Homotopy self-equivalences of 4-manifolds with π_{1}-free second homotopy

By Mehmetcik Pamuk

(Received Feb. 23, 2010)

Abstract

We calculate the group of homotopy classes of homotopy self-equivalences of 4 -manifolds with π_{1}-free second homotopy.

1. Introduction.

Let M be a closed, connected, oriented 4-manifold with a fixed base point $x_{0} \in M$. We want to study the group of homotopy classes of homotopy selfequivalences of M, preserving both the given orientation on M and the basepoint. Let Aut. (M) denote the group of homotopy classes of such homotopy self-equivalences.

Let us start by fixing our notation. The fundamental group $\pi_{1}\left(M, x_{0}\right)$ will be denoted by π, the higher homotopy groups $\pi_{i}\left(M, x_{0}\right)$ will be denoted by π_{i}. Let $\Lambda=\boldsymbol{Z}[\pi]$ denote the integral group ring of π. We will mean homology and cohomology with integral coefficients unless otherwise noted.

Let B denote the 2-type of M, we may construct B by adjoining cells of dimension at least 4 to kill the homotopy groups in dimensions ≥ 3. The natural map $c: M \rightarrow B$ is given by the inclusion of M into B. Hambleton and Kreck [3], defined a thickening Aut. $\left(M, w_{2}\right)$ of Aut. (M) (see Section 3 for the definition) and established a commutative braid of exact sequences, valid for any closed, oriented smooth or topological 4-manifold. The authors defined

$$
\operatorname{Isom}\left[\pi, \pi_{2}, k_{M}, c_{*}[M]\right]:=\left\{\phi \in \operatorname{Aut} .(B) \mid \phi_{*}\left(c_{*}[M]\right)=c_{*}[M]\right\}
$$

and obtained an explicit formula when the fundamental group is finite of odd order.

In this paper, we define an extension $\operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right]$ of $\operatorname{Isom}\left[\pi, \pi_{2}\right.$, $\left.k_{M}, c_{*}[M]\right]$ and use the braid in [3] to obtain an explicit formula when π_{2} is a free Λ-module. Examples of such manifolds are obtained when $\pi \cong *_{p} \boldsymbol{Z}$ or when $M \cong X \sharp Y$, where X is simply-connected and $\pi_{2}(Y)=0$, for instance one may

[^0]take Y to be aspherical. Our main theorem is the following:
Theorem 1.1. Let M be a closed, oriented manifold of dimension 4. If π_{2} is a free Λ-module of finite rank r, then
$$
\text { Aut. }\left(M, w_{2}\right) \cong\left(K H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)\right) \rtimes \operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right]
$$
where $K H_{2}(M ; \boldsymbol{Z} / 2):=\operatorname{ker}\left(w_{2}: H_{2}(M ; \boldsymbol{Z} / 2) \rightarrow \boldsymbol{Z} / 2\right)$.
The author would like to thank Jonathan A. Hillman for taking the time to answer all his questions.

2. Spin case.

For simplicity we start with spin manifolds. Throughout this section let M be a spin manifold. Hambleton and Kreck constructed a braid of exact sequences

that is commutative up to sign, the sub-diagrams are all strictly commutative except for the two composites ending in Aut. (M), and valid for any closed, oriented spin 4-manifold. Throughout this paper we always refer to [3] for the details of the definitions.

We will fix a lift $\nu_{M}: M \rightarrow$ BSpin of the classifying map for the stable normal bundle of M. The Abelian group $\Omega_{n}^{S p i n}(M)$, with disjoint union as the group operation, denotes the singular bordism group of spin manifolds with a reference map to M. By imposing the requirement that the reference maps to M must have degree zero, we obtain the modified bordism groups $\widehat{\Omega}_{4}^{\text {Spin }}(M)$.

Proposition 2.1. The relevant spin bordism groups of M are given as follows:

$$
\begin{aligned}
& \Omega_{4}^{\text {Spin }}(M) \cong \Omega_{4}^{\text {Spin }}(*) \oplus H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2) \oplus H_{4}(M), \\
& \Omega_{5}^{S p i n}(M) \cong H_{1}(M) \oplus H_{3}(M ; \boldsymbol{Z} / 2) \oplus H_{4}(M ; \boldsymbol{Z} / 2) .
\end{aligned}
$$

Proof. This follows from the Atiyah - Hirzebruch spectral sequence, whose E^{2}-term is $H_{p}\left(M ; \Omega_{q}^{S p i n}(*)\right)$. The first differential $d_{2}: E_{p, q}^{2} \rightarrow E_{p-2, q+1}^{2}$ is given by the dual of $S q^{2}($ if $q=1)$ or this composed with reduction $\bmod 2($ if $q=0)$, see [8, p. 751]. We substitute the values

$$
\Omega_{q}^{S p i n}(*)=\boldsymbol{Z}, \boldsymbol{Z} / 2, \boldsymbol{Z} / 2,0, \boldsymbol{Z}, 0 \quad \text { for } \quad 0 \leq q \leq 5
$$

The differential for $(p, q)=(4,1)$ is dual to $S q^{2}: H^{2}(M ; \boldsymbol{Z} / 2) \rightarrow H^{4}(M ; \boldsymbol{Z} / 2)$ which is zero, since M is spin. We have a short exact sequence

$$
0 \longrightarrow \Omega_{4}^{\text {Spin }}(*) \oplus H_{2}(M ; \boldsymbol{Z} / 2) \longrightarrow F_{3,1} \longrightarrow H_{3}\left(M ; \Omega_{1}^{\text {Spin }}(*)\right) \longrightarrow 0
$$

and $V \times S^{1} \xrightarrow{f \circ p_{1}} F_{3,1}$ gives the splitting, where we consider an embedding $f: V \rightarrow$ M of a closed spin 3-manifold representing a generator of $H_{3}(M ; \boldsymbol{Z} / 2) \cong(\boldsymbol{Z} / 2)^{r}$, and S^{1} is equipped with the non-trivial spin structure. Therefore, $\Omega_{4}^{\text {Spin }}(M) \cong$ $\Omega_{4}^{\text {Spin }}(*) \oplus H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2) \oplus H_{4}(M)$. The result for $\Omega_{5}^{\text {Spin }}(M)$ follows by similar arguments.

Proposition 2.2. The homology groups of B are given by

$$
H_{i}(B) \cong \begin{cases}H_{i}(M) & \text { if } i=0,1 \text { or } 2 \\ 0 & \text { if } i=3 \text { or } 5 \\ \boldsymbol{Z} \otimes_{\Lambda} \Gamma\left(\pi_{2}\right) & \text { if } i=4\end{cases}
$$

where Γ denotes the Whitehead's quadratic functor $[\mathbf{9}]$.
Proof. The result follows from the the Serre spectral sequence of the fibration $\widetilde{B} \rightarrow B \rightarrow K(\pi, 1)$ and [7, Proposition 4.2].

Proposition 2.3. Let $\Omega_{*}^{\text {Spin }}(B)$ denote the singular bordism group of spin manifolds with a reference map to B. We have the following:

$$
\Omega_{4}^{S p i n}(B) \subset \Omega_{4}^{S p i n}(*) \oplus H_{4}(B) \quad \text { and } \quad \Omega_{5}^{S p i n}(B) \cong H_{1}(B)
$$

Proof. We use the same spectral sequence. First note that

$$
\widetilde{B}=K\left(\pi_{2}, 2\right)=\prod_{i, g}\left\{\boldsymbol{C} P^{\infty} \times\{g\} \mid g \in \pi, i=1,2, \ldots, r\right\}
$$

Then consider the following commutative diagram

which implies that $S q^{2}: H^{2}(B ; \boldsymbol{Z} / 2) \rightarrow H^{4}(B ; \boldsymbol{Z} / 2)$ is injective. Hence $d_{2}: H_{4}(B ; \boldsymbol{Z} / 2) \rightarrow H_{2}(B ; \boldsymbol{Z} / 2)$ is surjective. Therefore, on the line $p+q=4$, the only groups which survive to E^{∞} are \boldsymbol{Z} in the $(0,4)$ position, and a subgroup of $H_{4}(B)$ in the $(4,0)$ position.

For the line $p+q=5$, consider the diagram

Let $\alpha \in H^{4}(B ; \boldsymbol{Z} / 2)$ such that $S q^{2}(\alpha)=0$ and $p^{*}(\alpha)=\beta$. There exists $\lambda \in$ $H^{2}(\widetilde{B} ; \boldsymbol{Z} / 2)$ such that $S q^{2}(\lambda)=\beta$, since the above row is exact and p^{*} is onto. Therefore the sequence

$$
H^{2}(B ; \boldsymbol{Z} / 2) \xrightarrow{S q^{2}} H^{4}(B ; \boldsymbol{Z} / 2) \xrightarrow{S q^{2}} H^{6}(B ; \boldsymbol{Z} / 2)
$$

is exact. By the surjectivity of $H_{6}(B ; \boldsymbol{Z}) \rightarrow H_{6}(B ; \boldsymbol{Z} / 2)$, we can conclude that $d_{2}: H_{6}(B ; \boldsymbol{Z}) \rightarrow H_{4}(B ; \boldsymbol{Z} / 2)$ is surjective onto the kernel of the differential $d_{2}: H_{4}(B ; \boldsymbol{Z} / 2) \rightarrow H_{2}(B ; \boldsymbol{Z} / 2)$. Thus the only group which survive to E_{∞} is $H_{1}(B)=H_{1}(M)$ in the $(1,4)$ position.

The map α : Aut. $(M) \rightarrow \Omega_{4}^{S p i n}(M)$ is defined by $\alpha(f)=[M, f]-[M$, id $]$. An element (W, F) of $\widehat{\Omega}_{5}^{\text {Spin }}(B, M)$ is a 5 -dimensional spin manifold with boundary $(W, \partial W)$, equipped with a reference map $F: W \rightarrow B$ such that $\left.F\right|_{\partial W}$ factors through the classifying map $c: M \rightarrow B$ and that $\left.F\right|_{\partial W}: \partial W \rightarrow M$ has degree zero.

Corollary 2.4. The group $\widehat{\Omega}_{5}^{\text {Spin }}(B, M)$ is isomorphic to $H_{2}(M ; \boldsymbol{Z} / 2) \oplus$ $H_{3}(M ; \boldsymbol{Z} / 2)$ and it injects into Aut.(M). The image of α is equal to $H_{2}(M ; \boldsymbol{Z} / 2)$ $\oplus H_{3}(M ; \boldsymbol{Z} / 2)$.

Proof. The map $\Omega_{5}^{S p i n}(M) \rightarrow \Omega_{5}^{S p i n}(B)$, which is composing with our reference map $c: M \rightarrow B$, maps the summand $H_{1}(M)$ isomorphically to $H_{1}(B)$ and $H_{3}(M ; \boldsymbol{Z} / 2) \oplus H_{4}(M ; \boldsymbol{Z} / 2)$ to zero. By the exactness of the braid the map $\Omega_{5}^{\text {Spin }}(B) \rightarrow \widehat{\Omega}_{5}^{\text {Spin }}(B, M)$ is zero. Therefore

$$
\begin{aligned}
\left.\widehat{\Omega}_{5}^{\text {Spin }}(B, M)\right) & \cong \operatorname{ker}\left(\widehat{\Omega}_{4}^{\text {Spin }}(M) \rightarrow \Omega_{4}^{S p i n}(B)\right) \\
& \cong H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2) .
\end{aligned}
$$

The map $\widehat{\Omega}_{5}^{\text {Spin }}(B, M) \rightarrow \widehat{\Omega}_{4}^{\text {Spin }}(M)$ is injective, so by the commutativity of the braid the map $\pi_{1}\left(\mathscr{E}_{\bullet}(B)\right) \rightarrow \widehat{\Omega}_{5}^{\text {Spin }}(B, M)$ is zero. Therefore $\gamma: \widehat{\Omega}_{5}^{\text {Spin }}(B, M)$ \rightarrow Aut. (M) is injective.

The natural map $\Omega_{4}^{S p i n}(M) \rightarrow H_{0}(M)$ sends a spin 4-manifold to its signature, it follows that $\alpha(f) \in H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)$. On the other hand, since both the map $\widehat{\Omega}_{5}^{\text {Spin }}(B, M) \rightarrow \widehat{\Omega}_{4}^{\text {Spin }}(M)$ and γ are injective we have $H_{2}(M ; \boldsymbol{Z} / 2) \oplus$ $H_{3}(M ; \boldsymbol{Z} / 2) \subseteq \operatorname{im} \alpha$.

Let $\operatorname{Isom}\left[\pi, \pi_{2}\right]$ be the subgroup of $\operatorname{Aut}(\pi) \times \operatorname{Aut}\left(\pi_{2}\right)$ consisting of all those pairs (χ, ψ) for which $\psi(\eta a)=\chi(\eta) \psi(a)$ for all $\eta \in \pi, a \in \pi_{2}$. We have a split exact sequence [5, p. 31]

$$
0 \longrightarrow H^{2}\left(\pi ; \pi_{2}\right) \longrightarrow \operatorname{Aut}(B) \xrightarrow{\left(\pi_{1}, \pi_{2}\right)} \operatorname{Isom}\left[\pi, \pi_{2}\right] \longrightarrow 1 .
$$

In particular we have $\operatorname{Aut} .(B)=H^{2}\left(\pi ; \pi_{2}\right) \rtimes \operatorname{Isom}\left[\pi, \pi_{2}\right]$. If π_{2} is a free Λ-module, then $H^{2}\left(\pi ; \pi_{2}\right)=0$. Hence we have

$$
\operatorname{Aut} \cdot(B) \cong \operatorname{Isom}\left[\pi_{1}, \pi_{2}\right] .
$$

Hambleton and Kreck [2] defined the quadratic 2-type of M as the quadruple $\left[\pi, \pi_{2}, k_{M}, s_{M}\right]$. The isometries of the quadratic 2-type of M, which is denoted by $\operatorname{Isom}\left[\pi, \pi_{2}, k_{M}, s_{M}\right]$, consists of all pairs of isomorphisms

$$
\chi: \pi \rightarrow \pi \quad \text { and } \quad \psi: \pi_{2} \rightarrow \pi_{2},
$$

such that $\psi(g x)=\chi(g) \psi(x)$ for all $g \in \pi$ and $x \in \pi_{2}$, which preserve the k invariant and s_{M}, the intersection form of M on π_{2}. Since $H^{3}\left(\pi ; \pi_{2}\right)=0$ we
have $k_{M}=0$. For notational ease we will drop it from the notation and write Isom $\left[\pi, \pi_{2}, s_{M}\right]$ for the group of isometries of the quadratic 2-type. Finally note that when π_{2} is a free Λ-module, $c_{*}[M]$ and s_{M} uniquely determine each other (see [7, Proposition 4.3]).

Lemma 2.5. $\quad \operatorname{ker}\left(\beta: \operatorname{Aut}(B) \rightarrow \Omega_{4}^{\text {Spin }}(B)\right)=\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$.
Proof. If $\phi \in \operatorname{Aut}$. (B) and $c: M \rightarrow B$ is the classifying map, then $\beta(\phi):=$ $[M, \phi \circ c]-[M, c]$. The natural map $\Omega_{4}^{\text {Spin }}(B) \rightarrow H_{4}(B)$ sends a bordism element to the image of its fundamental class. The image of $\beta(\phi)$ in $H_{4}(B)$ is zero when $\phi_{*}\left(c_{*}[M]\right)=c_{*}[M]$. Hence $\operatorname{ker} \beta$ is contained in the group of the isometries of the quadratic 2 -type. On the other hand an element $\phi \in \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$ will be $\phi \in \operatorname{Aut} .(B)$ such that $\phi_{*}\left(c_{*}[M]\right)=c_{*}[M]$, then clearly $\beta(\phi)=0$.

Corollary 2.6. The images of Aut. (M) and $\widetilde{\mathscr{H}}(M)$ in Aut. (B) are precisely equal to $\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$.

Proof. By obstruction theory for each $[f] \in \operatorname{Aut}$. (M), we have a basepoint preserving homotopy self-equivalence $\phi_{f}: B \rightarrow B$ such that $c \circ f=\phi_{f} \circ c$. All we have to show is $\left(\phi_{f}\right)_{*}\left(c_{*}[M]\right)=c_{*}[M]$. We have $\left(\phi_{f}\right)_{*}\left(c_{*}[M]\right)=\left(\phi_{f} \circ\right.$ $c)_{*}[M]=(c \circ f)_{*}[M]=c_{*}[M]$ since the fundamental class in $H_{4}(M)$ is preserved by an orientation preserving homotopy equivalence. We see that im (Aut. $(M) \rightarrow$ Aut. $(B))$ is contained in $\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$. The other inclusion follows from [1, Corollary 3.3]. The result for the image of $\widetilde{\mathscr{H}}(M)$ follows by the exactness of the braid and the fact that $\operatorname{ker}(\beta)=\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$.

Here are the relevant terms of our braid diagram now:

Theorem 2.7. Let M be a closed, oriented spin manifold of dimension 4. If π_{2} is a free Λ-module of finite rank r, then

$$
\text { Aut. }(M) \cong\left(H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)\right) \rtimes \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right] .
$$

Proof. From the braid diagram, we have

$$
\operatorname{ker}\left(\widetilde{\mathscr{H}}(M) \rightarrow \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]\right) \cong H_{1}(M)
$$

so $\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right] \cong \widetilde{\mathscr{H}}(M) / H_{1}$. This gives the splitting of the short exact sequence

$$
0 \rightarrow K_{1} \rightarrow \operatorname{Aut} \cdot(M) \rightarrow \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right] \rightarrow 1
$$

where $K_{1}:=\operatorname{ker}(\operatorname{Aut} .(M) \rightarrow \operatorname{Aut}(B))$. Hence it follows that

$$
\text { Aut. }(M) \cong K_{1} \rtimes \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]
$$

We already know that γ is injective (Corollary 2.4). By the commutativity of the braid to show that it is actually an injective homomorphism, it is enough to show that α is a homomorphism on the image of γ. Let $\gamma(W, F)=f$ and $\gamma\left(W^{\prime}, F^{\prime}\right)=g$. Note that $\alpha(f \circ g)=\alpha(f)+f_{*}(\alpha(g))$. We have to show that $f_{*}(\alpha(g))=\alpha(g)$. By Corollary 2.4, $\alpha(g) \in H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)$ and any element f in the image of γ is trivial in Aut• (B). Since $H_{3}(M ; \boldsymbol{Z} / 2) \cong H^{1}(M ; \boldsymbol{Z} / 2)$ and c induces isomorphisms on $H_{2}(M ; \boldsymbol{Z} / 2)$ and $H^{1}(M ; \boldsymbol{Z} / 2), f$ acts as the identity on $H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)$. Now a diagram chase shows that γ is a homomorphism. Therefore we have a short exact sequence of groups and homomorphisms

$$
0 \rightarrow\left(H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)\right) \xrightarrow{\gamma} \operatorname{Aut}_{\bullet}(M) \rightarrow \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right] \rightarrow 1 .
$$

Moreover, $K_{1}=\operatorname{im} \gamma$ and K_{1} is mapped isomorphically onto $H_{2}(M ; \boldsymbol{Z} / 2) \oplus$ $H_{3}(M ; \boldsymbol{Z} / 2)$ by the map α. The conjugation action of $\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$ on K_{1} agrees with the induced action on homology under the identification $K_{1} \cong$ $H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)$ via α (see [3]). It follows that

$$
\text { Aut. }(M) \cong\left(H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)\right) \rtimes \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]
$$

3. The non-spin case.

When $w_{2}(M) \neq 0$ the bordism groups must be modified. The class w_{2} gives a fibration and we can form the pullback

The map $w=w_{2}(\gamma)$ pulls back the second Stiefel-Whitney class for the universal oriented vector bundle γ over $B S O, B\left\langle w_{2}\right\rangle$ is called the normal 2-type of M [4]. Let $\Omega_{*}\left(B\left\langle w_{2}\right\rangle\right)$ be bordism classes smooth manifolds equipped with a lift of the normal bundle. The spectral sequence used to compute $\Omega_{*}\left(B\left\langle w_{2}\right\rangle\right)$ has the same E_{2}-term as the one used above for $w_{2}=0$, but the differentials are twisted by w_{2}. In particular, d_{2} is the dual of $S q_{w}^{2}$, where $S q_{w}^{2}(x):=S q^{2}(x)+x \cup w_{2}$ (see [8, Section 2]).

There is a corresponding non-spin version of $\Omega_{*}^{S p i n}(M)$, namely the bordism groups $\Omega_{*}\left(M\left\langle w_{2}\right\rangle\right)$. The E_{2}-term of the spectral sequence is unchanged from the spin case, but the differentials are twisted by w_{2} with the above formula for $S q_{w}^{2}$. We choose a particular representative for the map w_{2} such that $w_{2}=w \circ \nu_{M}$. Next we define a suitable "thickening" of Aut. (M) for the non-spin case:

Definition $3.1([\mathbf{3}])$. Let Aut. $\left(M, w_{2}\right)$ denote the set of equivalence classes of maps $\widehat{f}: M \rightarrow M\left\langle w_{2}\right\rangle$ such that (i) $f:=j \circ \widehat{f}$ is a base-point and orientation preserving homotopy equivalence, and (ii) $\xi \circ \widehat{f}=\nu_{M}$.

There is a short exact sequence of groups [3]

$$
0 \longrightarrow H^{1}(M ; \boldsymbol{Z} / 2) \longrightarrow \text { Aut. }\left(M, w_{2}\right) \longrightarrow \text { Aut. }(M) \longrightarrow 1 .
$$

To define an analogous group Aut. $\left(B, w_{2}\right)$ of self-equivalences, we should first state the following lemma from [3].

Lemma 3.2. Given a base-point preserving map $f: M \rightarrow B$, there is a unique extension (up to base-point preserving homotopy) $\phi_{f}: B \rightarrow B$ such that $\phi_{f} \circ c=f$. If f is a 3-equivalence then ϕ_{f} is a homotopy equivalence. Moreover, if $w_{2} \circ f=w_{2}$, then $w_{2} \circ \phi_{f}=w_{2}$.

Definition 3.3 ([3]). Let Aut. $\left(B, w_{2}\right)$ denote the set of equivalence classes of maps $\widehat{f}: M \rightarrow B\left\langle w_{2}\right\rangle$ such that (i) $f:=j \circ \widehat{f}$ is a base-point preserving 3equivalence, and (ii) $\xi \circ \widehat{f}=\nu_{M}$.

Theorem 3.4 ([3]). Let M be a closed, oriented topological 4-manifold. Then there is a sign-commutative diagram of exact sequences

such that the two composites ending in Aut. $\left(M, w_{2}\right)$ agree up to inversion, and the other sub-diagrams are strictly commutative.

Proposition 3.5. Let $B\left\langle w_{2}\right\rangle$ denote the normal 2-type of a 4-manifold M with free fundamental group. Then we have

$$
\begin{aligned}
& \Omega_{4}\left(M\left\langle w_{2}\right\rangle\right) \cong \Omega_{4}^{\text {Spin }}(*) \oplus H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2) \oplus H_{4}(M) \\
& \Omega_{5}\left(M\left\langle w_{2}\right\rangle\right) \cong H_{1}(M) \oplus H_{3}(M ; \boldsymbol{Z} / 2) \oplus H_{4}(M ; \boldsymbol{Z} / 2) \\
& \Omega_{4}\left(B\left\langle w_{2}\right\rangle\right) \subset \Omega_{4}^{\text {Spin }}(*) \oplus \boldsymbol{Z} / 2 \oplus H_{4}(B) \\
& \Omega_{5}\left(B\left\langle w_{2}\right\rangle\right) \cong H_{1}(M) .
\end{aligned}
$$

Proof. We only need to compute the d_{2} differentials. Since M is orientable, w_{2} is also the second Wu class of M. We have $S q_{w}^{2}(x)=0$. Now, everything works exactly the same as in the spin case.

For the bordism groups of $B\left\langle w_{2}\right\rangle$, first consider the following commutative diagram

By the commutativity of the diagram, we have

$$
\begin{aligned}
& \operatorname{ker}\left(S q_{w}^{2}: H^{2}(B ; \boldsymbol{Z} / 2) \rightarrow H^{4}(B ; \boldsymbol{Z} / 2)\right) \cong\left\langle w_{2}\right\rangle \cong \boldsymbol{Z} / 2 \\
& \quad \cong \operatorname{coker}\left(d_{2}: H_{4}(B ; \boldsymbol{Z} / 2) \rightarrow H_{2}(B ; \boldsymbol{Z} / 2)\right) .
\end{aligned}
$$

Since all the other differentials are zero, this gives the $\boldsymbol{Z} / 2$ in the $E_{2,2}^{\infty}$ position. To see that $H_{1}(B) \cong H_{1}(M)$ is the only group on the line $p+q=5$ which survives to E_{∞}, we use the following commutative diagram

We are going to show that the bottom row is exact. Let $a \in H^{2}(B ; \boldsymbol{Z} / 2)$, then $S q_{w}^{2}\left(a^{2}+a \cup w_{2}\right)=0$. Now, let $b \in H^{4}(B ; \boldsymbol{Z} / 2)$ such that $S q_{w}^{2}(b)=0$ and let $p^{*}(b)=y$, then $S q_{w}^{2}(y)=0$. There exists a $z \in H^{2}(\widetilde{B} ; \boldsymbol{Z} / 2)$ such that $S q_{w}^{2}(z)=$ y. Then we also have a $c \in H^{2}(B ; \boldsymbol{Z} / 2)$ such that $p^{*}(c)=z$ and $S q_{w}^{2}(c)=b$. Therefore the sequence

$$
H^{2}(B ; \boldsymbol{Z} / 2) \xrightarrow{S q_{w}^{2}} H^{4}(B ; \boldsymbol{Z} / 2) \xrightarrow{S q_{w}^{2}} H^{6}(B ; \boldsymbol{Z} / 2)
$$

is exact. Note also that $H_{6}(B) \rightarrow H_{6}(B ; \boldsymbol{Z} / 2)$ is surjective, hence $d_{2}: H_{6}(B) \rightarrow$ $H_{4}(B ; \boldsymbol{Z} / 2)$ is onto the kernel of $d_{2}: H_{4}(B ; \boldsymbol{Z} / 2) \rightarrow H_{2}(B ; \boldsymbol{Z} / 2)$.

Let $\widehat{c}: M \rightarrow B\left\langle w_{2}\right\rangle$ denote the map defined by the pair $\left(c: M \rightarrow B, \nu_{M}: M \rightarrow\right.$ $B S O$). Consider the following diagram

We have $\left(w_{2} \circ c\right) \circ j=w_{2} \circ j$ and since the pullback satisfies the universal property, there exists a map $\bar{c}: M\left\langle w_{2}\right\rangle \rightarrow B\left\langle w_{2}\right\rangle$. Let $\widehat{\mathrm{id}}: M \rightarrow M\left\langle w_{2}\right\rangle$ denote the map defined by the pair $\left(\operatorname{id}_{M}: M \rightarrow M, \nu_{M}: M \rightarrow B S O\right)$. Given $[\widehat{f}] \in \operatorname{Aut}\left(M, w_{2}\right)$, we define α : $\operatorname{Aut}_{\bullet}\left(M, w_{2}\right) \rightarrow \widehat{\Omega}_{4}\left(M\left\langle w_{2}\right\rangle\right)$ by $\alpha(\widehat{f})=[M, \widehat{f}]-\left[M, \widehat{\mathrm{id}}_{M}\right]$ where the modified bordism groups are defined by letting the degree of a reference map $\widehat{g}: N^{4} \rightarrow M w$ to be the ordinary degree of $g=j \circ \widehat{g}$. An element (W, \widehat{F}) of $\widehat{\Omega_{5}}\left(B\left\langle w_{2}\right\rangle, M\left\langle w_{2}\right\rangle\right)$ is a 5 -dimensional manifold with boundary $(W, \partial W)$, equipped with a reference map $\widehat{F}: W \rightarrow B\left\langle w_{2}\right\rangle$ such that $\left.\widehat{F}\right|_{\partial W}$ factors through \bar{c}.

Corollary 3.6. The group

$$
\widehat{\Omega}_{5}\left(B\left\langle w_{2}\right\rangle, M\left\langle w_{2}\right\rangle\right) \cong K H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)
$$

and it injects into Aut. $\left(M, w_{2}\right)$. The image of α,

$$
\operatorname{im} \alpha=K H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2) .
$$

Proof. As in the proof of Corollary 2.4, $\Omega_{5}\left(M\left\langle w_{2}\right\rangle\right) \rightarrow \Omega_{5}\left(B\left\langle w_{2}\right\rangle\right)$ is onto and by the exactness of the braid $\Omega_{5}\left(B\left\langle w_{2}\right\rangle\right) \rightarrow \widehat{\Omega}_{5}\left(B\left\langle w_{2}\right\rangle, M\left\langle w_{2}\right\rangle\right)$ is zero. Thus

$$
\begin{aligned}
\widehat{\Omega}_{5}\left(B\left\langle w_{2}\right\rangle, M\left\langle w_{2}\right\rangle\right) & \cong \operatorname{ker}\left(\widehat{\Omega}_{4}\left(M\left\langle w_{2}\right\rangle\right) \rightarrow \Omega_{4}\left(B\left\langle w_{2}\right\rangle\right)\right) \\
& \cong K H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2) .
\end{aligned}
$$

The map $\pi_{1}\left(\mathscr{E}_{\bullet}\left(B, w_{2}\right)\right) \rightarrow \widehat{\Omega}_{5}\left(B\left\langle w_{2}\right\rangle, M\left\langle w_{2}\right\rangle\right)$ is zero, by the commutativity of the braid. Therefore

$$
\gamma: \widehat{\Omega}_{5}\left(B\left\langle w_{2}\right\rangle, M\left\langle w_{2}\right\rangle\right) \rightarrow \operatorname{Aut} \cdot\left(M, w_{2}\right)
$$

is injective. The natural map $\Omega_{4}\left(M\left\langle w_{2}\right\rangle\right) \rightarrow H_{0}(M)$ sends a 4 -manifold to its signature. Since the class $w_{2} \in H^{2}(M ; \boldsymbol{Z} / 2)$ is a characteristic element for the cup product form $(\bmod 2)$, it is preserved by the induced map of a self-homotopy equivalence of M. Therefore, the image of Aut. $\left(M, w_{2}\right)$ in $\Omega_{4}\left(M\left\langle w_{2}\right\rangle\right)$ lies in the subgroup $K H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)$. Since, the map γ is injective we also have $K H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2) \subseteq \operatorname{im} \alpha$.

Next, we are going to define a homomorphism

$$
\widehat{j}: \operatorname{Aut} \cdot\left(B, w_{2}\right) \rightarrow \operatorname{Aut}_{\bullet}(B) .
$$

For any $\widehat{f} \in \operatorname{Aut} .\left(B, w_{2}\right), f:=j \circ \widehat{f}: M \rightarrow B$ is a 3 -equivalence. There is a unique homotopy equivalence $\phi_{f}: B \rightarrow B$ such that $\phi_{f} \circ c \simeq f$. We define

$$
\widehat{j}(\widehat{f}):=\phi_{f} .
$$

Let \widehat{g} be another element of $\operatorname{Aut}_{\bullet}\left(B, w_{2}\right)$, then $\widehat{f} \bullet \widehat{g}$ is defined by the pair ($\phi_{f} \circ$ $\left.\phi_{g} \circ c, \nu_{M}\right)$. Therefore $\widehat{j}(\widehat{f} \bullet \widehat{g})=\phi_{f} \circ \phi_{g}$. Let

$$
\operatorname{Isom}{ }^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right]:=\left\{\widehat{f} \in \operatorname{Aut} \bullet\left(B, w_{2}\right) \mid \phi_{f} \in \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]\right\} .
$$

Lemma $3.7([\mathbf{6}])$. \quad There is a short exact sequence of groups

$$
0 \longrightarrow H^{1}(M ; \boldsymbol{Z} / 2) \longrightarrow \operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right] \xrightarrow{\widehat{j}} \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right] \longrightarrow 1 .
$$

Corollary 3.8. The image of $\operatorname{Aut}\left(M, w_{2}\right)$ in $\operatorname{Aut}_{\bullet}\left(B, w_{2}\right)$ is precisely equal to $\operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right]$.

Proof. Let $\widehat{f} \in \operatorname{Aut} \bullet\left(M, w_{2}\right)$ and $\phi_{\widehat{f}}$ denote the image of \widehat{f} in $\operatorname{Aut}_{\bullet}\left(B, w_{2}\right)$. Then $\widehat{j}\left(\phi_{\widehat{f}}\right)=\phi_{f}$ satisfies $\phi_{f} \circ c=c \circ f$ and ϕ_{f} preserves $c_{*}[M]$. Hence $\phi_{f} \in$ $\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$. Now suppose that $\phi \in \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$, then by [1, Corollary 3.3] there exists $f \in \operatorname{Aut} .(M)$ such that $\phi \circ f \simeq c \circ f$. We may assume that $\widehat{f}=\left(f, \nu_{M}\right) \in \operatorname{Aut} .\left(M, w_{2}\right)\left[\mathbf{3}\right.$, Lemma 3.1]. Let $\phi_{\widehat{f}} \in \operatorname{Aut} \bullet\left(B, w_{2}\right)$ denotes the image of \widehat{f}, we have $\widehat{j}\left(\phi_{\widehat{f}}\right)=\phi$.

Lemma 3.9. $\quad \operatorname{ker}\left(\beta: \operatorname{Aut} \cdot\left(B, w_{2}\right) \rightarrow \Omega_{4}\left(B\left\langle w_{2}\right\rangle\right)\right)=\operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right]$ and the image of $\widetilde{\mathscr{H}}\left(M, w_{2}\right)$ in $\operatorname{Aut} \cdot\left(B, w_{2}\right)$ is equal to $\operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right]$.

Proof. In the non-spin case, the map β : $\operatorname{Aut}_{.}\left(B, w_{2}\right) \rightarrow \Omega_{4}\left(B\left\langle w_{2}\right\rangle\right)$ is defined by $\beta(\widehat{f})=[M, \widehat{f}]-[M, \widehat{c}]$. Let $\widehat{f} \in \operatorname{Aut} .\left(B, w_{2}\right)$ and suppose first that $\widehat{f} \in \operatorname{ker} \beta$, then $(j \circ \widehat{f})_{*}[M]=c_{*}[M]$. But since $(j \circ \widehat{f})$ is a 3 -equivalence, there exists $\phi \in \operatorname{Aut} .(B)$ with $\phi \circ c=j \circ \widehat{f}$. So, $\phi_{*}\left(c_{*}[M]\right)=c_{*}[M]$ which means $\widehat{j}(\widehat{f})=\phi \in \operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$. Therefore $\operatorname{ker}(\beta) \subseteq \operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right]$. It is easy to see the other inclusion from the commutativity of the braid. The result about the image of $\widetilde{\mathscr{H}}\left(M, w_{2}\right)$ follows from the exactness of the braid [3, Lemma 2.7] and the fact that $\operatorname{ker}(\beta)=\operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right]$.

The relevant terms of our braid are now:

The proof of Theorem 1.1. We have a split short exact sequence

$$
0 \longrightarrow \widehat{K}_{1} \longrightarrow \operatorname{Aut}_{\bullet}\left(M, w_{2}\right) \longrightarrow \operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, s_{M}\right] \longrightarrow 1
$$

where $\widehat{K_{1}}=\operatorname{ker}\left(\operatorname{Aut} \cdot\left(M, w_{2}\right) \rightarrow \operatorname{Aut}\left(B, w_{2}\right)\right)$. Any element \widehat{f} will act as identity on $\operatorname{im}(\alpha)=K H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)$, so λ is a homomorphism. Also $\widehat{K_{1}} \cong$ $K H_{2}(M ; \boldsymbol{Z} / 2) \oplus H_{3}(M ; \boldsymbol{Z} / 2)$ and the rest of the proof follows as in the spin case.

Remark 3.10. We have

$$
H_{2}(M ; \boldsymbol{Z} / 2) \cong H_{0}\left(\pi ; H_{2}(\widetilde{M} ; \boldsymbol{Z} / 2)\right) \cong\left(\pi_{2} \otimes \boldsymbol{Z} / 2\right) \otimes_{\Lambda} \boldsymbol{Z}
$$

Therefore any element of $H_{2}(M ; \boldsymbol{Z} / 2)$ can be represented by a map $S^{2} \rightarrow M$. Let $0 \neq x \in K H_{2}(M ; \boldsymbol{Z} / 2)$ and $\alpha: S^{2} \rightarrow M$ corresponds to x via the above isomorphism. Choose an embedding $D^{4} \hookrightarrow M$ and shrink ∂D^{4} to a point, to get a map $M \rightarrow M \vee S^{4}$. Now let $\eta: S^{3} \rightarrow S^{2}$ be the Hopf map, $S \eta: S^{4} \rightarrow S^{3}$ its suspension and $\eta^{2}: S^{4} \rightarrow S^{2}$ the composition $\eta^{2}=\eta \circ S \eta$. Let f be the composite map

$$
M \longrightarrow M \vee S^{4} \xrightarrow{\mathrm{id} \vee \eta^{2}} M \vee S^{2} \xrightarrow{\mathrm{id} \vee \alpha} M
$$

f induces identities on π_{1} and on $H_{i}(\widetilde{M})$, so f is homologous to the id_{M}, and hence it is a homotopy equivalence, but it is not homotopic to the identity, for γ is injective.

To realize $H_{3}(M ; \boldsymbol{Z} / 2)$ as homotopy equivalences, first observe that $H_{3}(M) \cong$ $H_{3}(\widetilde{M}) \otimes_{\Lambda} \boldsymbol{Z}$ and reduction mod 2 is onto, so by Hurewicz theorem for any element of $H_{3}(M ; \boldsymbol{Z} / 2)$ there exists a map $\beta: S^{3} \rightarrow M$. Now the following composite map

is again a homotopy-equivalence.

References

[1] H. J. Baues and B. Bleile, Poincare duality complexes in dimension four, Algebr. Geom. Topol., 8 (2008), 2355-2389.
[2] I. Hambleton and M. Kreck, On the classification of topological 4-manifolds with finite fundamental group, Math. Ann., 280 (1988), 85-104.
[3] I. Hambleton and M. Kreck, Homotopy self-equivalences of 4-manifolds, Math. Z., 248 (2004), 147-172.
[4] M. Kreck, Surgery and duality, Ann. of Math. (2), 149 (1999), 707-754.
[5] J. M. Møller, Self-homotopy equivalences of group cohomology spaces, J. Pure Appl. Algebra, 73 (1991), 23-37.
[6] M. Pamuk, Homotopy self-equivalences of 4-manifolds, Ph. D. Thesis, McMaster University, 2008.
[7] F. Spaggiari, Four-manifolds with π_{1}-free second homotopy, Manuscripta Math., 111 (2003), 303-320.
[8] P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann., 295 (1993), 745-759.
[9] J. H. C. Whitehead, A Certain exact sequence, Ann. of Math., 52 (1950), 51-110.

Mehmetcik Pamuk
Department of Mathematics
Middle East Technical University
Ankara 06531, Turkey
E-mail: mpamuk@metu.edu.tr

[^0]: 2000 Mathematics Subject Classification. Primary 57N13; Secondary 55P10, 57R80.
 Key Words and Phrases. homotopy self-equivalences, 4 -manifolds, π_{1}-free second homotopy.

