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Bilinear estimates in dyadic BMO

and the Navier-Stokes equations

By Eiichi Nakai and Tsuyoshi Yoneda

(Received Sep. 16, 2010)

Abstract. We establish bilinear estimates in dyadic BMO as an ex-
tension of Kozono and Taniuchi’s result on the usual BMO. To establish the
bilinear estimates we use sharp maximal functions, while they used the bound-
edness of pseudo-differential operators by Coifman and Meyer. By this exten-
sion we prove that the dyadic BMO norm of the velocity controls the blow-up
phenomena of smooth solutions to the Navier-Stokes equations. Moreover,
we give an odd function with type II singularity which clarifies the difference
between BMO and dyadic BMO.

1. Introduction.

In this paper, we investigate the continuation and blow-up phenomena of
smooth solutions to the Navier-Stokes equations in Rn, n ≥ 3:





∂u

∂t
−∆u + u · ∇u +∇p = 0, div u = 0, in x ∈ Rn, t > 0,

u|t=0 = a,

(N-S)

where u = (u1(x, t), u2(x, t), . . . , un(x, t)) and p = p(x, t) denote the unknown
velocity vector and the unknown pressure of the fluid at the point (x, t) ∈ Rn ×
(0,∞), respectively, while a = (a1(x), a2(x), . . . , an(x)) is the given initial velocity
vector.

Fujita and Kato [3] proved that for every a ∈ Hs ≡ W s,2(Rn) with s >

n/2 − 1, there exist T = T (‖a‖Hs) and a solution u(t) of (N-S) on [0, T ) in the
class

u ∈ C([0, T );Hs) ∩ C1((0, T );Hs) ∩ C((0, T );Hs+2). (CL(s))
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It is an interesting question whether the solution u(t) really loses its regularity at
t = T . Kozono and Taniuchi [9] proved that if

∫ T

0

‖u(t)‖2BMO dt < ∞, (1.1)

then the solution u(t) in the class (CL(s)) on [0, T ) can be continued to the one
with the same regularity on [0, T ′) for some T ′ > T . Their result is an extension
of Giga [4] and Beale, Kato and Majda [1].

In this paper we extend their result more, that is, we replace (1.1) with

∫ T

0

‖u(t)‖2BMOdy dt < ∞, (1.2)

where BMOdy is the dyadic version of BMO. The space BMOdy is a little wider
than BMO. It is well known that log |x| ∈ BMO ⊂ BMOdy. However, for example,
an odd function

f(x) =

{
log |x|, x3 > 0,

− log |x|, x3 < 0,
x = (x1, x2, x3) ∈ R3

is in BMOdy \ BMO. Moreover, we can give an odd function u ∈ C([0, T ) ×R3)
such that u(t) ∈ C∞(R3) ∩ L∞(R3) for t ∈ [0, T ),

∫ T

0

‖u(t)‖2BMOdy dt < ∞,

∫ T

T−ε

‖u(t)‖2BMO dt = ∞ (1.3)

for small ε > 0, and u ∈ L∞([0, T );L2(R3)) but

lim
t→T−0

‖u(t, ·)‖Lq(B(0,1)) = ∞,

for any q > 2, where B(0, 1) is the unit ball in R3. The function u has the type II
singularity, namely, u doesn’t satisfy the condition

sup
x
|u(t, x)| ≤ C√

T − t
,

for any C > 0 (see [8] for the type of singularity).
In order to consider a possible-blow-up solution for the 3D Navier-Stokes
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equations, handling BMOdy is more reasonable than the usual BMO. To be more
precise, if blow-up occurs in the axi-symmetric case, it must be an odd function
on the horizontal direction to the axis. Another example is an initial data u0 =
(u1

0, u
2
0, u

3
0) which satisfies the following symmetric conditions:

{
τju

j
0 = −uj

0 (j = 1, 2, 3),

τiu
j
0 = uj

0 (i 6= j),

where τ1f(x) = f(−x1, x2, x3), τ2f(x) = f(x1,−x2, x3) and τ3f(x) =
f(x1, x2,−x3). We easily see that the corresponding solution also holds the same
symmetric conditions, namely,

{
τju

j(t) = −uj(t) (j = 1, 2, 3),

τiu
j(t) = uj(t) (i 6= j) for t > 0.

If we assume that the possible blow-up point exists at the origin, the flow must
be an odd function. These examples suggest that if there is a blow-up solution
to the 3D Navier-Stokes equations with special initial data as described above, it
should have an odd structure, and it means that we need to design function spaces
suitable for odd functions. In this point of view, BMOdy should be better than
the usual BMO for such blow-up problem.

To get the result described in [9], Kozono and Taniuchi proved the following
apriori estimate:

sup
ε0<t<T

‖u(t)‖H[s]+1 ≤ ‖u(ε0)‖H[s]+1 exp
(

C

∫ T

ε0

‖u‖2BMO dt

)
, (1.4)

where C = C(n, s) is independent of T . If the left hand side of (1.4) is finite,
then the strong solution u of (N-S) in the class (CL(s)) on [0, T ) can be extended
continuously beyond T by the standard argument of continuation of local solutions.
They proved (1.4) by showing bilinear estimates in BMO.

To establish the bilinear estimates in BMO they used the boundedness of
pseudo-differential operators by Coifman and Meyer. In this paper we prove bi-
linear estimates in BMOdy by using the sharp maximal functions. The method
is based on another proof of Kozono-Taniuchi’s lemma by Miyachi [11]. Then we
get the result on the Navier-Stokes equations by the same way as Kozono and
Taniuchi’s argument.

We state the results on the Navier-Stokes equations and prove the bilinear
estimates in BMOdy in Sections 2 and 3, respectively. Section 4 is to prove propo-
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sitions on the sharp maximal functions, which are used to prove the bilinear esti-
mates in BMOdy. Moreover, we give examples satisfying (1.3) in Section 5.

2. Results on the Navier-Stokes equations.

Let C∞0,σ denote the set of all C∞ vector-valued functions φ = (φ1, φ2, . . . , φn)
with compact support in Rn such that div φ = 0. Lr

σ is the closure of C∞0,σ with
respect to the Lr-norm ‖ · ‖r. Lr stands for the usual (vector-valued) Lr-space
over Rn, 1 ≤ r ≤ ∞. Hs

σ denotes the closure of C∞0,σ with respect to the Hs-norm

‖φ‖Hs =
∥∥(1−∆)s/2φ

∥∥
2
, s ≥ 0.

Following Kozono and Taniuchi [9], our definition of a strong solution of (N-S) is
as follows.

Definition 2.1. Let a ∈ Hs
σ for s > n/2− 1. A measurable function u on

Rn × (0, T ) is called a strong solution of (N-S) in the class CLs(0, T ) if

( i ) u ∈ C([0, T );Hs
σ) ∩ C1((0, T );Hs

σ) ∩ C((0, T );Hs+2
σ ).

( ii ) u satisfies (N-S) with some distribution p such that ∇p ∈ C((0, T );Hs).

For the existence of the above strong solution, see [3], [7], [4]. Notice that
u · ∇u ∈ Hs for u ∈ Hs+2 with s > n/2− 1.

Next, we recall the dyadic BMO. We denote by D the set of all dyadic cubes
in Rn, that is,

D =
{

Qj,k =
n∏

i=1

[2−jki, 2−j(ki + 1)) : j ∈ Z, k = (k1, . . . , kn) ∈ Zn

}
.

For a cube Q we denote its measure by |Q|.

Definition 2.2. Let BMOdy(Rn) be the set of all measurable functions f

on Rn such that ‖f‖BMOdy < ∞, where

‖f‖BMOdy = sup
Q∈D

1
|Q|

∫

Q

|f(x)− fQ|dx, fQ =
1
|Q|

∫

Q

f(x)dx.

Then BMO(Rn) ⊂ BMOdy(Rn) and ‖f‖BMOdy ≤ ‖f‖BMO. Let

f(x) =

{− log x, x > 0,

log(−x), x < 0,
x ∈ R.
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Then f ∈ BMOdy(R) \ BMO(R) and also f(· − z) ∈ BMOdy(R) \ BMO(R) for
all z ∈ ∪j∈Z2−jZ.

Our result on continuation of strong solutions is the following:

Theorem 2.1. Let s > n/2− 1 and let a ∈ Hs
σ. Suppose that u is a strong

solution of (N-S) in the class CLs(0, T ). If

∫ T

ε0

‖u(t)‖2BMOdy dt < ∞, for some 0 < ε0 < T,

then u can be continued to the strong solution in the class CLs(0, T ′) for some
T ′ > T .

The theorem above can be proven by the same way as Kozono and Taniuchi [9]
with the bilinear estimate in dyadic BMO. We prove the estimate in the next
section.

An immediate consequence of the theorem above is the following.

Corollary 2.2. Let u be a strong solution of (N-S) in the class CLs(0, T )
for s > n/2 − 1. Suppose that T is maximal, i.e., u cannot be continued in the
class CLs(0, T ′) for any T ′ > T . Then

∫ T

ε

‖u(t)‖2BMOdy dt = ∞, for all 0 < ε < T .

In particular, we have

lim sup
t→T−0

‖u(t)‖BMOdy = ∞.

3. Bilinear estimates in dyadic BMO.

In this section, we prove the following.

Theorem 3.1.

( i ) Let p ∈ (0,∞). For all f, g ∈ Lp ∩ BMOdy,

‖f · g‖Lp ≤ C
(‖f‖Lp‖g‖BMOdy + ‖f‖BMOdy‖g‖Lp

)
.

( ii ) Let p ∈ (1,∞). For all f, g ∈ W 1,p with ∇f,∇g ∈ BMOdy,
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‖f · ∇g‖Lp ≤ C
(‖f‖Lp

∥∥(−∆)1/2g
∥∥

BMOdy +
∥∥(−∆)1/2f

∥∥
BMOdy‖g‖Lp

)
.

(iii) Let p ∈ (1,∞). For all f, g ∈ W |α|+|β|,p ∩ BMOdy with |α| ≥ 1, |β| ≥ 1,

‖∂αf · ∂βg‖Lp ≤ C
(‖f‖BMOdy

∥∥(−∆)(|α|+|β|)/2g
∥∥

Lp

+
∥∥(−∆)(|α|+|β|)/2f

∥∥
Lp‖g‖BMOdy

)
.

The above Theorem 3.1 is an improvement of Kozono-Taniuchi’s lemma in [9]
which is for the usual BMO and p ∈ (1,∞). We proved the theorem by using the
method based on another proof of Kozono-Taniuchi’s lemma by Miyachi [11]. To
do this we need the definitions of the maximal and sharp maximal operators.

For a cube Q we denote its measure and sidelength by |Q| and `(Q), respec-
tively. For a nonnegative integer d, let Pd denote the set of all polynomials having
degree at most d. For r, λ ∈ (0,∞), let

M (r),dyf(x) = sup
Q∈D, Q3x

(
1
|Q|

∫

Q

|f(y)|r dy

)1/r

,

M
](r),dy
d,λ f(x) = sup

Q∈D, Q3x
inf

P∈Pd

1
`(Q)λ

(
1
|Q|

∫

Q

|f(y)− P (y)|r dy

)1/r

.

We simply denote M (1),dy and M
](1),dy
0,0 by Mdy and M ],dy, respectively. Then

∥∥M
](r),dy
0,0 f

∥∥
L∞ ∼ ∥∥M ],dyf

∥∥
L∞ = ‖f‖BMOdy . (3.1)

See also [5, Theorem 14] for ‖M ],dyf‖Lp .
We state four propositions on dyadic sharp maximal operators, which are

proven in the next section. These are valid for the usual sharp maximal operators
as in Miyachi [11].

Proposition 3.2.

( i ) There exists a constant C > 0, dependent only on n, such that

M
](1),dy
1,1 f(x) ≤ C

n∑

j=1

M
](1),dy
0,0 (∂jf)(x)

for all x ∈ Rn.
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( ii ) Let r ∈ (1,∞) and 1/r + 1/r′ = 1. Then

M
](1),dy
1,0 (f∂1g)(x) ≤ 4M (r),dyf(x)M ](r′),dy

0,0 (∂1g)(x)+9M
](1),dy
1,1 f(x)Mdyg(x)

for all x ∈ Rn.

Proposition 3.3. Let k, m ∈ N . Then there exists a constant C > 0,
dependent only on n, k and m, such that

∑

|α|=m

|∂αf(x)| ≤ C
(
M ],dyf(x)

)k/(k+m)
(

M

( ∑

|γ|=k+m

|∂γf |
)

(x)
)m/(k+m)

for all x ∈ Rn. In the above M is the usual Hardy-Littlewood maximal operators.

Proposition 3.4. Let p ∈ (0,∞) and k, m ∈ N .

( i ) There exists a constant C > 0, dependent only on n and p, such that

‖f‖L2p ≤ C‖f‖1/2

BMOdy‖f‖1/2
Lp .

( ii ) If 1 < p̃ = mp/(k + m) ≤ ∞, then there exists a constant C > 0, dependent
only on n, p, k and m, such that

∥∥∥∥
∑

|α|=m

|∂αf |
∥∥∥∥

Lp

≤ C‖f‖k/(k+m)

BMOdy

∥∥∥∥
∑

|γ|=k+m

|∂γf |
∥∥∥∥

m/(k+m)

Lp̃

.

Let ε = (ε1, . . . , εn) ∈ E ≡ {−1, 1}n and let {D(ε)}ε∈E be 2n quadrants, that
is,

D(ε) =
{
x = (x1, . . . , xn) ∈ Rn : εjxj > 0, j = 1, . . . , n

}
.

Proposition 3.5. Let p, r ∈ (0,∞) and d ∈ {0} ∪ N . If M
](r),dy
d,0 f ∈

Lp(Rn), then there exist polynomials πε ∈ Pd, ε ∈ E, such that

∥∥∥∥f −
∑

ε∈E

πεχD(ε)

∥∥∥∥
Lp

≤ C
∥∥M

](r),dy
d,0 f

∥∥
Lp ,

where the constant C > 0 is dependent only on n, p, r and d. Moreover, if there
exist s ∈ (0,∞) and a sequence of cubes {Qj}j ⊂ D such that Q1 ⊂ Q2 ⊂ · · · ⊂
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D(ε), supj |Qj+1|/|Qj | < ∞, ∪jQj = D(ε) and

lim
j→∞

1
|Qj |

∫

Qj

|f(x)|s dx = 0,

then πε = 0. In particular, if f ∈ Ls(Rn) for some s ∈ (0,∞), then

‖f‖Lp ≤ C
∥∥M

](r),dy
d,0 f

∥∥
Lp .

Now we prove the main result in this section by using the propositions above.

Proof of Theorem 3.1.

( i ) By Hölder’s inequality and Proposition 3.4 (i) we have

‖fg‖Lp ≤ ‖f‖L2p‖g‖L2p

.
(‖f‖BMOdy‖f‖Lp‖g‖BMOdy‖g‖Lp

)1/2

≤ (‖f‖Lp‖g‖BMOdy + ‖f‖BMOdy‖g‖Lp

)
.

( ii ) Take r so that 1 < r < p. By Proposition 3.2 and (3.1) we have

M
](1),dy
1,0 (f∂1g)(x)

≤ C

(
M (r),dyf(x)M ](r′),dy

0,0 (∂1g)(x) +
n∑

j=1

M
](1),dy
0,0 (∂jf)(x)Mdyg(x)

)

≤ C

(
M (r),dyf(x)‖∂1g‖BMOdy +

n∑

j=1

‖∂jf‖BMOdyMdyg(x)
)

.

Since f∂1g ∈ Lp/2(Rn), by Proposition 3.5 and the Lp-boundedness of the
operators M (r),dy and Mdy we have

‖f∂1g‖Lp ≤ C
∥∥M

](1),dy
1,0 (f∂1g)

∥∥
Lp

≤ C

(
‖f‖Lp‖∂1g‖BMOdy +

n∑

j=1

‖∂jf‖BMOdy‖g‖Lp

)
.

This shows the conclusion.
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(iii) Let |α| = m and |β| = k. Define q and r as

mq

m + k
=

kr

m + k
= p.

Then 1/p = 1/q + 1/r. By Proposition 3.4 (ii) we have

‖∂αf · ∂βg‖Lp ≤ ‖∂αf‖Lq‖∂βg‖Lr

. ‖f‖k/(k+m)

BMOdy

∥∥∥∥
∑

|γ|=k+m

|∂γf |
∥∥∥∥

m/(k+m)

Lp

‖g‖m/(k+m)

BMOdy

∥∥∥∥
∑

|γ|=k+m

|∂γg|
∥∥∥∥

k/(k+m)

Lp

=
(
‖f‖BMOdy

∥∥∥∥
∑

|γ|=k+m

|∂γg|
∥∥∥∥

Lp

)k/(k+m)

·
(∥∥∥∥

∑

|γ|=k+m

|∂γf |
∥∥∥∥

Lp

‖g‖BMOdy

)m/(k+m)

. ‖f‖BMOdy

∥∥∥∥
∑

|γ|=k+m

|∂γg|
∥∥∥∥

Lp

+
∥∥∥∥

∑

|γ|=k+m

|∂γf |
∥∥∥∥

Lp

‖g‖BMOdy .

The proof is complete. ¤

4. Proofs of Propositions.

In this section, we write f . g if f ≤ Cg for some positive constant C and
we write f ∼ g if f . g . f . We denote

∫
Rn f(x)dx and (1/|Q|) ∫

Q
f(x)dx by

∫
f

and
∫−Q f , respectively.

4.1. Proof of Proposition 3.2.
We state two lemmas. The first lemma is on a kind of test functions. For

f ∈ L1
loc(R

n), we write f⊥Pd if
∫

fP = 0 for all P ∈ Pd.

Lemma 4.1 ([10, Lemma 2], [14, Lemma 2.5]). For a cube Q and t ∈ (0,∞),
let

A(Q, t) =
{
ϕ ∈ C∞(Rn) : suppϕ ⊂ Q, ϕ⊥P1, ‖ϕ‖∞ ≤ t`(Q)−n−1

}
,

B(Q, t) =
{

ϕ ∈ C∞(Rn) : ϕ =
n∑

i=1

∂iψi, ψi ∈ C∞(Rn), suppψi ⊂ Q,

ψi⊥P0, ‖ψi‖∞ ≤ t`(Q)−n

}
.
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Then there exists a constant C > 0, dependent only on n, such that, for all Q,
A(Q, 1) ⊂ B(Q,C).

Lemma 4.2. Let r ∈ [1,∞) and δ ∈ (0, 1]. For a cube Q and a measurable
set E ⊂ Q with |E| ≥ δ|Q|,

(
−
∫

Q

|f − fE |r
)1/r

≤ (1 + δ−1/r) inf
c∈C

(
−
∫

Q

|f − c|r
)1/r

.

Proof. For any c ∈ C,

|c− fE | =
∣∣∣∣ −
∫

E

(f − c)
∣∣∣∣ ≤

(
−
∫

E

|f − c|r
)1/r

≤ δ−1/r

(
−
∫

Q

|f − c|r
)1/r

.

Then

(
−
∫

Q

|f − fE |r
)1/r

≤
(
−
∫

Q

|f − c|r
)1/r

+ |c− fE | ≤ (1 + δ−1/r)
(
−
∫

Q

|f − c|r
)1/r

.

Taking the infimum over all c ∈ C, we have the conclusion. ¤

Now we prove Proposition 3.2.

Proof of (i). Let Q be any cube. By the duality

(
L1(Q)/P1

)∗ = {g ∈ L∞(Q) : g⊥P1},

we have

inf
P∈P1

‖f − P‖L1(Q)

= ‖f‖L1(Q)/P1

= sup
{∣∣∣∣

∫

Q

fg

∣∣∣∣ : g ∈ L∞(Q), g⊥P1, ‖g‖L∞(Q) ≤ 1
}

= sup
{∣∣∣∣

∫

Q

fϕ

∣∣∣∣ : ϕ ∈ C∞(Rn), suppϕ ⊂ Q, ϕ⊥P1, ‖ϕ‖L∞(Q) ≤ 1
}

.

This implies
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inf
P∈P1

1
`(Q)

1
|Q|

∫

Q

|f − P | = sup
ϕ∈A(Q,1)

∣∣∣∣
∫

Q

fϕ

∣∣∣∣.

By Lemma 4.1, for any ϕ ∈ A(Q, 1), we can take ψj ∈ B(Q,C), j = 1, . . . , n, for
some C > 0 such that

∫

Q

fϕ =
∫

Q

f
n∑

j=1

∂jψi = −
∫

Q

n∑

j=1

(∂jf)ψi = −
∫

Q

n∑

j=1

(∂jf − cj)ψj ,

with any cj ∈ C. Then

∣∣∣∣
∫

Q

fϕ

∣∣∣∣ ≤ C
n∑

j=1

−
∫

Q

|∂jf − cj |.

Hence

inf
P∈P1

1
`(Q)

1
|Q|

∫

Q

|f − P | ≤ C
n∑

j=1

inf
c∈C

−
∫

Q

|∂jf − c|.

Taking the supremum over all Q ∈ D with Q 3 x, we have the conclusion.

Proof of (ii). First we show that, for any cube Q, f ∈ Lr(Q) and g ∈
Lr′(Q),

inf
P∈P1

−
∫

Q

|f(∂1g)− P |

≤ 4
(
−
∫

Q

|f |r
)1/r

inf
c∈C

(
−
∫

Q

|∂1g − c|r′
)1/r′

+ 9 inf
P∈P1

1
`(Q)

−
∫

Q

|f − P | −
∫

Q

|g|.

(4.1)

Write Q = I ×Q′ with I = [a, a + h] ⊂ R and Q′ ⊂ Rn−1. Divide the interval I

into three intervals Ii = [a+(i−1)h/3, a+ ih/3], i = 1, 2, 3. Take ai ∈ Ii, i = 1, 3,
so that

∣∣∣∣
∫

Q′
g(ai, x

′)dx′
∣∣∣∣ ≤

1
|Ii|

∫

Ii

∣∣∣∣
∫

Q′
g(x1, x

′)dx′
∣∣∣∣dx1,

where x = (x1, x
′), x′ = (x2, . . . , xn). Let E = [a1, a3]×Q′. Then
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(∂1g)E =
1
|E|

∫

Q′

∫ a3

a1

∂1g(x1, x
′)dx1dx′ =

1
|E|

∫

Q′
(g(a3, x

′)− g(a1, x
′))dx′,

and

|(∂1g)E | ≤
∑

i=1,3

1
|E|

1
|Ii|

∫

Ii

∣∣∣∣
∫

Q′
g(x1, x

′)dx′
∣∣∣∣dx1

≤ 3
|Q|

3
|I|

∫

Q

|g(x)|dx =
9

`(Q)
−
∫

Q

|g(x)|dx. (4.2)

For any P ∈ P1, by Hölder’s inequality, Lemma 4.2 and (4.2),

−
∫

Q

|f(∂1g)− (∂1g)EP |

≤ −
∫

Q

|f((∂1g)− (∂1g)E)|+ −
∫

Q

|(f − P )(∂1g)E |

≤
(
−
∫

Q

|f |r
)1/r(

−
∫

Q

|∂1g − (∂1g)E |r
′
)1/r′

+ −
∫

Q

|f − P ||(∂1g)E |

≤ 4
(
−
∫

Q

|f |r
)1/r

inf
c∈C

(
−
∫

Q

|∂1g − c|r′
)1/r′

+
9

`(Q)
−
∫

Q

|f − P | −
∫

Q

|g|.

Taking the infimum over all P ∈ P1, we have (4.1). Further, taking the supremum
over all Q ∈ D with Q 3 x, we have the conclusion. ¤

4.2. Proof of Proposition 3.3.
Let α be a multi-index with |α| = m. Fix x = (x1, x2, . . . , xn) ∈ Rn and take

a cube Q ∈ D containing x. Take one more cube Q̃ = Ĩ × Q̃′, Ĩ ⊂ R, Q̃′ ⊂ Rn−1,
such that Q̃ ⊂ Q, `(Q̃) = `(Q)/4 and dist(x1, Ĩ) ≥ `(Q)/4.

By the Taylor expansion formula we have

∂αf(x) =
∑

|β|≤k−1

1
β!

∂β+αf(y)(x− y)β

+ k

∫ 1

0

(1− θ)k−1
∑

|γ|=k

1
γ!

∂γ+αf(y + θ(x− y))(x− y)γdθ. (4.3)

Take ϕ ∈ C∞(Rn) such that
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suppϕ ⊂ Q̃,

∫
ϕ(y)dy = 1, |∂βϕ(y)| ≤ cβ`(Q̃)−n−|β|.

Multiplying ϕ(y) to both sides in (4.3) and integrating with respect to y on Q̃, we
have

∂αf(x) =
∑

|β|≤k−1

1
β!

∫

Q̃

∂β+αf(y)(x− y)βϕ(y)dy

+ k
∑

|γ|=k

1
γ!

∫

Q̃

∫ 1

0

(1− θ)k−1∂γ+αf(y + θ(x− y))(x− y)γϕ(y)dθ dy

= L + J.

For L, by the integral by part we have

L =
∑

|β|≤k−1

(−1)|β+α|

β!

∫

Q̃

(f(y)− fQ)∂β+α
y

[
(x− y)βϕ(y)

]
dy.

Since

∣∣∂β+α
y [(x− y)βϕ(y)]

∣∣ . `(Q)|β|−n−|β+α| = `(Q)−n−m,

we get

|L| .
∫

Q

|f(y)− fQ|`(Q)−n−mdy . `(Q)−mM ],dyf(x).

For J , let dy = dy1dy′, dy′ = dy2 . . . dyn and

Jγ =
∫

Q̃′

∫ 1

0

(1− θ)k−1∂γ+αf(y + θ(x− y))(x− y)γϕ(y)dθ dy′.

Then

J = k
∑

|γ|=k

1
γ!

∫

Ĩ

Jγ dy1.

Let us use the change of valuables z = y + θ(x − y). Then y = (z − θx)/(1 − θ),
x− y = (x− z)/(1− θ) and
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Jγ =
∫

R̃

(1− θ)k−1∂γ+αf(z)(x− y)γϕ(y)
D(θ, y2, . . . , yn)
D(z1, z2, . . . , zn)

dz

=
∫

R̃

(1− θ)k−1∂γ+αf(z)(x− y)γϕ(y)
1

(x1 − y1)(1− θ)n−1
dz

=
∫

R̃

(1− θ)k−n∂γ+αf(z)
(x− y)γ

(x1 − y1)
ϕ(y)dz,

where R̃ is the corresponding area to [0, 1]× Q̃′. Note that R̃ ⊂ Q, since x, y ∈ Q

implies z ∈ Q. Using the relations

|x− y| ∼ |x1 − y1| ∼ `(Q), 1− θ =
|z − x|
|x− y| ∼

|z − x|
`(Q)

, |ϕ(y)| . `(Q)−n,

we have

|Jγ | .
∫

Q

|z − x|k−n|∂γ+αf(z)|dz `(Q)−1,

and

|J | ≤ k
∑

|γ|=k

1
γ!

∫

Ĩ

|Jγ |dy1 ≤ k
∑

|γ|=k

1
γ!
|Jγ |`(Q̃)

.
∫

Q

|z − x|k−n
∑

|γ|=k

|∂γ+αf(z)|dz

.
∑

2j<(
√

n/2)`(Q)

∫

2j<|z−x|≤2j+1
(2j)k−n

∑

|γ|=k

|∂γ+αf(z)|dz

.
∑

2j<(
√

n/2)`(Q)

(2j)kM

( ∑

|γ|=k

|∂γ+αf |
)

(x)

≤ `(Q)kM

( ∑

|γ|=k

|∂γ+αf |
)

(x).

Therefore,

|∂αf(x)| ≤ |L|+ |J | . `(Q)−mM ],dyf(x) + `(Q)kM

( ∑

|γ|=k

|∂γ+αf |
)

(x).
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Since Q ∈ D is arbitrary,

|∂αf(x)| . inf
j∈Z

{
(2j)−mM ],dyf(x) + (2j)kM

( ∑

|γ|=k

|∂γ+αf |
)

(x)
}

.
(
M ],dyf(x)

)k/(k+m)
(

M

( ∑

|γ|=k

|∂γ+αf |
)

(x)
)m/(k+m)

.

This is the conclusion. ¤

4.3. Proof of Proposition 3.4.
Proof of (i). Take r so that 0 < r < p < ∞. Then, by Proposition 3.5,

(3.1) and the boundedness of M (r),dy on Lp(Rn),

‖f‖2p
L2p .

∥∥M
](r),dy
0,0 f

∥∥2p

L2p

=
∫ (

M
](r),dy
0,0 f

)2p

≤
∥∥M

](r),dy
0,0 f

∥∥p

L∞

∫ (
M

](r),dy
0,0 f

)p

∼ ‖f‖p
BMOdy

∥∥M
](r),dy
0,0 f

∥∥p

Lp

. ‖f‖p
BMOdy

∥∥M (r),dyf
∥∥p

Lp

. ‖f‖p
BMOdy‖f‖p

Lp .

Proof of (ii). By Proposition 3.3 and the boundedness of M on Lp̃ with
p̃ = mp/(k + m) > 1,

∥∥∥∥
∑

|α|=m

|∂αf |
∥∥∥∥

Lp

.
∥∥M ],dyf

∥∥k/(k+m)

L∞

∥∥∥∥
(

M

( ∑

|γ|=k+m

|∂γf |
))m/(k+m)∥∥∥∥

Lp

= ‖f‖k/(k+m)

BMOdy

∥∥∥∥M

( ∑

|γ|=k+m

|∂γf |
)∥∥∥∥

m/(k+m)

Lp̃

. ‖f‖k/(k+m)

BMOdy

∥∥∥∥
∑

|γ|=k+m

|∂γf |
∥∥∥∥

m/(k+m)

Lp̃

. ¤
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4.4. Proof of Proposition 3.5.
First we note some properties of polynomials. Let 0 < p ≤ q ≤ ∞ and

d ∈ {0} ∪N . Then there exists a constant C > 0, dependent only on n, p and d,
such that, for any polynomial P ∈ Pd and any cube Q,

(
−
∫

Q

|P |p
)1/p

≤
(
−
∫

Q

|P |q
)1/q

≤ C

(
−
∫

Q

|P |p
)1/p

, (4.4)

see for example [2, Lemma 3.1]. In the above, when either p = ∞ or q = ∞ the
corresponding expression is replaced by ‖P‖L∞ .

For r ∈ (0,∞), A ∈ [1,∞) and d ∈ {0} ∪N , let Π(r),A
d (f,Q) be the set of all

π ∈ Pd such that

(
−
∫

Q

|f − π|r
)1/r

≤ A inf
P∈Pd

(
−
∫

Q

|f − P |r
)1/r

.

Then Π(r),1
d (f,Q) ⊂ Π(r),A

d (f,Q) for A ∈ [1,∞). If f ∈ Lr(Q), then Π(r),1
d (f,Q) 6=

∅, since Pd is a finite dimensional space.
To prove Proposition 3.5 we define local versions of M (r),dy and M

](r),dy
d,λ and

state two lemmas. For r, λ ∈ (0,∞) and Ω ⊂ Rn, let

M
(r),dy
Ω f(x) = sup

Q∈D, x∈Q⊂Ω

(
−
∫

Q

|f |r
)1/r

,

M
](r),dy
d,λ,Ω f(x) = sup

Q∈D, x∈Q⊂Ω
inf

P∈Pd

1
`(Q)λ

(
−
∫

Q

|f − P |r
)1/r

.

Lemma 4.3 ([14, Lemma 3.1]). Let r ∈ (0,∞) and d ∈ {0}∪N . Then there
exist constants C > 0 and b > 1 such that, for any Q ∈ D , f ∈ Lr(Q), δ ∈ (0, 1]
and λ > (

∫−Q|f |r)1/r,

∣∣{x ∈ Q : M
(r),dy
Q f(x) > bλ, M

](r),dy
d,0,Q f(x) ≤ δλ

}∣∣

≤ C

(
δ

b

)r∣∣{x ∈ Q : M
(r),dy
Q f(x) > λ

}∣∣. (4.5)

Lemma 4.4. Let p, r ∈ (0,∞) and d ∈ {0}∪N . Then there exists a constant
C > 0, dependent only on n, p, r and d, such that, for any A ∈ [1,∞), Q ∈ D ,
f ∈ Lr(Q) and π ∈ Π(r),A

d (f,Q),
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‖f − π‖Lp(Q) ≤ AC
∥∥M

](r),dy
d,0,Q f

∥∥
Lp(Q)

.

Proof of Lemma 4.4. By the good λ inequality (4.5) and the standard
argument (see for example [13, Theorem 1.3]) we have the following boundedness:
For p, r ∈ (0,∞) and d ∈ {0} ∪N , there exists a constant C > 0, dependent only
on n, p, r and d, such that, for any Q ∈ D and f ∈ Lr(Q),

∥∥M
(r),dy
Q f

∥∥
Lp(Q)

≤ C

(∥∥M
](r),dy
d,0,Q f

∥∥
Lp(Q)

+ |Q|1/p

(
−
∫

Q

|f |r
)1/r)

. (4.6)

Take π ∈ Π(r),A
d (f,Q) and substitute f − π for f in (4.6). Then

‖f − π‖Lp(Q) ≤
∥∥M

(r),dy
Q (f − π)

∥∥
Lp(Q)

.
∥∥M

](r),dy
d,0,Q f

∥∥
Lp(Q)

+ |Q|1/p

(
−
∫

Q

|f − π|r
)1/r

≤ ∥∥M
](r),dy
d,0,Q f

∥∥
Lp(Q)

+ A|Q|1/p inf
x∈Q

M
](r),dy
d,0,Q f(x).

Since

|Q|1/p inf
x∈Q

M
](r),dy
d,0,Q f(x) =

( ∫

Q

[
inf
x∈Q

M
](r),dy
d,0,Q f(x)

]p
)1/p

≤ ∥∥M
](r),dy
d,0,Q f

∥∥
Lp(Q)

,

we get the conclusion. ¤

Now we prove Proposition 3.5.

Proof of Proposition 3.5. We show that, for each ε ∈ E, there exists
πε ∈ Pd such that

‖f − πε‖Lp(D(ε)) .
∥∥M

](r),dy
d,0 f

∥∥
Lp(D(ε))

. (4.7)

Let {Qj} ⊂ D , Q1 ⊂ Q2 ⊂ · · · ⊂ D(ε), supj |Qj+1|/|Qj | < ∞, ∪jQj = D(ε). Take

πj ∈ Π(r),1
d (f,Qj). Then, by Lemma 4.4, we have

‖f − πj‖Lp(Qj) .
∥∥M

](r),dy
d,0 f

∥∥
Lp(Qj)

. (4.8)
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On the other hand, we have by (4.4)

‖πj − πj+1‖L∞(Q1) ≤ ‖πj − πj+1‖L∞(Qj) .
(
−
∫

Qj

|πj − πj+1|r
)1/r

≤
(
−
∫

Qj

|f − πj |r
)1/r

+
( |Qj+1|
|Qj | −

∫

Qj+1

|f − πj+1|r
)1/r

. inf
x∈Qj

M
](r),dy
d,0 f(x) ≤ |Qj |−1/p

∥∥M
](r),dy
d,0 f

∥∥
Lp(Qj)

≤ |Qj |−1/p
∥∥M

](r),dy
d,0 f

∥∥
Lp(D(ε))

.

Note that we may assume that 2n ≤ |Qj+1|/|Qj |. Hence

∞∑

j=1

‖πj − πj+1‖L∞(Q1) .
∞∑

j=1

|Qj |−1/p
∥∥M

](r),dy
d,0 f

∥∥
Lp(D(ε))

< ∞.

This shows that {πj}j converges and the limit πε is in Pd, since Pd is a finite
dimensional space. Therefore, letting j →∞ in (4.8), we get (4.7).

Finally, we assume that {Qj}j ⊂ D , Q1 ⊂ Q2 ⊂ · · · ⊂ D(ε),
supj |Qj+1|/|Qj | < ∞, ∪jQj = D(ε) and

lim
j→∞

−
∫

Qj

|f |s = 0.

In this case, for s1 ≤ s, by Hölder’s inequality,

lim
j→∞

(
−
∫

Qj

|f |s1

)1/s1

≤ lim
j→∞

(
−
∫

Qj

|f |s
)1/s

= 0.

Hence we may assume that s ≤ r. Let π̃j ∈ Π(s),1
d (f,Qj). Then, for any P ∈ Pd,

(
−
∫

Qj

|f − π̃j |r
)1/r

≤
(
−
∫

Qj

|f − P |r
)1/r

+
(
−
∫

Qj

|P − π̃j |r
)1/r

,

and, by (4.4),
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(
−
∫

Qj

|P − π̃j |r
)1/r

.
(
−
∫

Qj

|P − π̃j |s
)1/s

≤
(
−
∫

Qj

|f − P |s
)1/s

+
(
−
∫

Qj

|f − π̃j |s
)1/s

≤ 2
(
−
∫

Qj

|f − P |s
)1/s

≤ 2
(
−
∫

Qj

|f − P |r
)1/r

.

Hence, for some A′ ≥ 1,

(
−
∫

Qj

|f − π̃j |r
)1/r

≤ A′ inf
P∈Pd

(
−
∫

Qj

|f − P |r
)1/r

.

That is, π̃j ∈ Π(r),A′

d (f,Qj), j = 1, 2, . . . . By the same way as before we get
limj→∞ π̃j = π̃ε ∈ Pd and

‖f − π̃ε‖Lp(D(ε)) . A′
∥∥M

](r),dy
d,0 f

∥∥
Lp(D(ε))

.

Here we note that the polynomial πε satisfying ‖f − πε‖Lp(D(ε)) < ∞ is unique.
Then it turns out that limj→∞ π̃j = πε. However, by (4.4)

‖π̃j‖L∞(Qj) .
(
−
∫

Qj

|π̃j |s
)1/s

≤
(
−
∫

Qj

|f − π̃j |s
)1/s

+
(
−
∫

Qj

|f |s
)1/s

≤
(
−
∫

Qj

|f − 0|s
)1/s

+
(
−
∫

Qj

|f |s
)1/s

→ 0,

as j →∞. This shows that πε = 0. ¤

5. Example.

In this section we prove the following proposition. The function u in the
proposition satisfies (1.3).

Proposition 5.1. Let p ∈ (0,∞). Then there exists an odd function u ∈
C([0, T )×R3) such that
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u(t) ∈ C∞(R3) ∩ L∞(R3) for t ∈ [0, T ),

u ∈ L∞([0, T );Lp(R3)) ∩ L2([0, T ); BMOdy(R3)),

lim
t→T−0

√
T − t ‖u(t, ·)‖L∞ = ∞,

lim
t→T−0

√
T − t ‖u(t, ·)‖BMO = ∞,

and, for any q > p,

lim
t→T−0

‖u(t, ·)‖Lq(B(0,1)) = ∞.

To prove the proposition, we state two lemmas without proofs (see for example
[6], [15]).

Lemma 5.2. If f, g ∈ BMO(Rn), then max(f, g),min(f, g) ∈ BMO(Rn)
and

‖max(f, g)‖BMO, ‖min(f, g)‖BMO ≤ 2(‖f‖BMO + ‖g‖BMO).

Lemma 5.3. For η ∈ C∞comp(R
n) with η ≥ 0 and

∫
η = 1,

‖f ∗ η‖BMO ≤ 2‖f‖BMO.

Proof of Proposition 5.1. We divide into three parts. In Part 1 we
give a parametrized function whose BMOdy-norm is bounded but BMO-norm in-
flates. In Part 2 we give a parametrized function whose Lp-norm is bounded but
Lq(B(0, 1))-norm inflates (p < q). In Part 3 we interpolate the functions con-
structed in Part 1 and Part 2.

Part 1: For N > 1, let

ḡN (x) = max
(

0,min
(

N, log
(

1
|x|

)
, 4N + log |x|

))

=





0, |x| ≤ e−4N ,

4N + log |x|, e−4N ≤ |x| ≤ e−3N ,

N, e−3N ≤ |x| ≤ e−N ,

log(1/|x|), e−N ≤ |x| ≤ 1,

0, 1 ≤ |x|,

x ∈ R.
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Then ḡN ∈ BMO(R) and ‖ḡN‖BMO ≤ c0 for some constant c0 independent of N

by Lemma 5.2. Next, let

gN (x) = gN (x1, x2, x3) = min
(
ḡN (x1), ḡN (x2), ḡN (x3)

)
.

Then gN ∈ BMO(R3) and ‖gN‖BMO ≤ 6c0. Let η ∈ C∞comp(R
3), η ≥ 0,

∫
η = 1

and supp η ⊂ B(0, 1), and let

ηN (x) = e5Nη(e5Nx). (5.1)

Then gN ∗ηN ∈ C∞comp(R
3)∩BMO(R3) and ‖gN ∗ηN‖BMO ≤ 12c0 by Lemma 5.3.

Let

fN (x) =

{
gN ∗ ηN (x), x3 > 0,

−gN ∗ ηN (x), x3 < 0.

Then fN ∈ BMOdy(R3) and

‖fN‖BMOdy ≤ 12c0. (5.2)

Observing gN ∗ ηN (x) = 0 on the set {x = (x1, x2, x3) : minj |xj | < e−4N − e−5N},
we see that fN ∈ C∞comp(R

3). On the other hand, for

Q =
3∏

j=1

[−e−N , e−N ], Q1 =
3∏

j=1

[0, e−N ], Q2 =
3∏

j=1

[e−3N + e−5N , e−N − e−5N ],

|Q2|/|Q1| > 1/2 and

1
|Q|

∫

Q

|fN (x)− (fN )Q|dx =
1
|Q1|

∫

Q1

|fN (x)|dx ≥ 1
|Q1|

∫

Q2

N dx ≥ N

2
,

since fN (x) = N on Q2. That is,

‖fN‖L∞ = N,
N

2
≤ ‖fN‖BMO ≤ 2N. (5.3)

Note that |fN (x)| ≤ gN (x) ≤ minj max(0, log(1/|xj |)). Then, for any p ∈ (0,∞),

‖fN‖Lp ≤ c1, (5.4)
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for some constant c1 independent of N .

Part 2: Let ηN be as in (5.1) and hN = h̃N ∗ ηN , N > 1, where

H(r) =
1

r3

(
log

(
r +

1
r

))2

and

h̃N (x) =

{
min(N, H1/p(|x|)), x3 > 0,

−min(N, H1/p(|x|)), x3 < 0,
x = (x1, x2, x3) ∈ R3.

Then hN ∈ C∞(R3) ∩ L∞(R3) and hN (x) = N on the set

L =
{
x = (x1, x2, x3) : e−5N < |x| < N−p/3 − e−5N , x3 > e−5N

}
.

It is easy to see that

‖hN‖Lp ≤ c2, ‖hN‖BMOdy ≤ ‖hN‖BMO ≤ 2‖hN‖L∞ = 2N (5.5)

where the constant c2 is independent of N . Moreover, for any q > p, if N is large
enough, then |h̃N (x)| = H1/p(|x|) on |x| ≥ N−p/2 and

∫

B(0,1)∩{x3>e−5N}
hq

N (x)dx

≥
∫

B(0,1/2)∩{x3>2e−5N}
h̃q

N (x)dx

&
∫ 1/2

N−p/2
H(r)q/pr2 dr &

∫ 1/2

N−p/2
r−1

(
log

(
1
r

))q

dr & (log N)q+1,

that is,

‖hN‖Lq & (log N)1+1/q. (5.6)

Part 3: For N > 1, let θ(N) = (log N)−1 and

UN (x) = (1− θ(N))fN (x) + θ(N)hN (x).
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Then maxx UN (x) = N , since L ∩Q2 6= ∅. That is,

‖UN‖L∞ = N.

From (5.2)–(5.6) it follows that

‖UN‖Lp ≤ c1 + c2, lim
N→∞

‖UN‖Lq = ∞,

‖UN‖BMOdy ≤ ‖fN‖BMOdy + θ(N)‖hN‖BMOdy ≤ 12c0 + 2N(log N)−1.

If N is large enough, then θ(N)‖hN‖BMO/‖fN‖BMO is small and then

‖UN‖BMO ∼ ‖fN‖BMO ∼ N.

Therefore, taking a large C > 0, a small δ > 0 and letting u(t, x) = UN (x) with

N = C +
C√

T − t

(
log

C√
T − t

)δ

,

we have the conclusion. ¤
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