©2011 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 63, No. 3 (2011) pp. 801–814 doi: 10.2969/jmsj/06330801

Homotopy self-equivalences of 4-manifolds with π_1 -free second homotopy

By Mehmetcik PAMUK

(Received Feb. 23, 2010)

Abstract. We calculate the group of homotopy classes of homotopy self-equivalences of 4-manifolds with π_1 -free second homotopy.

1. Introduction.

Let M be a closed, connected, oriented 4-manifold with a fixed base point $x_0 \in M$. We want to study the group of homotopy classes of homotopy selfequivalences of M, preserving both the given orientation on M and the basepoint. Let $\operatorname{Aut}_{\bullet}(M)$ denote the group of homotopy classes of such homotopy self-equivalences.

Let us start by fixing our notation. The fundamental group $\pi_1(M, x_0)$ will be denoted by π , the higher homotopy groups $\pi_i(M, x_0)$ will be denoted by π_i . Let $\Lambda = \mathbf{Z}[\pi]$ denote the integral group ring of π . We will mean homology and cohomology with integral coefficients unless otherwise noted.

Let *B* denote the 2-type of *M*, we may construct *B* by adjoining cells of dimension at least 4 to kill the homotopy groups in dimensions ≥ 3 . The natural map $c: M \to B$ is given by the inclusion of *M* into *B*. Hambleton and Kreck [3], defined a thickening $\operatorname{Aut}_{\bullet}(M, w_2)$ of $\operatorname{Aut}_{\bullet}(M)$ (see Section 3 for the definition) and established a commutative braid of exact sequences, valid for any closed, oriented smooth or topological 4-manifold. The authors defined

$$\text{Isom}[\pi, \pi_2, k_M, c_*[M]] := \{ \phi \in \text{Aut}_{\bullet}(B) \mid \phi_*(c_*[M]) = c_*[M] \}$$

and obtained an explicit formula when the fundamental group is finite of odd order.

In this paper, we define an extension $\operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M]$ of $\operatorname{Isom}[\pi, \pi_2, k_M, c_*[M]]$ and use the braid in [3] to obtain an explicit formula when π_2 is a free Λ -module. Examples of such manifolds are obtained when $\pi \cong *_p \mathbb{Z}$ or when $M \cong X \sharp Y$, where X is simply-connected and $\pi_2(Y) = 0$, for instance one may

²⁰⁰⁰ Mathematics Subject Classification. Primary 57N13; Secondary 55P10, 57R80.

Key Words and Phrases. homotopy self-equivalences, 4-manifolds, π_1 -free second homotopy.

take Y to be aspherical. Our main theorem is the following:

THEOREM 1.1. Let M be a closed, oriented manifold of dimension 4. If π_2 is a free Λ -module of finite rank r, then

$$\operatorname{Aut}_{\bullet}(M, w_2) \cong \left(KH_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2) \right) \rtimes \operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M]$$

where $KH_2(M; \mathbb{Z}/2) := \ker(w_2 \colon H_2(M; \mathbb{Z}/2) \to \mathbb{Z}/2).$

The author would like to thank Jonathan A. Hillman for taking the time to answer all his questions.

2. Spin case.

For simplicity we start with spin manifolds. Throughout this section let M be a spin manifold. Hambleton and Kreck constructed a braid of exact sequences

that is commutative up to sign, the sub-diagrams are all strictly commutative except for the two composites ending in $\operatorname{Aut}_{\bullet}(M)$, and valid for any closed, oriented spin 4-manifold. Throughout this paper we always refer to [3] for the details of the definitions.

We will fix a lift $\nu_M \colon M \to BSpin$ of the classifying map for the stable normal bundle of M. The Abelian group $\Omega_n^{Spin}(M)$, with disjoint union as the group operation, denotes the singular bordism group of spin manifolds with a reference map to M. By imposing the requirement that the reference maps to Mmust have degree zero, we obtain the modified bordism groups $\widehat{\Omega}_A^{Spin}(M)$.

PROPOSITION 2.1. The relevant spin bordism groups of M are given as follows:

$$\Omega_4^{Spin}(M) \cong \Omega_4^{Spin}(*) \oplus H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2) \oplus H_4(M),$$
$$\Omega_5^{Spin}(M) \cong H_1(M) \oplus H_3(M; \mathbb{Z}/2) \oplus H_4(M; \mathbb{Z}/2).$$

PROOF. This follows from the Atiyah - Hirzebruch spectral sequence, whose E^2 -term is $H_p(M; \Omega_q^{Spin}(*))$. The first differential $d_2 \colon E_{p,q}^2 \to E_{p-2,q+1}^2$ is given by the dual of Sq^2 (if q = 1) or this composed with reduction mod 2 (if q = 0), see [8, p. 751]. We substitute the values

$$\Omega_q^{Spin}(*) = \boldsymbol{Z}, \boldsymbol{Z}/2, \boldsymbol{Z}/2, 0, \boldsymbol{Z}, 0 \quad \text{for} \quad 0 \le q \le 5.$$

The differential for (p,q) = (4,1) is dual to $Sq^2 \colon H^2(M; \mathbb{Z}/2) \to H^4(M; \mathbb{Z}/2)$ which is zero, since M is spin. We have a short exact sequence

$$0 \longrightarrow \Omega_4^{Spin}(*) \oplus H_2(M; \mathbb{Z}/2) \longrightarrow F_{3,1} \longrightarrow H_3(M; \Omega_1^{Spin}(*)) \longrightarrow 0$$

and $V \times S^1 \xrightarrow{f \circ p_1} F_{3,1}$ gives the splitting, where we consider an embedding $f: V \to M$ of a closed spin 3-manifold representing a generator of $H_3(M; \mathbb{Z}/2) \cong (\mathbb{Z}/2)^r$, and S^1 is equipped with the non-trivial spin structure. Therefore, $\Omega_4^{Spin}(M) \cong \Omega_4^{Spin}(*) \oplus H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2) \oplus H_4(M)$. The result for $\Omega_5^{Spin}(M)$ follows by similar arguments. \Box

PROPOSITION 2.2. The homology groups of B are given by

$$H_i(B) \cong \begin{cases} H_i(M) & \text{if } i = 0, 1 \text{ or } 2\\ 0 & \text{if } i = 3 \text{ or } 5\\ \mathbf{Z} \otimes_{\Lambda} \Gamma(\pi_2) & \text{if } i = 4 \end{cases}$$

where Γ denotes the Whitehead's quadratic functor [9].

PROOF. The result follows from the the Serre spectral sequence of the fibration $\widetilde{B} \to B \to K(\pi, 1)$ and [7, Proposition 4.2].

PROPOSITION 2.3. Let $\Omega^{Spin}_{*}(B)$ denote the singular bordism group of spin manifolds with a reference map to B. We have the following:

$$\Omega_4^{Spin}(B) \subset \Omega_4^{Spin}(*) \oplus H_4(B) \quad and \quad \Omega_5^{Spin}(B) \cong H_1(B).$$

PROOF. We use the same spectral sequence. First note that

$$\widetilde{B} = K(\pi_2, 2) = \prod_{i,g} \{ CP^{\infty} \times \{g\} \mid g \in \pi, i = 1, 2, \dots, r \}.$$

Then consider the following commutative diagram

$$\begin{array}{c} H^{2}(\widetilde{B}; \mathbb{Z}/2) \xrightarrow{Sq^{2}} H^{4}(\widetilde{B}; \mathbb{Z}/2) \\ & \stackrel{p^{*}}{\uparrow} & \stackrel{p^{*}}{\uparrow} \\ H^{2}(B; \mathbb{Z}/2) \xrightarrow{Sq^{2}} H^{4}(B; \mathbb{Z}/2) \end{array}$$

which implies that $Sq^2: H^2(B; \mathbb{Z}/2) \to H^4(B; \mathbb{Z}/2)$ is injective. Hence $d_2: H_4(B; \mathbb{Z}/2) \to H_2(B; \mathbb{Z}/2)$ is surjective. Therefore, on the line p + q = 4, the only groups which survive to E^{∞} are \mathbb{Z} in the (0, 4) position, and a subgroup of $H_4(B)$ in the (4, 0) position.

For the line p + q = 5, consider the diagram

$$\begin{split} H^2(\widetilde{B}; \mathbf{Z}/2) & \xrightarrow{Sq^2} H^4(\widetilde{B}; \mathbf{Z}/2) \xrightarrow{Sq^2} H^6(\widetilde{B}; \mathbf{Z}/2) \\ & \stackrel{p^*}{\uparrow} & \stackrel{p^*}{\uparrow} & \stackrel{p^*}{\uparrow} \\ H^2(B; \mathbf{Z}/2) \xrightarrow{Sq^2} H^4(B; \mathbf{Z}/2) \xrightarrow{Sq^2} H^6(B; \mathbf{Z}/2). \end{split}$$

Let $\alpha \in H^4(B; \mathbb{Z}/2)$ such that $Sq^2(\alpha) = 0$ and $p^*(\alpha) = \beta$. There exists $\lambda \in H^2(\tilde{B}; \mathbb{Z}/2)$ such that $Sq^2(\lambda) = \beta$, since the above row is exact and p^* is onto. Therefore the sequence

$$H^2(B; \mathbb{Z}/2) \xrightarrow{Sq^2} H^4(B; \mathbb{Z}/2) \xrightarrow{Sq^2} H^6(B; \mathbb{Z}/2)$$

is exact. By the surjectivity of $H_6(B; \mathbb{Z}) \to H_6(B; \mathbb{Z}/2)$, we can conclude that $d_2: H_6(B; \mathbb{Z}) \to H_4(B; \mathbb{Z}/2)$ is surjective onto the kernel of the differential $d_2: H_4(B; \mathbb{Z}/2) \to H_2(B; \mathbb{Z}/2)$. Thus the only group which survive to E_{∞} is $H_1(B) = H_1(M)$ in the (1, 4) position. \Box

The map α : Aut_• $(M) \to \Omega_4^{Spin}(M)$ is defined by $\alpha(f) = [M, f] - [M, \text{id}]$. An element (W, F) of $\widehat{\Omega}_5^{Spin}(B, M)$ is a 5-dimensional spin manifold with boundary $(W, \partial W)$, equipped with a reference map $F \colon W \to B$ such that $F|_{\partial W}$ factors through the classifying map $c \colon M \to B$ and that $F|_{\partial W} \colon \partial W \to M$ has degree zero.

COROLLARY 2.4. The group $\widehat{\Omega}_5^{Spin}(B,M)$ is isomorphic to $H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$ and it injects into $\operatorname{Aut}_{\bullet}(M)$. The image of α is equal to $H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$.

PROOF. The map $\Omega_5^{Spin}(M) \to \Omega_5^{Spin}(B)$, which is composing with our reference map $c: M \to B$, maps the summand $H_1(M)$ isomorphically to $H_1(B)$ and $H_3(M; \mathbb{Z}/2) \oplus H_4(M; \mathbb{Z}/2)$ to zero. By the exactness of the braid the map $\Omega_5^{Spin}(B) \to \widehat{\Omega}_5^{Spin}(B, M)$ is zero. Therefore

$$\widehat{\Omega}_{5}^{Spin}(B,M)) \cong \ker \left(\widehat{\Omega}_{4}^{Spin}(M) \to \Omega_{4}^{Spin}(B) \right)$$
$$\cong H_{2}(M; \mathbb{Z}/2) \oplus H_{3}(M; \mathbb{Z}/2).$$

The map $\widehat{\Omega}_5^{Spin}(B,M) \to \widehat{\Omega}_4^{Spin}(M)$ is injective, so by the commutativity of the braid the map $\pi_1(\mathscr{E}_{\bullet}(B)) \to \widehat{\Omega}_5^{Spin}(B,M)$ is zero. Therefore $\gamma: \widehat{\Omega}_5^{Spin}(B,M) \to \operatorname{Aut}_{\bullet}(M)$ is injective.

The natural map $\Omega_4^{Spin}(M) \to H_0(M)$ sends a spin 4-manifold to its signature, it follows that $\alpha(f) \in H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$. On the other hand, since both the map $\widehat{\Omega}_5^{Spin}(B, M) \to \widehat{\Omega}_4^{Spin}(M)$ and γ are injective we have $H_2(M; \mathbb{Z}/2) \oplus$ $H_3(M; \mathbb{Z}/2) \subseteq \operatorname{im} \alpha$.

Let $\text{Isom}[\pi, \pi_2]$ be the subgroup of $\text{Aut}(\pi) \times \text{Aut}(\pi_2)$ consisting of all those pairs (χ, ψ) for which $\psi(\eta a) = \chi(\eta)\psi(a)$ for all $\eta \in \pi$, $a \in \pi_2$. We have a split exact sequence [5, p. 31]

$$0 \longrightarrow H^2(\pi; \pi_2) \longrightarrow \operatorname{Aut}_{\bullet}(B) \xrightarrow{(\pi_1, \pi_2)} \operatorname{Isom}[\pi, \pi_2] \longrightarrow 1.$$

In particular we have $\operatorname{Aut}_{\bullet}(B) = H^2(\pi; \pi_2) \rtimes \operatorname{Isom}[\pi, \pi_2]$. If π_2 is a free Λ -module, then $H^2(\pi; \pi_2) = 0$. Hence we have

$$\operatorname{Aut}_{\bullet}(B) \cong \operatorname{Isom}[\pi_1, \pi_2].$$

Hambleton and Kreck [2] defined the quadratic 2-type of M as the quadruple $[\pi, \pi_2, k_M, s_M]$. The isometries of the quadratic 2-type of M, which is denoted by $\text{Isom}[\pi, \pi_2, k_M, s_M]$, consists of all pairs of isomorphisms

$$\chi \colon \pi \to \pi \quad \text{and} \quad \psi \colon \pi_2 \to \pi_2,$$

such that $\psi(gx) = \chi(g)\psi(x)$ for all $g \in \pi$ and $x \in \pi_2$, which preserve the k-invariant and s_M , the intersection form of M on π_2 . Since $H^3(\pi; \pi_2) = 0$ we

have $k_M = 0$. For notational ease we will drop it from the notation and write $\text{Isom}[\pi, \pi_2, s_M]$ for the group of isometries of the quadratic 2-type. Finally note that when π_2 is a free Λ -module, $c_*[M]$ and s_M uniquely determine each other (see [7, Proposition 4.3]).

LEMMA 2.5. ker $(\beta: \operatorname{Aut}_{\bullet}(B) \to \Omega_4^{Spin}(B)) = \operatorname{Isom}[\pi, \pi_2, s_M].$

PROOF. If $\phi \in \operatorname{Aut}_{\bullet}(B)$ and $c: M \to B$ is the classifying map, then $\beta(\phi) := [M, \phi \circ c] - [M, c]$. The natural map $\Omega_4^{Spin}(B) \to H_4(B)$ sends a bordism element to the image of its fundamental class. The image of $\beta(\phi)$ in $H_4(B)$ is zero when $\phi_*(c_*[M]) = c_*[M]$. Hence ker β is contained in the group of the isometries of the quadratic 2-type. On the other hand an element $\phi \in \operatorname{Isom}[\pi, \pi_2, s_M]$ will be $\phi \in \operatorname{Aut}_{\bullet}(B)$ such that $\phi_*(c_*[M]) = c_*[M]$, then clearly $\beta(\phi) = 0$.

COROLLARY 2.6. The images of $\operatorname{Aut}_{\bullet}(M)$ and $\widetilde{\mathscr{H}}(M)$ in $\operatorname{Aut}_{\bullet}(B)$ are precisely equal to $\operatorname{Isom}[\pi, \pi_2, s_M]$.

PROOF. By obstruction theory for each $[f] \in \operatorname{Aut}_{\bullet}(M)$, we have a basepoint preserving homotopy self-equivalence $\phi_f \colon B \to B$ such that $c \circ f = \phi_f \circ c$. All we have to show is $(\phi_f)_*(c_*[M]) = c_*[M]$. We have $(\phi_f)_*(c_*[M]) = (\phi_f \circ c)_*[M] = (c \circ f)_*[M] = c_*[M]$ since the fundamental class in $H_4(M)$ is preserved by an orientation preserving homotopy equivalence. We see that $\operatorname{im}(\operatorname{Aut}_{\bullet}(M) \to \operatorname{Aut}_{\bullet}(B))$ is contained in $\operatorname{Isom}[\pi, \pi_2, s_M]$. The other inclusion follows from [1, Corollary 3.3]. The result for the image of $\widetilde{\mathscr{H}}(M)$ follows by the exactness of the braid and the fact that $\operatorname{ker}(\beta) = \operatorname{Isom}[\pi, \pi_2, s_M]$.

Here are the relevant terms of our braid diagram now:

THEOREM 2.7. Let M be a closed, oriented spin manifold of dimension 4. If π_2 is a free Λ -module of finite rank r, then

 $\operatorname{Aut}_{\bullet}(M) \cong (H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)) \rtimes \operatorname{Isom}[\pi, \pi_2, s_M].$

PROOF. From the braid diagram, we have

$$\ker\left(\widetilde{\mathscr{H}}(M)\to\operatorname{Isom}[\pi,\pi_2,s_M]\right)\cong H_1(M),$$

so $\operatorname{Isom}[\pi, \pi_2, s_M] \cong \widetilde{\mathscr{H}}(M)/H_1$. This gives the splitting of the short exact sequence

$$0 \to K_1 \to \operatorname{Aut}_{\bullet}(M) \to \operatorname{Isom}[\pi, \pi_2, s_M] \to 1$$

where $K_1 := \ker(\operatorname{Aut}_{\bullet}(M) \to \operatorname{Aut}_{\bullet}(B))$. Hence it follows that

$$\operatorname{Aut}_{\bullet}(M) \cong K_1 \rtimes \operatorname{Isom}[\pi, \pi_2, s_M].$$

We already know that γ is injective (Corollary 2.4). By the commutativity of the braid to show that it is actually an injective homomorphism, it is enough to show that α is a homomorphism on the image of γ . Let $\gamma(W, F) = f$ and $\gamma(W', F') = g$. Note that $\alpha(f \circ g) = \alpha(f) + f_*(\alpha(g))$. We have to show that $f_*(\alpha(g)) = \alpha(g)$. By Corollary 2.4, $\alpha(g) \in H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$ and any element f in the image of γ is trivial in Aut_•(B). Since $H_3(M; \mathbb{Z}/2) \cong H^1(M; \mathbb{Z}/2)$ and c induces isomorphisms on $H_2(M; \mathbb{Z}/2)$ and $H^1(M; \mathbb{Z}/2)$, f acts as the identity on $H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$. Now a diagram chase shows that γ is a homomorphism. Therefore we have a short exact sequence of groups and homomorphisms

$$0 \to (H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)) \xrightarrow{\gamma} \operatorname{Aut}_{\bullet}(M) \to \operatorname{Isom}[\pi, \pi_2, s_M] \to 1.$$

Moreover, $K_1 = \operatorname{im} \gamma$ and K_1 is mapped isomorphically onto $H_2(M; \mathbb{Z}/2) \oplus$ $H_3(M; \mathbb{Z}/2)$ by the map α . The conjugation action of $\operatorname{Isom}[\pi, \pi_2, s_M]$ on K_1 agrees with the induced action on homology under the identification $K_1 \cong$ $H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$ via α (see [3]). It follows that

$$\operatorname{Aut}_{\bullet}(M) \cong (H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)) \rtimes \operatorname{Isom}[\pi, \pi_2, s_M].$$

3. The non-spin case.

When $w_2(M) \neq 0$ the bordism groups must be modified. The class w_2 gives a fibration and we can form the pullback

The map $w = w_2(\gamma)$ pulls back the second Stiefel-Whitney class for the universal oriented vector bundle γ over BSO. $B\langle w_2 \rangle$ is called the normal 2-type of M [4]. Let $\Omega_*(B\langle w_2 \rangle)$ be bordism classes smooth manifolds equipped with a lift of the normal bundle. The spectral sequence used to compute $\Omega_*(B\langle w_2 \rangle)$ has the same E_2 -term as the one used above for $w_2 = 0$, but the differentials are twisted by w_2 . In particular, d_2 is the dual of Sq_w^2 , where $Sq_w^2(x) := Sq^2(x) + x \cup w_2$ (see [8, Section 2]).

There is a corresponding non-spin version of $\Omega^{Spin}_*(M)$, namely the bordism groups $\Omega_*(M\langle w_2 \rangle)$. The E_2 -term of the spectral sequence is unchanged from the spin case, but the differentials are twisted by w_2 with the above formula for Sq^2_w . We choose a particular representative for the map w_2 such that $w_2 = w \circ \nu_M$. Next we define a suitable "thickening" of Aut_•(M) for the non-spin case:

DEFINITION 3.1 ([3]). Let $\operatorname{Aut}_{\bullet}(M, w_2)$ denote the set of equivalence classes of maps $\widehat{f} \colon M \to M \langle w_2 \rangle$ such that (i) $f := j \circ \widehat{f}$ is a base-point and orientation preserving homotopy equivalence, and (ii) $\xi \circ \widehat{f} = \nu_M$.

There is a short exact sequence of groups [3]

$$0 \longrightarrow H^1(M; \mathbb{Z}/2) \longrightarrow \operatorname{Aut}_{\bullet}(M, w_2) \longrightarrow \operatorname{Aut}_{\bullet}(M) \longrightarrow 1.$$

To define an analogous group $\operatorname{Aut}_{\bullet}(B, w_2)$ of self-equivalences, we should first state the following lemma from [3].

LEMMA 3.2. Given a base-point preserving map $f: M \to B$, there is a unique extension (up to base-point preserving homotopy) $\phi_f: B \to B$ such that $\phi_f \circ c = f$. If f is a 3-equivalence then ϕ_f is a homotopy equivalence. Moreover, if $w_2 \circ f = w_2$, then $w_2 \circ \phi_f = w_2$.

DEFINITION 3.3 ([3]). Let $\operatorname{Aut}_{\bullet}(B, w_2)$ denote the set of equivalence classes of maps $\widehat{f}: M \to B\langle w_2 \rangle$ such that (i) $f := j \circ \widehat{f}$ is a base-point preserving 3equivalence, and (ii) $\xi \circ \widehat{f} = \nu_M$.

THEOREM 3.4 ([3]). Let M be a closed, oriented topological 4-manifold. Then there is a sign-commutative diagram of exact sequences

such that the two composites ending in $Aut_{\bullet}(M, w_2)$ agree up to inversion, and the other sub-diagrams are strictly commutative.

PROPOSITION 3.5. Let $B\langle w_2 \rangle$ denote the normal 2-type of a 4-manifold M with free fundamental group. Then we have

$$\Omega_4(M\langle w_2 \rangle) \cong \Omega_4^{Spin}(*) \oplus H_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2) \oplus H_4(M)$$

$$\Omega_5(M\langle w_2 \rangle) \cong H_1(M) \oplus H_3(M; \mathbb{Z}/2) \oplus H_4(M; \mathbb{Z}/2)$$

$$\Omega_4(B\langle w_2 \rangle) \subset \Omega_4^{Spin}(*) \oplus \mathbb{Z}/2 \oplus H_4(B)$$

$$\Omega_5(B\langle w_2 \rangle) \cong H_1(M).$$

PROOF. We only need to compute the d_2 differentials. Since M is orientable, w_2 is also the second Wu class of M. We have $Sq_w^2(x) = 0$. Now, everything works exactly the same as in the spin case.

For the bordism groups of $B\langle w_2 \rangle$, first consider the following commutative diagram

$$\begin{array}{c|c} H^{2}(\widetilde{B}; \mathbb{Z}/2) & \xrightarrow{Sq_{w}^{2}} H^{4}(\widetilde{B}; \mathbb{Z}/2) \\ & & & \\ p^{*} & & & \\ p^{*} & & & \\ H^{2}(B; \mathbb{Z}/2) & \xrightarrow{Sq_{w}^{2}} H^{4}(B; \mathbb{Z}/2). \end{array}$$

By the commutativity of the diagram, we have

$$\ker \left(Sq_w^2 \colon H^2(B; \mathbb{Z}/2) \to H^4(B; \mathbb{Z}/2) \right) \cong \langle w_2 \rangle \cong \mathbb{Z}/2$$
$$\cong \operatorname{coker} \left(d_2 \colon H_4(B; \mathbb{Z}/2) \to H_2(B; \mathbb{Z}/2) \right).$$

Since all the other differentials are zero, this gives the $\mathbb{Z}/2$ in the $E_{2,2}^{\infty}$ position. To see that $H_1(B) \cong H_1(M)$ is the only group on the line p+q=5 which survives to E_{∞} , we use the following commutative diagram

$$\begin{array}{c|c} H^{2}(\widetilde{B}; \mathbf{Z}/2) \xrightarrow{Sq_{w}^{2}} H^{4}(\widetilde{B}; \mathbf{Z}/2) \xrightarrow{Sq_{w}^{2}} H^{6}(\widetilde{B}; \mathbf{Z}/2) \\ & & p^{*} \uparrow & p^{*} \uparrow & p^{*} \uparrow \\ H^{2}(B; \mathbf{Z}/2) \xrightarrow{Sq_{w}^{2}} H^{4}(B; \mathbf{Z}/2) \xrightarrow{Sq_{w}^{2}} H^{6}(B; \mathbf{Z}/2). \end{array}$$

We are going to show that the bottom row is exact. Let $a \in H^2(B; \mathbb{Z}/2)$, then $Sq_w^2(a^2 + a \cup w_2) = 0$. Now, let $b \in H^4(B; \mathbb{Z}/2)$ such that $Sq_w^2(b) = 0$ and let $p^*(b) = y$, then $Sq_w^2(y) = 0$. There exists a $z \in H^2(\widetilde{B}; \mathbb{Z}/2)$ such that $Sq_w^2(z) = y$. Then we also have a $c \in H^2(B; \mathbb{Z}/2)$ such that $p^*(c) = z$ and $Sq_w^2(c) = b$. Therefore the sequence

$$H^2(B; \mathbb{Z}/2) \xrightarrow{Sq_w^2} H^4(B; \mathbb{Z}/2) \xrightarrow{Sq_w^2} H^6(B; \mathbb{Z}/2)$$

is exact. Note also that $H_6(B) \to H_6(B; \mathbb{Z}/2)$ is surjective, hence $d_2 \colon H_6(B) \to H_4(B; \mathbb{Z}/2)$ is onto the kernel of $d_2 \colon H_4(B; \mathbb{Z}/2) \to H_2(B; \mathbb{Z}/2)$.

Let $\hat{c}: M \to B\langle w_2 \rangle$ denote the map defined by the pair $(c: M \to B, \nu_M: M \to BSO)$. Consider the following diagram

$$\begin{array}{ccc}
M\langle w_2 \rangle & & \xrightarrow{c \circ j} & B \\
& & & & \downarrow \\
& & & \downarrow \\
& & & \downarrow \\
BSO & & & & K(\mathbf{Z}/2, 2)
\end{array}$$

We have $(w_2 \circ c) \circ j = w_2 \circ j$ and since the pullback satisfies the universal property, there exists a map $\overline{c} \colon M\langle w_2 \rangle \to B\langle w_2 \rangle$. Let $\widehat{id} \colon M \to M\langle w_2 \rangle$ denote the map defined by the pair $(\operatorname{id}_M \colon M \to M, \nu_M \colon M \to BSO)$. Given $[\widehat{f}] \in \operatorname{Aut}_{\bullet}(M, w_2)$, we define $\alpha \colon \operatorname{Aut}_{\bullet}(M, w_2) \to \widehat{\Omega}_4(M\langle w_2 \rangle)$ by $\alpha(\widehat{f}) = [M, \widehat{f}] - [M, \operatorname{id}_M]$ where the modified bordism groups are defined by letting the degree of a reference map $\widehat{g} \colon N^4 \to Mw$ to be the ordinary degree of $g = j \circ \widehat{g}$. An element (W, \widehat{F}) of $\widehat{\Omega}_5(B\langle w_2 \rangle, M\langle w_2 \rangle)$ is a 5-dimensional manifold with boundary $(W, \partial W)$, equipped with a reference map $\widehat{F} \colon W \to B\langle w_2 \rangle$ such that $\widehat{F}|_{\partial W}$ factors through \overline{c} .

COROLLARY 3.6. The group

$$\widehat{\Omega}_5(B\langle w_2\rangle, M\langle w_2\rangle) \cong KH_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$$

and it injects into $Aut_{\bullet}(M, w_2)$. The image of α ,

$$\operatorname{im} \alpha = KH_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2).$$

PROOF. As in the proof of Corollary 2.4, $\Omega_5(M\langle w_2 \rangle) \to \Omega_5(B\langle w_2 \rangle)$ is onto and by the exactness of the braid $\Omega_5(B\langle w_2 \rangle) \to \widehat{\Omega}_5(B\langle w_2 \rangle, M\langle w_2 \rangle)$ is zero. Thus

$$\widehat{\Omega}_{5}(B\langle w_{2}\rangle, M\langle w_{2}\rangle) \cong \ker\left(\widehat{\Omega}_{4}(M\langle w_{2}\rangle) \to \Omega_{4}(B\langle w_{2}\rangle)\right)$$
$$\cong KH_{2}(M; \mathbb{Z}/2) \oplus H_{3}(M; \mathbb{Z}/2).$$

The map $\pi_1(\mathscr{E}_{\bullet}(B, w_2)) \to \widehat{\Omega}_5(B\langle w_2 \rangle, M\langle w_2 \rangle)$ is zero, by the commutativity of the braid. Therefore

$$\gamma \colon \Omega_5(B\langle w_2 \rangle, M\langle w_2 \rangle) \to \operatorname{Aut}_{\bullet}(M, w_2)$$

is injective. The natural map $\Omega_4(M\langle w_2 \rangle) \to H_0(M)$ sends a 4-manifold to its signature. Since the class $w_2 \in H^2(M; \mathbb{Z}/2)$ is a characteristic element for the cup product form (mod 2), it is preserved by the induced map of a self-homotopy equivalence of M. Therefore, the image of $\operatorname{Aut}_{\bullet}(M, w_2)$ in $\Omega_4(M\langle w_2 \rangle)$ lies in the subgroup $KH_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$. Since, the map γ is injective we also have $KH_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2) \subseteq \operatorname{im} \alpha$.

Next, we are going to define a homomorphism

$$\widehat{j}: \operatorname{Aut}_{\bullet}(B, w_2) \to \operatorname{Aut}_{\bullet}(B).$$

For any $\widehat{f} \in \operatorname{Aut}_{\bullet}(B, w_2), f := j \circ \widehat{f} \colon M \to B$ is a 3-equivalence. There is a unique homotopy equivalence $\phi_f \colon B \to B$ such that $\phi_f \circ c \simeq f$. We define

$$\widehat{j}(\widehat{f}) := \phi_f.$$

Let \widehat{g} be another element of Aut_• (B, w_2) , then $\widehat{f} \bullet \widehat{g}$ is defined by the pair $(\phi_f \circ \phi_g \circ c, \nu_M)$. Therefore $\widehat{j}(\widehat{f} \bullet \widehat{g}) = \phi_f \circ \phi_g$. Let

$$\operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M] := \left\{ \widehat{f} \in \operatorname{Aut}_{\bullet}(B, w_2) \mid \phi_f \in \operatorname{Isom}[\pi, \pi_2, s_M] \right\}.$$

LEMMA 3.7 ([6]). There is a short exact sequence of groups

$$0 \longrightarrow H^1(M; \mathbb{Z}/2) \longrightarrow \operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M] \xrightarrow{\widehat{j}} \operatorname{Isom}[\pi, \pi_2, s_M] \longrightarrow 1.$$

COROLLARY 3.8. The image of $\operatorname{Aut}_{\bullet}(M, w_2)$ in $\operatorname{Aut}_{\bullet}(B, w_2)$ is precisely equal to $\operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M]$.

PROOF. Let $\hat{f} \in \operatorname{Aut}_{\bullet}(M, w_2)$ and $\phi_{\hat{f}}$ denote the image of \hat{f} in $\operatorname{Aut}_{\bullet}(B, w_2)$. Then $\hat{j}(\phi_{\hat{f}}) = \phi_f$ satisfies $\phi_f \circ c = c \circ f$ and ϕ_f preserves $c_*[M]$. Hence $\phi_f \in \operatorname{Isom}[\pi, \pi_2, s_M]$. Now suppose that $\phi \in \operatorname{Isom}[\pi, \pi_2, s_M]$, then by [1, Corollary 3.3] there exists $f \in \operatorname{Aut}_{\bullet}(M)$ such that $\phi \circ f \simeq c \circ f$. We may assume that $\hat{f} = (f, \nu_M) \in \operatorname{Aut}_{\bullet}(M, w_2)$ [3, Lemma 3.1]. Let $\phi_{\hat{f}} \in \operatorname{Aut}_{\bullet}(B, w_2)$ denotes the image of \hat{f} , we have $\hat{j}(\phi_{\hat{f}}) = \phi$.

LEMMA 3.9. $\ker(\beta: \operatorname{Aut}_{\bullet}(B, w_2) \to \Omega_4(B\langle w_2 \rangle)) = \operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M]$ and the image of $\widetilde{\mathscr{H}}(M, w_2)$ in $\operatorname{Aut}_{\bullet}(B, w_2)$ is equal to $\operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M]$.

PROOF. In the non-spin case, the map β : Aut_• $(B, w_2) \rightarrow \Omega_4(B\langle w_2 \rangle)$ is defined by $\beta(\widehat{f}) = [M, \widehat{f}] - [M, \widehat{c}]$. Let $\widehat{f} \in \operatorname{Aut}_{\bullet}(B, w_2)$ and suppose first that $\widehat{f} \in \ker \beta$, then $(j \circ \widehat{f})_*[M] = c_*[M]$. But since $(j \circ \widehat{f})$ is a 3-equivalence, there exists $\phi \in \operatorname{Aut}_{\bullet}(B)$ with $\phi \circ c = j \circ \widehat{f}$. So, $\phi_*(c_*[M]) = c_*[M]$ which means $\widehat{j}(\widehat{f}) = \phi \in \operatorname{Isom}[\pi, \pi_2, s_M]$. Therefore $\ker(\beta) \subseteq \operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M]$. It is easy to see the other inclusion from the commutativity of the braid. The result about the image of $\widetilde{\mathscr{H}}(M, w_2)$ follows from the exactness of the braid [3, Lemma 2.7] and the fact that $\ker(\beta) = \operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M]$.

The relevant terms of our braid are now:

THE PROOF OF THEOREM 1.1. We have a split short exact sequence

$$0 \longrightarrow \widehat{K_1} \longrightarrow \operatorname{Aut}_{\bullet}(M, w_2) \longrightarrow \operatorname{Isom}^{\langle w_2 \rangle}[\pi, \pi_2, s_M] \longrightarrow 1$$

where $\widehat{K_1} = \ker(\operatorname{Aut}_{\bullet}(M, w_2) \to \operatorname{Aut}_{\bullet}(B, w_2))$. Any element \widehat{f} will act as identity on $\operatorname{im}(\alpha) = KH_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$, so λ is a homomorphism. Also $\widehat{K_1} \cong KH_2(M; \mathbb{Z}/2) \oplus H_3(M; \mathbb{Z}/2)$ and the rest of the proof follows as in the spin case.

Remark 3.10. We have

$$H_2(M; \mathbb{Z}/2) \cong H_0(\pi; H_2(M; \mathbb{Z}/2)) \cong (\pi_2 \otimes \mathbb{Z}/2) \otimes_{\Lambda} \mathbb{Z}.$$

Therefore any element of $H_2(M; \mathbb{Z}/2)$ can be represented by a map $S^2 \to M$. Let $0 \neq x \in KH_2(M; \mathbb{Z}/2)$ and $\alpha: S^2 \to M$ corresponds to x via the above isomorphism. Choose an embedding $D^4 \hookrightarrow M$ and shrink ∂D^4 to a point, to get a map $M \to M \lor S^4$. Now let $\eta: S^3 \to S^2$ be the Hopf map, $S\eta: S^4 \to S^3$ its suspension and $\eta^2: S^4 \to S^2$ the composition $\eta^2 = \eta \circ S\eta$. Let f be the composite map

$$M \xrightarrow{\qquad \qquad } M \vee S^4 \xrightarrow{\qquad \quad \mathrm{id} \vee \eta^2 } M \vee S^2 \xrightarrow{\qquad \quad \mathrm{id} \vee \alpha } M$$

f induces identities on π_1 and on $H_i(\widetilde{M})$, so f is homologous to the id_M , and hence it is a homotopy equivalence, but it is not homotopic to the identity, for γ is injective.

To realize $H_3(M; \mathbb{Z}/2)$ as homotopy equivalences, first observe that $H_3(M) \cong H_3(\widetilde{M}) \otimes_{\Lambda} \mathbb{Z}$ and reduction mod 2 is onto, so by Hurewicz theorem for any element of $H_3(M; \mathbb{Z}/2)$ there exists a map $\beta \colon S^3 \to M$. Now the following composite map

$$M \xrightarrow{\qquad \qquad } M \vee S^4 \xrightarrow{\qquad \operatorname{id} \vee S\eta} M \vee S^3 \xrightarrow{\qquad \operatorname{id} \vee \beta} M$$

is again a homotopy-equivalence.

References

- H. J. Baues and B. Bleile, Poincare duality complexes in dimension four, Algebr. Geom. Topol., 8 (2008), 2355–2389.
- [2] I. Hambleton and M. Kreck, On the classification of topological 4-manifolds with finite fundamental group, Math. Ann., 280 (1988), 85–104.

- [3] I. Hambleton and M. Kreck, Homotopy self-equivalences of 4-manifolds, Math. Z., 248 (2004), 147–172.
- [4] M. Kreck, Surgery and duality, Ann. of Math. (2), 149 (1999), 707–754.
- [5] J. M. Møller, Self-homotopy equivalences of group cohomology spaces, J. Pure Appl. Algebra, 73 (1991), 23–37.
- [6] M. Pamuk, Homotopy self-equivalences of 4-manifolds, Ph. D. Thesis, McMaster University, 2008.
- [7] F. Spaggiari, Four-manifolds with π_1 -free second homotopy, Manuscripta Math., **111** (2003), 303–320.
- [8] P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann., 295 (1993), 745–759.
- [9] J. H. C. Whitehead, A Certain exact sequence, Ann. of Math., 52 (1950), 51–110.

Mehmetcik PAMUK

Department of Mathematics Middle East Technical University Ankara 06531, Turkey E-mail: mpamuk@metu.edu.tr