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Abstract. We prove that if g and n are integers at least two, then the
abstract commensurator of the braid group with n strands on a closed ori-
entable surface of genus g is naturally isomorphic to the extended mapping
class group of a compact orientable surface of genus g with n boundary com-
ponents.

1. Introduction.

For a positive integer n and a manifold M , we define PBn(M) to be the pure
braid group of n strands on M , i.e., the fundamental group of the space of ordered
distinct n points in M . Let S be a connected, compact and orientable surface of
genus g with p boundary components. Let S̄ denote the closed surface obtained
by attaching disks to all boundary components of S. We define P (S) as the kernel
of the homomorphism ι : PMod(S) → Mod(S̄) associated with the inclusion of S

into S̄, where PMod(S) denotes the pure mapping class group for S, and Mod(S̄)
denotes the mapping class group for S̄ (see Section 2.3 for a definition of these
groups). As discussed in Section 4.1 of [2], the Birman exact sequence tells us that
if g ≥ 2 and p ≥ 1, then PBp(S̄) is identified with P (S).

Automorphisms of P (S) are studied in [1], [11] and [22]. The aim of this
paper is to describe any isomorphism between finite index subgroups of P (S).
The same problem is also considered for the subgroup, denoted by Ps(S), of P (S)
generated by all HBC twists and all HBP twists about separating HBPs in S.
We denote by Mod∗(S) the extended mapping class group for S, i.e., the group of
isotopy classes of homeomorphisms from S onto itself, where isotopy may move
points of the boundary of S. Since P (S) and Ps(S) are normal subgroups of
Mod∗(S), the conjugation by each element of Mod∗(S) defines an automorphism
of P (S) and of Ps(S). The following theorem says that any isomorphism between
finite index subgroups of P (S) and of Ps(S) can be described in this way.
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Theorem 1.1. Let S be a connected, compact and orientable surface of
genus g with p boundary components. We assume g ≥ 2 and p ≥ 2. Then the
following assertions hold :

( i ) Let Γ1 and Γ2 be finite index subgroups of P (S), and let f : Γ1 → Γ2 be
an isomorphism. Then there exists an element γ of Mod∗(S) with f(x) =
γxγ−1 for any x ∈ Γ1.

( ii ) Let Λ1 and Λ2 be finite index subgroups of Ps(S), and let h : Λ1 → Λ2 be
an isomorphism. Then there exists an element λ of Mod∗(S) with h(y) =
λyλ−1 for any y ∈ Λ1.

For a group Γ, we define F (Γ) to be the set of isomorphisms between finite
index subgroups of Γ. We say that two elements f , h of F (Γ) are equivalent
if there exists a finite index subgroup of Γ on which f and h are equal. The
composition of two elements f : Γ1 → Γ2, h : Λ1 → Λ2 of F (Γ) given by f ◦
h : h−1(Γ1 ∩ Λ2) → f(Λ2 ∩ Γ1) induces the product operation on the quotient
set of F (Γ) by this equivalence relation. This makes it into the group called the
abstract commensurator of Γ and denoted by Comm(Γ).

Since P (S) and Ps(S) are normal subgroups of Mod∗(S), the homomorphisms

i : Mod∗(S) → Comm(P (S)), is : Mod∗(S) → Comm(Ps(S))

are defined by conjugation. Theorem 1.1 shows that if g ≥ 2 and p ≥ 2, then i

and is are surjective and thus isomorphisms by Lemma 2.2.
For a positive integer n and a manifold M , we define Bn(M) as the braid group

of n strands on M , i.e., the fundamental group of the space of non-ordered distinct
n points in M . The group PBn(M) is identified with a subgroup of Bn(M) of
index n!. We note that if Γ is a group and if Λ is a finite index subgroup of Γ, then
the natural homomorphism from Comm(Λ) into Comm(Γ) is an isomorphism. We
therefore obtain the following:

Corollary 1.2. Let g and n be integers at least two. Let M be a con-
nected, closed and orientable surface of genus g. Then Comm(Bn(M)) and Comm
(PBn(M)) are isomorphic to Mod∗(S), where S is a connected, compact and ori-
entable surface of genus g with n boundary components.

Let us mention surfaces excluded in Theorem 1.1.

• If p = 0, then both P (S) and Ps(S) are trivial.
• If g ≥ 2 and p = 1, then P (S) is isomorphic to π1(S̄) by the Birman

exact sequence, and Ps(S) is identified with a subgroup of the commutator
subgroup of π1(S̄) and thus isomorphic to a non-abelian free group.
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• If g = 0, then we have P (S) = Ps(S) = PMod(S).
• If g = 1, then we have P (S) = I (S) and Ps(S) = K (S), where I (S) is

the Torelli group for S, and K (S) is the Johnson kernel for S (see [15] for
a definition of these groups).

When g = 0, 1, a description of any isomorphism between finite index subgroups
of P (S) and of Ps(S) is therefore given in [17] and [15], respectively.

As studied in [13], [17] and [18], the complex of curves for S plays an im-
portant role in the computation of the abstract commensurator of Mod∗(S). Af-
terward, in [4], [5], [6], [15] and [19], automorphisms and the abstract commen-
surators of certain subgroups of Mod∗(S) are understood through the study of
appropriate variants of the complex of curves. To prove Theorem 1.1, we follow
this strategy and introduce two simplicial complexes C P(S) and C Ps(S) asso-
ciated to S, inspired by a work due to Irmak-Ivanov-McCarthy [11]. Vertices of
those simplicial complexes are defined as isotopy classes of certain simple closed
curves in S and pairs of them. Simplices are defined in terms of disjointness of
curves in the same manner as the definition of the complex of curves. We then
have the natural action of Mod∗(S) on C P(S) and on C Ps(S). Theorem 1.1 can
be deduced by combining the following two assertions: If g ≥ 2 and p ≥ 2, then

(1) any isomorphism between finite index subgroups of P (S) (resp. Ps(S)) induces
an automorphism of C P(S) (resp. C Ps(S)); and

(2) any automorphism of C P(S) (resp. C Ps(S)) is induced by an element of
Mod∗(S).

Assertion (1) is proved in Theorem 7.13, and assertion (2) is proved in Corollary
6.3. In the proof of assertion (1), we present an algebraic characterization of
certain elements of P (S) associated to vertices of C P(S), based on [11].

This paper is organized as follows. In Section 2, we provide basic terminology
and the definition of simplicial complexes and groups discussed above. In the final
subsection of Section 2, we present an outline of the proof of assertion (2) given
throughout Sections 3–6. In Section 7, we prove assertion (1). Moreover, we show
that any injective homomorphism from a finite index subgroup of Ps(S) into P (S)
induces a superinjective map from C Ps(S) into C P(S). This result is used in
our subsequent paper [16], where we conclude that any injective homomorphism
from a finite index subgroup of P (S) into P (S) is the conjugation by an element
of Mod∗(S) if g ≥ 2 and p ≥ 2. The same conclusion is also proved for Ps(S).

Acknowledgements. We thank the referee for valuable suggestions and
comments, which greatly help us to improve the presentation of the paper.



1394 Y. Kida and S. Yamagata

2. Preliminaries.

2.1. Notation and terminology.
Unless otherwise stated, we assume a surface to be connected, compact and

orientable. Let S = Sg,p be a surface of genus g with p boundary components. A
simple closed curve in S is said to be essential in S if it is neither homotopic to a
single point of S nor isotopic to a component of ∂S. When there is no confusion,
we mean by a curve in S either an essential simple closed curve in S or the isotopy
class of it. A curve α in S is said to be separating in S if S \ α is not connected.
Otherwise α is said to be non-separating in S. These properties depend only on
the isotopy class of α. We mean by a holed sphere a surface of genus zero with
non-empty boundary.

Hole-bounding curves (HBC).
A curve α in S is called a hole-bounding curve (HBC ) in S if α is separating

in S and cuts off a holed sphere from S. When g ≥ 1, if the holed sphere cut off
by α from S contains exactly k components of ∂S, then we call α a k-HBC in S.
Note that we have 2 ≤ k ≤ p.

Hole-bounding pairs (HBP).
A pair {α, β} of curves in S is called a hole-bounding pair (HBP) in S if

• α and β are disjoint and non-isotopic;
• either α and β are non-separating in S or α and β are separating in S and

are not an HBC in S; and
• S \ (α ∪ β) is not connected and has a component of genus zero.

We note that if g ≥ 2, then the component of genus zero in the last condition,
denoted by Q, uniquely exists. In this case, if Q contains exactly k components of
∂S, then we call the pair {α, β} a k-HBP in S. Note that we have 1 ≤ k ≤ p. An
HBP in S is said to be non-separating in S if both curves in it are non-separating
in S. Otherwise it is said to be separating in S (see Figure 1).

We define V (S) as the set of isotopy classes of essential simple closed curves
in S. We denote by i : V (S) × V (S) → Z≥0 the geometric intersection number,
i.e., the minimal cardinality of the intersection of representatives for two elements
of V (S). Let Σ(S) denote the set of non-empty finite subsets σ of V (S) with
i(α, β) = 0 for any α, β ∈ σ. For an element σ of Σ(S), we mean by a representative
of σ the union of mutually disjoint representatives of elements of σ. We extend the
function i to the symmetric function on the square of V (S)tΣ(S) with i(α, σ) =∑

β∈σ i(α, β) and i(σ, τ) =
∑

β∈σ,γ∈τ i(β, γ) for any α ∈ V (S) and σ, τ ∈ Σ(S).
We say that two elements α, β of V (S)tΣ(S) are disjoint if i(α, β) = 0. Otherwise,
we say that α and β intersect. We say that two elements α, β of V (S) fill S if
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Figure 1. α is an HBC, {β1, β2} is a non-separating HBP,
and {γ1, γ2} is a separating HBP.

there exists no element of V (S) disjoint from both α and β.
Let σ be an element of Σ(S). We denote by Sσ the surface obtained by cutting

S along all curves in σ. When σ consists of a single curve α, we denote it by Sα.
Each component of Sσ is often identified with a complementary component of a
tubular neighborhood of a one-dimensional submanifold representing σ in S. Let
R be a component of Sσ. The set V (R) is then identified with a subset of V (S).

2.2. Simplicial complexes associated to a surface.
Let S be a surface. We recall two complexes of curves and then introduce

complexes of HBCs and HBPs.

Complex C (S).
We define C (S) as the abstract simplicial complex such that the sets of vertices

and simplices of C (S) are V (S) and Σ(S), respectively, and call it the complex of
curves for S.

This complex was introduced by Harvey [9]. The following theorem says
that for almost all surfaces S, any automorphism of C (S) is generally induced
by an element of Mod∗(S). This fact is fundamental in the study of the abstract
commensurators of various subgroups of the mapping class group.

Theorem 2.1 ([13], [17], [18]). Let S = Sg,p be a surface with 3g+p−4 > 0.
Then the following assertions hold :

( i ) If (g, p) 6= (1, 2), then any automorphism of C (S) is induced by an element
of Mod∗(S).

( ii ) If (g, p) = (1, 2), then any automorphism of C (S) preserving vertices which
correspond to separating curves in S is induced by an element of Mod∗(S).

Let S̄ be the closed surface obtained from S by attaching disks to all boundary
components of S. Let C ∗(S̄) be the simplicial cone over C (S̄) with its cone point
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∗. Namely, C ∗(S̄) is the abstract simplicial complex such that the set of vertices
of C ∗(S̄) is the disjoint union V (S̄) t {∗}; and the set of simplices of C ∗(S̄) is

Σ(S̄) ∪ {
σ ∪ {∗} | σ ∈ Σ(S̄) ∪ {∅}}.

We have the simplicial map π : C (S) → C ∗(S̄) associated with the inclusion of S

into S̄. Note that π−1({∗}) consists of all HBCs in S. An HBP in S is identified
with an edge of C (S). For each edge {α, β} of C (S), it is an HBP in S if and only
if we have π(α) = π(β) 6= ∗. Two disjoint HBPs a, b in S are said to be equivalent
in S if π(a) = π(b).

Complex C s(S).
Let Vs(S) denote the set of all elements of V (S) whose representatives are

separating in S. We define Cs(S) as the full subcomplex of C (S) spanned by
Vs(S) and call it the complex of separating curves for S.

This complex (for closed surfaces) appears in [4], [5], [6] and [19]. Automor-
phisms of Cs(S) are studied in [4], [5] and [15]. We now introduce two simplicial
complexes whose vertices are HBCs and HBPs in S, inspired by the work due
to Irmak-Ivanov-McCarthy [11] characterizing elements of P (S) associated with
HBCs and HBPs in S algebraically.

Complexes C P(S) and C Ps(S).
Let Vc(S) denote the set of all elements of V (S) whose representatives are

HBCs in S. Let Vp(S) denote the set of all elements of Σ(S) whose representatives
are HBPs in S.

We define C P(S) as the abstract simplicial complex such that the set of
vertices is the disjoint union Vc(S) t Vp(S), and a non-empty finite subset σ of
Vc(S) t Vp(S) is a simplex of C P(S) if and only if any two elements of σ are
disjoint. We call elements of Vc(S) and Vp(S) HBC-vertices and HBP-vertices of
C P(S), respectively.

We define C Ps(S) as the full subcomplex of C P(S) spanned by all vertices
whose representatives are either an HBC in S and or a separating HBP in S.

We note that if S is of genus zero, then C P(S) = C Ps(S) = C (S) = Cs(S).
If S is of genus one, then C P(S) is equal to the Torelli complex studied in [4]
and [15], and the equality C Ps(S) = Cs(S) holds.

Superinjective maps.
Let X and Y be any of the four simplicial complexes introduced above. We

denote by V (X) and V (Y ) the sets of vertices of X and Y , respectively. Note that
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a map φ : V (X) → V (Y ) defines a simplicial map from X into Y if and only if
i(φ(a), φ(b)) = 0 for any a, b ∈ V (X) with i(a, b) = 0. We mean by a superinjective
map φ : X → Y a simplicial map φ : X → Y satisfying i(φ(a), φ(b)) 6= 0 for any
a, b ∈ V (X) with i(a, b) 6= 0. One can check that any superinjective map from
X into Y is injective, along the proof of Lemma 3.1 in [10] proving that any
superinjective map from C (S) into itself is injective.

2.3. Surface braid groups.
Let S be a surface. The mapping class group Mod(S) for S is defined as

the subgroup of Mod∗(S) consisting of all isotopy classes of orientation-preserving
homeomorphisms from S onto itself. The pure mapping class group PMod(S)
for S is defined as the subgroup of Mod∗(S) consisting of all isotopy classes of
homeomorphisms from S onto itself that preserve an orientation of S and each
component of ∂S as a set. We refer to [14] for fundamentals of these groups.

For each α ∈ V (S), let tα ∈ PMod(S) denote the (left) Dehn twist about α.
The Dehn twist about an HBC is called an HBC twist. For each HBP {α, β} in
S, the elements tαt−1

β , tβt−1
α of PMod(S) are called HBP twists about the HBP

{α, β}.
Let S̄ be the closed surface obtained by attaching disks to all boundary com-

ponents of S. We then have the surjective homomorphism

ι : PMod(S) → Mod(S̄)

associated with the inclusion of S into S̄. We define P (S) to be ker ι. The group
P (S) is known to be generated by all HBC twists and all HBP twists in S (see
Section 4.1 in [2]). We define Ps(S) to be the subgroup of P (S) generated by all
HBC twists and all HBP twists about separating HBPs in S.

Lemma 2.2. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 1. Then the
following assertions hold :

( i ) The actions of Mod∗(S) on C P(S) and on C Ps(S) are faithful.
( ii ) The homomorphisms

i : Mod∗(S) → Comm(P (S)), is : Mod∗(S) → Comm(Ps(S))

defined by conjugation are injective.

Proof. Let x be an element of Mod∗(S) fixing any vertex of C Ps(S). Pick
α ∈ Vs(S)\Vc(S). We choose separating HBPs {α, β1}, {α, β2} in S with β1 6= β2.
Since x fixes these HBPs, it fixes α. Thus, x fixes any element of Vs(S). For each
non-separating curve γ in S, we choose separating curves δ1, δ2 in S disjoint from
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γ and filling Sγ . Since x fixes δ1 and δ2, it fixes γ. It follows that x fixes any
element of V (S) and is thus neutral. Assertion (i) is proved.

To prove assertion (ii), it suffices to show that is is injective. Pick y ∈
Mod∗(S) with is(y) neutral. There exists a finite index subgroup of Ps(S) such
that y commutes any element of it. For any separating HBP {α, β} in S, we then
have a non-zero integer n with y(tαt−1

β )ny−1 = (tαt−1
β )n. Thus, y fixes {α, β}.

Similarly, y fixes any HBC in S. By assertion (i), y is neutral. Assertion (ii) is
proved. ¤

Lemma 2.3. Let S be a surface of genus at least one. Pick σ ∈ Σ(S) and
let Dσ be the subgroup of PMod(S) generated by all Dehn twists about curves in
σ. Then the following assertions hold :

( i ) Dσ ∩ P (S) is generated by all Dehn twists about HBCs in σ and all HBP
twists about HBPs of two curves in σ.

( ii ) Dσ ∩ Ps(S) is generated by all Dehn twists about HBCs in σ and all HBP
twists about separating HBPs of two curves in σ.

In particular, Ps(S) contains no non-zero power of the HBP twist about a non-
separating HBP in S.

Proof. Assertion (i) holds because any element of P (S) induces the neutral
element of Mod(S̄). We define K (S) to be the group generated by all Dehn twists
about separating curves in S, and call it the Johnson kernel for S. The group
Ps(S) is contained in K (S). Theorem 6.1 (ii) in [15] shows that Dσ ∩K (S) is
generated by Dehn twists about curves in σ ∩ Vs(S). Assertion (ii) thus follows
because any element of Ps(S) induces the neutral element of Mod(S̄). ¤

2.4. Plan of Sections 3–6.
Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. We explain an outline to

prove that any automorphism φ of C P(S) is induced by an element of Mod∗(S).
This conclusion will be obtained by constructing an automorphism Φ of C (S)
inducing φ.

In Section 3, we prove that

• φ preserves vertices corresponding to HBCs in S, non-separating HBPs in
S and separating HBPs in S, respectively; and

• for any two disjoint HBPs b1, b2 in S containing a common curve, the two
HBPs φ(b1), φ(b2) also contain a common curve.

For each α ∈ V (S), we define Φ(α) ∈ V (S) as follows. If α is an HBC in S,
then we put Φ(α) = φ(α). Otherwise, choosing two disjoint and distinct HBPs
in S, say b1 and b2, containing α, we define Φ(α) to be the common curve of the
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two HBPs φ(b1) and φ(b2). Sections 4 and 5 are devoted to showing that this is
well-defined. In Section 6, the map Φ is shown to be an automorphism of C (S)
and is thus induced by an element of Mod∗(S) by Theorem 2.1. In a similar way,
for any automorphism ψ of C Ps(S), we construct a map Ψ from Vs(S) into itself
and show it to be an automorphism of Cs(S) and thus induced by an element of
Mod∗(S) by Theorem 1.2 in [15].

3. Basic properties of automorphisms of C P(S).

For an automorphism φ of C P(S), we show that φ preserves topological
properties of HBCs and HBPs corresponding to vertices of C P(S). In Section
3.1, simplices of C P(S) of maximal dimension are completely described. It is
obvious that such simplices are preserved by φ. In Section 3.2, using this fact, we
show that φ preserves HBC-vertices and HBP-vertices, respectively, and preserves
more detailed information on these vertices.

3.1. Simplices of C P(S) of maximal dimension.
We say that two disjoint curves in S are HBP-equivalent in S if they either

are equal or form an HBP in S. This defines an equivalence relation on each
simplex σ of C (S) with σ ∩ Vc(S) = ∅. For each simplex σ of C (S), we mean
by an HBP-equivalence class in σ an equivalence class in σ \ Vc(S) with respect
to this equivalence relation. Before describing simplices of C P(S) of maximal
dimension, we give several elementary observations on HBP-equivalence.

Lemma 3.1. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 1, and let
b ∈ Σ(S) be a simplex such that |b| ≥ 2, b∩Vc(S) = ∅ and any two curves of b are
HBP-equivalent in S. Then the following assertions hold :

( i ) Either all curves of b are non-separating in S or they are separating in S.
( ii ) If all curves of b are non-separating in S, then each component of Sb contains

exactly two curves of b as boundary components, and exactly one component
of Sb is of positive genus.

(iii) If all curves of b are separating in S, then there exist exactly two components
of Sb of positive genus. Moreover, those two components contain exactly one
curve of b as a boundary component, and any other component of Sb contains
exactly two curves of b as boundary components.

Proof. Assertion (i) follows from the definition of HBPs. Assertions (ii)
and (iii) are verified by induction on |b|. ¤

Lemma 3.2. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 1, and let
b, c ∈ Σ(S) be simplices such that
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• |b| ≥ 2, b ∩ c = ∅ and i(b, c) = 0;
• b consists of non-separating curves in S; and
• each of b and c is an HBP-equivalence class in the simplex b ∪ c.

Then any curve of c is contained in the component of Sb of positive genus.

Proof. This lemma follows from the fact that any curve in a component
of Sb of genus zero is either an HBC in S or HBP-equivalent to a curve in b. ¤

Lemma 3.3. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 1. Pick a
separating curve α in S which is not an HBC in S, and pick a simplex c ∈ Σ(S)
such that

• |c| ≥ 2, α 6∈ c and i(α, c) = 0; and
• c is an HBP-equivalence class in the simplex {α} ∪ c.

Then there exists a component Q of Sα such that c belongs to Σ(Q).

Proof. Pick two distinct curves γ, δ of c. Let Q and R be the components
of Sα with γ ∈ V (Q) and δ ∈ V (R). If all curves of c are non-separating in S, then
γ and δ are non-separating in Q and R, respectively. Since S{γ,δ} is not connected,
we have Q = R. If all curves of c are separating in S, then for each curve β of c,
since β is not an HBC in S and not equivalent to α, the curve β has to separate
the component of Sα containing β into two components of positive genus. Since
any two curves in c are HBP-equivalent, all curves of c are contained in the same
component of Sα. ¤

Lemma 3.4. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2, and let σ be
a simplex of C P(S) consisting of HBC-vertices. Then the inequality |σ| ≤ p − 1
holds, and the equality can be attained.

Proof. We can find a simplex τ of C P(S) consisting of p−1 HBC-vertices.
The inequality in the lemma is verified by induction on p. ¤

We now describe simplices of C P(S) of maximal dimension in the following:

Proposition 3.5. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 1. Then
we have

dim(C P(S)) =
(

p + 1
2

)
− 1.

Moreover, for any simplex σ of C P(S) of maximal dimension, there exists a
unique simplex s = {β1, β2, . . . , βp+1} of C (S) such that
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Figure 2. Simplices of C P(S) of maximal dimension.

(a) any two curves in s are HBP-equivalent; and
(b) σ consists of all HBPs of two curves in s.

Before proving this proposition, we note that if S is a surface of genus one,
then C P(S) is equal to the Torelli complex T (S) studied in [15], where simplices
of T (S) of maximal dimension are described. Proposition 3.4 in [15] thus implies
that if S = S1,p is a surface with p ≥ 2, then we have

dim(C P(S)) =
(

p

2

)
− 1.

Proof of Proposition 3.5. The p + 1 curves in S described in Figure
2 are mutually HBP-equivalent. It follows that the dimension of C P(S) is not
smaller than the right hand side of the equality in the proposition.

In what follows, we show the equality by induction on p. The equality obvi-
ously holds if p = 1. We assume p ≥ 2. Pick a simplex σ of C P(S) of maximal
dimension. We define the simplex of C (S), denoted by

s =
{
α1, . . . , αk, β11, . . . , β1m1 , β21, . . . , βlml

}
,

so that

• {α1, . . . , αk} is the collection of HBCs of σ;
• {β11, . . . , β1m1 , β21, . . . , βlml

} is the collection of curves in HBPs of σ; and
• for each j = 1, . . . , l, the set bj = {βj1, . . . , βjmj} is an HBP-equivalence

class in s.

Since dimσ is maximal, σ contains all HBPs of two curves in each bj . We hence
obtain the equality
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|σ| = k +
l∑

j=1

(
mj

2

)
.

Claim 3.6. We have k = 0.

Proof. We assume k ≥ 1. For each j = 1, 2, . . . , k, let nj be the integer
with αj an nj-HBC in S, and put n = max{n1, n2, . . . , nk}. Exchanging indices
if necessary, we may suppose that α1 is an n-HBC in S. Let ∂1, . . . , ∂n be the
boundary components of S contained in the component of Sα1 of genus zero. The
maximality of dimσ and n implies that there exists an n-HBP b = {γ1, γ2} in σ

such that the component of Sb of genus zero, denoted by Q, contains ∂1, . . . , ∂n. We
note that σ∩V (Q) consists of HBCs in S and that the inequality |σ∩V (Q)| ≤ n−1
holds. Remove all curves in σ∩V (Q) from σ and add curves γ3, γ4 . . . , γn+1 ∈ V (Q)
to σ such that for each j = 3, 4, . . . , n + 1, γj is HBP-equivalent to γ1 and γ2 as a
curve in S. This new collection of curves is denoted by s′ ∈ Σ(S) and associates
the simplex σ′ of C P(S) consisting of all HBCs in s′ and all HBPs of two curves
in each HBP-equivalence class in s′. We thus obtain the inequality

|σ′| ≥ |σ| − |σ ∩ V (Q)|+ (n + 1)n
2

− 1 ≥ |σ|+ n(n− 1)
2

> |σ|,

where the last inequality holds since we have n ≥ 2. This contradicts the maxi-
mality of dimσ. ¤

Claim 3.7. We have l = 1.

Proof. Assume l ≥ 2. We deduce a contradiction in the following two
cases: (i) b1 consists of separating curves in S; and (ii) b1 consists of non-separating
curves in S. Let R be the component of Sb1 containing all curves in b2, which exists
by Lemmas 3.2 and 3.3. Let p1 denote the number of boundary components of S

contained in R. Since b1 and b2 are not equivalent, the inequality 1 ≤ p1 ≤ p− 1
holds, and the genus of R is positive.

In case (i), we may assume that β11 is the element of b1 corresponding to a
component of ∂R. Moreover, after exchanging indices, we may assume that there
exists an integer l′ with 2 ≤ l′ ≤ l such that

• for each j = 2, . . . , l′, all curves in bj are contained in R; and
• for each j = l′ + 1, . . . , l, all curves in bj are contained in a component of

Sb1 distinct from R.

We mean by a handle a surface homeomorphic to S1,1. Let R′ denote the sur-
face obtained from R by attaching a handle to the component of ∂R corresponding
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to β11. The number of boundary components of R′ is then equal to p1. For each
j = 2, . . . , l′, any curve of bj can be regarded as a curve in R′ via the inclusion of
R into R′, and any two curves of bj form an HBP in R′. We denote by σR′ the
simplex of C P(R′) consisting of all HBPs in R′ associated with two curves in bj

for j = 2, . . . , l′. Since the genus of R′ is at least two, we obtain

|σR′ | =
l′∑

j=2

(
mj

2

)
≤

(
p1 + 1

2

)

by the hypothesis of the induction. We remove all curves in b2, b3, . . . , bl′ from s

and add to s curves δ1, δ2, . . . , δp1 ∈ V (R) which are mutually disjoint and HBP-
equivalent to β11 as curves in S. This new collection of curves is denoted by
s1 ∈ Σ(S). Let σ1 be the simplex of C P(S) consisting of all HBPs of two curves
in HBP-equivalence classes of s1. We then obtain the equality

|σ1| =
(

m1 + p1

2

)
+

l∑

j=l′+1

(
mj

2

)

and the inequality

|σ1| − |σ| =
(

m1 + p1

2

)
+

l∑

j=l′+1

(
mj

2

)
−

l∑

j=1

(
mj

2

)

≥
(

m1 + p1

2

)
−

(
p1 + 1

2

)
−

(
m1

2

)
= (m1 − 1)p1 > 0.

This contradicts the maximality of dimσ.
Let us consider case (ii). Without loss of generality, we may assume that β11

and β12 are the two elements of b1 corresponding to components of ∂R. It follows
from Lemma 3.2 that for each j = 2, . . . , l, any curve of bj is contained in R as an
essential one. Let R′′ be the surface obtained by identifying β11 with β12, whose
genus is at least two. For each j = 2, . . . , l, any curve of bj can be regarded as a
curve in R′′ via the natural map from R into R′′, and any two curves of bj form
an HBP in R′′. We denote by σR′′ the simplex of C P(R′′) consisting of all HBPs
in R′′ associated with two curves in bj for j = 2, . . . , l. Along an argument of the
same kind as in case (i), we can deduce a contradiction. ¤

Since any HBP-equivalence class in a simplex of C (S) consists of at most p+1
curves, Claims 3.6 and 3.7 imply the equality in the proposition. Existence and
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uniqueness of the simplex s = {β1, β2, . . . , βp+1} in the proposition also follow. ¤

3.2. Topological properties preserved by φ.
The following three lemmas are obtained as a consequence of Proposition 3.5.

Lemma 3.8. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2, and let
φ : C P(S) → C P(S) be a superinjective map. Then the following assertions
hold :

( i ) The map φ preserves HBPs in S.
( ii ) If b1 and b2 are disjoint and equivalent HBPs in S, then φ(b1) and φ(b2)

are also equivalent.

Proof. Let b be an HBP in S, and let σ be a simplex of C P(S) of maximal
dimension containing b as its vertex. Since φ is injective, the equality |φ(σ)| = |σ|
holds, and φ(σ) is thus a simplex of maximal dimension. By Proposition 3.5, each
vertex of φ(σ) is an HBP in S. Assertion (i) is proved.

Let b1 and b2 be disjoint and equivalent HBPs in S. By Proposition 3.5, we
can find a simplex τ of C P(S) of maximal dimension containing b1 and b2 as its
vertices. Since the dimension of φ(τ) is maximal in C P(S), all vertices of φ(τ)
are equivalent by Proposition 3.5. Assertion (ii) is proved. ¤

Lemma 3.9. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Then any
automorphism of C P(S) preserves HBCs in S.

Proof. The lemma follows because for any automorphism φ of C P(S), φ

and φ−1 preserve HBPs in S by Lemma 3.8 (i). ¤

A verbatim proof shows the following:

Lemma 3.10. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2, and let
ψ : C Ps(S) → C Ps(S) be a superinjective map. Then the following assertions
hold :

( i ) The map ψ preserves HBPs in S.
( ii ) If b1 and b2 are disjoint, equivalent and separating HBPs in S, then ψ(b1)

and ψ(b2) are also equivalent.
(iii) If ψ is an automorphism of C Ps(S), then ψ preserves HBCs in S.

To show that an automorphism of C P(S) preserves more topological infor-
mation, let us introduce the following terminology.

Definition 3.11. Let S be a surface, and let σ be a simplex of C P(S)
consisting of HBP-vertices. We say that σ is rooted if there exists a curve α in S
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contained in any HBP of σ. In this case, if |σ| ≥ 2, then α is uniquely determined
and called the root curve of σ.

Rooted simplices were introduced in [15] for the Torelli complex analogously.

Lemma 3.12. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Then any
superinjective map from C P(S) into itself preserves rooted simplices. Moreover,
the same conclusion holds for any superinjective map from C Ps(S) into itself.

Proof. Let φ : C P(S) → C P(S) be a superinjective map. We note that
the maximal dimension of a rooted simplex of C P(S) is equal to p− 1. Let σ be
a rooted simplex of C P(S) consisting of HBP-vertices a1, a2, . . . , ap. It suffices
to prove that φ(σ) is rooted.

For each j = 1, 2, . . . , p, there exists an HBP bj in S with

i(aj , bj) 6= 0 and i(ak, bj) = 0 for any k ∈ {1, . . . , p} \ {j}.

Since φ is superinjective, for each j = 1, 2, . . . , p, we have

i(φ(aj), φ(bj)) 6= 0 and i(φ(ak), φ(bj)) = 0 for any k ∈ {1, . . . , p} \ {j}.

For each j = 1, 2, . . . , p, there thus exists a curve cj ∈ φ(aj) with i(cj , φ(bj)) 6= 0.
We note that for each k ∈ {1, . . . , p}\{j}, the HBP φ(ak) does not contain cj .

Let c0 be the curve of φ(a1) distinct from c1. It then follows that c0, c1, . . . , cp are
mutually distinct, disjoint and HBP-equivalent in S. Proposition 3.5 implies that
the simplex of C P(S) consisting of all HBPs of two of c0, c1, . . . , cp is of maximal
dimension. The simplex φ(σ) thus consists of p pairs of two of c0, c1, . . . , cp. For
each j = 1, . . . , p, since φ(aj) contains cj and does not contain ck for any k ∈
{1, . . . , p} \ {j}, we obtain the equality φ(aj) = {c0, cj}.

Along an argument of the same kind, we can prove the assertion for any
superinjective map from C Ps(S) into itself. ¤

Lemma 3.13. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2, and let
φ : C P(S) → C P(S) be a superinjective map. Pick a simplex σ of C P(S)
of maximal dimension, and let {α0, α1, . . . , αp} denote the collection of curves
in HBPs of σ. Then there exists a collection of curves in S, {β0, β1, . . . , βp},
satisfying the equality

φ({αj , αk}) = {βj , βk}

for any distinct j, k = 0, 1, . . . , p. Moreover, the same conclusion holds for any su-
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Figure 3.

perinjective map from C Ps(S) into itself and any simplex of C Ps(S) of maximal
dimension.

Proof. For each j = 0, 1, . . . , p, we define σj to be the rooted subsimplex
of σ of dimension p−1 that consists of all HBPs in σ containing αj . Let βj denote
the root curve of the rooted simplex φ(σj). Note that we have βj 6= βk for any
j 6= k because the maximal dimension of a rooted simplex of C P(S) is equal to
p − 1. For any j 6= k, since φ({αj , αk}) contains βj and βk, we have the equality
φ({αj , αk}) = {βj , βk}.

Along an argument of the same kind, we can prove the assertion for any
superinjective map from C Ps(S) into itself. ¤

Applying observations so far on rooted simplices, we prove the following:

Lemma 3.14. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Then
any automorphism of C P(S) preserves non-separating HBPs in S and separating
HBPs in S, respectively.

Proof. Let φ be an automorphism of C P(S). It suffices to prove that
φ preserves non-separating HBPs in S. Pick a simplex σ of C P(S) of maximal
dimension consisting of non-separating HBPs in S. Let s = {α0, α1, . . . , αp} be
the set of non-separating curves in S such that

• σ consists of all pairs of two curves in s; and
• for each j = 0, . . . , p− 1, {αj , αj+1} is a 1-HBP in S.

As described in Figure 3, we can find non-separating curves β1, β2 and β3 in
S such that

• β1, β2 and β3 are mutually disjoint, distinct and HBP-equivalent in S;
• i(β2, s) = i(β1, s \ {α0}) = i(β3, s \ {αp}) = 0;
• i(β1, α0) 6= 0 and i(β3, αp) 6= 0;
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• β2 is not HBP-equivalent to any curve of s; and
• both {β1, β2} and {β2, β3} are 1-HBPs in S.

By Lemma 3.13, there exist curves γj , δk in S with

φ({αj1 , αj2}) = {γj1 , γj2}, φ({βk1 , βk2}) = {δk1 , δk2}

for any distinct j1, j2 = 0, . . . , p and any distinct k1, k2 = 1, 2, 3. We put t =
{γ0, . . . , γp}. Since {δ1, δ2} intersects γ0 and is disjoint from any curve in t \ {γ0}
and since {δ2, δ3} intersects γp and is disjoint from any curve in t \ {γp}, we see
that δ2 is disjoint from any curve in t. Since {δ1, δ2} is not equivalent to any HBP
of two curves in t\{γ0}, using Lemmas 3.2 and 3.3, we see that {δ1, δ2} is a 1-HBP
in S and that there exists a (p − 1)-HBP of two curves in t \ {γ0} such that the
other curves in it are contained in the holed sphere cut off by that (p − 1)-HBP
from S. Similarly, {δ2, δ3} is a 1-HBP in S, and there exists a (p− 1)-HBP of two
curves in t\{γp} such that the other curves in it are contained in the holed sphere
cut off by that (p− 1)-HBP from S. It thus follows that {γ0, γp} is a p-HBP in S.

We now assume that each γj is a separating curve in S. If δ2 lies in the
component of S{γ0,γp} of positive genus that contains γ0 as a boundary component,
then the HBP {δ2, δ3} cannot intersect γp, kept disjoint from any curve in t \
{γp}, by Lemma 3.3. This is a contradiction. In a similar way, we can deduce
a contradiction if we assume that δ2 lies in the component of S{γ0,γp} of positive
genus that contains γp as a boundary component. ¤

Lemma 3.15. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Then for any
integers j, k with 2 ≤ j ≤ p and 1 ≤ k ≤ p, any automorphism of C P(S) preserves
j-HBCs in S and k-HBPs in S, respectively. Moreover, the same conclusion holds
for any automorphism of C Ps(S).

Proof. Let φ be an automorphism of C P(S). Pick a j-HBC α in S with
2 ≤ j ≤ p, and suppose that φ(α) is a j′-HBC in S with 2 ≤ j′ ≤ p. Let
R (resp. R′) be the component of Sα (resp. Sφ(α)) of positive genus, which is a
surface of genus g with p − j + 1 (resp. p − j′ + 1) boundary components. We
note that each HBP in R can be identified with an HBP in S via the inclusion
of R into S. The same thing holds for R′. Let σ be a simplex of C P(R) of
maximal dimension, which is identified with a simplex of C P(S) consisting of
HBP-vertices. Since each HBP in φ(σ) is disjoint from the HBC φ(α), we can
identify φ(σ) with a simplex of C P(R′). We then obtain the inequality

(
p− j + 2

2

)
= |σ| = |φ(σ)| ≤

(
p− j′ + 2

2

)
,
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which implies j ≥ j′. The same argument for φ−1 shows j ≤ j′. We thus conclude
the equality j = j′.

We prove that φ preserves k-HBPs in S for each integer k with 1 ≤ k ≤ p

by induction on p. If p = 2, then φ preserves 2-HBPs in S because φ preserves
2-HBCs in S and because any HBP in S disjoint from a 2-HBC in S is a 2-HBP
in S. It then follows that φ preserves 1-HBPs in S.

We next assume p ≥ 3. Pick a simplex σ of maximal dimension in C P(S)
consisting of non-separating HBPs in S. Let s = {α0, . . . , αp} denote the collection
of curves in HBPs of σ so that {αj , αj+1} is a 1-HBP in S for each j = 0, . . . , p−1.
By Lemma 3.13, there exist curves β0, . . . , βp in S with φ({αj , αk}) = {βj , βk} for
any distinct j, k = 0, . . . , p. Choose two distinct 2-HBCs γ1, γ2 in S contained in
the holed sphere cut off by {α0, α2} from S. We now apply the hypothesis of the
induction to the component of Sγ1 of positive genus. It then follows that each of
{β0, β2} and {βj , βj+1} for any j = 2, . . . , p − 1 is a 1-HBP in the component of
Sφ(γ1) of positive genus and that {β0, βp} is a (p− 1)-HBP in that component.

Suppose that {βj , βj+1} is a 2-HBP in S for some j = 2, . . . , p−1. We choose a
curve α in S such that {α0, α} is an HBP in S; and α intersects αj+1 and is disjoint
from αk for any k ∈ {0, . . . , p} \ {j + 1}. Note that {α0, α} is disjoint from γ1 and
γ2. On the other hand, φ(γ1) and φ(γ2) fill the holed sphere cut off by the 2-HBP
{βj , βj+1} in S. Since the 2-simplex of C P(S) consisting of {α0, α}, {α0, α1} and
{α0, α2} is rooted, the HBP φ({α0, α}) contains β0. Another curve of φ({α0, α})
intersects βj+1 and thus intersects φ(γ1) or φ(γ2). This is a contradiction.

We thus proved that {β0, β2} is a 2-HBP in S and that {βj , βj+1} is a 1-HBP
in S for each j = 2, . . . , p− 1. It follows that {β0, β1} and {β1, β2} are 1-HBPs in
S. For each k = 1, . . . , p, the map φ therefore preserves non-separating k-HBPs in
S.

If non-separating HBPs are replaced by separating HBPs in the above argu-
ment, then we can prove that φ preserves separating k-HBPs in S for each k. A
verbatim proof shows that any automorphism of C Ps(S) preserves j-HBCs in S

for each j, and then shows that it also preserves separating k-HBPs in S for each
k. ¤

4. Construction of Φ in the case p = 2.

Let S = Sg,2 be a surface with g ≥ 2. For an automorphism φ of C P(S),
we define a map Φ: V (S) → V (S) as in Section 2.4, which is shown to be well-
defined throughout this section. In Sections 4.1 and 4.2, we study pentagons in
C P(S) and hexagons in C Ps(S), respectively. They are used to show that Φ is
well-defined on the set of non-separating curves in S and on the set of separating
curves in S which are not HBCs in S, respectively. In Section 4.3, we prove that
Φ is well-defined.
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Figure 4. A pentagon in C P(S).

4.1. Pentagons in C P(S).
We mean by a pentagon in C P(S) the full subgraph of C P(S) spanned by

five vertices v1, . . . , v5 with i(vk, vk+1) = 0 and i(vk, vk+2) 6= 0 for each k mod 5
(see Figure 4). In this case, let us say that the pentagon is defined by the 5-tuple
(v1, . . . , v5).

Let φ be an automorphism of C P(S), and pick a non-separating curve α in S.
To define Φ(α) ∈ V (S), we choose two disjoint and distinct HBPs a1 = {α, α1} and
a2 = {α, α2} in S and have to show that the root curve of the edge {φ(a1), φ(a2)}
of C P(S) depends only on α. We connect any two edges of C P(S) consisting of
two HBPs in S containing α by a sequence of pentagons in C P(S) such that

• each pentagon in that sequence is equal to the one described in Figure 4 up
to a homeomorphism of S; and

• any two successive pentagons in that sequence share at least two HBPs.

In Lemma 4.7, considering the image of this sequence of pentagons via φ, we obtain
the aforementioned assertion.

Lemma 4.1. Let S = Sg,2 be a surface with g ≥ 2. For each k = 1, 2, 3,
let ak = {α, αk} be a non-separating HBP in S such that {a1, a2} and {a2, a3}
are edges of C P(S). Then there exists a sequence of pentagons in C P(S),
Π1,Π2, . . . ,Πn, satisfying the following: For each k = 1, 2, . . . , n,

( i ) up to a homeomorphism of S, Πk is equal to the pentagon in Figure 4 that
is defined by a 5-tuple consisting of a 2-HBC, a 2-HBP, a 1-HBP, a 1-HBP
and a 2-HBP in this order ;

( ii ) any of the four HBPs of Πk contains α;
(iii) we have a1 ∈ Π1, a3 ∈ Πn and a2 ∈ Πk; and
(iv) if k < n, then Πk and Πk+1 share at least two HBPs.
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Proof. We first deal with the case where a2 is a 2-HBP and subsequently
the case where a2 is a 1-HBP.

Let us assume that a2 is a 2-HBP. Since any distinct two 2-HBPs in S intersect,
a1 and a3 are both 1-HBPs. We can find a pentagon Π in C P(S) containing a1

and a2 as its vertices and equal to the one in Figure 4 up to a homeomorphism
of S. Let b denote the 2-HBC in Π, and let Q denote the component of Sa2 of
genus zero, which is homeomorphic to S0,4. The set V (Q) then contains α1 and
α3. Let h ∈ Mod(S) be the half twist about b exchanging the two components of
∂S. Let x ∈ Mod(S) be the Dehn twist about α1. Define Γ to be the subgroup
of Mod(S) generated by h and x. Since a2 is fixed by Γ, there exists a natural
homomorphism p : Γ → Mod(Q).

We denote by Mod(Q;α, α2) the subgroup of Mod(Q) consisting of all ele-
ments that fix each of the two components of ∂Q corresponding to α and α2.
We show the equality p(Γ) = Mod(Q;α, α2). The element p(h) is a half twist
about b ∈ V (Q), and p(x) is the Dehn twist about α1 ∈ V (Q). We thus have
the inclusion p(Γ) < Mod(Q;α, α2). Since the Dehn twists about b and α1 gener-
ate PMod(Q) and since p(h) exchanges the two components of ∂S, we obtain the
inclusion Mod(Q;α, α2) < p(Γ). Our claim follows.

We put H = {h±1, x±1}. We note that α1 and α3 lie in V (Q) and that α and
α2 are contained in distinct components of Qα1 (resp. Qα3) as boundary compo-
nents. It follows that α1 and α3 lie in the same orbit for the action of Mod(Q;α, α2)
on V (Q). We can thus find h1, . . . , hn ∈ H with α3 = p(h1) · · · p(hn)α1. Let us
consider the following sequence of pentagons,

Π, h1Π, h1h2Π, . . . , h1h2 · · ·hnΠ.

This sequence satisfies conditions (i), (ii) and (iii) in the lemma. We now prove
that it satisfies condition (iv). Let c1 and c2 denote the two vertices of Π except
a1, a2 and b so that cj is a j-HBP for each j = 1, 2. It then follows that Π is the
5-tuple consisting of the five vertices b, a2, a1, c1, c2 in this order. Since a2 and c2

are disjoint from b, the three vertices a2, c2 and b are fixed by h. Since a2 and c1

are disjoint from a1, the three vertices a2, a1 and c1 are fixed by x. Our sequence
of pentagons therefore satisfies condition (iv).

We next suppose that a2 is a 1-HBP. Let R denote the component of Sa2

of positive genus, which is homeomorphic to Sg−1,3. Note that α1 and α3 are
curves in R. We prove the existence of a sequence of pentagons in the lemma in
the following three cases: (a) a1 and a3 are both 1-HBPs; (b) a1 and a3 are both
2-HBPs; and (c) one of a1 and a3 is a 1-HBP and another is a 2-HBP.

(a) Suppose that a1 and a3 are both 1-HBPs. Pick a pentagon Π containing
a1 and a2 as its vertices and equal to the one in Figure 4 up to a homeomorphism
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Figure 5. PMod is generated by Dehn twists about these curves.

of S. Let b, c and d denote the 2-HBC of Π, the 2-HBP of Π disjoint from a2 and
the other 2-HBP of Π, respectively. It then follows that Π is defined by the 5-tuple
consisting of the five vertices b, c, a2, a1 and d in this order. We put c = {α, γ}.

Recall that in general, if X is a surface of positive genus described in Figure
5, then the set of Dehn twists about curves in Figure 5 generates PMod(X) (see
[8]). One can then find a set of curves in R, denoted by U , satisfying the following
two conditions (see Figure 6):

• The set of Dehn twists about curves in U generates PMod(R);
• There exists a curve δ1 in U with i(α1, δ1) 6= 0 and i(α1, δ) = 0 for any

δ ∈ U \ {δ1}; and
• There exists a curve δ2 in U with i(γ, δ2) 6= 0 and i(γ, δ) = 0 for any

δ ∈ U \ {δ2}.
Let T denote the subset of PMod(S) consisting of all Dehn twists about curves in
U and their inverses, where curves in R are naturally identified with curves in S.
Let Λ be the subgroup of PMod(S) generated by T , and define q : Λ → PMod(R)
as the natural homomorphism. Since α1 and α3 are both 2-HBCs in R cutting off
a pair of pants containing α and a component of ∂S as boundary components, they
lie in the same orbit for the action of PMod(R) on V (R). Choose g1, . . . , gm ∈ T

with α3 = q(g1) · · · q(gm)α1. The sequence of pentagons,

Π, g1Π, g1g2Π, . . . , g1g2 · · · gmΠ,

then satisfies conditions (i), (ii) and (iii) in the lemma. Note that a1 is fixed by
each element of T except tδ1 and its inverse and that c is fixed by each element of T

except tδ2 and its inverse. Since a2 is fixed by Λ, the above sequence of pentagons
satisfies condition (iv).

(b) Suppose that a1 and a3 are both 2-HBPs. Pick a pentagon Π containing
a1 and a2 as its vertices and equal to the one in Figure 4 up to a homeomorphism of
S. Let c denote the 1-HBP of Π disjoint and distinct from a2, and put c = {α, γ}.
Along an argument similar to that in case (a), we obtain a desired sequence of
pentagons (see also Figure 6).



1412 Y. Kida and S. Yamagata

Figure 6.

(c) Finally, we assume that one of a1 and a3 is a 1-HBP and another is a
2-HBP. We may assume that a1 is a 1-HBP and a3 is a 2-HBP. Choose a pentagon
Π containing a1 and a2 as its vertices and equal to the one in Figure 4 up to a
homeomorphism of S. We denote by b, c and d the 2-HBC of Π, the 2-HBP of
Π disjoint from a2 and the other 2-HBP of Π, respectively. The pentagon Π is
then defined by the 5-tuple consisting of b, c, a2, a1 and d in this order. We put
c = {α, γ}. Note that γ and α3 are in the same orbit for the action of PMod(R)
on V (R). Along an argument of the same kind as in case (a) where α1 and α3 are
in the same orbit for the action of PMod(R) on V (R), we obtain the lemma. ¤

Let us introduce terminology used in the subsequent proposition. Let X =
Sg,p be a surface with p ≥ 2.

• Given two distinct components ∂1 and ∂2 of ∂X and a separating curve α in
X, we say that α separates ∂1 and ∂2 if ∂1 and ∂2 are contained in distinct
components of Xα.

• Let ∂1, . . . , ∂k be pairwise distinct components of ∂X. We say that an HBC
β in X encircles ∂1, . . . , ∂k if β cuts off from S a holed sphere containing
∂1, . . . , ∂k and homeomorphic to S0,k+1.

Proposition 4.2. Let X = Sg,p be a surface with g ≥ 1 and p ≥ 4, and
let ∂1 and ∂2 be two distinct components of ∂X. Then the full subcomplex D of
C (X) spanned by all vertices that correspond to HBCs in X separating ∂1 and ∂2

is connected.

Proof. The proof is based on Lemma 2.1 of [20], which presents a tech-
nique to prove connectivity of a simplicial complex on which PMod(X) acts. Pick
two distinct components ∂3 and ∂4 of ∂X other than ∂1 and ∂2.

Claim 4.3. For any HBC α in X separating ∂1 and ∂2, there exists a path
in D connecting α to a vertex corresponding to an HBC in X encircling ∂2 and
∂3.
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Proof. If the component of Xα containing ∂2 contains ∂3, then one can
find an HBC in X disjoint from α and encircling ∂2 and ∂3. Otherwise, one can
find a path in D , α, α1, α2, α3, α4, such that α1 encircles ∂1 and ∂3; α2 encircles
∂1, ∂3 and ∂4; α3 encircles ∂1 and ∂4; and α4 encircles ∂2 and ∂3. ¤

Claim 4.4. For any two HBCs α and β in X encircling ∂2 and ∂3, there
exists a path in D connecting α and β.

Proof. Let U be the set of curves in X described in Figure 5. As already
mentioned in the proof of Lemma 4.1, PMod(X) is generated by Dehn twists about
curves in U . After labeling ∂1, . . . , ∂p appropriately in Figure 5, one can find an
HBC γ in X encircling ∂2 and ∂3 such that

• there exists a unique curve δ in U intersecting γ; and
• there exists an HBC γ′ in X which separates ∂1 and ∂2 and is disjoint from

γ and δ.

The vertices tδγ, γ′ and γ of D form a path in D . Note that PMod(X) sends γ to
any HBC in X encircling ∂2 and ∂3. The claim is now obtained in the same way
as in the construction of a sequence of pentagons in the proof of Lemma 4.1. ¤

The proposition follows from Claims 4.3 and 4.4. ¤

Lemma 4.5. Let Y = Sg,p be a surface with g ≥ 2 and p ≥ 2, and pick a
non-separating curve α in Y . Then the full subcomplex of C P(Y ) spanned by all
vertices that correspond to HBPs in Y containing α is connected.

Proof. We set X = Yα, which is homeomorphic to Sg−1,p+2. Using the
natural one-to-one correspondence between HBPs in Y containing α and HBCs in
X which separates the two boundary components of X corresponding to α, one
can deduce the lemma from Proposition 4.2. ¤

The following lemma gives information on the image of the pentagon in Figure
4 via an automorphism φ of C P(S).

Lemma 4.6. Let S = Sg,2 be a surface with g ≥ 2. Let (a, b2, b1, c1, c2) be a
5-tuple defining a pentagon Π in C P(S) such that

• bj and cj are non-separating j-HBPs in S for each j = 1, 2; and
• each of the three edges {b2, b1}, {b1, c1} and {c1, c2} is rooted.

Then the root curves of the three edges in the second condition are equal.

Proof. Let α, β and γ be the root curves of the edges {b2, b1}, {b1, c1}
and {c1, c2}, respectively. Because of i(b1, c1) = 0, the equality i(α, β) = i(β, γ) =
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i(γ, α) = 0 holds. We deduce a contradiction by assuming that either (a) α, β and
γ are mutually distinct; (b) α = β 6= γ or β = γ 6= α holds; or (c) α = γ 6= β

holds.
(a) We assume that α, β and γ are mutually distinct. The equalities b1 =

{α, β} and c1 = {β, γ} then holds. The HBP {α, γ} is a 2-HBP because b1 and c1

are both 1-HBPs. Since b1 intersects a and since b2 is disjoint from a and contains
α, we see that β intersects a. Put b2 = {α, α2} and denote by R the component
of Sb2 of genus zero, which is homeomorphic to S0,4. Note that a (or a curve in
a if a is an HBP in S) and β lie in R and fill R. Since γ is disjoint from a and
β, the equality α2 = γ holds. This is a contradiction because the equality implies
that b2 and c1 are disjoint.

(b) We suppose α = β 6= γ. The equality c1 = {β, γ} then holds. It follows
from i(b2, a) = i(c2, a) = 0 that we have i(α, a) = i(γ, a) = 0 and thus i(c1, a) = 0.
This is a contradiction. We can also deduce a contradiction in the same manner
if β = γ 6= α holds.

(c) If α = γ 6= β, then we have b1 = {α, β} = c1. This is a contradiction. ¤

Lemma 4.7. Let S = Sg,2 be a surface with g ≥ 2, and let φ be an auto-
morphism of C P(S). For each k = 1, 2, 3, 4, let ak = {α, αk} be a non-separating
HBP in S such that {a1, a2} and {a3, a4} are edges of C P(S). Then the root
curves of the two edges {φ(a1), φ(a2)} and {φ(a3), φ(a4)} of C P(S) are equal.

Proof. By Lemma 4.5, there exists a sequence of non-separating HBPs in
S, a2 = b2, b3, . . . , bm−1 = a3, such that any two successive HBPs are disjoint and
each bk contains α. We set b1 = a1 and bm = a4. For each k = 1, . . . , m− 2, if we
have i(bk, bk+2) 6= 0, then there exists a sequence of pentagons in C P(S) connect-
ing the two edges {bk, bk+1}, {bk+1, bk+2} and satisfying conditions in Lemma 4.1.
Otherwise at least two of bk, bk+1 and bk+2 are equal. We then obtain a sequence
of pentagons in C P(S), Π1,Π2, . . . ,Πn, with a1, a2 ∈ Π1 and a3, a4 ∈ Πn. By
Lemma 4.6, φ(Πk) is a pentagon consisting of one HBC and four HBPs sharing
a single non-separating curve in S. Since φ(Πk) and φ(Πk+1) share at least two
HBPs for each k, the non-separating curve shared by all HBPs of φ(Πk) is equal
to that of φ(Πk+1). The lemma follows. ¤

4.2. Hexagons and squares in C Ps(S).
We mean by a hexagon in C Ps(S) the full subgraph of C Ps(S) spanned by

six vertices v1, . . . , v6 with i(vk, vk+1) = 0, i(vk, vk+2) 6= 0 and i(vk, vk+3) 6= 0 for
each k mod 6 (see Figure 7). In this case, let us say that the hexagon is defined
by the 6-tuple (v1, . . . , v6).

Similarly, we mean by a square in C Ps(S) the full subgraph of C Ps(S)
spanned by four vertices v1, . . . , v4 with i(vk, vk+1) = 0 and i(vk, vk+2) 6= 0 for
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Figure 7. A hexagon in C Ps(S).

Figure 8. A square in C Ps(S).

each k mod 4 (see Figure 8). In this case, we say that the square is defined by the
4-tuple (v1, . . . , v4).

Hexagons and squares in C Ps(S) are used to show that Φ(α) is well-defined
for each separating curve α in S which is not an HBC in S. A conclusion similar
to Lemma 4.7 for such an α is established in Lemma 4.14. To prove it, we connect
any two edges of C Ps(S) consisting of two HBPs in S containing α by a sequence
of hexagons and squares in C Ps(S).

Lemma 4.8. Let S = Sg,2 be a surface with g ≥ 2. For each k = 1, 2, 3,
let ak = {α, αk} be a separating HBP in S such that {a1, a2} and {a2, a3} are
edges of C Ps(S). We assume that ∂S is contained in a single component of Sα.
Then there exists a sequence of hexagons in C Ps(S), Π1,Π2, . . . ,Πn, satisfying
the following : For each k = 1, 2, . . . , n,
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···

Figure 9.

( i ) Πk is defined by a 6-tuple consisting of a 2-HBC, a 2-HBP, a 1-HBP, a
2-HBP, a 1-HBP and a 2-HBP in this order ;

( ii ) any of the five HBPs of Πk contains α;
(iii) a1 ∈ Π1, a3 ∈ Πn and a2 ∈ Πk;
(iv) if k < n, then Πk and Πk+1 share at least two HBPs.

Proof. We find a desired sequence of hexagons in the following two cases:
(a) a2 is a 2-HBP; and (b) a2 is a 1-HBP.

(a) If a2 is a 2-HBP, then a1 and a3 are 1-HBPs since any two distinct separat-
ing 2-HBPs in S intersect. We denote by Q the component of Sa2 homeomorphic
to S0,4. Since we have i(α1, α2) = i(α3, α2) = 0, α1 and α3 are elements of V (Q).
As in Figure 7, we can find a hexagon Π defined by a 6-tuple (v1, . . . , v6) with v1

a 2-HBC; v2 = a2; and v3 = a1. We note that v4 is a 2-HBP; v5 is a 1-HBP; and
v6 is a 2-HBP. The vertex v1 lies in V (Q) since it is disjoint from v2 = a2. Let
h ∈ Mod(S) be the half twist about v1 exchanging the two components of ∂S. Let
x ∈ Mod(S) be the Dehn twist about α1. Define Γ to be the subgroup of Mod(S)
generated by h and x. Since a2 is fixed by Γ, there exists a natural homomorphism
p : Γ → Mod(Q). We denote by Mod(Q;α, α2) the subgroup of Mod(Q) consisting
of all elements that fix each of the two components of ∂Q corresponding to α and
α2. As in the proof of Lemma 4.1, we obtain the equality p(Γ) = Mod(Q;α, α2).
Since α and α2 are contained in distinct components of Qα1 (resp. Qα3), α3 lies in
the orbit of α1 for the action of Mod(Q;α, α2) on V (Q). Setting H = {h±1, x±1},
we can thus find h1, . . . , hn ∈ H with α3 = p(h1) · · · p(hn)α1. Along an argument
of the same kind as in Lemma 4.1, we obtain a desired sequence of hexagons.

(b) We next suppose that a2 is a 1-HBP. Since ∂S is contained in a single
component of Sα, both a1 and a3 are 2-HBPs. Let R denote the component of
Sa2 of positive genus and containing a component of ∂S. Note that the number
of boundary components of R is equal to two and that α1 and α3 are elements of
V (R). As in Figure 7, we can find a hexagon Π defined by a 6-tuple (v1, . . . , v6)
with v1 = a1; v2 = a2; and v6 a 2-HBC. Note that v3 is a 2-HBP; v4 is a 1-HBP;
and v5 is a 2-HBP. We put v3 = {α, β3}. It then follows that β3 lies in V (R).

Let U be the set of the curves in R described in Figure 9 other than α1 and
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β3, which satisfies the following two conditions:

• The set of Dehn twists about curves in U generates PMod(R); and
• The curves δ1, δ2 and δ3 in U satisfy i(α1, δ1) 6= 0 and i(α1, δ) = 0 for

any δ ∈ U \ {δ1}; and i(β3, δ2) 6= 0, i(β3, δ3) 6= 0 and i(β3, δ) = 0 for any
δ ∈ U \ {δ2, δ3}.

Note that α1 and α3 lie in the same orbit for the action of PMod(R) on V (R).
Along an argument of the same kind as in Lemma 4.1, we obtain a desired sequence
of hexagons. ¤

Lemma 4.9. Let S = Sg,2 be a surface with g ≥ 2. For each k = 1, 2, 3, let
ak = {α, αk} be a separating HBP in S such that {a1, a2} and {a2, a3} are distinct
edges of C Ps(S). We assume that each component of Sα contains a component
of ∂S. Then there exists a square Π in C Ps(S) such that

• a1, a2 and a3 are vertices of Π; and
• the other vertex of Π is a 1-HBP in S containing α.

Proof. We first note that for each k = 1, 2, 3, ak is a 1-HBP in S because
each component of Sα contains a component of ∂S. It follows that α1 and α3 lie in
the same component of Sα and that α2 lies in another component of Sα, denoted
by R. Choose a curve α4 in R with i(α4, α2) 6= 0 and a4 = {α, α4} a 1-HBP in S.
The 4-tuple (a1, a2, a3, a4) then defines a square in C Ps(S). ¤

The following lemma is a variant of Lemma 4.5 for separating HBPs.

Lemma 4.10. Let X = Sg,p be a surface with g ≥ 2 and p ≥ 2, and pick
a separating curve α in X which is not an HBC in X. Then the full subcomplex
E of C Ps(X) spanned by all vertices that correspond to separating HBPs in X

containing α is connected.

To prove this lemma, we need the following:

Proposition 4.11. Let Y = Sg,p be a surface with g ≥ 1 and p ≥ 3, and
choose a component ∂ of ∂Y . Then the full subcomplex F of C (Y ) spanned by
all vertices that correspond to HBCs in Y cutting off a holed sphere containing ∂

from Y is connected.

Proof. The proof is based on Lemma 2.1 in [20] as in the proof of Propo-
sition 4.2. Label components of ∂Y as ∂1, . . . , ∂p with ∂ = ∂1. We first claim that
for any curve β in Y corresponding to a vertex of F , there exists a path in F
connecting β to an HBC in Y encircling ∂1 and ∂2. If the holed sphere cut off by β

from Y contains ∂2, then one can find an HBC in Y disjoint from β and encircling
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Figure 10.

∂1 and ∂2. Otherwise, choose j ∈ {3, . . . , p} so that ∂j is contained in the holed
sphere cut off by β from Y . One can then find a path in F , β, β1, β2, β3, such
that β1 encircles ∂1 and ∂j ; β2 encircles ∂1, ∂2 and ∂j ; and β3 encircles ∂1 and ∂2.
The claim follows.

To prove the proposition, it suffices to show that if γ and δ are the curves
described in Figure 10, then tδγ and γ are connected by a path in F . Choose the
two HBCs γ1, γ2 in Y described in Figure 10. The sequence γ, γ1, γ2 = tδγ2, tδγ1,
tδγ is then a desired path in F . ¤

Proof of Lemma 4.10. Let a1 = {α, α1} and a2 = {α, α2} be vertices of
E . To find a path in E connecting a1 and a2, we may assume i(a1, a2) 6= 0. Note
that α1 and α2 lie in the same component of Xα. Let R denote that component
of Xα and R′ denote another component of Xα.

If R′ contains a component of ∂X, then there exists a curve β in R′ with
{α, β} an HBP in X. Since {α, β} is then disjoint from a1 and a2, we obtain the
path a1, {α, β}, a2 in E .

Suppose that R′ contains no component of ∂X. It then follows that R contains
at least two components of ∂X. By Proposition 4.11, there exists a sequence
α1 = β1, β2, . . . , βn = α2 of HBCs in R cutting off from R a holed sphere containing
the component of ∂R corresponding to α. The pair {α, βk}, denoted by bk, is an
HBP in X, and the sequence a1 = b1, b2, . . . , bn = a2 is thus a path in E . ¤

The following two lemmas give us information on the images of the hexagons
and squares constructed in Lemmas 4.8 and 4.9, respectively, via an automorphism
φ of C Ps(S).

Lemma 4.12. Let S = Sg,2 be a surface with g ≥ 2. Let (v1, . . . , v6) be a
6-tuple defining a hexagon in C Ps(S) such that

• v1, v3 and v5 are 2-HBPs; v2 and v4 are 1-HBPs; and
• each of the four edges {v1, v2}, {v2, v3}, {v3, v4} and {v4, v5} is rooted.

Then the root curves of the four edges in the second condition are equal.
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Proof. We note that in general, if {u1, u2} and {u2, u3} are rooted edges of
C Ps(S) such that u1 and u3 are 2-HBPs and u2 is a 1-HBP, then the root curves
of {u1, u2} and {u2, u3} are equal. This fact implies that the root curves of {v1, v2}
and {v2, v3} are equal and denoted by α. Similarly, the root curves of {v3, v4} and
{v4, v5} are equal and denoted by β. The equality i(v6, α) = i(v6, β) = 0 then
holds because we have α ∈ v1 and β ∈ v5. If α 6= β, then the equality v3 = {α, β}
would hold. This contradicts i(v3, v6) 6= 0. We thus have α = β. ¤

Lemma 4.13. Let S = Sg,2 be a surface with g ≥ 2. Let (v1, . . . , v4) be a
4-tuple defining a square in C Ps(S) such that

• each of v1, . . . , v4 is an HBP ; and
• each of the four edges {v1, v2}, {v2, v3}, {v3, v4} and {v4, v1} is rooted.

Then the root curves of the four edges in the second condition are equal.

Proof. Let α and β denote the root curves of {v1, v2} and {v4, v1}, respec-
tively. If α 6= β, then we would have v1 = {α, β}. Since v2 and v4 are disjoint
from v3, so is v1. This is a contradiction. The lemma is obtained by repeating this
argument. ¤

Lemma 4.14. Let S = Sg,2 be a surface with g ≥ 2, and let φ be an auto-
morphism of C Ps(S). For each k = 1, 2, 3, 4, let ak = {α, αk} be a separating
HBP in S such that {a1, a2} and {a3, a4} are edges of C Ps(S). Then the root
curves of the two edges {φ(a1), φ(a2)} and {φ(a3), φ(a4)} of C Ps(S) are equal.

Proof. Using Lemma 4.10, one can find a path in C Ps(S), a2 =
b2, b3, . . . , bm−1 = a3, such that each bk is an HBP containing α. We put b1 = a1

and bm = a4. For each k = 1, . . . , m− 2, if i(bk, bk+2) = 0, then at least two of bk,
bk+1 and bk+2 are equal. If i(bk, bk+2) 6= 0, we apply either Lemma 4.8 or Lemma
4.9 to bk, bk+1 and bk+2. We then obtain a sequence Π1,Π2, . . . ,Πn of hexagons
or squares in C Ps(S) such that we have a1, a2 ∈ Π1 and a3, a4 ∈ Πn; and for each
k, Πk and Πk+1 share at least two HBPs. It follows from Lemmas 4.12 and 4.13
that for each k, there exists a curve shared by all HBPs in φ(Πk). Since φ(Πk)
and φ(Πk+1) share at least two HBPs, the curve shared by all HBPs of φ(Πk) is
equal to that of φ(Πk+1). The root curve of {φ(a1), φ(a2)} is therefore equal to
that of {φ(a3), φ(a4)}. ¤

4.3. Definition of Φ.
Let S = Sg,2 be a surface with g ≥ 2, and let φ be an automorphism of

C P(S). We define a bijection Φ from V (S) onto itself as follows. If α is an HBC
in S, then we set Φ(α) = φ(α).

If β is a non-separating curve in S, then choose disjoint and distinct curves
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β1, β2 in S such that {β, β1} and {β, β2} are both HBPs in S, and define Φ(β) to
be the root curve of the edge in C P(S) consisting of φ({β, β1}) and φ({β, β2}).
This is well-defined by Lemma 4.7.

In a similar way, if γ is a separating curve in S which is not an HBC in S,
then choose disjoint and distinct curves γ1, γ2 in S such that {γ, γ1} and {γ, γ2}
are both HBPs in S, and define Φ(γ) to be the root curve of the edge in C P(S)
consisting of φ({γ, γ1}) and φ({γ, γ2}). Lemma 4.14 shows that this is well-defined
since φ induces an automorphism of C Ps(S) by Lemmas 3.9 and 3.14.

We thus obtain a map Φ: V (S) → V (S). Considering φ−1, we see that Φ
is a bijection. Note that if ψ is an automorphism of C Ps(S), then we obtain a
bijection Ψ: Vs(S) → Vs(S) by applying the argument in the previous paragraph.

5. Construction of Φ in the case p ≥ 3.

Let S = Sg,p be a surface with g ≥ 2 and p ≥ 3. For an automorphism φ of
C P(S), we define a map Φ: V (S) → V (S) as in Section 2.4. Most of this section
is devoted to showing that Φ is well-defined as in the previous section. To define
Φ(α) ∈ V (S) for each curve α in S which is not an HBC in S, choosing any two
edges e1, e2 of C P(S) consisting of two HBPs containing α, we have to show that
the root curves of φ(e1) and φ(e2) are equal. To show it, we connect e1 and e2 by
a sequence of rooted 2-simplices of C P(S) whose root curve is equal to α. Note
that rooted 2-simplices of C P(S) exist thanks to the assumption p ≥ 3.

Lemma 5.1. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 3. For each
k = 1, 2, 3, let ak = {α, αk} be a non-separating HBP in S such that {a1, a2}
and {a2, a3} are edges of C P(S). Then there exists a sequence of non-separating
HBPs in S, a1 = b1, b2, . . . , bn = a3, such that for each k = 1, 2, . . . , n− 1, the set
{a2, bk, bk+1} is a rooted 2-simplex of C P(S) whose root curve is equal to α.

To prove this lemma, we use the following:

Proposition 5.2 ([15, Proposition 4.4]). Let X = S0,p be a surface with
p ≥ 5, and choose two distinct components ∂1, ∂2 of ∂X. Then the full subcomplex
of C (X) spanned by all vertices that correspond to curves in X separating ∂1 and
∂2 is connected.

Proof of Lemma 5.1. If i(a1, a3) = 0, then the lemma obviously holds.
We assume i(a1, a3) 6= 0. Let R denote the component of Sa2 of genus zero, and
let R′ denote another component of Sa2 . Because of i(a1, a2) = i(a2, a3) = 0 and
i(a1, a3) 6= 0, either (a) α1, α3 ∈ V (R); or (b) α1, α3 ∈ V (R′) occurs.

(a) Suppose α1, α3 ∈ V (R). We note that R contains at least two components
of ∂S. If R contains at least three components of ∂S, then we can find a desired
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sequence of HBPs in S by using Proposition 5.2.
We now suppose that R contains exactly two components of ∂S. It then

follows that R′ contains at least one component of ∂S. There exists a curve β2 in
R′ with {α, β2} an HBP in S. The sequence a1, {α, β2}, a3 is a desired one.

(b) Suppose α1, α3 ∈ V (R′). If a2 is not a 1-HBP in S, then we can find a
curve β2 in R with {α, β2} an HBP in S. The sequence a1, {α, β2}, a3 is a desired
one.

If a2 is a 1-HBP in S, then R′ contains at least two components of ∂S and
thus has at least four boundary components. Note that both α1 and α3 are HBCs
in R′ which separate α and α2 as curves in R′. By Proposition 4.2, there exists
a sequence α1 = γ1, γ2, . . . , γn = α3 of HBCs in R′ such that each γj separates α

and α2; and any two successive HBCs in that sequence are disjoint and distinct.
For each k = 1, 2, . . . , n, the pair {α, γk}, denoted by bk, is an HBP in S. The
sequence a1 = b1, b2, . . . , bn = a3 then satisfies the condition in the lemma. ¤

The following lemma is an analogue of Lemma 5.1, dealing with separating
HBPs in S in place of non-separating ones.

Lemma 5.3. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 3. For each
k = 1, 2, 3, let ak = {α, αk} be a separating HBP in S such that {a1, a2} and
{a2, a3} are edges of C Ps(S). Then there exists a sequence of separating HBPs
in S, a1 = b1, b2, . . . , bn = a3, such that for each k = 1, 2, . . . , n − 1, the set
{a2, bk, bk+1} is a rooted 2-simplex of C Ps(S) whose root curve is equal to α.

Proof. If i(a1, a3) = 0, then the lemma obviously holds. We assume
i(a1, a3) 6= 0. We denote by R, R′ and R′′ the three components of Sa2 so that R is
of genus zero, R′ and R′′ are of positive genus; and R′ (resp. R′′) has the boundary
component corresponding to α (resp. α2). Note that either (a) α1, α3 ∈ V (R); (b)
α1, α3 ∈ V (R′); or (c) α1, α3 ∈ V (R′′) occurs.

(a) Suppose α1, α3 ∈ V (R). We note that R contains at least two components
of ∂S. If R contains at least three components of ∂S, then a desired sequence of
HBPs can be obtained as an application of Proposition 5.2 since as a curve in R,
each of α1 and α3 separates the two components of ∂R corresponding to α and
α2.

If R contains exactly two components of ∂S, then R′ or R′′ contains at least
one component of ∂S. Using this component of ∂S, we can find a curve β2 in R′

or R′′ with {α, β2} an HBP in S. The sequence a1, {α, β2}, a3 is then a desired
one.

(b) Suppose α1, α3 ∈ V (R′). If a2 is not a 1-HBP in S, then pick a curve β2

in R with {α, β2} an HBP in S. The sequence a1, {α, β2}, a3 is a desired one.
Assume that a2 is a 1-HBP in S. If R′′ contains at least one component of
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∂S, then there exists a curve γ2 in R′′ with {α, γ2} an HBP in S. The sequence
a1, {α, γ2}, a3 is then a desired one. If R′′ contains no component of ∂S, then
R′ contains at least two components of ∂S and thus has at least three boundary
components. Note that α1 and α3 are HBCs in R′ cutting off from R′ a holed
sphere containing α as a boundary component. It follows from Proposition 4.11
that there exists a sequence α1 = δ1, δ2, . . . , δn = α3 of HBCs in R′ such that
each δk cuts off from R′ a holed sphere containing α as a boundary component;
and any two successive HBCs in that sequence are disjoint and distinct. Since for
each k = 1, 2, . . . , n, the pair {α, δk}, denoted by bk, is an HBP in S, the sequence
a1 = b1, b2, . . . , bn = a3 satisfies the condition of the lemma.

(c) If α1, α3 ∈ V (R′′), then we can find a desired sequence of HBPs in essen-
tially the same way as in case (b). ¤

Let S = Sg,p be a surface with g ≥ 2 and p ≥ 3, and let φ be an automorphism
of C P(S). We define a map Φ: V (S) → V (S) in the same way as in Section 4.3.
This is well-defined thanks to the following:

Lemma 5.4. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 3. Let φ be an
automorphism of C P(S), and for each k = 1, 2, 3, 4, let ak = {α, αk} be an HBP
in S such that {a1, a2} and {a3, a4} are edges of C P(S). Then the root curves of
the two edges {φ(a1), φ(a2)} and {φ(a3), φ(a4)} of C P(S) are equal.

Proof. By Lemmas 4.5 and 4.10, there exists a sequence of HBPs in S, a1 =
b1, a2 = b2, b3, . . . , bn−1 = a3, bn = a4, such that for each k, we have i(bk, bk+1) = 0,
bk 6= bk+1 and α ∈ bk. Applying Lemmas 5.1 and 5.3 to the three HBPs bk−1,
bk and bk+1 for each k = 2, . . . , n − 1, we can find a sequence of HBPs in S,
bk−1 = b1

k, b2
k, . . . , bmk

k = bk+1, such that for each l = 1, . . . , mk − 1, the set
{bk, bl

k, bl+1
k }, denoted by σl

k, is a rooted 2-simplex of C P(S) whose root curve is
equal to α. For any k and l, each of σl

k ∩ σl+1
k and σmk−1

k ∩ σ1
k+1 contains at least

two HBPs. It turns out that the root curve of the edge {φ(a1), φ(a2)} is equal to
that of the 2-simplex φ(σl

k) for any k and l and is thus equal to that of the edge
{φ(a3), φ(a4)}. ¤

Exchanging symbols appropriately in the above proof, we obtain the following
lemma. For any automorphism ψ of C Ps(S), if we define a map Ψ: Vs(S) → Vs(S)
in the same way as in Section 4.3, then the lemma shows that Ψ is well-defined.

Lemma 5.5. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 3. Let ψ be
an automorphism of C Ps(S), and for each k = 1, 2, 3, 4, let bk = {β, βk} be a
separating HBP in S such that {b1, b2} and {b3, b4} are edges of C Ps(S). Then
the root curves of the two edges {ψ(b1), ψ(b2)} and {ψ(b3), ψ(b4)} of C Ps(S) are
equal.
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6. Simpliciality of Φ.

Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. We show that the bijection
Φ from V (S) onto itself associated to an automorphism of C P(S), defined in
Sections 4 and 5, induces an automorphism of C (S).

Theorem 6.1. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2, and let
φ be an automorphism of C P(S). Then the bijection Φ from V (S) onto itself
associated to φ induces an automorphism of C (S).

Proof. It suffices to show that Φ is simplicial. Note that by the definition
of Φ and Lemma 3.13, we have φ({α, β}) = {Φ(α),Φ(β)} for each HBP {α, β} in
S.

Let α and β be distinct curves in S with i(α, β) = 0. We prove the equality
i(Φ(α),Φ(β)) = 0 in the following three cases: (a) both α and β are non-separating
in S; (b) α is non-separating in S and β is separating in S; and (c) both α and β

are separating in S.
(a) Suppose that both α and β are non-separating in S. If α and β are

HBP-equivalent, then φ({α, β}) = {Φ(α),Φ(β)} is an HBP in S, and thus
i(Φ(α),Φ(β)) = 0. Suppose that α and β are not HBP-equivalent. We choose
non-separating curves α′, β′ in S such that a = {α, α′} and b = {β, β′} are dis-
joint 1-HBPs in S. We then have i(φ(a), φ(b)) = 0 and thus i(Φ(α),Φ(β)) = 0.

(b) Suppose that α is non-separating in S and that β is separating in S. If
β is an HBC in S, then we can choose a non-separating curve α′ in S disjoint
from β such that a = {α, α′} is an HBP in S. We then obtain the equality
i(φ(a), φ(β)) = 0 and thus i(Φ(α),Φ(β)) = 0.

We assume that β is not an HBC in S. Let R denote the component of Sβ

containing α, and let R′ denote another component of Sβ . If R contains at least
one component of ∂S, then we choose a curve α′ in R and a curve β′ in S such
that a = {α, α′} and b = {β, β′} are disjoint HBPs in S. We then obtain the
equality i(φ(a), φ(b)) = 0 and thus i(Φ(α),Φ(β)) = 0.

If R contains no component of ∂S, then we choose a curve β′ in R′ with
b = {β, β′} a 2-HBP in S. As in Figure 11 (i), we can find curves α1, α2 in S and
curves β1, β2 in R′ such that for each k = 1, 2,

• each of ak = {α, αk}, bk = {β, βk} and b′k = {β′, βk} is a 1-HBP in S; and
• i(ak, b′k) = 0 and i(β1, β2) 6= 0.

Let Q denote the component of Sφ(b) homeomorphic to S0,4. Since φ(b) is a 2-
HBP in S and since for each k = 1, 2, both φ(bk) = {Φ(β),Φ(βk)} and φ(b′k) =
{Φ(β′),Φ(βk)} are 1-HBPs in S, the curve Φ(βk) lies in V (Q). The two curves
Φ(β1) and Φ(β2) intersect because b1 and b2 intersect. Hence, Φ(β1) and Φ(β2) fill
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Figure 11.

Q. Since φ(ak) and φ(b′k) are disjoint for each k = 1, 2, the curve Φ(α) is disjoint
from both Φ(β1) and Φ(β2). It follows that Φ(α) is disjoint from Φ(β).

(c) We assume that both α and β are separating in S. Either if both α and β

are HBCs in S or if neither α nor β is an HBC in S and they are HBP-equivalent,
then we have i(Φ(α),Φ(β)) = 0.

Suppose that α is an HBC in S and that β is not an HBC in S. We choose
a curve β′ disjoint from α such that {β, β′} is an HBP in S. Since φ(α) and
φ({β, β′}) are then disjoint, Φ(α) and Φ(β) are disjoint.

Finally, we suppose that neither α nor β is an HBC in S and they are not
HBP-equivalent. We denote by R, R′ and R′′ the three components of S{α,β}
so that R contains α as a boundary component, but does not contain β as a
boundary component; and R′′ contains α and β as boundary components. Unless
∂S is contained in either R or R′, then there exist two curves α′, β′ in S such that
{α, α′} and {β, β′} are disjoint HBPs in S. We thus have i(Φ(α),Φ(β)) = 0.

Suppose that ∂S is contained in either R or R′. Without loss of generality,
we may assume that ∂S is contained in R. Let α′ be a curve in R with a = {α, α′}
a 2-HBP in S. As in Figure 11 (ii), we can find curves β1, β2 in S and curves α1,
α2 in R such that for each k = 1, 2,

• each of ak = {α, αk}, a′k = {α′, αk} and bk = {β, βk} is a 1-HBP in S; and
• i(a′k, bk) = 0 and i(α1, α2) 6= 0.

We denote by Q the component of Sφ(a) homeomorphic to S0,4, which contains
Φ(α1) and Φ(α2) because both φ(ak) = {Φ(α),Φ(αk)} and φ(a′k) = {Φ(α′),Φ(αk)}
are 1-HBPs in S for each k = 1, 2. The curves Φ(α1) and Φ(α2) fill Q because
they intersect. Since Φ(β) is disjoint from Φ(α1) and Φ(α2), it is disjoint from
Φ(α). ¤

The argument in case (c) in the above proof shows the following:

Theorem 6.2. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2, and let
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ψ be an automorphism of C Ps(S). Then the bijection Ψ from Vs(S) onto itself
associated to ψ, defined in Sections 4 and 5, induces an automorphism of Cs(S).

Theorem 1.2 in [15] shows that if S = Sg,p is a surface with g ≥ 2 and p ≥ 2,
then any automorphism of Cs(S) is induced by an element of Mod∗(S). Combining
Theorem 2.1, we obtain the following:

Corollary 6.3. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Then
any automorphism of C P(S) is induced by an element of Mod∗(S). Moreover,
the same conclusion holds for any automorphism of C Ps(S).

7. Characterization of twisting elements.

The aim of this section is to show that any injective homomorphism from
a finite index subgroup of Ps(S) into P (S) induces a superinjective map from
C Ps(S) into C P(S). This map is obtained by characterizing HBC and HBP
twists algebraically. Our argument is based on the characterization of such twists
due to Irmak-Ivanov-McCarthy [11].

7.1. Preliminaries.
Let S = Sg,p be a surface with g ≥ 1 and assume that the Euler characteristic

of S, denoted by χ(S) = −2g−p+2, is negative. Theorem 3.1 in [11] asserts that
any element x of P (S) is pure in the following sense (see Theorem A.1 in [15] for
a proof): There exists σ ∈ Σ(S) ∪ {∅} such that

( I ) x fixes each curve of σ and each component of Sσ and of ∂S; and
(II) x acts on each component of Sσ as either the identity or a pseudo-Anosov

element.

It follows that P (S) is torsion-free. For τ ∈ Σ(S), we denote by P (S)τ the
stabilizer of τ in P (S). Theorem A.1 of [15] shows that for any x ∈ P (S) and
τ ∈ Σ(S), if x fixes τ , then x fixes each curve of τ and each component of Sτ .
Moreover, x preserves an orientation of each curve of τ . For each τ ∈ Σ(S), we
thus have the natural homomorphism

θτ : P (S)τ →
∏

Q

PMod(Q),

where Q runs through all components of Sτ . We define θQ : P (S)τ → PMod(Q)
as the composition of θτ with the projection onto PMod(Q).

It is known that for each x ∈ P (S), there exists the minimal element among all
σ ∈ Σ(S) ∪ {∅} satisfying the above conditions (I) and (II). The minimal element
is called the canonical reduction system (CRS) for x. We note that
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• the CRS’s for x and its non-zero power are equal; and
• if y ∈ P (S) lies in the centralizer of x, then y fixes the CRS for x.

Indeed, one can also define the CRS for any element and any subgroup of Mod(S).
If x ∈ Mod(S) fixes an element of Σ(S), then x is said to be reducible. It is known
that for each element x ∈ Mod(S) of infinite order, x is reducible if and only if the
CRS for x is non-empty. We recommend the reader to consult Section 7 of [12]
for details on CRS’s.

Pick x ∈ P (S) and let σ ∈ Σ(S) ∪ {∅} be the CRS for x. We mean by a
pA component for x a component Q of Sσ on which x acts as a pseudo-Anosov
element.

Lemma 7.1. Let S = Sg,p be a surface with g ≥ 1 and χ(S) < 0. Then the
maximal rank of finitely generated abelian subgroups of P (S) (resp. Ps(S)) is equal
to p if g ≥ 2, and equal to p− 1 if g = 1.

Proof. If g ≥ 2, then for each simplex σ of C Ps(S) of maximal dimension,
HBP-twists about HBPs in σ generate a subgroup of Ps(S) isomorphic to Zp. If
g = 1, then there exists a simplex τ of Cs(S) with |τ | = p − 1, and Dehn twists
about curves in τ generate a subgroup of Ps(S) isomorphic to Zp−1. It is thus
enough to show that the rank of any finitely generated abelian subgroup of P (S)
is at most p if g ≥ 2, and at most p− 1 if g = 1. We prove it by induction of p.

If either g ≥ 2 and p = 0 or g = 1 and p = 1, then P (S) is trivial, and
the lemma is obvious. We assume either g ≥ 2 and p ≥ 1 or g = 1 and p ≥ 2.
In general, for any short exact sequence of groups, 1 → A → B → C → 1,
the inequality rkB ≤ rkA + rkC holds, where for a group D, we denote by rkD

the supremum of the ranks of finitely generated abelian subgroups in D. Fix a
component ∂ of ∂S, and let R be the surface obtained from S by attaching a disk
to ∂. Restricting the associated Birman exact sequence

1 → π1(R) ı→ PMod(S) → PMod(R) → 1

to P (S) and to Ps(S), we obtain the exact sequences

1 → π1(R) → P (S) → P (R) → 1, 1 → N → Ps(S) → Ps(R) → 1,

where we put N = ı−1(Ps(S)). Since we have rkπ1(R) = rkN = 1, the induction
is completed. ¤

7.2. Characterization.
We start with the following observation.
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Lemma 7.2. Let S be a surface of genus at least one with χ(S) < 0. Pick
x ∈ P (S) and σ ∈ Σ(S) such that x fixes σ. Let Q be a component of Sσ, and
let τ be the set of all curves of σ corresponding to a component of ∂Q. Then the
following assertions hold :

( i ) If we have Q ∩ ∂S = ∅ and no curve of τ is an HBC in S, then θQ(x) is
neutral.

( ii ) If σ is the CRS for x and Q is a pA component for x, then there exists
y ∈ P (S) such that τ is the CRS for y, Q is a unique pA component for y,
and the equality θQ(x) = θQ(y) holds.

Proof. Let S̄ denote the closed surface obtained from S by attaching disks
to all components of ∂S. Let ι : PMod(S) → Mod(S̄) be the homomorphism
associated with the inclusion of S into S̄. On the assumption in assertion (i),
any curve of τ is essential in S̄ (although some of them may be isotopic in S̄).
Assertion (i) follows because ι(x) is neutral.

We prove assertion (ii). Let F and C be representatives of x and τ , respec-
tively, such that F (C) = C and F is the identity on C ∪ ∂S. Let Q◦ denote the
component of S \C corresponding to Q. Let R denote the surface obtained from Q

by attaching disks to all components of ∂Q corresponding to either a component
of ∂S or an HBC in S. The element of PMod(R) induced by θQ(x) is neutral
because ι(x) is neutral.

We define G as the homeomorphism of S obtained by extending the restriction
of F to Q◦ so that G is the identity on S \Q◦. Let y ∈ PMod(S) be the isotopy
class of G. The equality θQ(x) = θQ(y) then holds. Let τ ′ be the set of all curves of
τ that are not HBCs in S. Let π : C (S) → C ∗(S̄) be the simplicial map associated
with the inclusion of S into S̄ (see Section 2.2). We put τ̄ = π(τ ′), which is an
element of Σ(S̄) ∪ {∅}. The element ι(y) fixes τ̄ and acts on each component of
S̄τ̄ as the identity. Multiplying y with appropriate powers of Dehn twists about
curves in τ ′, we may assume that ι(y) is neutral. We then have y ∈ P (S) and
obtain assertion (ii). ¤

Following terminology in [11], we say that an element x of P (S) is basic if
the center of the centralizer of x in P (S) is isomorphic to Z. The following two
propositions characterize basic elements and are stated in Proposition 5.1 of [11].

Proposition 7.3. Let S be a surface of genus at least one with χ(S) < 0.
Let Γ be a finite index subgroup of P (S). Pick x ∈ Γ and let σ ∈ Σ(S) ∪ {∅} be
the CRS for x. We assume that x satisfies one of the following three conditions:

(a) There exists a unique pA component Q for x, and any curve of σ corresponds
to a component of ∂Q. Moreover, no curve of σ is an HBC in S, and no two
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curves of σ form an HBP in S.
(b) x is a non-zero power of an HBC twist.
(c) x is a non-zero power of an HBP twist.

Then the center of the centralizer of x in Γ is isomorphic to Z. In particular, x

is basic.

Proof. We denote by Z(x) the centralizer of x in Γ and denote by Z the
center of Z(x). We assume condition (a). By Lemma 2.3, it is enough to show that
for each component R of Sσ other than Q, the group θR(Z(x)) either is trivial or
contains a pair of independent pseudo-Anosov elements of PMod(R), where two
pseudo-Anosov elements are said to be independent if they do not generate a
virtually cyclic group. If R contains a component of ∂S and is not a pair of pants,
then θR(Z(x)) contains independent pseudo-Anosov elements. If R contains no
component of ∂S, then Z(x) acts on R trivially by Lemma 7.2 (i).

We assume condition (b). In this case, σ consists of a single HBC γ in S

and x is a non-zero power of tγ . Let R be a component of Sγ . If R contains a
component of ∂S and is not a pair of pants, then θR(Z(x)) contains independent
pseudo-Anosov elements. If R contains no component of ∂S, then γ is a p-HBC in
S, and R is the component of Sγ of positive genus. When the genus of S is at least
two, the group θR(Z(x)) contains independent pseudo-Anosov elements because R

contains an HBP in S. When the genus of S is equal to one, R is homeomorphic to
S1,1. The group θR(Z(x)) is then trivial because Z(x) acts trivially on the torus
obtained by attaching a disk to ∂R. It thus turns out that Z is contained in the
cyclic group generated by tγ .

Finally, we assume condition (c). In this case, if x is a non-zero power of the
element tαt−1

β with {α, β} an HBP in S, then we have the equality σ = {α, β}.
We can then apply the same argument as in the case where we assumed condition
(a), and we conclude that Z is contained in the cyclic group generated by tαt−1

β .
¤

Proposition 7.4. Let S be a surface of genus at least one with χ(S) < 0.
Pick x ∈ P (S) and let σ ∈ Σ(S) ∪ {∅} be the CRS for x. If x is basic, then x

satisfies one of conditions (a), (b) and (c) in Proposition 7.3.

Proof. We first claim that the center of P (S) is trivial. When the genus
of S is at least two, the claim follows from Lemma 2.2 (ii). When the genus of S is
equal to one, any separating curve in S is an HBC in S. Along argument similar
to the proof of Lemma 2.2, we can show that any element of Mod∗(S) fixing any
element of Vs(S) fixes any element of V (S) and that any element of P (S) that
commutes any element of P (S) is neutral. The claim thus follows.

We denote by Z(x) the centralizer of x in P (S) and denote by Z the center
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of Z(x). The claim shown in the last paragraph implies that x is not neutral. If x

is pseudo-Anosov, then condition (a) holds. We now suppose that x is reducible,
and let σ ∈ Σ(S) denote the CRS for x. If σ contains an HBC γ in S, then tγ lies
in Z because Z(x) fixes σ. Since Z is isomorphic to Z, x and tγ generate a cyclic
group. Pureness of x then shows that condition (b) holds. We can apply the same
argument in the case where σ contains an HBP in S.

We assume that no curve of σ is an HBC in S and no two curves of σ form
an HBP in S. If there were no pA component for x, then x would be neutral by
Lemma 2.3. This is a contradiction. If there were two pA components R1, R2 for
x, then by Lemma 7.2 (ii), we would have x1, x2 ∈ P (S) such that

• both x1 and x2 fix σ; and
• for each j = 1, 2, Rj is a unique pA component for xj and we have the

equality θRj (xj) = θRj (x).

The two elements x1 and x2 lie in Z, and they generate Z2. This contradicts
the assumption that Z is isomorphic to Z. It follows that x has a single pA
component. Condition (a) therefore holds. ¤

Remark 7.5. Let S be a surface of genus at least one with χ(S) < 0.
Pick x ∈ P (S) and denote by Z the center of the centralizer of x in P (S). We
note that Z is finitely generated because any abelian subgroup of Mod∗(S) is
finitely generated by Theorem A in [3]. Following the proof of Proposition 7.3,
we can compute the rank of Z as follows. Let σ ∈ Σ(S) ∪ {∅} be the CRS for
x. We define n1 to be the number of pA components for x and define n2 to
be the number of curves of σ which are HBCs in S. Let {τ1, . . . , τm} be the
collection of HBP-equivalence classes in σ. The rank of Z is then equal to the sum
n1 + n2 +

∑m
i=1(|τi| − 1). This result is stated in Proposition 4.1 of [11].

We define C = C(S) as the set of all non-zero powers of HBC twists in P (S)
and define P = P(S) as the set of all non-zero powers of HBP twists in P (S).

Lemma 7.6. Let S = Sg,p be a surface with g ≥ 2. Let Γ be a finite index
subgroup of Ps(S), and let f : Γ → P (S) be an injective homomorphism. If an
element x of Γ is basic and lies in a finitely generated abelian subgroup of Γ of
rank p, then f(x) is also basic. In particular, f(y) is basic for each y ∈ C ∪P.

To prove this lemma, we use the following general fact, which is essentially
verified in Lemma 5.2 in [10] (see Lemma 6.8 in [15] for a proof). For a group
A, we denote by rkA the supremum of the ranks of finitely generated abelian
subgroups in A, and denote by Z(A) the center of A. For each a ∈ A, let ZA(a)
denote the centralizer of a in A.
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Lemma 7.7. Let A and B be groups with rkA = rkB < ∞ and assume that
any abelian subgroup of B is finitely generated. Let η : A → B be an injective
homomorphism. If a is an element of A lying in a finitely generated, free abelian
subgroup of A with its rank equal to rkA, then we have the inequality

rkZ(ZB(η(a))) ≤ rkZ(ZA(a)).

Proof of Lemma 7.6. By Propositions 7.3 and 7.4, Z(ZΓ(x)) is isomor-
phic to Z. By Lemmas 7.1 and 7.7, Z(ZP (S)(f(x))) is of rank one. The lemma
thus follows. ¤

The following lemma characterizes HBP twists among basic elements and is
a slight variant of Proposition 6.1 in [11]. Let us say that an element x of P (S) is
single-pA if it satisfies condition (a) in Proposition 7.3.

Lemma 7.8. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Then the
following assertions hold :

( i ) For each x ∈ P ∩ Ps(S), there exists y ∈ P ∩ Ps(S) such that the group
generated by x and y is isomorphic to Z2 and the product xy belongs to P.

( ii ) Let z ∈ P (S) be a basic element. If we have a basic element w ∈ P (S) such
that the group generated by z and w is isomorphic to Z2 and the product
zw is basic, then z belongs to P.

Proof. We first prove assertion (i). Let {α, β} be the HBP in S and k the
non-zero integer with x = tkαt−k

β . Since we have g ≥ 2 and p ≥ 2, there exists a
curve γ in S which is disjoint and distinct from α and β and forms an HBP in S

with β (and thus with α). The element y = tkβt−k
γ is then a desired one.

We next prove assertion (ii). Note that z and w fix the CRS’s for them
because z and w commute. Since zw is basic, if z were a single-pA element with
Q the pA component for z, then w would also be a single-pA element with Q

the pA component for w, and θQ(z) and θQ(w) would generate a virtually cyclic
group. It then follows that z and w generate a virtually cyclic group. This is a
contradiction. If z were a non-zero power of an HBC twist, then w would be a
non-zero power of the same HBC twist since zw is basic. This also contradicts the
assumption that z and w generate Z2. Proposition 7.4 then shows z ∈ P. ¤

For each integer k with 1 ≤ k ≤ p, we denote by Pk = Pk(S) the subset of P

consisting of all non-zero powers of HBP twists about k-HBPs in S. If x ∈ P is
a non-zero power of the HBP twist about an HBP b in S, we call b the support of
x. Let us say that two elements x, y ∈ P are equivalent if the supports of x and y

are disjoint and equivalent.
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Lemma 7.9. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Let Γ be a finite
index subgroup of Ps(S), and let f : Γ → P (S) be an injective homomorphism.
Then the following assertions hold :

( i ) For each x ∈ P ∩ Γ, we have f(x) ∈ P.
( ii ) If the supports of two elements x, y ∈ P ∩ Γ are disjoint and contain a

common curve, then the same holds for the supports of f(x) and f(y).
(iii) If two elements x, y ∈ P ∩ Γ are equivalent, then f(x) and f(y) are also

equivalent.
(iv) For each x ∈ Pp ∩ Γ, we have f(x) ∈ Pp.

Proof. Assertion (i) follows from Lemmas 7.6 and 7.8. Pick x, y ∈ P ∩ Γ
so that the supports of x and y, denoted by {α1, α2} and {β1, β2}, respectively,
are disjoint. To prove assertion (ii), we first assume α1 = β1 and α2 6= β2. There
then exist non-zero integers j, k with xjyk ∈ P. Since all of f(xj), f(yk) and
f(xjyk) belong to P by assertion (i), the supports of f(xj) and f(yk) contain a
common curve. Assertion (ii) is proved.

To prove assertion (iii), we next assume that α1, α2, β1 and β2 are mutually
distinct. Let z be an HBP twist about the HBP {α1, β1} and choose non-zero
integers a1, a2 and b so that xa1zb and ya2zb belong to P and we have zb ∈ Γ.
Assertion (ii) implies that the supports of f(xa1) and f(zb) (resp. f(ya2) and
f(zb)) contain a common curve, and thus f(x) and f(y) are equivalent.

We prove assertion (iv). It will be shown that for each y ∈ (P\Pp)∩Γ, we have
f(y) ∈ P \Pp. Once this is verified, assertion (iv) can be deduced by considering
a maximal family of pairwise disjoint and equivalent HBPs in S because such a
maximal family contains exactly one p-HBP in S.

Pick y ∈ (P\Pp)∩Γ and let {γ, γ′} be the support of y, which is a separating
k-HBP in S with 1 ≤ k ≤ p− 1. There exists a component Q of S{γ,γ′} such that
the genus of Q, denoted by g1, is positive and Q contains a component of ∂S. We
may assume that Q contains γ as a boundary component. Choose a separating
curve δ in Q cutting off a surface homeomorphic to Sg1,1 from Q. We then have a
curve δ′ ∈ V (Q)∪{γ} which is separating in S, is disjoint from δ and cuts off from
S a surface R homeomorphic to Sg1,2 and containing δ (see Figure 12). Choose
a separating curve ε in R such that ε cuts off a pair of pants from R; and δ and
ε fill R. Both {γ, δ} and {γ, ε} are then HBPs in S. Assertion (i) implies that
f induces a map from the set of separating HBPs in S into the set of HBPs in
S, which preserves disjointness and non-disjointness. We denote this map by the
same symbol f . We now prove the following:

Claim 7.10. The two HBPs f({γ, δ}) and f({γ, ε}) contain a common
curve.
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Figure 12.

Proof. Choose a curve γ′′ in S such that {γ, γ′′} is an HBP in S and we
have i(γ′, γ′′) 6= 0. We set

c′ = {γ, γ′}, c′′ = {γ, γ′′}, d = {γ, δ}, e = {γ, ε}.

Note that by assertion (ii), the two HBPs f(c′) and f(d) (resp. f(c′) and f(e))
contain a common curve. If the claim were not true, then we would have the
inclusion f(c′) ⊂ f(d) ∪ f(e). Since c′′ is disjoint from d and e, f(c′′) is disjoint
from f(c′). This contradicts i(γ′, γ′′) 6= 0. ¤

We put f({γ, δ}) = {γ1, δ1} and f({γ, ε}) = {γ1, ε1}. Since δ and ε intersect,
so do δ1 and ε1. Fix a non-zero integer l with tlγt−l

δ , tlγt−l
ε ∈ Γ, and let m and n be

the non-zero integers with

f
(
tlγt−l

δ

)
= tmγ1

t−m
δ1

, f
(
tlγt−l

ε

)
= tnγ1

t−n
ε1 .

For each integer q, we then have t−lq
δ tlqε = (tlγt−l

δ )q(tlγt−l
ε )−q ∈ Γ and

f
(
t−lq
δ tlqε

)
= f

(
tlqγ t−lq

δ

)
f
(
t−lq
γ tlqε

)
= tmq

γ1
t−mq
δ1

t−nq
γ1

tnq
ε1 = tmq−nq

γ1
t−mq
δ1

tnq
ε1 .

By Theorem 7 in [21] or Exposé 13, Section III in [7], there exists a non-zero
integer r satisfying the following three conditions:

• trγt−r
δ and trγt−r

ε belong to Γ, and thus so does t−r
δ trε ;

• t−r
δ trε acts on R as a pseudo-Anosov element; and

• f(t−r
δ trε) acts on the subsurface of S filled by δ1 and ε1 as a pseudo-Anosov

element.

The element t−r
δ trε is single-pA and lies in a free abelian subgroup of Γ of rank p.

By Lemma 7.6, f(t−r
δ trε) is basic and is thus single-pA.
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If f(y) were in Pp, then by Lemma 7.2 (i), there would exist no single-pA ele-
ment in P (S) commuting f(y). This is a contradiction because f(t−r

δ trε) commutes
f(y). We thus have f(y) ∈ P \Pp. ¤

Lemma 7.11. Let S, Γ and f : Γ → P (S) be the symbols in Lemma 7.9.
Then for each x ∈ C ∩ Γ, we have f(x) ∈ C ∪P.

Proof. Pick x ∈ C, and let α be the HBC in S with x a non-zero power
of tα. There then exists a separating p-HBP b in S disjoint from α. Let y ∈ Γ be
a non-zero power of the HBP twist about b. Since f(y) lies in Pp by Lemma 7.9
(iv) and since f(y) commutes f(x), the element f(x) is not single-pA. ¤

Lemmas 7.9 and 7.11 show that any injective homomorphism from a finite
index subgroup of Ps(S) into P (S) preserves powers of HBC and HBP twists.
The next lemma proves the same conclusion for any injective homomorphism from
a finite index subgroup of P (S) into P (S).

Lemma 7.12. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Let Γ be a
finite index subgroup of P (S), and let f : Γ → P (S) be an injective homomorphism.
Then for each x ∈ (C ∪P) ∩ Γ, we have f(x) ∈ C ∪P.

Proof. It suffices to prove that if x ∈ P ∩ Γ is a non-zero power of the
HBP twist about a non-separating HBP in S, then we have f(x) ∈ P. Along an
argument of the same kind as in the proof of Lemma 7.8 (i), we can find a non-zero
integer k and an element y ∈ P ∩ Γ such that the group generated by xk and y is
isomorphic to Z2 and the product xky belongs to P. Following argument in the
proof of Lemma 7.6, we can show that f preserves basic elements. It then follows
from Lemma 7.8 (ii) that f(xk) belongs to P, and thus so does f(x). ¤

For each HBC α in S, we denote by Tα the cyclic group generated by tα. For
each HBP b = {β, γ} in S, we denote by Tb the cyclic group generated by tβt−1

γ .
As a consequence of Lemmas 7.9, 7.11 and 7.12, we obtain the following:

Theorem 7.13. Let S = Sg,p be a surface with g ≥ 2 and p ≥ 2. Then the
following assertions hold :

( i ) Let Γ be a finite index subgroup of P (S), and let f : Γ → P (S) be an injec-
tive homomorphism. Then there exists a superinjective map φ : C P(S) →
C P(S) with f(Tv ∩ Γ) < Tφ(v) for any vertex v of C P(S).

( ii ) Let Λ be a finite index subgroup of Ps(S), and let h : Λ → P (S) be an injec-
tive homomorphism. Then there exists a superinjective map ψ : C Ps(S) →
C P(S) with h(Tv ∩ Λ) < Tψ(v) for any vertex v of C Ps(S).
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Theorem 1.1 can be deduced from Corollary 6.3 and Theorem 7.13 along the
argument in Section 3 of [13]. We omit details of this part because an argument
of the same kind appears in many works [4], [10], [15], [17], etc.
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