On Orevkov's rational cuspidal plane curves

By Keita Tono

(Received Apr. 17, 2010)
(Revised Sep. 10, 2010)

Abstract

In this note, we consider rational cuspidal plane curves having exactly one cusp whose complements have logarithmic Kodaira dimension two. We classify such curves with the property that the strict transforms of them via the minimal embedded resolution of the cusp have the maximal self-intersection number. We show that the curves given by the classification coincide with those constructed by Orevkov.

1. Introduction.

Let C be a plane curve on $\boldsymbol{P}^{2}=\boldsymbol{P}^{2}(\boldsymbol{C})$. A singular point of C is said to be a cusp if it is a locally irreducible singular point. We say that C is cuspidal (resp. unicuspidal) if C has only cusps (resp. one cusp) as its singular points. We denote by $\bar{\kappa}=\bar{\kappa}\left(\boldsymbol{P}^{2} \backslash C\right)$ the logarithmic Kodaira dimension of the complement $\boldsymbol{P}^{2} \backslash C$. Let C^{\prime} denote the strict transform of a rational unicuspidal plane curve C via the minimal embedded resolution of the cusp of C. By $[\mathbf{Y}], \bar{\kappa}=-\infty$ if and only if $\left(C^{\prime}\right)^{2}>-2$. By [Ts, Proposition 2], there exist no rational cuspidal plane curves with $\bar{\kappa}=0$. See also $[\mathbf{K 1}],[\mathbf{O}]$. Thus $\bar{\kappa} \geq 1$ if and only if $\left(C^{\prime}\right)^{2} \leq-2$. In [To], rational unicuspidal plane curves with $\bar{\kappa}=1$ have already been classified. It was Orevkov $[\mathbf{O}]$ who constructed two sequences $C_{4 k}, C_{4 k}^{*}(k=1,2, \ldots)$ of rational unicuspidal plane curves with $\bar{\kappa}=2$. See Section 3 for details. The purpose of this note is to classify rational unicuspidal plane curves C with $\bar{\kappa}=2$ and $\left(C^{\prime}\right)^{2}=-2$. The main result of this note is the following:

Theorem 1. Let C be a rational unicuspidal plane curve with $\bar{\kappa}=2$. Then C is projectively equivalent to one of the Orevkov's curves if and only if $\left(C^{\prime}\right)^{2}=-2$.

For a plane curve C, we denote by $\bar{P}_{m}=\bar{P}_{m}\left(\boldsymbol{P}^{2} \backslash C\right)$ the logarithmic m-genus of the complement $\boldsymbol{P}^{2} \backslash C$. In $[\mathbf{K 3}]$, the curves C_{4} and C_{4}^{*} were characterized by $\bar{\kappa}$ and \bar{P}_{3}. With the help of our Theorem 1, it was proved that a reduced plane curve C can be constructed as C_{4} or C_{4}^{*} if and only if $\bar{\kappa}\left(\boldsymbol{P}^{2} \backslash C\right) \geq 0$ and $\bar{P}_{3}\left(\boldsymbol{P}^{2} \backslash C\right)=0$.

[^0]
2. Preliminaries.

In this section, we prepare some preliminaries.

2.1. Linear chains.

Let D be a divisor on a smooth surface $V, \varphi: V^{\prime} \rightarrow V$ a composite of successive blowing-ups and $B \subset V^{\prime}$ a divisor. We say that φ contracts B to D, or simply that B shrinks to D if $\varphi(\operatorname{Supp} B)=\operatorname{Supp} D$ and each center of blowing-ups of φ is on D or one of its preimages. Let D_{1}, \ldots, D_{r} be the irreducible components of D. We call D an $S N C$-divisor if D is a reduced effective divisor, each D_{i} is smooth, $D_{i} D_{j} \leq 1$ for distinct D_{i}, D_{j}, and $D_{i} \cap D_{j} \cap D_{k}=\emptyset$ for distinct D_{i}, D_{j}, D_{k}. Assume that D is an SNC-divisor and that each D_{i} is projective. Let $\Gamma=\Gamma(D)$ denote the dual graph of D. We give the vertex corresponding to a component D_{i} the weight D_{i}^{2}. We sometimes do not distinguish between D and its weighted dual graph Γ. We use the following notation and terminology (cf. [\mathbf{F}, Section 3] and [MT1, Chapter 1]). A blowing-up at a point $P \in D$ is said to be sprouting (resp. subdivisional) with respect to D if P is a smooth point (resp. node) of D. A component D_{i} is called a branching component of D if $D_{i}\left(D-D_{i}\right) \geq 3$.

Assume that Γ is connected and linear. In cases where $r>1$, the weighted linear graph Γ together with a direction from an endpoint to the other is called a linear chain. By definition, the empty graph \emptyset and a weighted graph consisting of a single vertex without edges are linear chains. If necessary, renumber D_{1}, \ldots, D_{r} so that the direction of the linear chain Γ is from D_{1} to D_{r} and $D_{i} D_{i+1}=1$ for $i=1, \ldots, r-1$. We denote Γ by $\left[-D_{1}^{2}, \ldots,-D_{r}^{2}\right]$. We sometimes write Γ as $\left[D_{1}, \ldots, D_{r}\right]$. The linear chain is called rational if every D_{i} is rational. In this note, we always assume that every linear chain is rational. The linear chain Γ is called admissible if it is not empty and $D_{i}^{2} \leq-2$ for each i. Set $r(\Gamma)=r$. We define the discriminant $d(\Gamma)$ of Γ as the determinant of the $r \times r$ matrix $\left(-D_{i} D_{j}\right)$. We set $d(\emptyset)=1$.

Let $A=\left[a_{1}, \ldots, a_{r}\right]$ be a linear chain. We use the following notation if $A \neq \emptyset$:

$$
{ }^{t} A:=\left[a_{r}, \ldots, a_{1}\right], \quad \bar{A}:=\left[a_{2}, \ldots, a_{r}\right], \quad \underline{A}:=\left[a_{1}, \ldots, a_{r-1}\right] .
$$

The discriminant $d(A)$ has the following properties ([F, Lemma 3.6]).
Lemma 2. Let $A=\left[a_{1}, \ldots, a_{r}\right]$ be a linear chain.
(i) If $r>1$, then $d(A)=a_{1} d(\bar{A})-d(\overline{\bar{A}})=d\left({ }^{t} A\right)=a_{r} d(\underline{A})-d(\underline{\underline{A}})$.
(ii) If $r>1$, then $d(\bar{A}) d(\underline{A})-d(A) d(\underline{\bar{A}})=1$.
(iii) If A is admissible, then $\operatorname{gcd}(d(A), d(\bar{A}))=1$ and $d(A)>d(\bar{A})>0$.

Let $A=\left[a_{1}, \ldots, a_{r}\right]$ be an admissible linear chain. The rational number
$e(A):=d(\bar{A}) / d(A)$ is called the inductance of A. By $[\mathbf{F}$, Corollary 3.8], the function e defines a one-to-one correspondence between the set of all the admissible linear chains and the set of rational numbers in the interval $(0,1)$. For a given admissible linear chain A, the admissible linear chain $A^{*}:=e^{-1}\left(1-e\left({ }^{t} A\right)\right)$ is called the adjoint of $A([\mathbf{F}, 3.9])$. Admissible linear chains and their adjoints have the following properties ([F, Corollary 3.7, Proposition 4.7]).

Lemma 3. Let A and B be admissible linear chains.
(i) If $e(A)+e(B)=1$, then $d(A)=d(B)$ and $e\left({ }^{t} A\right)+e\left({ }^{t} B\right)=1$.
(ii) We have $A^{* *}=A,{ }^{t}\left(A^{*}\right)=\left({ }^{t} A\right)^{*}$ and $d(A)=d\left(A^{*}\right)=d\left(\overline{A^{*}}\right)+d(\underline{A})$.
(iii) The linear chain $[A, 1, B]$ shrinks to $[0]$ if and only if $A=B^{*}$.

For integers m, n with $n \geq 0$, we define $\left[m_{n}\right]=[\overbrace{m, \ldots, m}^{n}], t_{n}=\left[2_{n}\right]$. For nonempty linear chains $A=\left[a_{1}, \ldots, a_{r}\right], B=\left[b_{1}, \ldots, b_{s}\right]$, we write $A * B=\left[\underline{A}, a_{r}+\right.$ $\left.b_{1}-1, \bar{B}\right], A^{* n}=\overbrace{A * \cdots * A}^{n}$, where $n \geq 1$. We remark that $(A * B) * C=A *(B * C)$ for non-empty linear chains A, B and C. By using Lemma 2 and Lemma 3, we can show the following lemma.

Lemma 4. Let $A=\left[a_{1}, \ldots, a_{r}\right]$ be an admissible linear chain.
(i) For a positive integer n, we have $[A, n+1]^{*}=t_{n} * A^{*}$.
(ii) We have $A^{*}=t_{a_{r}-1} * \cdots * t_{a_{1}-1}$.
(iii) If there exist positive integers m, n such that $[A, m+1]=[n+1, A]$ (resp. $A *$ $\left.t_{m}=t_{n} * A\right)$, then $m=n, a_{1}=\cdots=a_{r}=n+1\left(\right.$ resp. $\left.A=t_{n}^{* r\left(A^{*}\right)}\right)$.

The following two lemmas describe the processes of contractions of special linear chains. The first one can be proved easily. We prove the second one.

Lemma 5. Let A be an admissible linear chain and B a non-empty linear chain. Suppose that a composite π of blowing-downs contracts $[A, 1]$ to B.
(i) The linear chain B is the image of the first $r(B)$ curves of A. We have $A=B * t_{n}$, where $n=r(A)+1-r(B)$.
(ii) Every blowing-up of π is sprouting with respect to B or its preimage.
(iii) The exceptional curve of each blowing-up of π is a unique (-1)-curve in the preimage of B.

Conversely, $\left[B * t_{n}, 1\right]$ shrinks to B for a given positive integer n and a non-empty linear chain B.

Lemma 6. Let A, B be admissible linear chains and c a positive integer. Suppose that a composite π of blowing-downs contracts $[A, 1, B]$ to $[c, 1]$.
(i) The first curve of $[c, 1]$ is the image of the first curve of A. We have $n:=$ $r(A)-r\left(B^{*}\right) \geq 0$ and $A=\left[c, t_{n}\right] * B^{*}$. In particular, $n=0$ if $c=1$.
(ii) The first n blowing-ups of π are sprouting and the remaining ones are subdivisional with respect to $[c, 1]$ or its preimages. The composite of the subdivisional blowing-ups contracts $[A, 1, B]$ to $\left[c, t_{n}, 1\right]$.
(iii) The exceptional curve of each blowing-up of π is a unique (-1)-curve in the preimage of $[c, 1]$.

Proof. Write $A=\left[a_{1}, \ldots, a_{r}\right], B=\left[b_{1}, \ldots, b_{s}\right]$. We prove the assertions by induction on $r+s \geq 2$. After the first blowing-down of $\pi,[A, 1, B]$ becomes $T:=\left[\underline{A}, a_{r}-1, b_{1}-1, \bar{B}\right]$. The last blowing-up of π satisfies (iii) and is subdivisional with respect to T. Suppose $r+s=2$. We have $T=[c, 1], \underline{A}=\bar{B}=\emptyset, b_{1}=2$ and $c=a_{r}-1$. By Lemma 4, we obtain $B^{*}=[2]$ and $n=0$. Hence $A=[c] * t_{1}=$ $\left[c, t_{n}\right] * B^{*}$. The remaining assertions are clear in this case. Assume $r+s \geq 3$. We have $T \neq[c, 1]$. Since A and B are admissible, a_{r} or b_{1} must be equal to 2. If $a_{r}=b_{1}=2$, then $T=[\underline{A}, 1,1, \bar{B}]$, which is contracted to $[\ldots, 0, \ldots]$ by the second blowing-down. But the latter linear chain cannot shrink to $[c, 1]$. Hence either a_{r} or b_{1} must be greater than 2 .

Case (1): $a_{r}=2, b_{1}>2$. If $r=1$, then $\left[b_{s}, \ldots, b_{2}, b_{1}-1,1\right]$ shrinks to $[1, c]$. By Lemma $5,\left[b_{s}, \ldots, b_{2}, b_{1}-1\right]=[1, c] * t_{s-1}$. Thus $b_{s}=1$, which is a contradiction. Hence $r>1$. Since \underline{A} is admissible, we have $\underline{A}=\left[c, t_{n^{\prime}}\right] *\left[b_{1}-1, \bar{B}\right]^{*}$ by the induction hypothesis, where $n^{\prime}=r-r\left(\left[b_{1}-1, \bar{B}\right]^{*}\right)-1$. Hence $A=\left[c, t_{n^{\prime}}\right] *\left[\left[b_{1}-\right.\right.$ $\left.1, \bar{B}]^{*}, 2\right]$. By Lemma 4, we obtain $\left[\left[b_{1}-1, \bar{B}\right]^{*}, 2\right]=\left(t_{1} *\left[b_{1}-1, \bar{B}\right]\right)^{*}=B^{*}$ and $r\left(\left[b_{1}-1, \bar{B}\right]^{*}\right)=r\left(B^{*}\right)-1$. The remaining assertions follow from the induction hypothesis.

Case (2): $a_{r}>2, b_{1}=2$. If $s=1$, then $\left[\underline{A}, a_{r}-1,1\right]$ shrinks to $[c, 1]$. By Lemma 5, $\left[\underline{A}, a_{r}-1\right]=[c, 1] * t_{r-1}=\left[c, t_{r-1}\right]$. Hence $A=\left[c, t_{r-1}\right] * t_{1}=\left[c, t_{r-1}\right] * B^{*}$. The remaining assertions also follow from Lemma 5 in this case. If $s>1$, then we have $\left[\underline{A}, a_{r}-1\right]=\left[c, t_{n^{\prime}}\right] *(\bar{B})^{*}$ by the induction hypothesis, where $n^{\prime}=r-r\left((\bar{B})^{*}\right)$. By Lemma 4, we obtain $A=\left[c, t_{n^{\prime}}\right] *(\bar{B})^{*} * t_{1}=\left[c, t_{n^{\prime}}\right] *[2, \bar{B}]^{*}=\left[c, t_{n^{\prime}}\right] * B^{*}$ and $r\left((\bar{B})^{*}\right)=r\left(B^{*}\right)$. The remaining assertions follow from the induction hypothesis.

The following corollary to Lemma 6 describes the process of the contractions of linear chains in Lemma 3 (iii).

Corollary 7. Let A and B be admissible linear chains. Suppose that a composite π of blowing-downs contracts $[A, 1, B]$ to [0].
(i) The first blowing-up of π is sprouting with respect to [0] and the remaining ones are subdivisional with respect to preimages of $[0]$.
(ii) The exceptional curve of each blowing-up of π except the first one is a unique
(-1)-curve in the preimage of $[0]$.
The next one is a corollary to Lemma 3 (iii), Lemma 5 and Lemma 6. It will be used to describe the process of the resolutions of cusps.

Corollary 8. Let a be a positive integer and A an admissible linear chain. Let B be a linear chain which is empty or admissible. Assume that a composite π of blowing-downs contracts $[A, 1, B]$ to $[a]$ and that $[a]$ is the image of A under π.
(i) The linear chain $[a]$ is the image of the first curve of A. There exits a positive integer n such that $A^{*}=\left[B, n+1, t_{a-1}\right]$. Moreover, $A=[a] * t_{n} * B^{*}$ if $B \neq \emptyset$.
(ii) The first n blowing-ups of π are sprouting and the remaining ones are subdivisional with respect to $[a]$ or its preimages. The composite of the subdivisional blowing-ups contracts $[A, 1, B]$ to $\left[[a] * t_{n}, 1\right]$.
(iii) The exceptional curve of each blowing-up of π is a unique (-1)-curve in the preimage of $[a]$.
Conversely, $\left[[a] * t_{n} * B^{*}, 1, B\right]$ shrinks to $[a]$ for given positive integers a, n and an admissible linear chain B.

The following corollary follows from Corollary 8 (ii).
Corollary 9. Let the notation and the assumption be as in Corollary 8 and b an integer. Then π contracts $[A, 1, B, b]$ to $[a, b-n]$. The second curve of $[a, b-n]$ is the image of the last curve of $[A, 1, B, b]$.

2.2. Resolution of a cusp.

Let C be a curve on a smooth surface V. Suppose that C has a cusp P. Let $\sigma: V^{\prime} \rightarrow V$ be the minimal embedded resolution of the cusp. That is, σ is the composite of the shortest sequence of blowing-ups such that the strict transform C^{\prime} of C intersects $\sigma^{-1}(P)$ transversally. Let $V^{\prime}=V_{n} \xrightarrow{\sigma_{n-1}} V_{n-1} \longrightarrow \cdots \longrightarrow$ $V_{2} \xrightarrow{\sigma_{1}} V_{1} \xrightarrow{\sigma_{0}} V_{0}=V$ be the blowing-ups of σ. The following lemma follows from the assumptions that P is a cusp and σ is minimal.

Lemma 10. For $i \geq 1$, the strict transform of C on V_{i} intersects $\left(\sigma_{0} \circ \cdots \circ\right.$ $\left.\sigma_{i-1}\right)^{-1}(P)$ in one point, which is on the exceptional curve of σ_{i-1}. The point of intersection is the center of σ_{i} if $i<n$.

We prove the following lemma.
Lemma 11. The following assertions hold (cf. [BK], [MaSa]).
(i) The dual graph of $\sigma^{-1}(C)$ has the following shape, where $g \geq 1, D_{0}$ is the
exceptional curve of σ_{n-1} and A_{1} contains the exceptional curve of σ_{0} by definition.

We number the irreducible components $A_{i, j}$ of $A_{i}\left(\right.$ resp. $B_{i, j}$ of $\left.B_{i}\right)$ from the left-hand side to the right (resp. the bottom to the top) in the above figure. With these directions and the weights $A_{i, j}^{2}, B_{i, j}^{2}$, we regard A_{i}, B_{i} as linear chains.
(ii) The morphism σ can be written as $\sigma=\sigma_{0} \circ \rho_{1}^{\prime} \circ \rho_{1}^{\prime \prime} \circ \cdots \circ \rho_{g}^{\prime} \circ \rho_{g}^{\prime \prime}$, where each ρ_{i}^{\prime} (resp. $\rho_{i}^{\prime \prime}$) consists of sprouting (resp. subdivisional) blowing-ups of σ with respect to preimages of P.
(iii) The morphisms $\rho_{i}:=\rho_{i}^{\prime} \circ \rho_{i}^{\prime \prime}$ have the following properties.
(a) For $j<i, \rho_{i}$ does not change the linear chains A_{j}, B_{j}.
(b) For each $i, \rho_{i} \circ \cdots \circ \rho_{g}$ maps $A_{i, 1}$ to a (-1)-curve.
(c) ρ_{g} contracts the linear chain $A_{g}+D_{0}+B_{g}$ to the (-1)-curve $\rho_{g}\left(A_{g, 1}\right)$. For $i<g, \rho_{i}$ contracts the linear chain $\left(\rho_{i+1} \circ \cdots \circ \rho_{g}\right)\left(A_{i}+A_{i+1,1}+B_{i}\right)$ to the (-1)-curve $\left(\rho_{i} \circ \cdots \circ \rho_{g}\right)\left(A_{i, 1}\right)$.

Proof. For the sake of simplicity, we do not distinguish between a curve and its strict transforms via blowing-ups. The second blowing-up of σ is sprouting with respect to the exceptional curve of σ_{0}. Since P is a cusp and σ is minimal, the last blowing-up of σ must be subdivisional with respect to the preimage of P. These facts show the assertion (ii). Let $E_{0,0}$ denote the exceptional curve of σ_{0} and $E_{i, 0}$ the exceptional curve of the last blowing-up of $\rho_{i}^{\prime \prime}$ for each i. Put $E_{0}=\emptyset$. Let E_{i} denote the exceptional curve of ρ_{i}. By Lemma 10 , we infer that the dual graph of the sum of $E_{i-1,0}$ and the exceptional curve of ρ_{i}^{\prime} is linear. Hence the dual graph of $E_{i-1,0}+E_{i}$ is linear. It follows that $E_{1,0}, \ldots, E_{g-1,0}, E_{g, 0}=D_{0}$ are all the branching components of $\sigma^{-1}(C)$. The divisor $E_{i-1,0}+E_{i}-E_{i, 0}$ consists of two connected components. Let A_{i} denote the one containing $E_{i-1,0}$ and B_{i} the remaining one. Then A_{i}, B_{i} and ρ_{i} have the desired properties.

We regard A_{i} and B_{i} as linear chains in the same way as in Lemma 11 (i). By Lemma 10, these linear chains are admissible. Let o_{i} denote the number of the blowing-ups in ρ_{i}^{\prime}. The following proposition follows from Corollary 8 and Lemma 11 (iii).

Proposition 12. The following assertions hold for $i=1, \ldots, g$.
(i) We have $A_{i}=t_{o_{i}} * B_{i}^{*}, A_{i}^{*}=\left[B_{i}, o_{i}+1\right]$.
(ii) The linear chain A_{i} contains an irreducible component E with $E^{2} \leq-3$.

We will use the next lemma to prove some properties of the Orevkov's curves.
Lemma 13. Let D^{\prime} be an $S N C$-divisor on a smooth surface V^{\prime}. Suppose the following conditions are satisfied.
(i) The weighted dual graph of D^{\prime} consists of a (-1)-curve D_{0} and admissible rational linear chains $A_{1}, B_{1}, \ldots, A_{g}, B_{g}, g \geq 1$. They meet each other in the way described in Lemma 11 (i).
(ii) For $i=1, \ldots, g$, there exists a positive integer o_{i} such that $A_{i}=t_{o_{i}} * B_{i}^{*}$, or equivalently $A_{i}^{*}=\left[B_{i}, o_{i}+1\right]$.
Then the following assertions hold.
(a) The divisor D^{\prime} shrinks to a point P by blowing-downs $\sigma: V^{\prime} \rightarrow V$. The way of blowing-downs to contract D^{\prime} to a point is unique.
(b) Let C^{\prime} be a smooth curve on V^{\prime}. If C^{\prime} intersects only D_{0} at one point transversally among the irreducible components of D^{\prime}, then $\sigma\left(C^{\prime}\right)$ is smooth outside of P and has a cusp at P, whose minimal embedded resolution coincides with σ.

Proof. (a) By Corollary 8 , $\left[A_{g}, D_{0}, B_{g}\right]$ shrinks to a (-1)-curve, which is the image of the first curve $A_{g, 1}$ of A_{g}. The image of $\left[A_{g-1}, A_{g, 1}, B_{g-1}\right]$ under the above contraction shrinks to a (-1)-curve, which is the image of the first curve of A_{g-1}. Continuing in this way, we get blowing-downs $\sigma: V^{\prime} \rightarrow V$ which contracts D^{\prime} to a point P. The uniqueness follows from Corollary 8 (iii).
(b) Since C^{\prime} is smooth, $\sigma\left(C^{\prime}\right)$ is also smooth outside of P. If the center of a blowing-up of σ is not on the image of C^{\prime}, then those of the remaining blowing-ups are not on the images of C^{\prime} by Corollary 8 (iii). This contradicts the assumption that C^{\prime} intersects D_{0}. Hence the center of each blowing-up of σ is on the image of C^{\prime}. The remaining assertions of (b) follow from this fact.

3. Orevkov's curves and proof of the "only if" part of Theorem 1.

In this section, we prove some properties of Orevkov's curves, from which the "only if" part of Theorem 1 follows. In [$\mathbf{O}]$, Orevkov constructed two sequences $C_{4 k}, C_{4 k}^{*}(k=1,2, \ldots)$ of rational unicuspidal plane curves with $\bar{\kappa}=2$ in the following way. Let N be a nodal cubic. Let Γ_{1}, Γ_{2} denote the two analytic branches of N at the node. Let $\phi: W \rightarrow \boldsymbol{P}^{2}$ denote the composite of 7 -times of blowing-ups such that the center of the first one is the node and every center of the remaining ones is the point of intersection of the strict transform of Γ_{1} and the
exceptional curve of the previous blowing-up. The dual graph of the exceptional curve E of ϕ is connected and linear. The curve E consists of 6 -pieces of (-2)curves and one (-1)-curve E^{\prime} as an endpoint and intersects the strict transform of N at its two endpoints.

Let $\phi^{\prime}: W \rightarrow \boldsymbol{P}^{2}$ denote the contraction of the strict transform of N and the 6 -pieces of (-2)-curves in E. Put $f=\phi^{\prime} \circ \phi^{-1}$. The curve $\phi^{\prime}\left(E^{\prime}\right)$ is a nodal cubic. Let Γ denote one of the two analytic branches of $\phi^{\prime}\left(E^{\prime}\right)$ at the node such that the center of the second blowing-up of ϕ^{\prime} is not on its strict transform. We may assume $\phi^{\prime}\left(E^{\prime}\right)=N$ and $\Gamma=\Gamma_{1}$ by composing a suitable projective transformation to f. Let C_{0} be the tangent line at a flex of N and C_{0}^{*} an irreducible conic meeting with N only at one smooth point. See $[\mathbf{O}],[\mathbf{A T}]$ or the appendix for the existence of C_{0}^{*}. Orevkov defined $C_{4 k}, C_{4 k}^{*}$ as $C_{4 k}=f\left(C_{4 k-4}\right), C_{4 k}^{*}=f\left(C_{4 k-4}^{*}\right)(k=1,2, \ldots)$. They have a cusp at the node and tangent to Γ_{2} at the node.

Lemma 14. Let C be a rational unicuspidal plane curve, $\sigma: V \rightarrow \boldsymbol{P}^{2}$ the minimal embedded resolution of the cusp and C^{\prime} the strict transform of C via σ. Put $D=\sigma^{-1}(C)$. Let $A_{1}, B_{1}, \ldots, A_{g}, B_{g}, D_{0}$ denote the linear chains given for the cusp by Lemma 11.
(i) The curve C can be constructed in the same way as C_{4} (resp. C_{4}^{*}) if and only if C satisfies the following conditions.
(a) $g=1, A_{1}=\left[t_{6}, 4\right], B_{1}=t_{2}$ (resp. $\left.A_{1}=\left[t_{6}, 7\right], B_{1}=t_{5}\right)$.
(b) There exists a (-1)-curve E_{0} such that it meets with D at two points transversally and intersects only the first curve and the last curve of A_{1} among the irreducible components of D.
(ii) The curve C can be constructed in the same way as $C_{4 k+4}\left(\right.$ resp. $\left.C_{4 k+4}^{*}\right)$ for some $k \geq 1$ if and only if C satisfies the following conditions.
(a) $g=2, A_{1}=t_{6}^{* k+1}, B_{1}=\left[7_{k}\right], A_{2}=[4], B_{2}=t_{2}\left(\right.$ resp. $A_{2}=[7]$, $\left.B_{2}=t_{5}\right)$.
(b) There exists a (-1 -curve E_{0} such that it meets with D at two points transversally and intersects only the first curve of A_{1} and the last curve of B_{1} among the irreducible components of D.
(iii) If C can be constructed in the same way as $C_{4 k}$ or $C_{4 k}^{*}$ for some $k \geq 1$, then $\left(C^{\prime}\right)^{2}=-2$.

Proof. The assertions for C_{4} and C_{4}^{*} follow from their definition. We prove (ii) and (iii) for $C_{4 k+4}, k \geq 1$. We can similarly deal with $C_{4 k+4}^{*}$. We first show the "if" part of (ii) by induction on k. Let a_{i} and b_{i} denote the i-th curves of the linear chains A_{1} and B_{1}, respectively. For the sake of simplicity, we sometimes use the same symbols for the strict transforms of them via a rational map which does not contract them.

Let $\sigma_{2}: V_{1} \rightarrow \boldsymbol{P}^{2}$ denote the composite of the first seven blowing-ups of σ and $\sigma_{1}: V \rightarrow V_{1}$ the composite of the remaining ones. By Corollary 8 (ii), the last six blowing-ups of σ_{2} are sprouting with respect to the preimages of the cusp. The weighted dual graph of the preimage of the cusp under σ_{2} is the linear chain $\left[t_{6}, 1\right]$. By Corollary 8 (iii), the blowing-ups of σ_{1} are done over the point of intersection of t_{6} and the (-1)-curve. From these facts, we see $\left[t_{6}, 1\right]=$ $\left[\sigma_{1}\left(a_{1}\right), \ldots, \sigma_{1}\left(a_{6}\right), \sigma_{1}\left(b_{k}\right)\right]$. The dual graph of $\sigma_{1}\left(E_{0}+a_{1}+\cdots+a_{6}+b_{k}\right)$ is a loop. We have $\left[1, t_{6}, 1\right]=\left[\sigma_{1}\left(E_{0}\right), \sigma_{1}\left(a_{1}\right), \ldots, \sigma_{1}\left(a_{6}\right), \sigma_{1}\left(b_{k}\right)\right]$. Let $\varphi_{1}: V_{1} \rightarrow V_{0}$ denote the contraction of $\sigma_{1}\left(E_{0}+a_{1}+\cdots+a_{5}\right)$ and $\varphi_{0}: V_{0} \rightarrow \boldsymbol{P}^{2}$ the contraction of $\varphi_{1}\left(\sigma_{1}\left(a_{6}\right)\right)$. Put $\varphi=\varphi_{0} \circ \varphi_{1}$.

We arrange the order of blowing-downs of $\varphi \circ \sigma_{1}$ in the following way. We first perform six blowing-downs $\varphi_{1}^{\prime}: V \rightarrow V^{\prime}$ in the same way as φ_{1}. It contracts $E_{0}+a_{1}+\cdots+a_{5}$ to a point. Then we perform blowing-downs $\sigma_{1}^{\prime}: V^{\prime} \rightarrow V_{0}^{\prime}$ in the same way as σ_{1}. It contracts $\varphi_{1}^{\prime}\left(D-\left(C^{\prime}+a_{1}+\cdots+a_{6}+b_{k}\right)\right)$ to a point. Finally we perform the blowing-down $\varphi_{0}^{\prime}: V_{0}^{\prime} \rightarrow \boldsymbol{P}^{2}$ which contracts $\sigma_{1}^{\prime}\left(\varphi_{1}^{\prime}\left(a_{6}\right)\right)$. The rational map $\varphi_{0}^{\prime} \circ \sigma_{1}^{\prime} \circ \varphi_{1}^{\prime} \circ\left(\varphi \circ \sigma_{1}\right)^{-1}$ is a projective transformation since it does not have exceptional curves. By Corollary $9, \varphi_{1}^{\prime}\left(a_{6}\right)\left(\right.$ resp. $\left.\varphi_{1}^{\prime}\left(b_{k}\right)\right)$ is a (-2)-curve (resp. (-1)-curve). The weighted dual graph of $D-\left(a_{1}+\cdots+a_{6}+b_{k}\right)$ is unchanged by φ_{1}^{\prime}.

We decompose the exceptional curve $\varphi_{1}^{\prime}\left(D-\left(C^{\prime}+a_{1}+\cdots+a_{5}+b_{k}\right)\right)$ of $\varphi_{0}^{\prime} \circ \sigma_{1}^{\prime}$ into linear chains $A_{1}^{\prime}, B_{1}^{\prime}, \ldots, A_{g^{\prime}}^{\prime}, B_{g^{\prime}}^{\prime}, \varphi_{1}^{\prime}\left(D_{0}\right)$. If $k=1$, then we set $g^{\prime}=1, A_{1}^{\prime}=\left[\varphi_{1}^{\prime}\left(a_{6}\right), \ldots, \varphi_{1}^{\prime}\left(a_{11}\right), \varphi_{1}^{\prime}\left(A_{2}\right)\right]$ and $B_{1}^{\prime}=\varphi_{1}^{\prime}\left(B_{2}\right)$. We have $\left(A_{1}^{\prime}\right)^{*}=$ $\left[t_{6}, 4\right]^{*}=\left[B_{1}^{\prime}, 8\right]$. If $k>1$, then we set $g^{\prime}=2, A_{1}^{\prime}=\left[\varphi_{1}^{\prime}\left(a_{6}\right), \ldots, \varphi_{1}^{\prime}\left(a_{5 k+6}\right)\right]$, $B_{1}^{\prime}=\left[\varphi_{1}^{\prime}\left(b_{1}\right), \ldots, \varphi_{1}^{\prime}\left(b_{k-1}\right)\right], A_{2}^{\prime}=\varphi_{1}^{\prime}\left(A_{2}\right)$ and $B_{2}^{\prime}=\varphi_{1}^{\prime}\left(B_{2}\right)$. We have $\left(A_{1}^{\prime}\right)^{*}=$ $\left[7_{k}\right]=\left[B_{1}^{\prime}, 7\right]$. It follows from Lemma 13 that $\hat{C}:=\varphi\left(\sigma_{1}\left(C^{\prime}\right)\right)$ is unicuspidal and that $\varphi_{0}^{\prime} \circ \sigma_{1}^{\prime}$ is the minimal embedded resolution of the cusp. The linear chains $A_{1}^{\prime}, B_{1}^{\prime}, \ldots, A_{g^{\prime}}^{\prime}, B_{g^{\prime}}^{\prime}$ coincide with those given for \hat{C} by Lemma 11. By the induction hypothesis $(k>1)$ and the assertion (i) $(k=1), \hat{C}$ can be constructed in the same way as $C_{4 k}$. The curve $\varphi_{1}\left(\sigma_{1}\left(a_{6}\right)\right)$ intersects $\varphi_{1}\left(\sigma_{1}\left(b_{k}\right)\right)$ only at two points transversally. This shows that $\varphi\left(\sigma_{1}\left(b_{k}\right)\right)$ is a nodal cubic. The morphism φ (resp. σ_{2}) performs blowing-ups in the same way as ϕ (resp. ϕ^{\prime}). Thus C can be constructed in the same way as $C_{4 k+4}$.

We next show the "only if" part of (ii) and the assertion (iii) for $C_{4 k+4}$ by induction on k. The curve C is the strict transform of an Orevkov's curve $C_{4 k}$ via $f=\phi^{\prime} \circ \phi^{-1}$. We denote by N_{i} (resp. $\phi_{i}: W_{i} \rightarrow \boldsymbol{P}^{2}, \phi_{i}^{\prime}: W_{i} \rightarrow \boldsymbol{P}^{2}$, $\Gamma_{i, 1}, \Gamma_{i, 2}$) the nodal cubic N (resp. the birational morphisms ϕ, ϕ^{\prime}, the branches Γ_{1}, Γ_{2} at the node) which is used to make $C_{4 i+4}$ from $C_{4 i}$. Let $\sigma: V \rightarrow \boldsymbol{P}^{2}$ (resp. $\sigma_{k}: V_{k} \rightarrow \boldsymbol{P}^{2}$) denote the minimal embedded resolution of the cusp of C (resp. $C_{4 k}$). From the definition of the Orevkov's curves, we infer that the centers of blowing-ups of ϕ_{k}^{\prime} (resp. ϕ_{k-1}^{\prime}) are the cusp of C (resp. $C_{4 k}$) or its strict
transforms. This shows that $\sigma: V \rightarrow \boldsymbol{P}^{2}$ (resp. $\sigma_{k}: V_{k} \rightarrow \boldsymbol{P}^{2}$) can be written as $\sigma=\phi_{k}^{\prime} \circ \sigma^{\prime}$ (resp. $\sigma_{k}=\phi_{k-1}^{\prime} \circ \sigma_{k}^{\prime}$), where σ^{\prime} (resp. σ_{k}^{\prime}) consists of blowing-ups.

Let $\phi_{k, 0}: W_{k, 0} \rightarrow \boldsymbol{P}^{2}$ denote the first blowing-up of ϕ_{k}, which coincides with that of ϕ_{k-1}^{\prime}. Let $\phi_{k, 1}$ (resp. $\phi_{k-1,1}^{\prime}$) denote the composite of the remaining blowing-ups of $\phi_{k}\left(\right.$ resp. $\left.\phi_{k-1}^{\prime}\right)$. Let $A_{1}^{\prime}, B_{1}^{\prime}, \ldots, A_{g^{\prime}}^{\prime}, B_{g^{\prime}}^{\prime}, D_{0}^{\prime}$ denote the linear chains given by Lemma 11 for $C_{4 k}$. Let e_{i} denote the exceptional curve of the i-th blowing-up of ϕ_{k-1}^{\prime}. On V_{k}, e_{1} coincides with the first curve of A_{1}^{\prime}. On $W_{k, 0}, N_{k}$ meets with e_{1} in two points. The blowing-ups of $\phi_{k, 1}$ are done over the one point $\Gamma_{k, 1} \cap e_{1}$, while that of $\phi_{k-1,1}^{\prime} \circ \sigma_{k}^{\prime}$ are done over the other point $\Gamma_{k, 2} \cap e_{1}$. By the definition of ϕ^{\prime}, the first blowing-up of $\phi_{k-1,1}^{\prime}$ is done at $e_{1} \cap \Gamma_{k, 2}$. Each of the remaining ones is done at the point of intersection of N_{k} and the exceptional curve of the previous blowing-up. On W_{k-1}, N_{k} is a (-1)-curve.

Suppose $k=1$. On W_{0}, C_{4} (resp. e_{7}) coincides with the strict transform of $C_{0}\left(\right.$ resp. $\left.N_{0}\right)$ via ϕ_{0}. This means that C_{4} intersects only e_{7} among $N_{1}, e_{1}, \ldots, e_{7}$. The blowing-ups of σ_{1}^{\prime} are done over $C_{4} \cap e_{7}$. It follows from the assertion (i) that $A_{1}^{\prime}=\left[e_{1}, \ldots, e_{7}\right]$ on V_{1}. The curve N_{1} is a (-1)-curve on V_{1}. It intersects only the first curve e_{1} and the last curve e_{7} of A_{1}^{\prime} among the irreducible components of $\sigma_{1}^{-1}\left(C_{4}\right)$. Suppose $k>1$. By the definition of the Orevkov's curve, we infer that $C_{4 k}$ meets with $N_{1}+e_{1}+\cdots+e_{7}$ only at $e_{6} \cap e_{7}$ on W_{k-1}. The blowing-ups of σ_{k}^{\prime} are done over $e_{6} \cap e_{7}$. It follows that on $V_{k}, e_{1}, \ldots, e_{6}$ are the first six curves of A_{1}^{\prime} and that e_{7} is the last curve of B_{1}^{\prime}. The curve N_{k} is a (-1)-curve on V_{k}. It intersects only the first curve e_{1} of A_{1}^{\prime} and the last curve e_{7} of B_{1}^{\prime} among the irreducible components of $\sigma_{1}^{-1}\left(C_{4 k}\right)$.

We return to the situation of the paragraph before the previous one. Recall that the blowing-ups of $\phi_{k, 1}$ are done over $e_{1} \cap \Gamma_{k, 1}$, while that of $\phi_{k-1,1}^{\prime} \circ \sigma_{k}^{\prime}$ are done over $e_{1} \cap \Gamma_{k, 2}$. Since $C_{4 k}$ passes through $e_{1} \cap \Gamma_{k, 2}$ and does not through $e_{1} \cap \Gamma_{k, 1}, \sigma^{\prime}$ performs blowing-ups in the same way as $\phi_{k-1,1}^{\prime} \circ \sigma_{k}^{\prime}$. It follows that the weighted dual graph of D can be obtained from that of $\sigma_{1}^{-1}\left(C_{4 k}\right)$ by performing six times of blowing-ups $\psi: V_{k}^{\prime} \rightarrow V_{k}$ in the same way as $\phi_{k, 1}$. The first blowing-up of ψ is done at $e_{1} \cap N_{k}$. Each of the remaining blowing-ups is done at the point of intersection of N_{k} and the exceptional curve of the previous blowing-up. Let E_{i} denote the exceptional curve of the i-th blowing-up of ψ. The dual graph of $N_{k}+E_{6}+E_{5}+\cdots+E_{1}+e_{1}$ is linear. We have $\left[N_{k}, E_{6}, E_{5}, \ldots, E_{1}, e_{1}\right]=\left[7,1, t_{5}, 3\right]$. Except e_{1}, ψ does not change $\sigma_{1}^{-1}\left(C_{4 k}\right)$ as a weighted graph. We have $\left(C^{\prime}\right)^{2}=$ $\left(C_{4 k}^{\prime}\right)^{2}=-2$.

The linear chains $A_{1}, B_{1}, \ldots, A_{g}, B_{g}$ are given in the following way. If $k=1$, then $g=2, A_{1}=\left[E_{5}, \ldots, E_{1}, e_{1}, \overline{A_{1}^{\prime}}\right]=t_{6}^{* 2}, B_{1}=N_{1}=[7], A_{2}=e_{7}=[4]$ and $B_{2}=B_{1}^{\prime}$. If $k>1$, then $g=2, A_{1}=\left[E_{5}, \ldots, E_{1}, e_{1}, \overline{A_{1}^{\prime}}\right]=t_{6}^{* k+1}, B_{1}=\left[B_{1}^{\prime}, N_{k}\right]=$ $\left[7_{k}\right], A_{2}=A_{2}^{\prime}$ and $B_{2}=B_{2}^{\prime}$. The strict transform of N_{k+1} via σ meets with D in the same way as E_{6}. It satisfies the condition that E_{0} must satisfy.

By Proposition 15 below, each $C_{4 k}$ (resp. $C_{4 k}^{*}$) does not depend on the choice of N and C_{0} (resp. C_{0}^{*}) up to the projective equivalence. The "only if" part of Theorem 1 follows from this fact and Lemma 14 (iii).

Proposition 15. Let $C^{(1)}$ and $C^{(2)}$ be plane curves. If there exists a positive integer k such that $C^{(1)}$ and $C^{(2)}$ can be constructed in the same way as $C_{4 k}$, or they can be constructed in the same way as $C_{4 k}^{*}$, then $C^{(1)}$ is projectively equivalent to $C^{(2)}$.

Proof. We only show the assertion for the case in which there exists $k \geq 2$ such that $C^{(1)}$ and $C^{(2)}$ can be constructed in the same way as $C_{4 k}$. We can similarly deal with the remaining cases. For each i, let $\sigma^{(i)}: V^{(i)} \rightarrow \boldsymbol{P}^{2}$ denote the minimal embedded resolution of the cusp of $C^{(i)}$. Write $A_{1}, B_{1}, \ldots, A_{g}, B_{g}$, D_{0}, etc. given by Lemma 11 for $C^{(i)}$ as $A_{1}^{(i)}, B_{1}^{(i)}, \ldots, A_{g_{i}}^{(i)}, B_{g_{i}}^{(i)}, D_{0}^{(i)}$, etc. Let $E_{0}^{(i)}$ denote the (-1)-curve E_{0} given for $C^{(i)}$ in Lemma 14 (ii). We define a birational morphism $\psi^{(i)}: V^{(i)} \rightarrow \boldsymbol{P}^{2}$ in the following way. It first contracts $D_{0}^{(i)}+B_{2}^{(i)}$ to a point. Then it contracts the image of $A_{1}^{(i)}+E_{0}^{(i)}+B_{1}^{(i)}$ to a point. The last blowing-down of $\psi^{(i)}$ contracts the image $a_{1}^{(i)}$ of the last curve of $A_{1}^{(i)}$ to a point. We infer that $a_{1}^{(i)}$ intersects the image of $A_{2}^{(i)}$ at two points transversally. It follows that $\psi^{(i)}\left(A_{2}^{(i)}\right)$ is a nodal cubic and that $\psi^{(i)}\left(C^{(i)^{\prime}}\right)$ is the tangent line at a flex of $\psi^{(i)}\left(A_{2}^{(i)}\right)$. We may assume that each nodal cubic $\psi^{(i)}\left(A_{2}^{(i)}\right)$ is defined by the equation given in the appendix. We denote $\psi^{(i)}\left(A_{2}^{(i)}\right)$ by N. Let O_{1}, O_{2} and O_{3} be the flexes of N defined in the appendix. There exists a positive integer $a \leq 3$ such that $\psi^{(1)}\left(C^{(1)^{\prime}}\right)$ is the tangent line at O_{a}. Furthermore, there exists a projective transformation h such that $h(N)=N$ and $h\left(\psi^{(1)}\left(C^{(1)^{\prime}}\right)\right)=\psi^{(2)}\left(C^{(2)^{\prime}}\right)$.

Let $\psi_{j}^{(i)}: V_{j}^{(i)} \rightarrow V_{j-1}^{(i)}$ denote the j-th blowing-up of $\psi^{(i)}$, where $V_{0}^{(i)}=$ \boldsymbol{P}^{2}. Since h maps the center of $\psi_{1}^{(1)}$ to that of $\psi_{1}^{(2)}$, the rational map $h_{1}=$ $\psi_{1}^{(2)-1} \circ h \circ \psi_{1}^{(1)}: V_{1}^{(1)} \rightarrow V_{1}^{(2)}$ is an isomorphism. The center of $\psi_{2}^{(1)}$ is one of the two points of intersection of N and the exceptional curve of $\psi_{1}^{(1)}$. By replacing h with the composite of h and the projective transformation φ_{a} given in the appendix, if necessary, we may assume that h_{1} maps the center of $\psi_{2}^{(1)}$ to that of $\psi_{2}^{(2)}$. Thus $\psi_{2}^{(2)-1} \circ h_{1} \circ \psi_{2}^{(1)}: V_{2}^{(1)} \rightarrow V_{2}^{(2)}$ is an isomorphism. For the remaining blowing-ups, there are no ambiguities in choices of centers. It follows that $h^{\prime}=\psi^{(2)-1} \circ h \circ \psi^{(1)}: V^{(1)} \rightarrow V^{(2)}$ is an isomorphism. Since h^{\prime} maps the exceptional curve of $\sigma^{(1)}$ to that of $\sigma^{(2)}$, the rational map $\sigma^{(2)} \circ h^{\prime} \circ \sigma^{(1)-1}$ is a projective transformation such that $\sigma^{(2)} \circ h^{\prime} \circ \sigma^{(1)-1}\left(C^{(1)}\right)=C^{(2)}$.

4. Structure of $C^{* *}$-fibration.

Let C be a rational unicuspidal plane curve and P the cusp of C. As in Section 2.2, let $\sigma: V \rightarrow \boldsymbol{P}^{2}$ denote the minimal embedded resolution of the cusp, σ_{0} the first blowing-up of σ and C^{\prime} the strict transform of C via σ. Put $D=\sigma^{-1}(C)$. Let D_{0} denote the exceptional curve of the last blowing-up of σ. We decompose the dual graph of $\sigma^{-1}(P)$ into linear chains $A_{1}, B_{1}, \ldots, A_{g}, B_{g}, D_{0}$ in the same way as in Section 2.2. By Lemma 11, there exists a decomposition $\sigma=\sigma_{0} \circ \rho_{1}^{\prime} \circ \rho_{1}^{\prime \prime} \circ \cdots \circ \rho_{g}^{\prime} \circ \rho_{g}^{\prime \prime}$, where each ρ_{i}^{\prime} (resp. $\left.\rho_{i}^{\prime \prime}\right)$ consists of sprouting (resp. subdivisional) blowing-ups with respect to preimages of P. Let o_{i} denote the number of the blowing-ups in ρ_{i}^{\prime}.

Assume that the rational unicuspidal plane curve C satisfies the conditions that $\left(C^{\prime}\right)^{2}=-2$ and $\bar{\kappa}\left(\boldsymbol{P}^{2} \backslash C\right)=2$. We see that one and only one of the two irreducible components of $D-D_{0}-C^{\prime}$ meeting with D_{0} must be a (-2)-curve. Let F_{0}^{\prime} denote the (-2)-curve and S_{2} the remaining one. Let $\varphi_{0}: V \rightarrow V^{\prime}$ be the contraction of D_{0} and C^{\prime}. Since $\left(F_{0}^{\prime}\right)^{2}=0$ on V^{\prime}, there exists a \boldsymbol{P}^{1}-fibration $p^{\prime}: V^{\prime} \rightarrow \boldsymbol{P}^{1}$ such that F_{0}^{\prime} is a nonsingular fiber. Put $p=p^{\prime} \circ \varphi_{0}: V \rightarrow \boldsymbol{P}^{1}$. Since $\bar{\kappa}\left(\boldsymbol{P}^{2} \backslash C\right)=2$, there exists an irreducible component S_{1} of $D-D_{0}-F_{0}^{\prime}$ meeting with F_{0}^{\prime} on V. Put $F_{0}=F_{0}^{\prime}+D_{0}+C^{\prime}$. The surface $X:=V \backslash D$ is a \boldsymbol{Q}-homology plane. That is, X satisfies $H_{i}(X, \boldsymbol{Q})=\{0\}$ for $i>0$. A general fiber of $\left.p\right|_{X}$ is a curve $\boldsymbol{C}^{* *}=\boldsymbol{P}^{1} \backslash\{3$ points $\}$. Such fibrations have already been classified in $[\mathrm{MiSu}]$. We will use their result to prove our theorem.

There exists a birational morphism $\varphi: V \rightarrow \Sigma_{n}$ from V onto the Hirzebruch surface Σ_{n} of degree n for some n such that $p \circ \varphi^{-1}: \Sigma_{n} \rightarrow \boldsymbol{P}^{1}$ is a \boldsymbol{P}^{1}-bundle. The morphism φ is the composite of the successive contractions of the (-1)-curves in the singular fibers of p. The curve S_{1} (resp. S_{2}) is a 1-section (resp. 2-section) of p. The divisor D contains no other sections of p.

Lemma 16. We may assume that $\varphi\left(S_{1}+S_{2}\right)$ is smooth. We have $\varphi\left(S_{1}\right)^{2}=$ -1 and $\varphi\left(S_{2}\right)^{2}=4$.

Proof. We only prove the first assertion. Suppose $\varphi\left(S_{1}+S_{2}\right)$ has a singular point P. Let ϕ_{1} be the blowing-up at P. Since $S_{1}+S_{2}$ is smooth on V, we can choose the order of the blowing-ups of φ such that $\varphi=\phi_{1} \circ \varphi^{\prime}$. Let F^{\prime} be the strict transform via ϕ_{1} of the fiber of $p \circ \varphi^{-1}$ passing through P. Let ϕ_{2} be the contraction of F^{\prime}. Since F^{\prime} is an irreducible component of a singular fiber of $p \circ \varphi^{\prime-1}$, we can replace φ with $\phi_{2} \circ \varphi^{\prime}$. We infer that P can be resolved by repeating the above process. Hence we may assume that $\varphi\left(S_{1}+S_{2}\right)$ is smooth.

Each singular fiber of p intersects S_{2} in at most two points. Suppose that there exists a singular fiber F_{2} of p meeting with S_{2} in two points. Let E_{2} be the
sum of the irreducible components of F_{2} which are not components of D. Because D contains no loop, E_{2} is not empty. Since $\bar{\kappa}(V \backslash D)=2, V \backslash D$ does not contain contractible algebraic curves by [MT2, Main Theorem]. This means that each irreducible component of E_{2} meets with D in at least two points.

In [MiSu, Lemma 1.5 and 1.6], singular fibers of a $\boldsymbol{C}^{* *}$-fibration with a 2section were classified into several types. Among them, only singular fibers of type $\left(\mathrm{I}_{1}\right)$ and $\left(\mathrm{III}_{1}\right)$ satisfy the conditions that they meet with the 2 -section in two points and that each irreducible component of E_{2} meets with D in at least two points. From the fact that D contains no loop, we infer that F_{2} is of type $\left(\mathrm{III}_{1}\right)$. The dual graph of $F_{2}+S_{1}+S_{2}$ coincides with one of those in the following figure, where $*$ denotes a (-1)-curve and $E_{2}=E_{21}+E_{22}$. The divisor $T_{2, i}$ may be empty for each i.

Lemma 17. We have $\varphi\left(F_{2}\right)=\varphi\left(F_{2}^{\prime}\right)$, where F_{2}^{\prime} is the irreducible component of F_{2} whose position in F_{2} is illustrated in the above figure.

Proof. Suppose that φ contracts F_{2}^{\prime}. Write $\varphi=\phi_{3} \circ \phi_{2} \circ \phi_{1}$, where ϕ_{2} is the contraction of F_{2}^{\prime}. If F_{2} is of type $\left(\mathrm{III}_{1 \mathrm{a}}\right)$, then $\phi_{1}\left(F_{2}^{\prime}\right) \phi_{1}\left(S_{1}\right)=0$ and $\phi_{1}\left(F_{2}^{\prime}\right) \phi_{1}\left(S_{2}\right)=1$ by Lemma 16. Since $\phi_{1}\left(F_{2}-F_{2}^{\prime}\right) \phi_{1}\left(F_{2}^{\prime}\right) \geq 2$, we have $\phi_{2}\left(\phi_{1}\left(F_{2}\right)\right) \phi_{2}\left(\phi_{1}\left(S_{2}\right)\right) \geq 3$, which is a contradiction. If F_{2} is of type $\left(\mathrm{III}_{1 \mathrm{~b}}\right)$, then $\phi_{1}\left(F_{2}^{\prime}\right) \phi_{1}\left(S_{2}\right)=0$ by Lemma 16. We have $\phi_{2}\left(\phi_{1}\left(F_{2}\right)\right) \phi_{2}\left(\phi_{1}\left(S_{1}\right)\right) \geq 2$, which is absurd.

Suppose that there exists a singular fiber F_{1} of p which intersects S_{2} in one point. Let E_{1} be the sum of the irreducible components of F_{1} which are not components of D. By the same reasoning as for F_{2}, we deduce that F_{1} is of type $\left(\mathrm{IV}_{2}\right)$. See [MiSu, Lemma 1.6]. The dual graph of $F_{1}+S_{1}+S_{2}$ coincides with one of those in the following figure, where \bullet denotes a (-2)-curve. The divisor $T_{1, i}$ may be empty for each i.

We can choose the order of the blowing-downs of φ such that $\varphi=\varphi^{\prime} \circ \varphi_{1} \circ \varphi^{\prime \prime}$,

where φ_{1} is the composite of all the contractions of irreducible components of F_{1}.
Lemma 18. The morphism φ_{1} contracts $\varphi^{\prime \prime}\left(T_{11}+E_{1}+T_{12}+F_{11}\right)$ to a (-1) curve, which is the image of F_{11}, and then contracts the (-1)-curve and the image of F_{12} in this order. We have $\varphi\left(F_{1}\right)=\varphi\left(F_{1}^{\prime}\right)$. Moreover, $\left(F_{1}^{\prime}\right)^{2}=F_{12}^{2}=-2$ if F_{1} is of type $\left(\mathrm{IV}_{2 \mathrm{~b}}\right)$.

Proof. Suppose that F_{1} is of type $\left(\mathrm{IV}_{2 \mathrm{~b}}\right)$. Since $\left(F_{1}^{\prime}\right)^{2} \leq-2, F_{12}^{2} \leq-2$, φ contracts F_{11} before the contractions of F_{1}^{\prime} and F_{12}. Since $\varphi\left(F_{1}\right)$ is smooth, $T_{11}+E_{1}+T_{12}$ must be contracted to a point before the contraction of F_{11}. It follows that $\left(F_{1}^{\prime}\right)^{2}=F_{12}^{2}=-2$. By Lemma 16, φ does not contract F_{1}^{\prime}.

Suppose that F_{1} is of type $\left(\mathrm{IV}_{2 \mathrm{a}}\right)$. Assume φ contracts F_{1}^{\prime}. By Corollary 7, F_{1}^{\prime} is the exceptional curve of the first blowing-up of φ_{1}. The remaining blowing-ups are subdivisional with respect to the preimages of $\varphi_{1}\left(\varphi^{\prime \prime}\left(F_{1}\right)\right)$. By Lemma 16, the center of the first blowing-up is not on $\varphi_{1}\left(\varphi^{\prime \prime}\left(S_{2}\right)\right)$. This means that $F_{11} S_{2}=2$, which is a contradiction. Thus φ does not contract F_{1}^{\prime}. By Corollary $7, F_{12}$ is the exceptional curve of the first blowing-up of φ_{1}. Since the remaining blowing-ups are subdivisional with respect to the preimages of $\varphi_{1}\left(\varphi^{\prime \prime}\left(F_{1}\right)\right)$, we infer that the exceptional curve of the second blowing-up of φ_{1} coincides with the image of F_{11}.

By the Riemann-Hurwitz formula, p has no more than two singular fibers which meet with S_{2} in one point. Since the base curve of the fibration $\left.p\right|_{X}$ is \boldsymbol{C}, p has one singular fiber of type $\left(\mathrm{III}_{1}\right)$ by $[\mathbf{M i S u}$, Lemma 2.3]. It follows that the dual graph of D must be one of those in Figure 1.

5. Proof of the "if" part of Theorem 1.

Let the notation be as in the previous section. We determine which graphs in Figure 1 can be realized. With the direction from the left-hand side to the right of Figure 1, we regard $T_{i j}$'s as linear chains. Put $s_{i}=-S_{i}^{2}$ and $f_{i}=-\left(F_{i}^{\prime}\right)^{2}$ for

Figure 1. Dual graphs of $S_{1}+S_{2}+F_{0}+F_{1}+F_{2}$.
each i. We have $s_{2} \geq 3, s_{1} \geq 2$ and $f_{i} \geq 2$ for each i.
($\mathrm{III}_{1 \mathrm{a}}$). We may assume $\varphi=\varphi_{0} \circ \varphi_{21} \circ \varphi_{22}$, where φ_{22} (resp. $\varphi_{21}, \varphi_{0}$) contracts $T_{23}+E_{22}+T_{24}\left(\right.$ resp. $\left.\varphi_{22}\left(T_{21}+E_{21}+T_{22}\right), \varphi_{21}\left(\varphi_{22}\left(C^{\prime}+D_{0}\right)\right)\right)$ to a point. We first show the following lemma.

Lemma 19. There exist positive integers k_{12} and k_{34} such that $\left[S_{1}, T_{21}\right]^{*}=$ $\left[T_{22}, k_{12}+1\right]$ and $\left[F_{2}^{\prime}, T_{23}\right]^{*}=\left[T_{24}, k_{34}+1, t_{k_{12}-1}\right]$. We have $k_{34}=s_{2}+2 \geq 5$, $T_{23} \neq \emptyset, B_{g}=\left[F_{0}^{\prime}, S_{1}, T_{21}\right]$ and $A_{g}=t_{o_{g}} *\left[T_{22}, k_{12}+2\right]$.

Proof. By Lemma 16, $\varphi_{21}\left(\varphi_{22}\left(S_{1}\right)\right)$ is a (-1)-curve. The morphism φ_{22} does not change the linear chain $\left[S_{1}, T_{21}, E_{21}, T_{22}\right]$. We apply Corollary 8 to $\left[S_{1}, T_{21}, E_{21}, T_{22}\right]$ and φ_{21}. There exists a positive integer k_{12} such that $\left[S_{1}, T_{21}\right]^{*}=$ $\left[T_{22}, k_{12}+1\right]$. Since $\varphi_{21}\left(\varphi_{22}\left(F_{2}^{\prime}\right)\right)$ is a 0 -curve, $\varphi_{22}\left(F_{2}^{\prime}\right)$ must be a $\left(-k_{12}\right)$-curve by Corollary 9. Again by Corollary 8, there exists a positive integer k_{34} such that $\left[F_{2}^{\prime}, T_{23}\right]^{*}=\left[T_{24}, k_{34}+1, t_{k_{12}-1}\right]$. Since $\varphi\left(S_{2}\right)^{2}=4$, we have $4=-s_{2}+k_{34}+2$ by Corollary 9. If $T_{23}=\emptyset$, then $\left[T_{24}, k_{34}+1, t_{k_{12}-1}\right]=t_{f_{2}-1}$ by Lemma 4. We have $k_{34}=1$. Thus $s_{2}=-1$, which is absurd. Hence $T_{23} \neq \emptyset$. Either $A_{g}={ }^{t}\left[F_{0}^{\prime}, S_{1}, T_{21}\right]$ or $B_{g}=\left[F_{0}^{\prime}, S_{1}, T_{21}\right]$ by Lemma 11 (i). Suppose the former case holds. We have $g=1$. Since $T_{23} \neq \emptyset$, we see $B_{1}=\left[S_{2}, F_{2}^{\prime}, T_{23}\right]$ and $T_{22}=\emptyset$. By Proposition 12 (i) and Lemma 4, $\left[o_{1}+1,{ }^{t} B_{1}\right]={ }^{t} A_{1}{ }^{*}=\left[F_{0}^{\prime}, S_{1}, T_{21}\right]^{*}=\left[S_{1}, T_{21}\right]^{*} * t_{1}=\left[k_{12}+2\right]$, which is a contradiction. Thus $B_{g}=\left[F_{0}^{\prime}, S_{1}, T_{21}\right]$. By Proposition 12 (i) and Lemma 4, $A_{g}=t_{o_{g}} * B_{g}^{*}=t_{o_{g}} *\left[S_{1}, T_{21}\right]^{*} * t_{1}=t_{o_{g}} *\left[T_{22}, k_{12}+2\right]$.

Case (i): $T_{24}=\emptyset$. By Lemma 19, $\left[F_{2}^{\prime}, T_{23}\right]=\left[k_{34}+1, t_{k_{12}-1}\right]^{*}$. By Lemma 4, $\left[k_{34}+1, t_{k_{12}-1}\right]^{*}=\left[k_{12}+1, t_{k_{34}-1}\right]$. Thus $f_{2}=k_{12}+1$ and $T_{23}=t_{k_{34}-1}$. Suppose $T_{22} \neq \emptyset$. We have $g=2$ and $A_{2}=\left[F_{2}^{\prime}, S_{2}\right]$ by Lemma 11 (i). By Lemma 19, we obtain $o_{2}=1,\left[f_{2}-1\right]=T_{22}, s_{2}=k_{12}+2$ and $k_{34}=k_{12}+4$. Either $T_{23}={ }^{t} A_{1}$ or $T_{23}=B_{1}$. Since T_{23} consists of (-2)-curves, it follows from Proposition 12 (ii) that $T_{23}=B_{1}$ and $T_{22}=A_{1}$. By Proposition 12 (i), $T_{22}=A_{1}=t_{o_{1}} * B_{1}^{*}=$ $t_{o_{1}} * T_{23}^{*}=t_{o_{1}} *\left[k_{12}+4\right]$. Thus $o_{1}=1$ and $f_{2}=k_{12}+6$, which contradicts $f_{2}=k_{12}+1$. Hence $T_{22}=\emptyset$. We have $g=1$ and $A_{1}={ }^{t}\left[S_{2}, F_{2}^{\prime}, T_{23}\right]$. By Lemma 19, $\left[t_{k_{34}-1}, f_{2}, s_{2}\right]=t_{o_{1}} *\left[k_{12}+2\right]$. We see $s_{2}=k_{12}+3, f_{2}=2$ and $o_{1}=k_{34}+1$. It follows that $k_{12}=1, s_{2}=4, k_{34}=6$ and $o_{1}=7$. We have $A_{1}=\left[t_{6}, 4\right]$ and $\left[B_{1}, o_{1}+1\right]=A_{1}^{*}=\left[t_{2}, 8\right]$. The curve E_{22} intersects only the first and the last curve of A_{1} among the irreducible components of D. By Lemma 14, C can be constructed as C_{4}.

Case (ii): $T_{24} \neq \emptyset$. Since S_{2} is a branching component of D, we infer $A_{g}=S_{2}$ by Lemma 11 (i). By Lemma 19, we obtain $o_{g}=1, T_{22}=\emptyset, s_{2}=k_{12}+3$ and $k_{34}=k_{12}+5$. We have $g=2$. Either $B_{1}=\left[F_{2}^{\prime}, T_{23}\right]$ or $B_{1}={ }^{t} T_{24}$. If $B_{1}=\left[F_{2}^{\prime}, T_{23}\right]$, then $T_{24}=A_{1}=t_{o_{1}} *\left[F_{2}^{\prime}, T_{23}\right]^{*}=t_{o_{1}} *\left[T_{24}, k_{34}+1, t_{k_{12}-1}\right]$,
which is impossible. Thus $B_{1}={ }^{t} T_{24}$ and $A_{1}={ }^{t}\left[F_{2}^{\prime}, T_{23}\right]$. By Proposition 12 (i), $\left[o_{1}+1, T_{24}\right]={ }^{t} A_{1}^{*}=\left[F_{2}^{\prime}, T_{23}\right]^{*}$. By Lemma 19, $\left[o_{1}+1, T_{24}\right]=\left[T_{24}, k_{12}+6, t_{k_{12}-1}\right]$. Hence $k_{12}=1,\left[o_{1}+1, T_{24}\right]=\left[T_{24}, 7\right]$. It follows from Lemma 4 that $o_{1}=6$ and $T_{24}=\left[7_{k}\right]$, where $k=r\left(T_{24}\right) \geq 1$. We have $B_{1}=\left[7_{k}\right], A_{1}=t_{o_{1}} * B_{1}^{*}=t_{6}^{* k+1}$ and $A_{2}=[4]$. Since $\left[B_{2}, o_{2}+1\right]=A_{2}^{*}=t_{3}$, we obtain $B_{2}=t_{2}$. The curve E_{22} intersects only the first curve of A_{1} and the last curve of B_{1} among the irreducible components of D. By Lemma 14, C can be constructed as $C_{4 k+4}$.
$\left(\mathrm{III}_{1 \mathrm{a}}\right)+\left(\mathrm{IV}_{2 \mathrm{a}}\right)$. We have $A_{g}=S_{2}$ and $B_{g}=\left[F_{0}^{\prime}, S_{1}, F_{1}^{\prime}, T_{11}\right]$ because S_{2} is a branching component of D. By Proposition 12 (i), $\left[B_{g}, o_{g}+1\right]=A_{g}^{*}=t_{s_{2}-1}$. Thus $\left[F_{1}^{\prime}, T_{11}\right]=t_{s_{2}-4}$. By Lemma 18, φ contracts F_{1} to a 0 -curve, which is the image of F_{1}^{\prime}. By Lemma 3 (iii), $\left[T_{12}, F_{11}, F_{12}\right]=\left[F_{1}^{\prime}, T_{11}\right]^{*}=t_{s_{2}-4}^{*}=\left[s_{2}-3\right]$, which is absurd. Hence this case does not occur.
$\left(\mathrm{III}_{1 \mathrm{a}}\right)+\left(\mathrm{IV}_{2 \mathrm{~b}}\right)$. We may assume $\varphi=\varphi_{0} \circ \varphi_{1} \circ \varphi_{21} \circ \varphi_{22}$, where φ_{22} (resp. φ_{21}, $\left.\varphi_{1}, \varphi_{0}\right)$ contracts $T_{23}+E_{22}+T_{24}$ (resp. $\varphi_{22}\left(T_{21}+E_{21}+T_{22}\right), \varphi_{21}\left(\varphi_{22}\left(F_{11}+F_{12}+\right.\right.$ $\left.\left.\left.T_{11}+E_{11}+T_{12}\right)\right), \varphi_{1}\left(\varphi_{21}\left(\varphi_{22}\left(C^{\prime}+D_{0}\right)\right)\right)\right)$ to a point. We show the following three lemmas.

Lemma 20. There exist positive integers k_{12} and k_{34} such that $\left[S_{1}, T_{21}\right]^{*}=$ $\left[T_{22}, k_{12}+1\right]$ and $\left[F_{2}^{\prime}, T_{23}\right]^{*}=\left[T_{24}, k_{34}+1, t_{k_{12}-1}\right]$. We have $\left[F_{11}, T_{11}\right]^{*}=\left[T_{12}, s_{2}-\right.$ $\left.k_{34}+1\right]$ and $s_{2} \geq k_{34}+1$.

Proof. By the same arguments as in the proof of Lemma 19, there exist positive integers k_{12}, k_{34} such that $\left[S_{1}, T_{21}\right]^{*}=\left[T_{22}, k_{12}+1\right]$ and $\left[F_{2}^{\prime}, T_{23}\right]^{*}=$ [$T_{24}, k_{34}+1, t_{k_{12}-1}$]. By Lemma 18 and Corollary 8 , there exists a positive integer l such that $\left[F_{11}, T_{11}\right]^{*}=\left[T_{12}, l+1\right]$. Since $\varphi\left(S_{2}\right)^{2}=4$, we infer $4=-s_{2}+k_{34}+$ $2+l+2$. Thus $1 \leq l=s_{2}-k_{34}$.

Lemma 21. We have $T_{21}=\emptyset, T_{22}=t_{s_{1}-2}$ and $k_{12}=1$.
Proof. Suppose that S_{1} is a branching component of D. We have $A_{g}=$ $\left[S_{1}, F_{0}^{\prime}\right], T_{12}=T_{24}=\emptyset$ and $B_{g}=\left[S_{2}, F_{2}^{\prime}, \ldots\right]$. By Lemma 20, $\left[F_{11}, T_{11}\right]=t_{s_{2}-k_{34}}$ and $\left[F_{2}^{\prime}, T_{23}\right]=\left[k_{12}+1, t_{k_{34}-1}\right]$. By Proposition 12 (i), $\left[B_{g}, o_{g}+1\right]=A_{g}^{*}=t_{1} *$ $t_{s_{1}-1}=\left[3, t_{s_{1}-2}\right]$. Thus $o_{g}=1, f_{2}=2$ and $s_{2}=3$. Since $f_{2}=k_{12}+1$, we obtain $k_{12}=1$. Because $\emptyset \neq\left[F_{11}, T_{11}\right]=t_{3-k_{34}}$, we have $k_{34} \leq 2$. If $k_{34}=1$, then $T_{23}=t_{k_{34}-1}=\emptyset$. Thus $B_{g}=\left[S_{2}, F_{2}^{\prime},{ }^{t} T_{22}\right]$. By Proposition 12 (i), $A_{g}=t_{o_{g}} * B_{g}^{*}=$ $t_{1} *\left[3,2,{ }^{t} T_{22}\right]^{*}=t_{1} *\left[2,{ }^{t} T_{22}\right]^{*} * t_{2}$. By Lemma 20, $t_{1} *\left[2,{ }^{t} T_{22}\right]^{*} * t_{2}=t_{1} *\left[{ }^{t} T_{21}, S_{1}\right] * t_{2}$. This means that $S_{1}=t_{1} *\left[{ }^{t} T_{21}, S_{1}\right] * t_{1}$, which is impossible. Hence $k_{34}=2$. Since $T_{23}=[2] \neq \emptyset$, we infer $B_{g}=\left[S_{2}, F_{2}^{\prime}, T_{23}\right]$ and $T_{22}=\emptyset$. By Lemma 20, $\left[S_{1}, T_{21}\right]=t_{k_{12}}=[2]$, which is absurd. Hence S_{1} is not a branching component of D. We have $T_{21}=\emptyset$. By Lemma 20, $\left[T_{22}, k_{12}+1\right]=t_{s_{1}-1}$. From this, we obtain
$k_{12}=1$ and $T_{22}=t_{s_{1}-2}$.
Lemma 22. We have $T_{11}=T_{12}=\emptyset, B_{g}=\left[F_{0}^{\prime}, S_{1}, F_{1}^{\prime}, F_{11}, F_{12}\right], s_{2}=k_{34}+1$ and $F_{11}=[2]$.

Proof. Either $S_{2} \subset A_{g}$ or $S_{2} \subset B_{g}$. Suppose $S_{2} \subset B_{g}$. We have $T_{24}=$ $T_{12}=\emptyset$. By Lemma 20, $\left[F_{2}^{\prime}, T_{23}\right]=\left[k_{34}+1\right]^{*}=t_{k_{34}}$. Thus $f_{2}=2, T_{23}=t_{k_{34}-1}$. Since $\left[F_{11}, T_{11}\right]=t_{s_{2}-k_{34}}$, we get $F_{11}=[2]$ and $T_{11}=t_{s_{2}-k_{34}-1}$. If $T_{11} \neq \emptyset$, then $A_{1}=F_{12}$ or $A_{1}={ }^{t} T_{11}$ since F_{11} is a branching component of D. Thus A_{1} consists of (-2)-curves, which contradicts Proposition 12 (ii). Hence $T_{11}=\emptyset$. We have $s_{2}=k_{34}+1, g=1$ and $A_{1}=\left[F_{12}, F_{11}, F_{1}^{\prime}, S_{1}, F_{0}^{\prime}\right]=\left[t_{3}, S_{1}, 2\right]$. We infer $s_{1} \geq 3$. By Proposition 12 (i), $\left[B_{1}, o_{1}+1\right]=A_{1}^{*}=\left[3, t_{s_{1}-3}, 5\right]$. This means that $s_{2}=3$ and $k_{34}=2$. Since $T_{23}=[2] \neq \emptyset$, we have $B_{1}=\left[S_{2}, F_{2}^{\prime}, T_{23}\right]$ and $T_{22}=\emptyset$. By Lemma 21, $s_{1}=2$, which is a contradiction. Hence $S_{2} \subset A_{g}$. We have $B_{g}=\left[F_{0}^{\prime}, S_{1}, F_{1}^{\prime}, F_{11}, F_{12}\right]$ and $T_{11}=\emptyset$. By Lemma 20, $\left[T_{12}, s_{2}-k_{34}+1\right]=t_{-F_{11}^{2}-1}$. This shows $s_{2}=k_{34}+1$ and $T_{12}=t_{-F_{11}^{2}-2}$. If $T_{12} \neq \emptyset$, then $F_{11}^{2}<-2$ and $A_{g}=S_{2}$. By Proposition 12 (i), $\left[B_{g}, o_{g}+1\right]=A_{g}^{*}=t_{s_{2}-1}$, which is absurd. Hence $T_{12}=\emptyset$ and $F_{11}=[2]$.

Case (i): $T_{24}=\emptyset$. By Lemma 20, $\left[F_{2}^{\prime}, T_{23}\right]=t_{k_{34}}$. We have $f_{2}=2$ and $T_{23}=t_{k_{34}-1}=t_{s_{2}-2} \neq \emptyset$. If $T_{22} \neq \emptyset$, then $A_{1}=T_{22}$ or $A_{1}={ }^{t} T_{23}$. Thus A_{1} consists of (-2)-curves, which contradicts Proposition 12 (ii). Hence $T_{22}=\emptyset$. We infer $g=1$ and $A_{1}={ }^{t}\left[S_{2}, F_{2}^{\prime}, T_{23}\right]=\left[t_{k_{34}}, k_{34}+1\right]$. By Lemma 21, we have $S_{1}=[2]$ and $B_{1}=t_{5}$. By Proposition 12 (i), $A_{1}=t_{o_{1}} *[6]=\left[t_{o_{1}-1}, 7\right]$. Hence $k_{34}=6, A_{1}=\left[t_{6}, 7\right]$. The curve E_{22} intersects only the first and the last curve of A_{1} among the irreducible components of D. By Lemma $14, C$ can be constructed as C_{4}^{*}.

Case (ii): $T_{24} \neq \emptyset$. We have $A_{g}=S_{2}$. By Proposition 12 (i), we get $\left[B_{g}, o_{g}+1\right]=A_{g}^{*}=t_{s_{2}-1}$. We see $S_{1}=[2], B_{g}=t_{5}, s_{2}=7$ and $k_{34}=6$ by Lemma 22. By Lemma 21, $T_{22}=\emptyset$. We infer $g=2$. Either $B_{1}={ }^{t} T_{24}$ or $A_{1}=T_{24}$. If $A_{1}=T_{24}$, then $B_{1}=\left[F_{2}^{\prime}, T_{23}\right]$. By Proposition 12 (i) and Lemma 20, $T_{24}=t_{o_{1}} *\left[F_{2}^{\prime}, T_{23}\right]^{*}=t_{o_{1}} *\left[T_{24}, 7\right]$, which is absurd. Hence $B_{1}={ }^{t} T_{24}$ and $A_{1}=$ ${ }^{t}\left[F_{2}^{\prime}, T_{23}\right]$. By Proposition 12 (i) and Lemma 20, $\left[o_{1}+1, T_{24}\right]=\left[F_{2}^{\prime}, T_{23}\right]^{*}=\left[T_{24}, 7\right]$. It follows from Lemma 4 that $o_{1}=6, T_{24}=\left[7_{k}\right]$, where $k=r\left(T_{24}\right) \geq 1$. We have $B_{2}=t_{5}, A_{2}=[7], B_{1}=\left[7_{k}\right]$ and $A_{1}=t_{6}^{* k+1}$. The curve E_{22} intersects only the first curve of A_{1} and the last curve of B_{1} among the irreducible components of D. By Lemma 14, C can be constructed as $C_{4 k+4}^{*}$.
$\left(\mathrm{III}_{1 \mathrm{~b}}\right),\left(\mathrm{III}_{1 \mathrm{~b}}\right)+\left(\mathrm{IV}_{2 \mathrm{a}}\right)$ or $\left(\mathrm{III}_{1 \mathrm{~b}}\right)+\left(\mathrm{IV}_{2 \mathrm{~b}}\right)$. In each case, we have $-2 \geq$ $\varphi\left(S_{1}\right)^{2}$ because S_{1} meets with only F_{i}^{\prime} among the irreducible components of F_{i} for each i. Hence all the cases do not occur.

Figure 2. The dual graphs of $D+E_{1}+E_{2}$.

We list the weighted dual graphs of $D+E_{1}+E_{2}$ in Figure 2, where $k=0$ if $T_{24}=\emptyset$. We proved that if a rational unicuspidal plane curve C satisfies the conditions $\left(C^{\prime}\right)^{2}=-2, \bar{\kappa}=2$, then C can be constructed in the same way as $C_{4 k}$ or $C_{4 k}^{*}$ for some k. By Proposition $15, C$ is projectively equivalent to $C_{4 k}$ or $C_{4 k}^{*}$. We have thus proved Theorem 1.
acknowledgements. The author would like to express his thanks to Professor Fumio Sakai for his helpful advice. He also would like to express his thanks to the referee for giving him useful comments on this note.

Appendix by Fumio Sakai.

Let N be the nodal cubic $x^{3}+y^{3}-x y z=0$. Let O denote the node $(0,0,1)$. It is well known that the set $N \backslash\{O\}$ has a group structure, which is isomorphic to the multiplicative group C^{*}. The group isomorphism is given by $\phi: C^{*} \ni$ $t \mapsto\left(t,-t^{2}, t^{3}-1\right) \in N \backslash\{O\}$. Geometrically, we have $t_{1} t_{2} t_{3}=1$ if and only if $\phi\left(t_{1}\right), \phi\left(t_{2}\right)$ and $\phi\left(t_{3}\right)$ are collinear. We see easily that N has three flexes $O_{1}=(1,-1,0)=\phi(1), O_{2}=(1,-\omega, 0)=\phi(\omega)$ and $O_{3}=\left(1,-\omega^{2}, 0\right)=\phi\left(\omega^{2}\right)$, where $\omega=e^{2 \pi i / 3}$. There exist three projective transformations

$$
\varphi_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \varphi_{2}=\left(\begin{array}{ccc}
0 & \omega^{2} & 0 \\
\omega & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \varphi_{3}=\left(\begin{array}{ccc}
0 & \omega & 0 \\
\omega^{2} & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

such that $\varphi_{i}\left(O_{i}\right)=O_{i}, \varphi_{i}\left(O_{j}\right)=O_{k}$ for distinct i, j, k among $\{1,2,3\}$.
Theorem 23. Define three conics

$$
\begin{aligned}
& Q_{1}: 21\left(x^{2}+y^{2}\right)-22 x y-6(x+y) z+z^{2}=0 \\
& Q_{2}: 21\left(\omega x^{2}+\omega^{2} y^{2}\right)-22 x y-6\left(\omega^{2} x+\omega y\right) z+z^{2}=0, \\
& Q_{3}: 21\left(\omega^{2} x^{2}+\omega y^{2}\right)-22 x y-6\left(\omega x+\omega^{2} y\right) z+z^{2}=0 .
\end{aligned}
$$

Then the conic Q_{1} (resp. Q_{2}, Q_{3}) intersects N only at the point $P_{1}=\phi(-1)$ (resp. $P_{2}=\phi(-\omega), P_{3}=\phi\left(-\omega^{2}\right)$).

Conversely, if Q is an irreducible conic with the property that Q intersects N only at a point $P \in N \backslash\{O\}$, then Q is one of the above three conics.

Note that the tangent line to Q_{i} at P_{i} passes through O_{i} for each i and that $\varphi_{i}\left(Q_{i}\right)=Q_{i}, \varphi_{i}\left(Q_{j}\right)=Q_{k}$ for distinct i, j, k among $\{1,2,3\}$.

Proof. Let Q be a conic defined by the general equation:

$$
a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z=0 .
$$

Suppose that Q intersects N only at a point $P=\phi(\alpha) \in N \backslash\{O\}$, where $\alpha \in \boldsymbol{C}^{*}$. Then we have

$$
a t^{2}+b t^{4}+c\left(t^{3}-1\right)^{2}-d t^{3}+e t\left(t^{3}-1\right)-f t^{2}\left(t^{3}-1\right)=0
$$

It follows that

$$
c t^{6}-f t^{5}+(b+e) t^{4}-(2 c+d) t^{3}+(a+f) t^{2}-e t+c=0 .
$$

Since Q does not pass through O, we infer that $c \neq 0$. So we may assume that $c=1$. Thus, we have

$$
t^{6}-f t^{5}+(b+e) t^{4}-(2+d) t^{3}+(a+f) t^{2}-e t+1=0
$$

By our hypothesis, this equation must have only one multiple root α of order six.
We see that $\alpha^{6}=1, f=6 \alpha, b+e=15 \alpha^{2}, 2+d=20 \alpha^{3}, a+f=15 \alpha^{4}, e=6 \alpha^{5}$.

In particular, α is a 6 -th root of unity. We then obtain the equations of the conics Q_{1}, Q_{2}, Q_{3} for $\alpha=-1,-\omega,-\omega^{2}$, respectively. For the cases in which $\alpha=1$, ω, ω^{2}, the conic Q is reduced to a double tangent line at the flex O_{1}, O_{2}, O_{3}, respectively.

References

[AT] E. Artal Bartolo and H. Tokunaga, Zariski pairs of index 19 and Mordell-Weil groups of $K 3$ surfaces, Proc. London Math. Soc. (3), $\mathbf{8 0}$ (2000), 127-144.
[BK] E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser Basel, Boston, Stuttgart, 1986.
[F] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo, 29 (1982), 503-566.
[K1] H. Kojima, Complements of plane curves with logarithmic Kodaira dimension zero, J. Math. Soc. Japan, 52 (2000), 793-806.
[K2] H. Kojima, On the logarithmic plurigenera of complements of plane curves, Math. Ann., 332 (2005), 1-15.
[K3] H. Kojima, On the Logarithmic Bigenera of Some Affine Surfaces, Affine Algebraic Geometry, Osaka University Press, Osaka, 2007, pp. 257-273.
[MaSa] T. Matsuoka and F. Sakai, The degree of rational cuspidal curves, Math. Ann., 285 (1989), 233-247.
[MiSu] M. Miyanishi and T. Sugie, \boldsymbol{Q}-homology planes with $\boldsymbol{C}^{* *}$-fibrations, Osaka J. Math., 28 (1991), 1-26.
[MT1] M. Miyanishi and S. Tsunoda, Non-complete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with non-connected boundaries at infinity, Japan. J. Math., 10 (1984), 195-242.
[MT2] M. Miyanishi and S. Tsunoda, Absence of the affine lines on the homology planes of general type, J. Math. Kyoto Univ., 32 (1992), 443-450.
[O] S. Yu. Orevkov, On rational cuspidal curves I, Sharp estimate for degree via multiplicities, Math. Ann., 324 (2002), 657-673.
[To] K. Tono, Rational unicuspidal plane curves with $\bar{\kappa}=1$, Sūrikaisekikenkyūsho Kōkyūroku, 1233 (2001), 82-89.
[Ts] S. Tsunoda, The complements of projective plane curves, Sūrikaisekikenkyūsho Kōkyūroku, 446 (1981), 48-56.
[Y] H. Yoshihara, Rational curves with one cusp (in Japanese), Sūgaku, 40 (1988), 269271.

Keita Tono

Department of Mathematics
Graduate School of Science and Engineering Saitama University Shimo-Okubo 255, Sakura-ku
Saitama 338-8570, Japan
E-mail: ktono@rimath.saitama-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 14H50.
 Key Words and Phrases. rational plane curve, cusp, Orevkov.

