Vol. 64, No. 2 (2012) pp. 387–397 doi: 10.2969/jmsj/06420387

The separable quotient problem and the strongly normal sequences

By Wiesław Śliwa

(Received May 31, 2010) (Revised Sep. 15, 2010)

Abstract. We study the notion of a *strongly normal sequence* in the dual E^* of a Banach space E. In particular, we prove that the following three conditions are equivalent:

- (1) E^* has a strongly normal sequence,
- (2) $(E^*, \sigma(E^*, E))$ has a Schauder basic sequence,
- (3) E has an infinite-dimensional separable quotient.

Introduction.

We put $S(X) = \{x \in X : ||x|| = 1\}$ and $B(X) = \{x \in X : ||x|| \le 1\}$ if X is a normed space. Let E be a Banach space. A sequence $(y_n) \subset S(E^*)$ is normal in E^* if $\lim_n y_n(x) = 0$ for every $x \in E$; clearly, the normal sequences coincide with the normalized ω^* -null sequences. The excellent Josefson-Nissenzweig theorem states that the dual of any infinite-dimensional Banach space contains a normal sequence ([5], [12]). It is easy to see that a sequence $(y_n) \subset S(E^*)$ is normal if and only if the subspace $\{x \in E : \lim_n y_n(x) = 0\}$ is dense in E. We will say that a sequence $(y_n) \subset S(E^*)$ is strongly normal if the subspace $\{x \in E : \sum_{n=1}^{\infty} |y_n(x)| < \infty\}$ is dense in E ([18]). Clearly, every strongly normal sequence in E^* is normal.

One of the most known open problems for Banach spaces is the separable quotient problem: Does every infinite-dimensional Banach space has an infinite-dimensional separable quotient? i.e. Does every infinite-dimensional Banach space E has a closed subspace M such that the quotient space E/M is infinite-dimensional and separable? ([1], [8], [10], [11], [15]-[22])

Recall that a sequence (x_n) in a locally convex space F is: (1) a Schauder basis of F if for each element x of F there is a unique sequence (α_n) of scalars such that $x = \sum_{n=1}^{\infty} \alpha_n x_n$ and the coefficient functionals $x_n^*, n \in \mathbb{N}$, defined by $x_n^*(x) = \alpha_n$, are continuous on F; (2) a Schauder basic sequence if it is a Schauder basis of its closed linear span X in F.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B26, 46B10.

 $[\]it Key\ Words\ and\ Phrases.$ Banach space, separable quotient problem, normal sequence, Josefson-Nissenzweig theorem.

We shall prove that a Banach space E has an infinite-dimensional separable quotient iff E^* contains a strongly normal sequence iff $E^*_{\sigma} = (E^*, \sigma(E^*, E))$ has a Schauder basic sequence (Theorem 3). Before, developing some ideas of [4], we shall show that every strongly normal sequence in the dual E^* of a Banach space E contains a Schauder basic subsequence in E^*_{σ} (Theorem 1).

We state the following.

PROBLEM. Does every normal sequence in the dual E^* of a Banach space E contains a strongly normal subsequence?

If this problem has a positive answer for a given infinite-dimensional Banach space E, then by the Josefson-Nissenzweig theorem and Theorem 3, E has an infinite-dimensional separable quotient.

We show that for every WCG (i.e. weakly compactly generated) Banach space E our problem has a positive answer (Proposition 4). Next we give an example of a normal sequence in the dual E^* of some known non-WCG Banach space E, which is not strongly normal but every subsequence of it contains a strongly normal subsequence (Example).

Finally, we show that a Banach space E has no infinite-dimensional separable quotient iff every continuous linear map from a Banach space to E with dense range is a surjection iff every sequence of continuous linear maps from E to some non-zero (or to every) Fréchet space F, which is point-wise convergent on a dense subspace of E is point-wise convergent on E to some continuous linear map from E to F (Theorem 6).

Results.

Johnson and Rosenthal proved that any normal sequence (y_n) in the dual E^* of a separable Banach space E has a Schauder basic subsequence $(y_{k(n)})$ in E^*_{σ} ([4, Theorem III.1]). Developing some ideas of their proof we shall show the following.

THEOREM 1. Let E be a Banach space. Any strongly normal sequence (y_n) in E^* contains a Schauder basic subsequence $(y_{k(n)})$ in E^*_{σ} .

PROOF. Let $\varphi: E \to E^{**}$ be the canonical embedding map.

(A1) First we shall show that for every finite-dimensional subspace Y of E^* and every $\varepsilon \in (0, 1/2)$ there exists a finite subset H of S(E) such that for every $f \in S(Y^*)$ there is an $x \in H$ with $||f - \varphi(x)||Y|| < 2\varepsilon$.

Let $\psi: (E/^{\perp}Y) \to (E/^{\perp}Y)^{**}$ be the canonical embedding map; clearly ψ is an isometric isomorphism. Since $(^{\perp}Y)^{\perp} = Y$, the map

$$\alpha: Y \to (E/^{\perp}Y)^*, \ \alpha(y)(x+^{\perp}Y) = y(x), \text{ for } y \in Y, x \in E,$$

is an isometric isomorphism ([14, 4.9(b)]). Thus the adjoint map

$$\alpha^*: (E/^{\perp}Y)^{**} \to Y^*, \ \alpha^*(\psi(x+^{\perp}Y)) = \varphi(x) \mid Y, \text{ for } x \in E,$$

is also an isometric isomorphism ([2, 8.6.18(a)]).

Hence for every $f \in S(Y^*)$ there is an $x \in S(E)$ with $||f - \varphi(x)|| Y|| < \varepsilon$. Indeed, for every $f \in S(Y^*)$ there exist $v \in E$ and $z \in {}^{\perp}Y$ such that $\varphi(v)||Y = f$, $||v + {}^{\perp}Y|| = 1$ and $1 \le ||v + z|| < 1 + \varepsilon$. Thus for u = v + z and x = u/||u|| we have $x \in S(E)$ and $||f - \varphi(x)|| Y|| = 1 - ||u||^{-1} < \varepsilon$.

The set $S(Y^*)$ is compact, so there exists a finite subset $\{f_1, \ldots, f_n\}$ of $S(Y^*)$ with $S(Y^*) \subset \bigcup_{m=1}^n K(f_m, \varepsilon)$. Let $x_1, \ldots, x_n \in S(E)$ with $||f_m - \varphi(x_m)|| Y || < \varepsilon$ for $1 \leq m \leq n$. Put $H = \{x_1, \ldots, x_n\}$. Then for every $f \in S(Y^*)$ there is an $x \in H$ with $||f - \varphi(x_m)|| Y || < 2\varepsilon$.

- (A2) Since $\lim_n y_n(x) = 0$ for every $x \in E$, using (A1) we can choose inductively a strictly increasing sequence $(k(n)) \subset \mathbb{N}$ and an increasing sequence (H_n) of finite subsets of S(E) such that for every $n \in \mathbb{N}$ we have
 - (i) for every $f \in S(Y_n^*)$ there is an $x \in H_n$ with $||f \varphi(x)|| Y_n|| < 2^{-n-1}$, where Y_n is the linear span of the set $\{y_{k(i)} : 1 \le i \le n\}$;
 - (ii) $|y_{k(n+1)}(x)| < 2^{-n-2}$ for every $x \in H_n$.
 - (A3) For every $n \in \mathbb{N}$ and for all $\alpha_1, \ldots, \alpha_{n+1} \in \mathbb{K}$ we have

$$\left\| \sum_{i=1}^{n} \alpha_i y_{k(i)} \right\| \le (1 + 2^{1-n}) \left\| \sum_{i=1}^{n+1} \alpha_i y_{k(i)} \right\|.$$

Indeed, let $n \in \mathbb{N}$ and $\alpha_1, \ldots, \alpha_{n+1} \in \mathbb{K}$. Put $y = \sum_{i=1}^n \alpha_i y_{k(i)}$ and $z = \alpha_{n+1} y_{k(n+1)}$. Then there is $f \in S(Y^*)$ with $f(y) = \|y\|$ ([14, 3.3]). By (A2) there is an $x \in H_n$ with $\|f - \varphi(x) \mid Y_n\| < 2^{-n-1}$ and $|y_{k(n+1)}(x)| < 2^{-n-2}$. If $\|z\| > 2\|y\|$, then $\|y + z\| > \|y\|$. If $\|z\| \le 2\|y\|$, then $\|y + z\| \ge |(y + z)(x)| \ge |y(x)| - |z(x)| \ge |f(y)| - |f(y) - y(x)| - |z(x)| = \|y\| - |(f - \varphi(x) \mid Y_n)(y)| - \|z\||y_{k(n+1)}(x)| \ge (1 - 2^{-n})\|y\| \ge (1 + 2^{1-n})^{-1}\|y\|$.

Since $\prod_{n=1}^{\infty} (1+2^{1-n}) < \infty$, using [9, 4.1.24], we infer that $(y_{k(n)})$ is a Schauder basic sequence in E^* such that $||P_n|| \le \prod_{k=n}^{\infty} (1+2^{1-k}) < 1+2^{4-n}$, $n \in \mathbb{N}$, where $P_n: Y \to Y$, $\sum_{i=1}^{\infty} \alpha_i y_{k(i)} \to \sum_{i=1}^n \alpha_i y_{k(i)}$ and Y is the closed linear span of $(y_{k(n)})$.

(A4) The operator $T: E \to Y^*$, (Tx)(y) = y(x), $x \in E$, $y \in Y$, is well defined,

linear and continuous. Let $(f_n) \subset Y^*$ be the sequence of coefficient functionals associated with the Schauder basis $(y_{k(n)})$ in Y. Clearly, (f_n) is a Schauder basis of its closed linear span F in Y^* ([9, 4.4.1]). Put $G = \{x \in E : \sum_{n=1}^{\infty} |y_n(x)| < \infty\}$.

its closed linear span F in Y^* ([9, 4.4.1]). Put $G = \{x \in E : \sum_{n=1}^{\infty} |y_n(x)| < \infty\}$. For $x \in E$ we have $Tx = \sum_{n=1}^{\infty} y_{k(n)}(x) f_n$. Indeed, let $x \in G$. For $n \ge 2$ we get $||f_n|| = ||f_n|| ||y_{k(n)}|| = ||P_n - P_{n-1}|| \le 2 + 2^{6-n} \le 18$, so the series $\sum_{n=1}^{\infty} y_{k(n)}(x) f_n$ is convergent in F. For $y \in Y$ we have $(Tx)(y) = y(x) = (\sum_{n=1}^{\infty} f_n(y) y_{k(n)}(x) = \sum_{n=1}^{\infty} f_n(y) y_{k(n)}(x) = (\sum_{n=1}^{\infty} y_{k(n)}(x) f_n)(y)$, so $Tx = \sum_{n=1}^{\infty} y_{k(n)}(x) f_n \in F$. Hence $T(E) = T(\overline{G}) \subset T(\overline{G}) \subset F$. Let $x \in E$. Then $Tx = \sum_{j=1}^{\infty} \alpha_j f_j$ for some scalars $\alpha_1, \alpha_2, \ldots$ Hence $\alpha_n = (\sum_{j=1}^{\infty} \alpha_j f_j)(y_{k(n)}) = (Tx)(y_{k(n)}) = y_{k(n)}(x), n \in \mathbb{N}$, so $Tx = \sum_{n=1}^{\infty} y_{k(n)}(x) f_n$.

(A5) For every $g \in F$ and every $\varepsilon > 0$ there is $x \in E$ with ||x|| = ||g|| such that $||g - Tx|| < \varepsilon$. Indeed, for every $g \in S(F)$ there is a sequence $(g_n) \subset S(F)$ with $\lim g_n = g$ such that $g_n \in F_n$ for $n \in \mathbb{N}$, where F_n is the linear span of the set $\{f_1, \ldots, f_n\}$. Thus it is enough to show that for every $n \in \mathbb{N}$ and every $g \in S(F_n)$ there is $x \in S(E)$ with $||g - Tx|| \le 2^{7-n}$. Let $n \in \mathbb{N}$, $g \in S(F_n)$ and $h = ||g|Y_n||^{-1}g$.

Since $h \mid Y_n \in S(Y_n^*)$, by (A2) there is an $x \in H_n$ with $||h|| Y_n - \varphi(x) ||Y_n|| < 2^{-n-1}$. Put $f = \sum_{i=1}^n y_{k(i)}(x) f_i$. For $y \in Y_n$ we have $f(y) = \sum_{i=1}^n y_{k(i)}(x) f_i(y) = (\sum_{i=1}^n f_i(y) y_{k(i)})(x) = y(x) = \varphi(x)(y)$, so $f \mid Y_n = \varphi(x) \mid Y_n$.

By (A4) and (A2) we get $||Tx - g|| = ||\sum_{i=1}^{\infty} y_{k(i)}(x)f_i - g|| \le ||f - g|| + \sum_{i=n+1}^{\infty} |y_{k(i)}(x)||f_i|| \le ||f - g|| + \sum_{i=n+1}^{\infty} |y_{k(i)}(x)||f_i|| \le ||f - g|| + \sum_{i=n+1}^{\infty} 2^{-i-1}(2 + 2^{6-i}) \le (||f - h|| + ||h - g||) + 2^{6-n}$. For $u \in F_n$ we have $||u|| = \sup\{|u(P_n y)| : y \in S(Y)\} \le ||u|| Y_n |||P_n||$, so $||f - h|| \le ||f|| Y_n - h ||Y_n|||P_n|| = ||\varphi(x)|| Y_n - h ||Y_n|||P_n|| < 2^{-n-1}(1 + 2^{4-n}) \le 2^{4-n}$. Moreover $||h - g|| = ||g|Y_n||^{-1} - 1 \le ||g||^{-1}||P_n|| - 1 \le 2^{4-n}$. Thus $||Tx - g|| \le 2^{7-n}$.

- (A6) We show that T(E) = F. Let $g \in F$. Using (A5) we choose an element $x_1 \in E$ with $||x_1|| = ||g||$ such that $||g Tx_1|| < 2^{-1}$. Next we choose an element $x_2 \in E$ with $||x_2|| = ||g Tx_1||$ such that $||g Tx_1 Tx_2|| < 2^{-2}$. This way we can obtain a sequence $(x_n) \subset E$ such that $||x_{n+1}|| = ||g \sum_{j=1}^n Tx_j||$ and $||g \sum_{j=1}^{n+1} Tx_j|| < 2^{-n-1}$ for $n \in \mathbb{N}$. Clearly, the series $\sum_{j=1}^{\infty} x_j$ is convergent in E to some x and Tx = g.
- (A7) The sequence $(g_n) \subset F^*$ of coefficient functionals associated with the Schauder basis (f_n) in F is a Schauder basis in F_{σ}^* . The adjoint map $T^*: F^* \to E^*$ is an isomorphism of F_{σ}^* and the closed subspace T^*F^* of E_{σ}^* ([14, 4.14 and 4.15]). Thus the sequence (T^*g_n) is a Schauder basic sequence in E_{σ}^* . We have $(T^*g_n)(x) = g_n(Tx) = g_n(\sum_{i=1}^{\infty} y_{k(i)}(x)f_i) = y_{k(n)}(x)$ for $x \in E$ and $n \in \mathbb{N}$, so $T^*g_n = y_{k(n)}$ for $n \in \mathbb{N}$. We have shown that $(y_{k(n)})$ is a Schauder basic sequence in E_{σ}^* .

Let E be a Banach space. By the Banach-Steinhaus theorem every sequence $(y_n) \subset E^*$ which is point-wise bounded on E is bounded. We will say that a sequence $(y_n) \subset E^*$ is pseudobounded if it is point-wise bounded on a dense subspace of E and $\sup_n \|y_n\| = \infty$.

For Schauder basic sequences in E_{σ}^* we have the following.

PROPOSITION 2. Let E be a Banach space and let (y_n) be a Schauder basic sequence in E_{σ}^* . If $(y_n) \subset S(E^*)$, then (y_n) is strongly normal in E^* . If $\sup_n \|y_n\| = \infty$, then (y_n) is pseudobounded in E^* . Every pseudobounded sequence (z_n) in E^* has a Schauder basic subsequence in E_{σ}^* .

PROOF. Denote by Y the closure of the linear span of the set $\{y_n : n \in \mathbf{N}\}$ in E_{σ}^* . Then there is a sequence $(x_n) \subset E$ such that $y_n(x_m) = \delta_{n,m}$ for all $n, m \in \mathbf{N}$ and $y(x) = \sum_{n=1}^{\infty} y(x_n) y_n(x)$ for all $y \in Y, x \in E$. For the linear span X of the set $\{x_n : n \in \mathbf{N}\}$ we have

$$(X + {}^{\perp}Y)^{\perp} = (X \cup {}^{\perp}Y)^{\perp} = X^{\perp} \cap ({}^{\perp}Y)^{\perp} = X^{\perp} \cap Y = \{0\}.$$

Thus $X + {}^{\perp}Y$ is dense in E, so the subspaces $\{x \in E : \sum_{n=1}^{\infty} |y_n(x)| < \infty\}$ and $\{x \in E : \sup_n |y_n(x)| < \infty\}$ are dense in E, too.

Let $(k(n)) \subset \mathbf{N}$ be a strictly increasing sequence with $||z_{k(n)}|| \geq n^2$ for $n \in \mathbf{N}$. Put $v_n = z_{k(n)}/||z_{k(n)}||$ for $n \in \mathbf{N}$. The sequence (v_n) is strongly normal in E^* , since $\{x \in E : \sup_n |z_n(x)| < \infty\} \subset \{x \in E : \sum_{n=1}^{\infty} |v_n(x)| < \infty\}$. Using Theorem 1 we infer that the sequence $(z_{k(n)})$ has a Schauder basic subsequence in E^*_{σ} . \square

Using the last proposition we get the following.

Theorem 3. Let E be a Banach space. Then the following conditions are equivalent:

- (1) E has an infinite-dimensional separable quotient;
- (2) E^* has a strongly normal sequence;
- (3) E_{σ}^* has a Schauder basic sequence;
- (4) E^* has a pseudobounded sequence.

PROOF. (1) \Rightarrow (2). By [6, Proposition 1], there exists a biorthogonal sequence $((x_n,y_n)) \subset E \times E^*$ such that $A=(\lim\{x_n:n\in \mathbf{N}\}+\bigcap_{n=1}^\infty \ker y_n)$ is a dense subspace in E; clearly we can assume that $(y_n)\subset S(E^*)$. The sequence (y_n) is strongly normal in E^* , since $\{x\in E:\sum_{n=1}^\infty |y_n(x)|<\infty\}\supset A$.

Using Theorem 1 we get $(2) \Rightarrow (3)$. By [20, Proposition 1], we obtain $(3) \Rightarrow$ (1). Using Proposition 2 we get the equivalence $(3) \Leftrightarrow (4)$.

It is known that every infinite-dimensional WCG Banach space has an infinite-dimensional separable quotient. We shall show the following ([18]).

PROPOSITION 4. Let E be a WCG Banach space. Then every normal sequence (y_n) in E^* contains a strongly normal subsequence.

Proof.

Case 1: E is separable. Let $X = \{x_n : n \in \mathbb{N}\}$ be a countable dense subset of E. For every $n \in \mathbb{N}$ we choose $k(n) \in \mathbb{N}$ with $|y_{k(n)}(x_i)| < n^{-2}$ for $1 \le i \le n$; we can assume that the sequence (k(n)) is strictly increasing. Then the sequence $(y_{k(n)})$ is strongly normal in E^* , since $\{x \in E : \sum_{n=1}^{\infty} |y_{k(n)}(x)| < \infty\} \supset X$.

Case 2: E is not separable. By [3, Proposition 1], there is a continuous linear projection $Q: E \to E$ with ||Q|| = 1 such that F = Q(E) is a separable closed subspace of E and $(y_n) \subset Q^*(E^*)$. Let $i: F \to E$ be the identity embedding. Put $P: E \to F, x \to Qx$. Then Q = iP and $Q^*(E^*) = P^*(i^*(E^*)) \subset P^*(F^*)$, so $(y_n) \subset P^*(F^*)$. Moreover P(B(E)) = B(F). Therefore for every $z \in F^*$ we have

$$||P^*z|| = \sup\{|(P^*z)(x)| : x \in B(E)\} = \sup\{|z(Px)| : x \in B(E)\}$$
$$= \sup\{|z(x)| : x \in B(F)\} = ||z||.$$

Since $(y_n) \subset P^*(F^*) \cap S(E^*)$, there is $(z_n) \subset S(F^*)$ with $P^*z_n = y_n$, $n \in \mathbb{N}$. Thus (z_n) is a normal sequence in F^* . By Case 1, (z_n) contains a strongly normal subsequence $(z_{k(n)})$ in F^* . Then the subspace $\{x \in F : \sum_{n=1}^{\infty} |z_{k(n)}(x)| < \infty\} + \ker P$ is dense in E, so the subspace $\{x \in E : \sum_{n=1}^{\infty} |y_{k(n)}(x)| < \infty\}$ is dense in E. Thus $(y_{k(n)})$ is strongly normal in E^* .

EXAMPLE. The linear space $E = \{(x_n) \in c_0 : \sup_k | \sum_{n=1}^k x_n| < \infty \}$ with the norm $||x|| = \sup_k | \sum_{n=1}^k x_n|, \ x = (x_n)$, is a Banach space and it is not WCG ([17]). Let $f_n : E \to K$, $x = (x_k) \to x_n$, $n \in N$. Then $(f_n) \subset E^*$, $\lim_n f_n(x) = 0$ for every $x \in E$ and $1 \le ||f_n|| \le 2$ for $n \in N$. Put $y_n = f_n/||f_n||, \ n \in N$; clearly (y_n) is a normal sequence in E^* . We shall prove that a subsequence $(y_{k(n)})$ of (y_n) is strongly normal in E^* if and only if the sequence $(k(n)) \subset N$ does not contain arbitrary long series of successive integers. In particular the normal sequence (y_n) is not strongly normal but every subsequence of it contains a strongly normal subsequence.

PROOF. Let $(k(n)) \subset N$ be a strictly increasing sequence.

Assume that (k(n)) contains arbitrary long series of successive integers. Then for every $s \in \mathbb{N}$ there is $n(s) \in \mathbb{N}$ such that $k(n(s) + 1); \ldots; k(n(s) + 2s)$ are successive integers; we can assume that n(s+1) > n(s) + 2s for $s \in \mathbb{N}$. Put

$$z_{l} = \begin{cases} s^{-1} & \text{if } k(n(s)+1) \leq l \leq k(n(s)+s) \text{ for some } s \in \mathbf{N}; \\ -s^{-1} & \text{if } k(n(s)+s+1) \leq l \leq k(n(s)+2s) \text{ for some } s \in \mathbf{N}; \\ 0 & \text{for all other } l \in \mathbf{N}. \end{cases}$$

Clearly $z = (z_l) \in E$. Let $x \in E$ with $\sum_{n=1}^{\infty} |y_{k(n)}(x)| < \infty$. Then $\sum_{n=1}^{\infty} |x_{k(n)}| = \sum_{n=1}^{\infty} |f_{k(n)}(x)| = \sum_{n=1}^{\infty} |f_{k(n)}(x)| = \sum_{n=1}^{\infty} |f_{k(n)}(x)| < \infty$. For $s \in \mathbb{N}$ we have

$$1 = \sum_{l=k(n(s)+1)}^{k(n(s)+s)} z_l = \left| \sum_{l=1}^{k(n(s)+s)} (z_l - x_l) - \sum_{l=1}^{k(n(s)+1)-1} (z_l - x_l) + \sum_{l=k(n(s)+1)}^{k(n(s)+s)} x_l \right|$$

$$\leq \|z - x\| + \|z - x\| + \sum_{m=n(s)+1}^{n(s)+s} |x_{k(m)}|.$$

Hence for $s \in \mathbb{N}$ we get $1 \leq 2\|z-x\| + \sum_{m=n(s)+1}^{n(s)+s} |x_{k(m)}|$. Since $\sum_{m=1}^{\infty} |x_{k(m)}| < \infty$ we have $\lim_s \sum_{m=n(s)+1}^{n(s)+s} |x_{k(m)}| = 0$. Thus $\|z-x\| \geq 1/2$. It follows that the set $\{x \in E : \sum_{m=1}^{\infty} |y_{k(m)}(x)| < \infty\}$ is not dense in E, so the subsequence $(y_{k(n)})$ of (y_n) is not strongly normal in E^* .

Assume now that (k(n)) does not contain arbitrary long series of successive integers. Then there are two strictly increasing sequences $(t(n)), (w(n)) \subset \mathbf{N}$ and $m \in \mathbf{N}$ such that

- (1) $t(n) \le w(n) \le t(n) + m 2$ for $n \in \mathbb{N}$;
- (2) w(n) + 1 < t(n+1) for $n \in \mathbb{N}$;
- (3) $\bigcup_{n} \{l \in \mathbf{N} : t(n) \le l \le w(n)\} = \{k(n) : n \in \mathbf{N}\}.$

Let $z \in E$. For $s \in \mathbb{N}$ we put $x_s = (x_{s,l})$, where

$$x_{s,l} = \begin{cases} 0 & \text{if } t(n) \le l \le w(n) \text{ for some } n \ge s; \\ \sum_{i=t(n)}^{w(n)+1} z_i & \text{if } l = w(n)+1 \text{ for some } n \ge s; \\ z_l & \text{for all other } l \in \mathbf{N}. \end{cases}$$

Since $|\sum_{i=t(n)}^{w(n)+1} z_i| \le m \max\{|z_i| : i \ge t(n)\}, n \in \mathbb{N}$ and $\lim_n \max\{|z_i| : i \ge t(n)\} = 0$, we have $x_s \in c_0$. Moreover for $l \in \mathbb{N}$ we have $\sum_{i=1}^l x_{s,i} = \sum_{i=1}^{t(n)-1} z_i$ if $t(n) \le l \le w(n)$ for some $n \ge s$, and $\sum_{i=1}^l x_{s,i} = \sum_{i=1}^l z_i$ for all other $l \in \mathbb{N}$. Thus $x_s \in E$. Since $x_{s,k(n)} = 0$ if $k(n) \ge t(s)$, we have

$$\sum_{n=1}^{\infty} |y_{k(n)}(x_s)| = \sum_{n=1}^{\infty} \frac{|f_{k(n)}(x_s)|}{\|f_{k(n)}\|} = \sum_{n=1}^{\infty} \frac{|x_{s,k(n)}|}{\|f_{k(n)}\|} < \infty;$$

so $(x_s) \subset \{x \in E : \sum_{n=1}^{\infty} |y_{k(n)}(x)| < \infty\}$. For $s \in \mathbb{N}$ we have $\sum_{i=1}^{l} (z_i - x_{s,i}) = \sum_{i=t(n)}^{l} z_i$, if $t(n) \leq l \leq w(n)$ for some $n \geq s$; and $\sum_{i=1}^{l} (z_i - x_{s,i}) = 0$ for all other $l \in \mathbb{N}$. Thus $||z - x_s|| \leq m \max\{|z_i| : i \geq t(s)\}$ for $s \in \mathbb{N}$; so $\lim_s ||z - x_s|| = 0$. Hence the set $\{x \in E : \sum_{n=1}^{\infty} |y_{k(n)}(x)| < \infty\}$ is dense in E. Therefore $(y_{k(n)})$ is strongly normal in E^* .

By the equivalence $(1) \Leftrightarrow (4)$ in Theorem 3 we obtain the following well known result ([1], [17]); our proof is quite different from the the original one.

COROLLARY 5. A Banach space has an infinite-dimensional separable quotient if and only if it contains a dense non-barrelled subspace.

PROOF. Assume that a Banach space E has an infinite-dimensional separable quotient. By Theorem 3, the space E^* has a pseudobounded sequence (y_n) . Put $G = \{x \in E : \sup_n |y_n(x)| < \infty\}$ and $V = \{x \in E : \sup_n |y_n(x)| \leq 1\}$. Using the Banach-Steinhaus theorem we infer that G is a proper and dense subspace of E. The set V is a barrell in G and it is not a neighbourhood of zero in G, since V is closed in E. Thus G is not barrelled.

Assume that a Banach space E contains a dense non-barrelled subspace G. Let W be a barrell in G which is not a neighbourhood of zero in G. The closure V of W in E is absolutely convex and closed in E. The linear span H of V is a dense proper subspace of E. For every $n \in \mathbb{N}$ there is $x_n \in (E \setminus V)$ with $||x_n|| < n^{-2}$. By the Hahn-Banach theorem for every $n \in \mathbb{N}$ there is $z_n \in E^*$ with $|z_n(x_n)| > 1$ such that $|z_n(x)| \le 1$ for all $x \in V$. Then $||z_n|| \ge n^2$ for $n \in \mathbb{N}$ and $\sup_n |z_n(x)| < \infty$ for $x \in H$; so (z_n) is pseudobounded in E^* . By Theorem 3, E has an infinite-dimensional separable quotient.

Applying Corollary 5 we get our last result.

Theorem 6. Let E be an infinite-dimensional Banach space. Let F be a non-zero locally convex space. Then the following conditions are equivalent:

- (1) Every separable quotient of E is finite-dimensional;
- (2) Every continuous linear map from a Banach space to E with dense range is a surjection;
- (3) Every family $\{T_{\gamma} : \gamma \in \Gamma\} \subset L(E, F)$ which is point-wise bounded on a dense subspace H of E is equicontinuous;
- (4) Every sequence $(T_n) \subset L(E, F)$ which is point-wise convergent to zero on a dense subspace G of E is point-wise convergent to zero on E;

- If additionally F is sequentially complete then above conditions are equivalent to the following
- (5) Every sequence $(T_n) \subset L(E,F)$ which is point-wise convergent on a dense subspace G of E is point-wise convergent on E to some $T \in L(E,F)$.

Proof.

- $(1) \Rightarrow (2)$. Let T be a continuous linear map from a Banach space X to E such that the range T(X) is dense in E. By Corollary 5, T(X) is barrelled. Using the open mapping theorem we infer that the map T is open (i.e. for every open subset U in X the set T(U) is open in T(X)). By the Banach-Schauder theorem ([7, 15.12(2)]), T(X) is closed in E; so T(X) = E.
- $(2)\Rightarrow (1)$. By Corollary 5 it is enough to show that every dense subspace M of E is barrelled. Let D be a barrell in M and let B be the closed unit ball in M. Denote by S the closure of the set $C=D\cap B$ in E and by H the linear span of S. Let $p:H\to [0;\infty)$ be the Minkowski functional of S. Since S is a bounded and complete barrell in H, p is a complete norm in H and the embedding map $i:(H,p)\to E$ is a continuous linear map with dense range; so H=E. Thus S is a neighbourhood of zero in E. Hence E is a neighbourhood of zero in E. Hence E is a neighbourhood of zero in E. Hence E is a neighbourhood of zero in E. Thus E is a barrelled space.
- $(1)\Rightarrow (3).$ By Corollary 5, H is a dense barrelled subspace of E. Using the Banach-Steinhaus theorem we infer that the family $\{T_\gamma|H:\gamma\in\Gamma\}$ is equicontinuous. Let V be a closed neighbourhood of zero in F. For some open neighbourhood U of zero in E we have $T_\gamma(U\cap H)\subset V$ for all $\gamma\in\Gamma$. Hence $T_\gamma(U)\subset T_\gamma(\overline{U\cap H})\subset \overline{T_\gamma(U\cap H)}\subset V$ for all $\gamma\in\Gamma$. Thus the family $\{T_\gamma:\gamma\in\Gamma\}$ is equicontinuous.
- $(3)\Rightarrow (4)$. By (3) the sequence (T_n) is equicontinuous. Let $x\in E$. Let W,V be neighbourhoods of zero in F with $V-V\subset W$. For some neighbourhood U of zero in E we have $T_n(U)\subset V$ for $n\in \mathbb{N}$. Moreover there exists $y\in E$ with $y-x\in U$ such that $\lim_n T_n(y)=0$. For some $n_0\in \mathbb{N}$ we have $T_n(y)\in V$ for $n\geq n_0$. Since $T_n(x)=T_n(y)-T_n(y-x)$ and $V-T_n(U)\subset V-V\subset W$, so $T_n(x)\in W$ for $n\geq n_0$. Thus $\lim_n T_n(x)=0$ for every $x\in E$.
- $(4)\Rightarrow (1)$. Suppose, to the contrary, that E has an infinite-dimensional separable quotient. By Theorem 3, E_{σ}^* has a Schauder basic sequence (y_n) ; we can assume that $\lim_n \|y_n\| = \infty$, so (y_n) is pseudobounded in E^* (Proposition 2). Put $z_n = y_n/\sqrt{\|y_n\|}$ for $n \in \mathbb{N}$. Then $\lim_n \|z_n\| = \infty$. Let $z \in F$ with $z \neq 0$. For every $n \in \mathbb{N}$ the map $T_n : E \to F$, $x \to z_n(x)z$, is linear and continuous. Since $\{x \in E : \sup_n |y_n(x)| < \infty\} \subset \{x \in E : \lim_n z_n(x) = 0\}$, the sequence $(T_n) \subset L(E,F)$ is point-wise convergent to zero on a dense subspace of E. By (4), (T_n) is point-wise convergent to zero on E. By the Banach-Steinhaus theorem, (T_n) is equicontinuous, so $\sup_n \|z_n\| < \infty$; a contradiction.

Assume now that F is additionally sequentially complete.

 $(3)\Rightarrow (5)$. By (3), the sequence (T_n) is equicontinuous. Let $x\in E$. Let W,V be neighbourhoods of zero in F with $(V-V)-(V-V)\subset W$. For some neighbourhood U of zero in E we have $T_n(U)\subset V$ for $n\in \mathbb{N}$. Moreover there exists $y\in E$ with $y-x\in U$ such that the sequence $(T_n(y))$ is convergent in F to some element z. Let $n_0\in \mathbb{N}$ with $T_n(y)-z\in V$ for $n\geq n_0$. For $n,m\geq n_0$ we have $T_nx-T_mx=[((T_ny-z)-T_n(y-x))-((T_my-z)-T_m(y-x))]\in (V-V)-(V-V)\subset W$. It follows that (T_nx) is a Cauchy sequence in F, so it is convergent in F to some T_x for every $x\in E$. Clearly, the map $T:E\to F, x\to T_x$ is linear. If $x\in U$, then $(T_nx)\subset V$; hence $Tx\in W$. Thus $T(U)\subset W$; so T is continuous.

The implication $(5) \Rightarrow (4)$ is obvious. Thus (5) is equivalent to conditions (1)–(4).

ACKNOWLEDGMENTS. The author thanks the referee for helpful comments.

References

- G. Bennett and N. Kalton, Inclusion theorems for K-spaces, Canad. J. Math., 25 (1973), 511–524.
- [2] R. E. Edwards, Functional analysis, Theory and applications, Dover Publications, Inc., New York, 1995.
- [3] K. John and V. Zizler, Projections in dual weakly compactly generated Banach spaces, Studia Math., 49 (1973), 41–50.
- [4] W. B. Johnson and H. P. Rosenthal, On ω^* -basic sequences and their applications to the study of Banach spaces, Studia Math., **43** (1972), 77–95.
- [5] B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Mat., 13 (1975), 78–89.
- [6] J. Kakol and W. Śliwa, Remarks concerning the separable quotient problem, Note Mat., 13 (1993), 277–282.
- [7] G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, 1969.
- [8] H. E. Lacey, Separable quotients of Banach spaces, An. Acad. Brasil. Ciênc., 44 (1972), 185–189.
- [9] R. E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
- [10] J. Mujica, Separable quotients of Banach spaces, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 299–330.
- [11] P. P. Narayanaswami, The separable quotient problem for barrelled spaces, In: Functional analysis and related topics, Springer-Verlag, Berlin, 1993, pp. 289–308.
- [12] A. Nissenzweig, On ω^* sequential convergence, Israel J. Math., **22** (1975), 266–272.
- [13] H. P. Rosenthal, On quasicomplemented subspaces of Banach spaces with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\nu)$, J. Funct. Anal., 4 (1969), 176–214.
- [14] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
- [15] S. A. Saxon and P. P. Narayanaswami, Metrizable (LF)-spaces, (db)-spaces and the separable quotient problem, Bull. Austral. Math. Soc., 23 (1981), 65–80.

- [16] S. A. Saxon and P. P. Narayanaswami, Metrizable [normable] (LF)-spaces and two classical problems in Fréchet [Banach] spaces, Studia Math., 93 (1989), 1–16.
- [17] S. A. Saxon and A. Wilansky, The equivalence of some Banach space problems, Colloq. Math., 37 (1977), 217–226.
- [18] W. Śliwa, (LF)-spaces and the separable quotient problem, Thesis, in Polish, unpublished, Poznań, 1996.
- [19] W. Śliwa, The separable quotient problem for symmetric function spaces, Bull. Polish Acad. Sci. Math., 48 (2000), 13–27.
- [20] W. Śliwa and M. Wójtowicz, Separable quotients of locally convex spaces, Bull. Polish Acad. Sci. Math., 43 (1995), 175–185.
- [21] M. Wójtowicz, Generalizations of the $c_0 l_1 l_{\infty}$ Theorem of Bessaga and Pełczyński, Bull. Polish Acad. Sci. Math., **50** (2002), 373–382.
- [22] M. Wójtowicz, Reflexivity and the Separable Quotient Problem for a Class of Banach Spaces, Bull. Polish Acad. Sci. Math., 50 (2002), 383–394.

Wiesław Śliwa

Faculty of Mathematics and Computer Science A. Mickiewicz University ul. Umultowska 87 61-614 Poznań, Poland E-mail: sliwa@amu.edu.pl