Banach-Saks theorem, there is a subsequence of {wn, n ≥ 1} whose
Cesàro mean sequence {uk, k ≥ 1} is E -Cauchy and uk converges boundedly to v

m-a.s. Clearly, for each k ≥ 1,

Eα(Gαφ, uk) =
∫

E

φuk dm. (3.1)
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Since Gαφ ∈ L1(E;m) for every α > 0, letting k → ∞ in (3.1), we have by
Lebesgue dominated convergence theorem that Eα(Gαφ, v) =

∫
E

φ v dm. ¤

Lemma 3.6 (Riesz decomposition). Suppose that u is a non-negative E -
superharmonic function in Fe. Then there exist an E -harmonic function h ∈ Fe

and a PCAF A so that u(x) = Ex[Aζ ] + h(x) q.e. x ∈ E. Moreover, t 7→ u(Xt) is
a uniformly integrable Px-supermartingale for q.e. x ∈ E.

Proof. There is a bounded strictly positive g ∈ L1(E;m) such that u ∈
L1(E; gm)∩L2(E; gm). As in the proof of Lemma 3.2, let (Ẽ , F̃ ) be time-changed
Dirichlet form of (E ,F ) by the inverse of PCAF At :=

∫ t

0
g(Xs)ds. It is known

(cf. [12]) that (Ẽ , F̃e) = (E ,Fe) and so u ∈ F̃e ∩ L2(E; gm) = F̃ . Since

E (u, φ) +
∫

E

u(x)φ(x)g(x)m(dx) ≥ 0 for every φ ∈ F̃+ ∩ Cc(E),

by Theorem 2.2.1 of [12], there is a Radon measure ν so that

E (u, φ) +
∫

E

u(x)φ(x)g(x)m(dx) =
∫

E

φ(x)ν(dx) for every φ ∈ F̃ ∩ Cc(E).

Define µ(dx) := ν(dx) − u(x)g(x)m(dx). As F = Fe ∩ L2(E;m) ⊂ F̃e ∩
L2(E; gm) = F̃ , we have E (u, φ) = 〈µ, φ〉 for every φ ∈ F ∩ Cc(E) and hence
for every φ ∈ Fe. Since u ∈ Fe is E -superharmonic, the right hand side of the
above display is non-negative. It follows that µ is a non-negative Radon measure
and consequently it is of finite energy integral with respect to (E ,F ). Hence there
exists a PCAF A corresponding to µ such that for each α > 0, uα defined by
uα(x) := Ex[

∫∞
0

e−αtdAt] is an element of F and

Eα(uα, φ) = 〈µ, φ〉 for every φ ∈ F ∩ Cc(E),

(see Theorem 2.2.1 and Lemma 5.1.3 of [12]). Note that for α > 0,

Eα(uα, uα) = 〈µ, uα〉 = E (u, uα) ≤
√

E (u, u)
√

Eα(uα, uα).

Hence we have

E (uα, uα) ≤ Eα(uα, uα) ≤ E (u, u) for every α > 0. (3.2)

Let {αk, k ≥ 1} be a decreasing sequence of positive numbers that converges to 0.
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Since uαk
(x) increases to u0(x) := Ex[Aζ ] for q.e. x ∈ E, we have u0 ∈ Fe. Hence

by [4, Theorem 6.7.4],

E (u0, φ) = 〈µ, φ〉 for every φ ∈ Fe.

Consequently, h := u − u0 ∈ Fe and E (h, φ) = 0 for every φ ∈ Fe. This in
particular implies that h is E -harmonic with E (h, h) = 0. By Lemma 2.2 of [3],
t 7→ h(Xt) is a bounded Px-martingale for q.e. x ∈ E. Observe that

u0(Xt) = Ex[Aζ |Ft]−At

is a uniformly integrable Px-supermartingale for those x ∈ E such that u0(x) =
Ex[Aζ ] < ∞. It follows that u(Xt) = u0(Xt) + h(Xt) is a uniformly integrable
Px-supermartingale for q.e. x ∈ E. ¤

Corollary 3.7 (Refined Riesz decomposition). Assume that X satisfies
the absolute continuity condition with respect to m. Suppose that u is a non-
negative finely continuous (nearly) Borel E -superharmonic function in Fe. Then
there exist a finely continuous (nearly) Borel E -harmonic function h ∈ Fe and a
PCAF A admitting no exceptional set so that u(x) = Ex[Aζ ] +h(x) for all x ∈ E.
Moreover, t 7→ u(Xt) is a uniformly integrable Px-supermartingale for all x ∈ E.

Proof. Let µ be the non-negative Radon measure of finite energy integral
appeared in the proof of Lemma 3.6. Let O be a finely open (nearly) Borel set such
that m(O)+µ(O) < ∞ and u is bounded on O. Set uO

α (x) := Ex[
∫∞
0

1O(Xt)dAt],
where A is the PCAF specified in the proof of Lemma 3.6. We prove that
uO

α ∈ L∞(E;m) under the boundedness of u on O. Since u ∈ Fe is non-
negative E -superharmonic, u − HOcu ∈ (Fe)O = (FO)e is E -superharmonic
in O by Theorem 4.6.5 in [12], where HOcu(x) := Ex[u(XτO

)]. We may write
HOcu(x) = Ex[u(XσOc )]. Here σOc := inf{t > 0 | Xt ∈ E \ O} is the first hitting
time to E \O. We now confirm that u−HOcu is non-negative and bounded q.e. on
O. Set Y := {x ∈ E | Px(σOc < ∞) > 0}. Then Y \N and Y c \N are X-invariant
for an adequate properly exceptional set N by Lemma 4.6.4 in [12]. We see that
u − HOcu is non-negative and bounded on O ∩ (Y \ N) by use of Lemma 2.2 in
[3]. Lemma 2.1 in [18] shows that u is strictly E -quasi-continuous with u(∂) = 0.
Hence HOcu = 0 on O ∩ (Y c \ N), consequently u − HOcu is non-negative and
bounded on O \N .

Applying Lemma 3.5 to XO, we have

(
u−HOcu− uO

α , φ
)
m

= Eα

(
u−HOcu− uO

α , GO
α φ

)
for φ ∈ FO ∩ L∞(O;m).
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Thus, for any φ ∈ F+
O ∩ L∞(O;m)

(
u−HOcu− uO

α , φ
)
m

= Eα

(
u−HOcu− uO

α , GO
α φ

)

= E
(
u− uO

α , GO
α φ

)
+ α

(
u−HOcu− uO

α , GO
α φ

)
m

=
〈
1Oµ, G̃O

α φ
〉− E

(
uO

α , GO
α φ

)
+ α

(
u−HOcu− uO

α , GO
α φ

)
m

= α
(
uO

α , GO
α φ

)
m

+ α
(
u−HOcu− uO

α , GO
α φ

)
m

= α
(
u−HOcu,GO

α φ
)
m
≥ 0,

which implies uO
α + HOcu ≤ u q.e. on O. Hence in view of Lemma 2.2.4 in

[12], uO
α ∈ L∞(E;m). From this, we can conclude that the measure µ is a smooth

measure in the strict sense. So we can take A as a PCAF admitting no exceptional
set such that uα(x) = Ex[

∫∞
0

e−αtdAt] and u0(x) := Ex[Aζ ] can be redefined for
all x ∈ E. We can get a finer assertion than Lemma 2.2 of [3], that is, t 7→ h(Xt)
is a bounded Px-martingale for all x ∈ E, because h := u− u0 is a (nearly) Borel
finely continuous function in the present setting. Therefore, we can obtain the
assertion as seen in the proof of the previous lemma. ¤

Remark 3.8. The assertion of Lemma 3.6 also holds in the quasi-regular
Dirichlet form setting. In this case, the definition of E -superharmonicity of u ∈ Fe

should be taken to be that E (u, φ) ≥ 0 for any φ ∈ F+
e .

Lemma 3.9. Let D be an open set and u a nearly Borel function on E.

( i ) Assume that condition (2.1) holds. If u is a subharmonic function in D and
is in L2

loc(D;m) then u is subharmonic in D in the weak sense. Moreover,
under the absolute continuity condition for X with respect to m, if u is a
subharmonic function in D without no exceptional set and is in L2

loc(D;m)
then u is subharmonic in D in the weak sense without exceptional set.

( ii ) If u is a nearly Borel q.e. finely continuous function on E such that u is
subharmonic in D in the weak sense, then for each relatively compact open
set U with U ( D, {u(Xt∧τU

), t ≥ 0} is a (not necessarily uniformly in-
tegrable) Px-submartingale for q.e. x ∈ E. Moreover, if X satisfies the
absolute continuity condition with respect to m and u is a finely continuous
subharmonic function in D in the weak sense without exceptional set, then
for U above, {u(Xt∧τU

), t ≥ 0} is a (not necessarily uniformly integrable)
Px-submartingale for all x ∈ U .
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Proof. (i): Suppose that u ∈ L2
loc(D;m) is subharmonic in D. For any

relatively compact open set U with U ( D, by assumption, {u(Xt∧τU
), t ≥ 0} is a

uniformly integrable Px-submartingale for q.e. x ∈ E. Then as t →∞, u(Xt∧τU
)

converges in L1(Px) as well as Px-a.s. to some random variable ξ for q.e. x ∈ E.
Set Yt := u(Xt∧τU

) for t ∈ [0,∞) and Y∞ := ξ. Then {Yt, t ∈ [0,∞]} is a right-
closed Px-submartingale for q.e. x ∈ E. Applying the optional sampling theorem
(see Theorem 2.59 in [13]) to {Yt, t ∈ [0,∞]}, we have Ex[|u|(XτU

)] < ∞ and
u(x) ≤ Ex[YτU

] for q.e. x ∈ E. Note that YτU
1{τU <∞} = u(XτU

) and YτU
=

u(XτU
) + ξ1{τU=∞} Px-a.s. for q.e. x ∈ E. Set u2(x) := Ex[ξ1{τU=∞}]. We now

show that u2 = 0 q.e. on E if Px(τU < ∞) > 0 for q.e. x ∈ E. It is easy to see
that for each t > 0 PU

t u2(x) = u2(x) for q.e. x ∈ U . Note that

u2(x) = lim
t→∞

Ex[u(Xt)1U (Xt)1{τU=∞}]

for q.e. x ∈ E. It follows from Schwarz inequality that

∫

U

u2(x)2m(dx) ≤ lim inf
n→∞

∫

U

Pn(1Uu2)(x)m(dx) ≤
∫

U

u(x)2m(dx) < ∞.

Thus u2 ∈ FU and E (u2, u2) = 0. Applying Lemma 2.2 in [3] to u2, we have that
u2 = 0 q.e. on U if Px(τU < ∞) > 0 for q.e. x ∈ U . Therefore we obtain that
u(x) ≤ Ex[u(XτU

)] for q.e. x ∈ U if Px(τU < ∞) > 0 for q.e. x ∈ U . That is,
under condition (2.1), u is subharmonic in D in the weak sense. Next suppose
that X satisfies the absolute continuity condition with respect to m. Noting that
u2 defined above is α-excessive with respect to XU for any α > 0, we see u2 = 0
on U . The rest of the proof is quite similar with the argument above.

(ii): Suppose that a nearly Borel q.e. finely continuous u is subharmonic in
D in the weak sense. Then for any relatively compact open set U with U ( D,
|u(XτU

)| is Px-integrable for q.e. x ∈ E and for each t > 0,

Ex[u(XτU
) | Ft∧τU

] ≥ u(Xt∧τU
) Px-a.s. (3.3)

for q.e. x ∈ E. Set h0(x) := Ex[u(XτU
)]. Then u0 := h0 − u ≥ 0 q.e. on U ,

u0 = 0 q.e. on U c, and has the property that for any relatively compact open
subset O with O ⊂ U , Ex[u0(XτO

)] ≤ u0(x) for q.e. on U . By taking a property
exceptional set N of X and restricting the process XU to U \N if necessary, we
have from Theorem 12.4 in [11] that the function u0 is excessive with respect to
XU . In particular, t 7→ u0(Xt)1{t<τU} = u0(Xt∧τU

) is a Px-supermartingale for
q.e. x ∈ U . On the other hand, we see that {h0(Xt∧τU

), t ≥ 0} is a uniformly
integrable Px-martingale for q.e. x ∈ U . Therefore {u(Xt∧τU

), t ≥ 0} is a Px-
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submartingale for q.e. x ∈ U . The proof for the situation when X satisfies the
absolute continuity condition with respect to m is also quite similar so it is omitted.

¤

The following theorem is an extension of Theorem 2.7 in [3] to subharmonic
functions.

Theorem 3.10. Let D be an open set of E. Suppose that u ∈ FD,loc ∩
L∞loc(D;m) satisfying conditions (2.2)–(2.3) is E -subharmonic in D. Then u is
subharmonic in D. Moreover, if X satisfies the absolute continuity condition with
respect to m and u is finely continuous and (nearly) Borel measurable, then u is
subharmonic in D without exceptional set.

Proof. Let U be a relatively compact open subset of D with U ⊂ D. Take
φ ∈ F ∩ Cc(D) such that 0 ≤ φ ≤ 1 and φ = 1 on a relatively compact open
neighborhood V of U with V ⊂ D. Define h0(x) := Ex[u(XτU

)]. As we saw from
the first part of the proof of Theorem 2.8, u − h0 ∈ (FU )e, h0 − (1 − φ)u ∈ Fe

and that (2.6) holds. Consequently,

E (u− h0, v) ≤ 0 for every v ∈ F+ ∩ Cc(U).

This in particular implies that u−h0 is E -subharmonic in U . Note that (u−h0)+ ∈
(FU )+e and, by Lemma 3.2, (u− h0)+ is E -subharmonic in U ; that is,

E ((u− h0)+, v) ≤ 0 for every v ∈ F+ ∩ Cc(U). (3.4)

Since F ∩ Cc(U) is E -dense in (FU )e, the above display holds for every non-
negative v ∈ (FU )e. Indeed, since (E ,FU ) is a regular Dirichlet form on L2(U ;m),
for v ∈ (F+

U )e, there is an E -Cauchy sequence {vn, n ≥ 1} in FU ∩ Cc(U) that
converges to v m-a.e. on U . By the normal contraction property, {v+

n , n ≥ 1} ⊂
F+ ∩ Cc(U) is E -bounded. Thus in view of the Banach-Saks theorem, there is a
subsequence {v+

nk
, n ≥ 1} whose Cesàro mean sequence is E -Cauchy and converges

to v m-a.e. on E. From it we deduce that (3.4) holds for every v ∈ (FU )+e . We
have in particular

0 ≤ E ((u− h0)+, (u− h0)+) ≤ 0. (3.5)

Thus by Lemma 2.2 in [3], we get (u − h0)+(Xt) = (u − h0)+(x) for all t ≥ 0
Px-a.s. for q.e. x ∈ E. Consequently, (u − h0)+(Xt) is a bounded Px-martingale
for q.e. x ∈ E. From this fact, the sets A := {u > h0} and Ac = {u ≤ h0} are
X-invariant. So after taking out a proper exceptional set of X if needed, we may
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and do assume that h0 is finely continuous and that either A = E or Ac = E.
Suppose A = E and take x ∈ A. Then u(x) ≥ h0(x) + ε for some ε > 0. We

fix such an ε > 0. We then have that u(Xt) ≥ h0(Xt) + ε for all t ≥ 0 Px-a.s.
Consequently,

u(Xt∧τU
) ≥ h0(Xt∧τU

) + ε = Ex[u(XτU
) | Ft∧τU

] + ε Px-a.s.

Since
∨

t≥0 Ft∧τU
= FτU

(see (47.7) in [23]), we have u(XτU
) ≥ u(XτU

) + εPx-
a.s. on {τU < ∞} by letting t →∞. This implies that Px(τU < ∞) = 0 for every
x ∈ A. Consequently h0 = 0 q.e. on E. As u ≥ h0 ≥ 0 on A = E, we have from
above that u(Xt) = u(X0) for all t ≥ 0 Px-a.s. for q.e. x ∈ E. This in particular
implies that t 7→ u(Xt∧τU

) is a uniformly integrable Px-martingale for q.e. x ∈ E.
Next suppose Ac = E. Then h0 − u ∈ (FU )e is a non-negative E -

superharmonic function in U . By Lemma 3.6 and Remark 3.8, t 7→ (u−h0)(Xt∧τU
)

is a uniformly integrable Px-submartingale. By (2.3), Ex[|u(XτU
)|] < ∞ for

q.e. x ∈ U , and so t 7→ h0(Xt∧τU
) is also a uniformly integrable Px-martingale for

q.e. x ∈ E. This proves that t 7→ u(Xt∧τU
) is a uniformly integrable Px-martingale.

The proof of the last statement is quite similar with the above argument by re-
placing the use of Lemma 3.6 with the use of Corollary 3.7. So it is omitted. ¤

The following two theorems are the subharmonic counterpart of Theorem 2.9
in [3].

Theorem 3.11. Let D be an open subset of E and u a nearly Borel mea-
surable function on E that is locally bounded in D. Suppose one of the following
holds:

( i ) u is subharmonic in D.
( ii ) u is subharmonic in D in the weak sense and (2.1) holds.

Then u ∈ (FD)loc.

Proof. Take a relatively compact open set U with U ( D. Set M :=
‖u‖L∞(U ;m). Then 0 ≤ M − u ≤ 2M q.e. on U . If (i) (resp. (ii)) holds, then
{(M −u)(Xt∧τU

), t ≥ 0} is a uniformly integrable (resp., by Lemma 3.9(ii), a (not
necessarily uniformly integrable)) Px-supermartingale for q.e. x ∈ E. Hence for
each t > 0

PU
t (M − u) ≤ M − u q.e. on U.

By the same argument as that after (2.17) in the proof of Theorem 2.9 in [3], we
conclude that M − u ∈ FU,loc and so u ∈ FU,loc. Since U is arbitrary, we obtain
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u ∈ FD,loc. Since u is locally bounded on D, this implies that u ∈ (FD)loc. ¤

Theorem 3.12. Let D be an open subset of E and u be a nearly Borel
function on E that is in FD,loc ∩ L∞loc(D;m) and satisfies conditions (2.2) and
(2.3). Suppose one of the following holds:

( i ) u is subharmonic in D.
( ii ) u is subharmonic in D in the weak sense and (2.1) holds.

Then u is E -subharmonic in D.

Proof. Note that u is automatically q.e. finely continuous in D. In either
case, by the assumption and Lemma 3.9(ii), for any relatively compact open set
U with U ( D, we have Ex[|u(XτU

)|] < ∞ for q.e. x ∈ E. Take φ ∈ F ∩ Cc(D)
with 0 ≤ φ ≤ 1 and φ = 1 on a relatively compact open set V with U ⊂ V ⊂
V ( D. Set h1(x) := Ex[(φu)(XτU

)] and h2(x) := Ex[((1 − φ)u)(XτU
)], which

is q.e. well-defined as Ex[|u|(XτU
)] < ∞ for q.e. x ∈ E. By the same argument

as that for Theorems 2.9 and 2.7 in [3], we see that φu ∈ FD, h1 ∈ (FD)e,
1Uh2 ∈ (FU )e, h2 = 1Uh2 + u − φu ∈ FU,loc and E (h1, v) = E (h2, v) = 0
for any v ∈ (FU )e. Therefore h0(x) := h1(x) + h2(x) = Ex[u(XτU

)] satisfies
u0 := h0 − u = 1Uh2 + h1 − φu ∈ (FU )e. For the case (ii), as in the proof of
Lemma 3.9 we see u0 is excessive with respect to the subprocess XU . For the case
(i), we have the same conclusion easily. Then for each n ∈ N , we have

PU
t (u0 ∧ n)(x) ≤ (u0 ∧ n)(x) for q.e. x ∈ U.

Since u0 ∧ n ∈ FU because m(U) < ∞, Lemma 3.1 leads us to

E (u0 ∧ n, φ) ≥ 0 for every φ ∈ F+ ∩ Cc(U).

On the other hand, {u0 ∧ n} is an E -bounded sequence. There is a subsequence
of {u0 ∧ n} whose Cesàro mean sequence is E -Cauchy, and so is E -convergent to
u0. We thus have E (u0, φ) ≤ 0 for every φ ∈ F+ ∩ Cc(U), and so

E (u, φ) ≤ E (h0, φ) = E (h1 + h2, φ) = 0 for every φ ∈ F+ ∩ Cc(U).

Since U is arbitrary, we obtain the E -subharmonicity of u in D. ¤

Proof of Theorem 2.9. Theorem 2.9 is an easy consequence of Lemma
3.9, Theorems 3.10, 3.11 and 3.12. ¤

Proof of Corollary 2.10. (i): By Theorem 3.10, for each relatively
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compact open set U with U ( D, {u(Xt∧τU
), t ≥ 0} is a uniformly integrable

Px-martingale for q.e. x ∈ E. First assume that η has bounded first derivative.
Since |η(t)− η(s)| ≤ sup`∈R |η′(`)| · |t− s| for t, s ∈ R, η(u) ∈ FD,loc. Meanwhile,
|η(u)| ≤ sup`∈R |η′(`)||u| + |η(0)| yields that {η(u)(Xt∧τU

), t ≥ 0} is uniformly
integrable under Px for q.e. x ∈ U and η(u) satisfies (2.2)–(2.3) by Lemma 3.4.
(Recall that any bounded function satisfies (2.2)–(2.3).) By Jensen’s inequality
{η(u)(Xt∧τU

), t ≥ 0} is a Px-submartingale for q.e. x ∈ U . The E -subharmonicity
of η(u) in D now follows from Theorem 3.12. Next we assume the boundedness
of u on E. Then η(u) ∈ FD,loc is bounded on E and it satisfies (2.2)–(2.3). The
rest of the proof is similar as above.

(ii): The proof is the same as that for (i).
(iii): By Theorem 2.9, Ex[|u(XτU

)|] < ∞ and u(x) = Ex[u(XτU
)] for q.e. x ∈

E, and consequently u(Xt∧τU
) = Ex[u(XτU

)|Ft∧τU
] for q.e. x ∈ E. Since u ∈

L∞loc(D;m), |u|p ∈ FD,loc ∩ L∞loc(D;m). Therefore for every φ ∈ F ∩ Cc(D)
with 0 ≤ φ ≤ 1 and φ = 1 on an open neighborhood V of U with V ( D,
Ex[φ|u|p(XτU

)] < ∞ for q.e. x ∈ E. By assumption, Ex[(1 − φ)|u|p(XτU
)] < ∞

for q.e. x ∈ E. Therefore Ex[|u|p(XτU
)] < ∞ for q.e. x ∈ E. By Jensen’s

inequality, |u|p is subharmonic in D in the weak sense. The E -subharmonicity of
|u|p in D now follows from Theorem 3.12.

(iv): Note that |u1 ∨ u2| ≤ |u1| + |u2|. So by Lemma 3.4, u1 ∨ u2 satisfies
conditions (2.2)–(2.3). The conclusion follows from Theorem 2.9. ¤

Proof of Theorem 2.11. Since u+(x0) ≥ 0 and 1D ∈ FD,loc is E -
superharmonic in D, u+(x0)− u ∈ FD,loc is a finely continuous Borel measurable
non-negative E -superharmonic function in D. Hence so is v := u+(x0) − u+ =
(u+(x0) − u) ∧ u+(x0) by Corollary 2.10(iv). We set Y := {x ∈ D | v(x) > 0}.
By Theorem 3.10, v is also excessive with respect to XD, so is 1Y (cf. [15]). In
particular, 1Y is finely continuous with respect to XD. By Theorem 5.3 in [16],
the irreducibility of (E D,FD) implies the connectedness of the fine topology on
D induced by the part process XD. Thus either Y = ∅ or D \ Y = ∅. Since
x0 ∈ D \ Y , we have Y = ∅. So u+ ≡ u+(x0) on D. The proof for the case
κ(D) = 0 is quite similar, so it is omitted. ¤

4. Examples.

Example 4.1 (Stable-like process on Rd). Consider the following Dirichlet
form (E ,F ) on L2(Rd), where
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F = Wα/2,2(Rd)

=
{

u ∈ L2(Rd)
∣∣∣∣

∫

Rd×Rd

(u(x)− u(y))2|x− y|−(d+α)dxdy < ∞
}

,

E (u, v) =
1
2

∫

Rd×Rd

(u(x)− u(y))(v(x)− v(y))|x− y|−(d+α)c(x, y)dxdy

for u, v ∈ F .

Here d ≥ 1, α ∈]0, 2[, and c(x, y) is a symmetric function in (x, y) that is bounded
between two positive constants. In literature, Wα/2,2(Rd) is called the Sobolev
space on Rd of fractional order (α/2, 2). For an open set D ⊂ Rd, Wα/2,2(D) is
similarly defined as above but with D in place of Rd. It is easy to check that (E ,F )
is a regular Dirichlet form on L2(Rd) and its associated symmetric Hunt process
X is called symmetric α-stable-like process on Rd, which is studied in [6]. When
c(x, y) ≡ A(d,−α) := (α2d+αΓ((d + α)/2))(2d+1πd/2Γ(1−α/2)), the process X is
nothing but the rotationally symmetric α-stable process on Rd. It is shown in [6]
that the symmetric α-stable-like process X has strictly positive jointly continuous
transition density function pt(x, y) with respect to the Lebesgue measure on Rd

and hence is irreducible. Moreover, there is constant c > 0 such that

pt(x, y) ≤ ct−d/α for t > 0 and x, y ∈ Rd. (4.1)

Consequently, by [10, Theorem],

sup
x∈U

Ex[τU ] < ∞ (4.2)

for any open set U having finite Lebesgue measure. Note that in this example, the
jumping measure J is given by

J(dxdy) =
c(x, y)

|x− y|d+α
dxdy.

Hence for any non-empty open set D ⊂ Rd, condition (2.2) is satisfied if and only
if (1 ∧ |x|−d−α)u(x) ∈ L1(Rd) (or equivalently, u(x)/(1 + |x|)d+α ∈ L1(Rd)). As
is shown in [3, Example 2.12], condition (2.3) is automatically satisfied for such u.
When α ∈]1, 2[, every (globally) Lipschitz function u on Rd satisfies the condition
(2.2), that is, (1∧ |x|−d−α)u(x) ∈ L1(Rd) holds. Consequently (2.3) holds for any
Lipschitz function u provided α ∈]1, 2[. Indeed, for any relatively compact open
sets U , V with U ⊂ V ⊂ V ⊂ D,
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∫

U×V c

|u(y)− u(x)|
|x− y|d+α

dxdy ≤ ‖u‖Lip

∫

U×V c

|x− y|
|x− y|d+α

dxdy

≤ ‖u‖Lipσ(Sd−1)
∫

U

∫ ∞

d(x,V c)

r−αdrdx

≤ ‖u‖Lip|U |σ(Sd−1)
d(U, V c)1−α

α− 1
< ∞,

and so by Remark 2.3, (2.2) holds. Here ‖u‖Lip := supx,y∈Rd(|u(x)−u(y)|/|x−y|),
|U | denotes the volume of U and σ(Sd−1) is the (d−1)-dimensional volume of the
unit sphere Sd−1.

Observe that C∞c (Rd) is a special standard core of (E ,F ). By Theorems 2.8
and 2.9, for an open set D and a nearly Borel function u on Rd that is locally
bounded on D with (1 ∧ |x|−d−α)u(x) ∈ L1(Rd), the following are equivalent.

( i ) u is subharmonic in D;
( ii ) For every relatively compact open subset U of D, u(XτU

) ∈ L1(Px) and
u(x) ≤ Ex[u(XτU

)] for q.e. x ∈ U ;
(iii) u ∈ FD,loc = W

α/2,2
loc (D) and

∫

Rd×Rd

(u(x)− u(y))(v(x)− v(y))
c(x, y)

|x− y|d+α
dxdy ≤ 0

for every non-negative v ∈ C∞c (D).

Moreover, if u is (finely) continuous, the above equivalence can be formulated
without exceptional sets.

Example 4.2 (Symmetric relativistic α-stable process). Take α ∈]0, 2[ and
m ≥ 0. Let XR,α = (Ω, Xt,Px)x∈Rd be a Lévy process on Rd with

E0

[
ei〈ξ,Xt〉] = e−t((|ξ|2+m2/α)α/2−m).

If m > 0, it is called the relativistic α-stable process with mass m (see [22]). In
particular, if α = 1 and m > 0, it is called the relativistic free Hamiltonian process
(see [14]). When m = 0, XR,α is nothing but the usual symmetric α-stable process.
Let (E R,α,FR,α) be the Dirichlet form on L2(Rd) associated with XR,α. Using
Fourier transform f̂(x) := 1/(2π)d/2

∫
Rd ei〈x,y〉f(y)dy, it follows from Example

1.4.1 of [12] that
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FR,α :=
{

f ∈ L2(Rd)
∣∣∣∣

∫

Rd

∣∣f̂(ξ)
∣∣2((|ξ|2 + m2/α)α/2 −m

)
dξ < ∞

}

= Wα/2,s(Rd),

E R,α(f, g) :=
∫

Rd

f̂(ξ)¯̂g(ξ)
(
(|ξ|2 + m2/α)α/2 −m

)
dξ for f, g ∈ FR,α.

Global sharp two-sided estimates on the transition density function pt(x, y) of
XR,α have recently been obtained in [5]. In particular, it implies (see also [22,
Lemma 3]) that there exists C(d,m) > 0 depending only on m and d so that

sup
x,y∈Rd

pt(x, y) ≤ C(d,m)
(
md/α−d/2t−d/2 + t−d/α

)
for any t > 0.

This yields by [10, Theorem 1] that (4.2) holds for any open set U having finite
Lebesgue measure. It is shown in [9] that the corresponding jumping measure
satisfies

J(dxdy) =
c(x, y)

|x− y|d+α
dxdy with c(x, y) :=

A(d,−α)
2

Ψ(m1/α|x− y|),

where A(d,−α) = α2d+αΓ((d + α)/2)/2d+1πd/2Γ(1− (α/2)), and the function Ψ
on [0,∞[ is given by Ψ(r) := I(r)/I(0) with I(r) :=

∫∞
0

s(d+α)/2−1e−(s/4)−(r2/s)ds.
Note that Ψ is decreasing and satisfies Ψ(r) ³ e−r(1 + r(d+α−1)/2) near r = ∞,
and Ψ(r) = 1 + Ψ′′(0)r2/2 + o(r4) near r = 0. In particular, we have





FR,α =
{

f ∈ L2(Rd)
∣∣∣∣

∫

Rd×Rd

|f(x)− f(y)|2 c(x, y)
|x− y|d+α

dxdy < ∞
}

,

E R,α(f, g) =
∫

Rd×Rd

(f(x)− f(y))(g(x)− g(y))
c(x, y)

|x− y|d+α
dxdy

for f, g ∈ FR,α.

It is easy to see that for any relatively compact open sets U, V and U ⊂ V ⊂ V ⊂
D, condition (2.2) is satisfied if and only if Ψ(m1/α|x|)(1∧|x|−d−α)u(x) ∈ L1(Rd)
(equivalently Ψ(m1/α|x|)u(x)/(1 + |x|)d+α ∈ L1(Rd)). Similarly, any function u

with Ψ(m1/α|x|)(1 ∧ |x|−d−α)u(x) ∈ L1(Rd) also satisfies the condition (2.3) in
the same way as in Example 4.1. Moreover, any (globally) Lipschitz function u

satisfies (2.2) and, consequently, satisfies condition (2.3). Indeed, for any relatively
compact open sets U , V with U ⊂ V ,
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∫

U×V c

|u(y)− u(x)|
|x− y|d+α

c(x, y)dxdy

≤ A(d,−α)
2

‖u‖Lip

∫

U×V c

|x− y|Ψ(m1/α|x− y|)
|x− y|d+α

dxdy

≤ A(d,−α)
2

‖u‖Lipσ(Sd−1)
∫

U

∫ ∞

d(x,V c)

Ψ(m1/αr)r−αdrdx

≤ C

∫ ∞

d(U,V c)

e−m1/αr(1 + m(d+α−1)/2αr(d+α−1)/2)r−αdr < ∞,

and so (2.2) holds by Remark 2.3. Here C is a positive constant.
Observe that C∞c (Rd) is a special standard core of (E R,α,FR,α). By Theo-

rems 2.8 and 2.9, for an open set D and a nearly Borel function u on Rd that is
locally bounded on D with Ψ(m1/α|x|)(1 ∧ |x|−d−α)u(x) ∈ L1(Rd), the following
are equivalent.

( i ) u is subharmonic in D;
( ii ) For every relatively compact open subset U of D, u(XτU

) ∈ L1(Px) and
u(x) ≤ Ex[u(XτU

)] for q.e. x ∈ U ;
(iii) u ∈ FR,α

D,loc and

∫

Rd×Rd

(u(x)− u(y))(v(x)− v(y))
Ψ(m1/α|x− y|)
|x− y|d+α

dxdy ≤ 0

for every non-negative v ∈ C∞c (D).

Moreover, if u is (finely) continuous, the above equivalence can be formulated
without exceptional sets.

One may ask concrete examples of E -(sub/super)-harmonicity on D. To an-
swer this question, in what follows, we assume d > 2 (d > α if m = 0). Ap-
plying Theorems 3.1 and 3.3 in [21] to φ(λ) := (λ + m2/α)α/2 − m, λ > 0,
we can obtain that the Green kernel r(x, y) :=

∫∞
0

pt(x, y)dt of X satisfies
r(x, y) ³ (Kα(x, y) + K2(x, y)), x, y ∈ Rd, where Kβ(x, y) := A(d, β)/|x − y|d−β

for β ∈]0, 2]. In particular, X is transient and r(x, x) = ∞ for x ∈ Rd. Note
that r(x, y) = Kα(x, y) provided m = 0. Let u be a Borel function satisfying
u(x)Ψ(m1/α|x|)/(1 + |x|)d+α ∈ L1(Rd). For ε > 0 and x ∈ Rd, we define the
approximate fractional Laplacian by

∆α/2,m
ε u(x) := A(d,−α)

∫

|x−y|>ε

u(y)− u(x)
|x− y|d+α

Ψ(m1/α|x− y|)dy,
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and put ∆α/2,mu(x) := limε→0 ∆α/2,m
ε u(x) whenever the limit exists. It is essen-

tially shown in Lemma 3.5 in [2] (resp. the remark after Definition 3.7 in [2]) that
for any u ∈ C2

c (D) (resp. u ∈ C2(D) satisfying u(x)Ψ(m1/α|x|)/(1 + |x|)d+α ∈
L1(Rd)), ∆α/2,mu always exists in C(Rd) (resp. in C(D)). Recall that for
u ∈ C2(Rd) with u(x)Ψ(m1/α|x|)/(1 + |x|)d+α ∈ L1(Rd), u satisfies (2.2) and
(2.3). Hence, for such u and ϕ ∈ C2

c (D), E (u, ϕ) is well-defined and the proof of
Lemma 2.6 in [3] shows

∫

Rd×Rd

|u(x)− u(y)||ϕ(x)− ϕ(y)|Ψ(m1/α|x− y|)dxdy

|x− y|d+α
< ∞,

which implies E (u, ϕ) = (−∆α/2,mu, ϕ) and the E -subharmonicity in D of u is
equivalent to ∆α/2,mu ≤ 0 on D.

For ϕ ∈ Cc(Rd), we set

R(α)ϕ(x) :=
∫

Rd

r(x, y)ϕ(y)dy x ∈ Rd.

Then, we see R(α)ϕ is locally bounded on Rd and (R(α)ϕ)(x)Ψ(m1/α|x|)/(1 +
|x|)d+α ∈ L1(Rd) for such ϕ, because of r(x, y) ³ (Kα(x, y)+K2(x, y)). Moreover,
we see R(α)ϕ ∈ Floc for such ϕ. Indeed, for any relatively compact open set D

with D ⊂ Rd, R(α)ϕ is a difference of excessive functions with respect to XD

and bounded on D, so R(α)ϕ ∈ FD,loc by Theorem 3.11. Since D is arbitrary,
R(α)ϕ ∈ Floc. Thus R(α)ϕ satisfies (2.2) and (2.3) for U, V with U ⊂ V ⊂
V ⊂ Rd. Similarly, r(a, ·) ∈ L∞loc(R

d \ {a}) satisfies
∫

Rd(r(a, x)Ψ(m1/α|x|))/(1 +
|x|)d+α)dx < ∞. We can obtain r(a, ·) ∈ FRd\{a},loc in a similar way as above.
Hence r(a, ·) satisfies (2.2) and (2.3) for U, V with U ⊂ V ⊂ V ⊂ Rd \ {a}. Note
that for ϕ ∈ C∞c (D), ∆α/2,mϕ = Lα,mϕ a.e. on Rd and R(α)∆α/2,mϕ = −ϕ on
Rd. Here Lα,m is the L2-generator of (E R,α,FR,α).

For ϕ ∈ C∞c (Rd \ {a}), we then have

E (r(a, ·), ϕ) = −
∫

Rd

r(a, x)∆α/2,mϕ(x)dx

= −(
R(α)∆α/2,mϕ

)
(a) = ϕ(a) = 0.

This means the E -harmonicity in Rd \ {a} of r(a, ·). Similarly, for non-negative
ψ, ϕ ∈ C∞c (Rd), we have

E (R(α)ψ, ϕ) =
(
ψ,−R(α)∆α/2,mϕ

)
= (ψ, ϕ) ≥ 0,
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which implies the E -superharmonicity of R(α)ψ for non-negative ψ ∈ C∞c (Rd).

Example 4.3 (Diffusion process on a locally compact separable metric space).
Let (E ,F ) be a local regular Dirichlet form on L2(E;m), where E is a locally
compact separable metric space, and X is its associated Hunt process. In this case,
X has continuous sample paths and so the jumping measure J is null (cf. [12]).
Hence conditions (2.2) and (2.3) are automatically satisfied. Let D be an open
subset of E and u be a nearly Borel function on E that is locally bounded in D.
Then by Theorem 2.9, u is subharmonic in D if and only if u is E -subharmonic in
D.

Now consider the following special case: E = Rd with d ≥ 1, m(dx) is the
Lebesgue measure dx on Rd, F = W 1,2(Rd) := {u ∈ L2(Rd) | ∇u ∈ L2(Rd)}
and

E (u, v) =
1
2

d∑

i,j=1

∫

Rd

aij(x)
∂u(x)
∂xi

∂v(x)
∂xj

dx for u, v ∈ W 1,2(Rd),

where (ai,j(x))1≤i,j≤d is a d × d-matrix valued measurable function on Rd that
is uniformly elliptic and bounded. In literature, W 1,2(Rd) is the Sobolev space
on Rd of order (1.2). For an open set D ⊂ Rd, W 1,2(D) is similarly defined as
above but with D in lace of Rd. Then (E ,F ) becomes a regular local Dirichlet
form on L2(Rd) and its associated Hunt process X is a conservative diffusion on
Rd having jointly continuous transition density function. Let D be an open set
in Rd. Observe that C∞c (Rd) is a special standard core of (E ,W 1,2(Rd)). By
Theorem 2.8 and Theorem 2.9, the following are equivalent for a locally bounded
nearly Borel measurable function u on D.

( i ) u is subharmonic in D;
( ii ) For every relatively compact open subset U of D, u(XτU

) ∈ L1(Px) and
u(x) ≤ Ex[u(XτU

)] for q.e. x ∈ U ; u is subharmonic in D in the weak sense;
(iii) u ∈ FD,loc = W 1,2

loc (D) and

d∑

i,j=1

∫

Rd

aij(x)
∂u(x)
∂xi

∂v(x)
∂xj

dx ≤ 0 for every non-negative v ∈ C∞c (D).

Moreover, if u is (finely) continuous, the above equivalence can be formulated
without exceptional sets.

Example 4.4 (Diffusions with jumps on Rd). Consider the following Dirich-
let form (E ,F ), where F = W 1,2(Rd) and for u, v ∈ W 1,2(Rd)
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E (u, v) :=
1
2

d∑

i,j=1

∫

Rd

aij(x)
∂u(x)
∂xi

∂v(x)
∂xj

dx

+
1
2

∫

Rd×Rd

(u(x)− u(y))(v(x)− v(y))
c(x, y)

|x− y|d+α
dxdy. (4.3)

Here d ≥ 1 and (ai,j(x))1≤i,j≤d is a d×d-matrix valued measurable function on Rd

that is uniformly elliptic and bounded, α ∈]0, 2[ and c(x, y) is a symmetric function
in (x, y) that is bounded between two positive constants. It is easy to check that
(E ,F ) is a regular Dirichlet form on L2(Rd). Its associated symmetric Hunt
process X has both the diffusion and jumping components. Such a process has
recently been studied in [7]. Note that when (ai,j(x))1≤i,j≤d is the identity matrix
and c(x, y) is constant, the process X is nothing but the symmetric Lévy process
that is the independent sum of a Brownian motion and a rotationally symmetric
α-stable process on Rd. It is shown in [7] that the Hunt process X associated
with the Dirichlet form (E ,W 1,2(Rd)) given by (4.3) has strictly positive jointly
continuous transition density function pt(x, y) and hence is irreducible. Moreover,
a sharp two-sided estimate is obtained in [7] for pt(x, y). In particular, there is a
constant c > 0 such that

pt(x, y) ≤ c
(
t−d/α ∧ t−d/2

)
for any t > 0 and x, y ∈ Rd.

In this example, the jumping measure

J(dxdy) =
c(x, y)

|x− y|d+α
dxdy.

Hence for any non-empty open set D ⊂ Rd, condition (2.2) is satisfied if and only
if (1 ∧ |x|−d−α)u(x) ∈ L1(Rd). By [3, Example 2.14], for this example, condition
(2.3) is implied by condition (2.2). Again note that C∞c (Rd) is a special standard
core of (E R,α,FR,α). So Theorem 2.8 and Theorem 2.9 imply that for an open
set D and a nearly Borel measurable function u on Rd that is locally bounded on
D with (1 ∧ |x|−d−α)u(x) ∈ L1(Rd), the following are equivalent.

( i ) u is subharmonic in D;
( ii ) For every relatively compact open subset U of D, u(XτU

) ∈ L1(Px) and
u(x) ≤ Ex[u(XτU

)] for q.e. x ∈ U ; u is subharmonic in D in the weak sense;
(iii) u ∈ FD,loc = W 1,2

loc (D) and
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d∑

i,j=1

∫

Rd

aij(x)
∂u(x)
∂xi

∂v(x)
∂xj

dx

+
∫

Rd×Rd

(u(x)− u(y))(v(x)− v(y))
c(x, y)

|x− y|d+α
dxdy ≤ 0

for every non-negative v ∈ C∞c (D).

Moreover, if u is (finely) continuous, the above equivalence can be formulated
without exceptional sets.
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