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Homotopy self-equivalences of 4-manifolds

with π1-free second homotopy
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Abstract. We calculate the group of homotopy classes of homotopy
self-equivalences of 4-manifolds with π1-free second homotopy.

1. Introduction.

Let M be a closed, connected, oriented 4-manifold with a fixed base point
x0 ∈ M . We want to study the group of homotopy classes of homotopy self-
equivalences of M , preserving both the given orientation on M and the base-
point. Let Aut•(M) denote the group of homotopy classes of such homotopy
self-equivalences.

Let us start by fixing our notation. The fundamental group π1(M, x0) will
be denoted by π, the higher homotopy groups πi(M, x0) will be denoted by πi.
Let Λ = Z[π] denote the integral group ring of π. We will mean homology and
cohomology with integral coefficients unless otherwise noted.

Let B denote the 2-type of M , we may construct B by adjoining cells of
dimension at least 4 to kill the homotopy groups in dimensions ≥ 3. The natural
map c : M → B is given by the inclusion of M into B. Hambleton and Kreck [3],
defined a thickening Aut•(M, w2) of Aut•(M) (see Section 3 for the definition) and
established a commutative braid of exact sequences, valid for any closed, oriented
smooth or topological 4-manifold. The authors defined

Isom[π, π2, kM , c∗[M ]] :=
{
φ ∈ Aut•(B) | φ∗(c∗[M ]) = c∗[M ]

}

and obtained an explicit formula when the fundamental group is finite of odd
order.

In this paper, we define an extension Isom〈w2〉[π, π2, sM ] of Isom[π, π2,

kM , c∗[M ]] and use the braid in [3] to obtain an explicit formula when π2 is a
free Λ-module. Examples of such manifolds are obtained when π ∼= ∗pZ or when
M ∼= X]Y , where X is simply-connected and π2(Y ) = 0, for instance one may
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take Y to be aspherical. Our main theorem is the following:

Theorem 1.1. Let M be a closed, oriented manifold of dimension 4. If π2

is a free Λ-module of finite rank r, then

Aut•(M, w2) ∼=
(
KH2(M ;Z/2)⊕H3(M ;Z/2)

)
o Isom〈w2〉[π, π2, sM ]

where KH2(M ;Z/2) := ker(w2 : H2(M ;Z/2) → Z/2).

The author would like to thank Jonathan A. Hillman for taking the time to
answer all his questions.

2. Spin case.

For simplicity we start with spin manifolds. Throughout this section let M

be a spin manifold. Hambleton and Kreck constructed a braid of exact sequences

ΩSpin
5 (M)

##GGGGGGGG

((
H̃ (M)

##GG
GG

GG
GG

G

''
Aut•(B)

β

##GG
GG

GG
GG

G

ΩSpin
5 (B)

##GGGGGGGG

;;wwwwwwww
Aut•(M)

α

##GG
GG

GG
GG

G

;;wwwwwwwww
ΩSpin

4 (B)

π1(E•(B))

;;wwwwwwwww

66
Ω̂Spin

5 (B,M)

γ

;;wwwwwwwww

66̂
ΩSpin

4 (M)

;;wwwwwwww

that is commutative up to sign, the sub-diagrams are all strictly commutative
except for the two composites ending in Aut•(M), and valid for any closed, oriented
spin 4-manifold. Throughout this paper we always refer to [3] for the details of
the definitions.

We will fix a lift νM : M → BSpin of the classifying map for the stable
normal bundle of M . The Abelian group ΩSpin

n (M), with disjoint union as the
group operation, denotes the singular bordism group of spin manifolds with a
reference map to M . By imposing the requirement that the reference maps to M

must have degree zero, we obtain the modified bordism groups Ω̂Spin
4 (M).

Proposition 2.1. The relevant spin bordism groups of M are given as fol-
lows:
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ΩSpin
4 (M) ∼= ΩSpin

4 (∗)⊕H2(M ;Z/2)⊕H3(M ;Z/2)⊕H4(M),

ΩSpin
5 (M) ∼= H1(M)⊕H3(M ;Z/2)⊕H4(M ;Z/2).

Proof. This follows from the Atiyah - Hirzebruch spectral sequence, whose
E2-term is Hp(M ; ΩSpin

q (∗)). The first differential d2 : E2
p,q → E2

p−2,q+1 is given
by the dual of Sq2 (if q = 1) or this composed with reduction mod 2 (if q = 0),
see [8, p. 751]. We substitute the values

ΩSpin
q (∗) = Z,Z/2,Z/2, 0,Z, 0 for 0 ≤ q ≤ 5.

The differential for (p, q) = (4, 1) is dual to Sq2 : H2(M ;Z/2) → H4(M ;Z/2)
which is zero, since M is spin. We have a short exact sequence

0 // ΩSpin
4 (∗)⊕H2(M ;Z/2) // F3,1 // H3

(
M ; ΩSpin

1 (∗)) // 0

and V ×S1 f ◦ p1−−−→ F3,1 gives the splitting, where we consider an embedding f : V →
M of a closed spin 3-manifold representing a generator of H3(M ;Z/2) ∼= (Z/2)r,
and S1 is equipped with the non-trivial spin structure. Therefore, ΩSpin

4 (M) ∼=
ΩSpin

4 (∗)⊕H2(M ;Z/2)⊕H3(M ;Z/2)⊕H4(M). The result for ΩSpin
5 (M) follows

by similar arguments. ¤

Proposition 2.2. The homology groups of B are given by

Hi(B) ∼=





Hi(M) if i = 0, 1 or 2

0 if i = 3 or 5

Z ⊗Λ Γ(π2) if i = 4

where Γ denotes the Whitehead’s quadratic functor [9].

Proof. The result follows from the the Serre spectral sequence of the
fibration B̃ → B → K(π, 1) and [7, Proposition 4.2]. ¤

Proposition 2.3. Let ΩSpin
∗ (B) denote the singular bordism group of spin

manifolds with a reference map to B. We have the following :

ΩSpin
4 (B) ⊂ ΩSpin

4 (∗)⊕H4(B) and ΩSpin
5 (B) ∼= H1(B).

Proof. We use the same spectral sequence. First note that
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B̃ = K(π2, 2) =
∏

i,g

{CP∞ × {g} | g ∈ π, i = 1, 2, . . . , r}.

Then consider the following commutative diagram

H2(B̃;Z/2)
Sq2

// H4(B̃;Z/2)

H2(B;Z/2)
Sq2

//

p∗
OO

H4(B;Z/2)

p∗
OO

which implies that Sq2 : H2(B;Z/2) → H4(B;Z/2) is injective. Hence
d2 : H4(B;Z/2) → H2(B;Z/2) is surjective. Therefore, on the line p + q = 4,
the only groups which survive to E∞ are Z in the (0, 4) position, and a subgroup
of H4(B) in the (4, 0) position.

For the line p + q = 5, consider the diagram

H2(B̃;Z/2)
Sq2

// H4(B̃;Z/2)
Sq2

// H6(B̃;Z/2)

H2(B;Z/2)
Sq2

//

p∗
OO

H4(B;Z/2)
Sq2

//

p∗
OO

H6(B;Z/2).

p∗
OO

Let α ∈ H4(B;Z/2) such that Sq2(α) = 0 and p∗(α) = β. There exists λ ∈
H2(B̃;Z/2) such that Sq2(λ) = β, since the above row is exact and p∗ is onto.
Therefore the sequence

H2(B;Z/2)
Sq2

// H4(B;Z/2)
Sq2

// H6(B;Z/2)

is exact. By the surjectivity of H6(B;Z) → H6(B;Z/2), we can conclude
that d2 : H6(B;Z) → H4(B;Z/2) is surjective onto the kernel of the differential
d2 : H4(B;Z/2) → H2(B;Z/2). Thus the only group which survive to E∞ is
H1(B) = H1(M) in the (1, 4) position. ¤

The map α : Aut•(M) → ΩSpin
4 (M) is defined by α(f) = [M, f ]− [M, id]. An

element (W,F ) of Ω̂Spin
5 (B,M) is a 5-dimensional spin manifold with boundary

(W,∂W ), equipped with a reference map F : W → B such that F |∂W factors
through the classifying map c : M → B and that F |∂W : ∂W → M has degree
zero.
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Corollary 2.4. The group Ω̂Spin
5 (B,M) is isomorphic to H2(M ;Z/2) ⊕

H3(M ;Z/2) and it injects into Aut•(M). The image of α is equal to H2(M ;Z/2)
⊕ H3(M ;Z/2).

Proof. The map ΩSpin
5 (M) → ΩSpin

5 (B), which is composing with our
reference map c : M → B, maps the summand H1(M) isomorphically to H1(B)
and H3(M ;Z/2) ⊕ H4(M ;Z/2) to zero. By the exactness of the braid the map
ΩSpin

5 (B) → Ω̂Spin
5 (B,M) is zero. Therefore

Ω̂Spin
5 (B,M)) ∼= ker

(
Ω̂Spin

4 (M) → ΩSpin
4 (B)

)

∼= H2(M ;Z/2)⊕H3(M ;Z/2).

The map Ω̂Spin
5 (B,M) → Ω̂Spin

4 (M) is injective, so by the commutativity of
the braid the map π1(E•(B)) → Ω̂Spin

5 (B,M) is zero. Therefore γ : Ω̂Spin
5 (B,M)

→ Aut•(M) is injective.
The natural map ΩSpin

4 (M) → H0(M) sends a spin 4-manifold to its signature,
it follows that α(f) ∈ H2(M ;Z/2)⊕H3(M ;Z/2). On the other hand, since both
the map Ω̂Spin

5 (B,M) → Ω̂Spin
4 (M) and γ are injective we have H2(M ;Z/2) ⊕

H3(M ;Z/2) ⊆ im α. ¤

Let Isom[π, π2] be the subgroup of Aut(π) × Aut(π2) consisting of all those
pairs (χ, ψ) for which ψ(ηa) = χ(η)ψ(a) for all η ∈ π, a ∈ π2. We have a split
exact sequence [5, p. 31]

0 // H2(π;π2) // Aut•(B)
(π1,π2) // Isom[π, π2] // 1.

In particular we have Aut•(B) = H2(π;π2)o Isom[π, π2]. If π2 is a free Λ-module,
then H2(π;π2) = 0. Hence we have

Aut•(B) ∼= Isom[π1, π2].

Hambleton and Kreck [2] defined the quadratic 2-type of M as the quadruple
[π, π2, kM , sM ]. The isometries of the quadratic 2-type of M , which is denoted by
Isom[π, π2, kM , sM ], consists of all pairs of isomorphisms

χ : π → π and ψ : π2 → π2,

such that ψ(gx) = χ(g)ψ(x) for all g ∈ π and x ∈ π2, which preserve the k-
invariant and sM , the intersection form of M on π2. Since H3(π;π2) = 0 we
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have kM = 0. For notational ease we will drop it from the notation and write
Isom[π, π2, sM ] for the group of isometries of the quadratic 2-type. Finally note
that when π2 is a free Λ-module, c∗[M ] and sM uniquely determine each other
(see [7, Proposition 4.3]).

Lemma 2.5. ker
(
β : Aut•(B) → ΩSpin

4 (B)
)

= Isom[π, π2, sM ].

Proof. If φ ∈ Aut•(B) and c : M → B is the classifying map, then β(φ) :=
[M, φ ◦ c]− [M, c]. The natural map ΩSpin

4 (B) → H4(B) sends a bordism element
to the image of its fundamental class. The image of β(φ) in H4(B) is zero when
φ∗(c∗[M ]) = c∗[M ]. Hence kerβ is contained in the group of the isometries of
the quadratic 2-type. On the other hand an element φ ∈ Isom[π, π2, sM ] will be
φ ∈ Aut•(B) such that φ∗(c∗[M ]) = c∗[M ], then clearly β(φ) = 0. ¤

Corollary 2.6. The images of Aut•(M) and H̃ (M) in Aut•(B) are pre-
cisely equal to Isom[π, π2, sM ].

Proof. By obstruction theory for each [f ] ∈ Aut•(M), we have a base-
point preserving homotopy self-equivalence φf : B → B such that c ◦ f = φf ◦ c.
All we have to show is (φf )∗(c∗[M ]) = c∗[M ]. We have (φf )∗(c∗[M ]) = (φf ◦
c)∗[M ] = (c ◦ f)∗[M ] = c∗[M ] since the fundamental class in H4(M) is preserved
by an orientation preserving homotopy equivalence. We see that im(Aut•(M) →
Aut•(B)) is contained in Isom[π, π2, sM ]. The other inclusion follows from [1,
Corollary 3.3]. The result for the image of H̃ (M) follows by the exactness of the
braid and the fact that ker(β) = Isom[π, π2, sM ]. ¤

Here are the relevant terms of our braid diagram now:

H1(M)⊕H3(M ;Z/2)
⊕ Z/2

ÂÂ>
>>

>>
>>

&&
H̃ (M)

ÂÂ>
>>

>>
>>

>

%%
Isom[π, π2, sM ]

ÂÂ>
>>

>>
>>

>>
>

H1(M)

0

ÀÀ;
;;

;;
;;

??¡¡¡¡¡¡¡¡
Aut•(M)

α

ÀÀ;
;;

;;
;;

??¡¡¡¡¡¡¡¡¡
0

π1(E•(B))

AA¤¤¤¤¤¤¤¤¤¤
0 22

H2(M ;Z/2)
⊕

H3(M ;Z/2)

γ
AA¤¤¤¤¤¤¤

∼= 44

H2(M ;Z/2)
⊕

H3(M ;Z/2).

AA¤¤¤¤¤¤¤

Theorem 2.7. Let M be a closed, oriented spin manifold of dimension 4.
If π2 is a free Λ-module of finite rank r, then
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Aut•(M) ∼=
(
H2(M ;Z/2)⊕H3(M ;Z/2)

)
o Isom[π, π2, sM ].

Proof. From the braid diagram, we have

ker
(
H̃ (M) → Isom[π, π2, sM ]

) ∼= H1(M),

so Isom[π, π2, sM ] ∼= H̃ (M)/H1. This gives the splitting of the short exact se-
quence

0 → K1 → Aut•(M) → Isom[π, π2, sM ] → 1

where K1 := ker(Aut•(M) → Aut•(B)). Hence it follows that

Aut•(M) ∼= K1 o Isom[π, π2, sM ].

We already know that γ is injective (Corollary 2.4). By the commutativity of the
braid to show that it is actually an injective homomorphism, it is enough to show
that α is a homomorphism on the image of γ. Let γ(W,F ) = f and γ(W ′, F ′) = g.
Note that α(f ◦ g) = α(f) + f∗(α(g)). We have to show that f∗(α(g)) = α(g).
By Corollary 2.4, α(g) ∈ H2(M ;Z/2) ⊕ H3(M ;Z/2) and any element f in the
image of γ is trivial in Aut•(B). Since H3(M ;Z/2) ∼= H1(M ;Z/2) and c in-
duces isomorphisms on H2(M ;Z/2) and H1(M ;Z/2), f acts as the identity on
H2(M ;Z/2) ⊕ H3(M ;Z/2). Now a diagram chase shows that γ is a homomor-
phism. Therefore we have a short exact sequence of groups and homomorphisms

0 −→ (
H2(M ;Z/2)⊕H3(M ;Z/2)

) γ−→ Aut•(M) −→ Isom[π, π2, sM ] −→ 1.

Moreover, K1 = im γ and K1 is mapped isomorphically onto H2(M ;Z/2) ⊕
H3(M ;Z/2) by the map α. The conjugation action of Isom[π, π2, sM ] on K1

agrees with the induced action on homology under the identification K1
∼=

H2(M ;Z/2)⊕H3(M ;Z/2) via α (see [3]). It follows that

Aut•(M) ∼=
(
H2(M ;Z/2)⊕H3(M ;Z/2)

)
o Isom[π, π2, sM ]. ¤

3. The non-spin case.

When w2(M) 6= 0 the bordism groups must be modified. The class w2 gives
a fibration and we can form the pullback
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B〈w2〉 j //

ξ

²²

B

w2

²²
BSO

w // K(Z/2, 2).

The map w = w2(γ) pulls back the second Stiefel-Whitney class for the universal
oriented vector bundle γ over BSO. B〈w2〉 is called the normal 2-type of M [4].
Let Ω∗(B〈w2〉) be bordism classes smooth manifolds equipped with a lift of the
normal bundle. The spectral sequence used to compute Ω∗(B〈w2〉) has the same
E2-term as the one used above for w2 = 0, but the differentials are twisted by
w2. In particular, d2 is the dual of Sq2

w, where Sq2
w(x) := Sq2(x) + x∪w2 (see [8,

Section 2]).
There is a corresponding non-spin version of ΩSpin

∗ (M), namely the bordism
groups Ω∗(M〈w2〉). The E2-term of the spectral sequence is unchanged from the
spin case, but the differentials are twisted by w2 with the above formula for Sq2

w.
We choose a particular representative for the map w2 such that w2 = w◦νM . Next
we define a suitable “thickening” of Aut•(M) for the non-spin case:

Definition 3.1 ([3]). Let Aut•(M, w2) denote the set of equivalence classes
of maps f̂ : M → M〈w2〉 such that (i) f := j ◦ f̂ is a base-point and orientation
preserving homotopy equivalence, and (ii) ξ ◦ f̂ = νM .

There is a short exact sequence of groups [3]

0 // H1(M ;Z/2) // Aut•(M, w2) // Aut•(M) // 1.

To define an analogous group Aut•(B,w2) of self-equivalences, we should first
state the following lemma from [3].

Lemma 3.2. Given a base-point preserving map f : M → B, there is a
unique extension (up to base-point preserving homotopy) φf : B → B such that
φf ◦ c = f . If f is a 3-equivalence then φf is a homotopy equivalence. Moreover,
if w2 ◦ f = w2, then w2 ◦ φf = w2.

Definition 3.3 ([3]). Let Aut•(B,w2) denote the set of equivalence classes
of maps f̂ : M → B〈w2〉 such that (i) f := j ◦ f̂ is a base-point preserving 3-
equivalence, and (ii) ξ ◦ f̂ = νM .

Theorem 3.4 ([3]). Let M be a closed, oriented topological 4-manifold.
Then there is a sign-commutative diagram of exact sequences
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Ω5(M〈w2〉)

##FF
FF

FF
FF

F

((
H̃ (M, w2)

%%LLLLLLLLLL

((
Aut•(B,w2)

β

""EEEEEEEE

Ω5(B〈w2〉)

%%JJJJJJJJJ

99ttttttttt
Aut•(M, w2)

α

##GGGGGGGG

;;wwwwwwwww
Ω4(B〈w2〉)

π1(E•(B,w2))

;;xxxxxxxxx

66
Ω̂5(B〈w2〉,M〈w2〉)

γ
99rrrrrrrrrr

66̂
Ω4(M〈w2〉)

<<yyyyyyyy

such that the two composites ending in Aut•(M, w2) agree up to inversion, and
the other sub-diagrams are strictly commutative.

Proposition 3.5. Let B〈w2〉 denote the normal 2-type of a 4-manifold M

with free fundamental group. Then we have

Ω4(M〈w2〉) ∼= ΩSpin
4 (∗)⊕H2(M ;Z/2)⊕H3(M ;Z/2)⊕H4(M)

Ω5(M〈w2〉) ∼= H1(M)⊕H3(M ;Z/2)⊕H4(M ;Z/2)

Ω4(B〈w2〉) ⊂ ΩSpin
4 (∗)⊕Z/2⊕H4(B)

Ω5(B〈w2〉) ∼= H1(M).

Proof. We only need to compute the d2 differentials. Since M is orientable,
w2 is also the second Wu class of M . We have Sq2

w(x) = 0. Now, everything works
exactly the same as in the spin case.

For the bordism groups of B〈w2〉, first consider the following commutative
diagram

H2(B̃;Z/2)
Sq2

w // H4(B̃;Z/2)

H2(B;Z/2)
Sq2

w //

p∗
OO

H4(B;Z/2).

p∗
OO

By the commutativity of the diagram, we have

ker
(
Sq2

w : H2(B;Z/2) → H4(B;Z/2)
) ∼= 〈w2〉 ∼= Z/2

∼= coker
(
d2 : H4(B;Z/2) → H2(B;Z/2)

)
.
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Since all the other differentials are zero, this gives the Z/2 in the E∞
2,2 position.

To see that H1(B) ∼= H1(M) is the only group on the line p+q = 5 which survives
to E∞, we use the following commutative diagram

H2(B̃;Z/2)
Sq2

w // H4(B̃;Z/2)
Sq2

w // H6(B̃;Z/2)

H2(B;Z/2)

p∗
OO

Sq2
w // H4(B;Z/2)

p∗
OO

Sq2
w // H6(B;Z/2).

p∗
OO

We are going to show that the bottom row is exact. Let a ∈ H2(B;Z/2), then
Sq2

w(a2 + a ∪ w2) = 0. Now, let b ∈ H4(B;Z/2) such that Sq2
w(b) = 0 and let

p∗(b) = y, then Sq2
w(y) = 0. There exists a z ∈ H2(B̃;Z/2) such that Sq2

w(z) =
y. Then we also have a c ∈ H2(B;Z/2) such that p∗(c) = z and Sq2

w(c) = b.
Therefore the sequence

H2(B;Z/2)
Sq2

w // H4(B;Z/2)
Sq2

w // H6(B;Z/2)

is exact. Note also that H6(B) → H6(B;Z/2) is surjective, hence d2 : H6(B) →
H4(B;Z/2) is onto the kernel of d2 : H4(B;Z/2) → H2(B;Z/2). ¤

Let ĉ : M → B〈w2〉 denote the map defined by the pair (c : M → B, νM : M →
BSO). Consider the following diagram

M〈w2〉 c◦j //

ξ

²²

B

w2

²²
BSO

w // K(Z/2, 2).

We have (w2 ◦c)◦j = w2 ◦j and since the pullback satisfies the universal property,
there exists a map c : M〈w2〉 → B〈w2〉. Let îd : M → M〈w2〉 denote the map
defined by the pair (idM : M → M, νM : M → BSO). Given [f̂ ] ∈ Aut•(M, w2),
we define α : Aut•(M, w2) → Ω̂4(M〈w2〉) by α(f̂) = [M, f̂ ] − [M, îdM ] where the
modified bordism groups are defined by letting the degree of a reference map
ĝ : N4 → Mw to be the ordinary degree of g = j ◦ ĝ. An element (W, F̂ ) of
Ω̂5(B〈w2〉,M〈w2〉) is a 5-dimensional manifold with boundary (W,∂W ), equipped
with a reference map F̂ : W → B〈w2〉 such that F̂ |∂W factors through c.

Corollary 3.6. The group
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Ω̂5(B〈w2〉,M〈w2〉) ∼= KH2(M ;Z/2)⊕H3(M ;Z/2)

and it injects into Aut•(M, w2). The image of α,

im α = KH2(M ;Z/2)⊕H3(M ;Z/2).

Proof. As in the proof of Corollary 2.4, Ω5(M〈w2〉) → Ω5(B〈w2〉) is onto
and by the exactness of the braid Ω5(B〈w2〉) → Ω̂5(B〈w2〉,M〈w2〉) is zero. Thus

Ω̂5(B〈w2〉,M〈w2〉) ∼= ker
(
Ω̂4(M〈w2〉) → Ω4(B〈w2〉)

)

∼= KH2(M ;Z/2)⊕H3(M ;Z/2).

The map π1(E•(B,w2)) → Ω̂5(B〈w2〉,M〈w2〉) is zero, by the commutativity of the
braid. Therefore

γ : Ω̂5(B〈w2〉,M〈w2〉) → Aut•(M, w2)

is injective. The natural map Ω4(M〈w2〉) → H0(M) sends a 4-manifold to its
signature. Since the class w2 ∈ H2(M ;Z/2) is a characteristic element for the
cup product form (mod 2), it is preserved by the induced map of a self-homotopy
equivalence of M . Therefore, the image of Aut•(M, w2) in Ω4(M〈w2〉) lies in the
subgroup KH2(M ;Z/2)⊕H3(M ;Z/2). Since, the map γ is injective we also have
KH2(M ;Z/2)⊕H3(M ;Z/2) ⊆ im α. ¤

Next, we are going to define a homomorphism

ĵ : Aut•(B,w2) → Aut•(B).

For any f̂ ∈ Aut•(B,w2), f := j ◦ f̂ : M → B is a 3-equivalence. There is a unique
homotopy equivalence φf : B → B such that φf ◦ c ' f . We define

ĵ(f̂) := φf .

Let ĝ be another element of Aut•(B,w2), then f̂ • ĝ is defined by the pair (φf ◦
φg ◦ c, νM ). Therefore ĵ(f̂ • ĝ) = φf ◦ φg. Let

Isom〈w2〉[π, π2, sM ] :=
{
f̂ ∈ Aut•(B,w2) | φf ∈ Isom[π, π2, sM ]

}
.



812 M. Pamuk

Lemma 3.7 ([6]). There is a short exact sequence of groups

0 // H1(M ;Z/2) // Isom〈w2〉[π, π2, sM ]
bj // Isom[π, π2, sM ] // 1.

Corollary 3.8. The image of Aut•(M, w2) in Aut•(B,w2) is precisely
equal to Isom〈w2〉[π, π2, sM ].

Proof. Let f̂ ∈ Aut•(M, w2) and φ bf denote the image of f̂ in Aut•(B,w2).

Then ĵ(φ bf ) = φf satisfies φf ◦ c = c ◦ f and φf preserves c∗[M ]. Hence φf ∈
Isom[π, π2, sM ]. Now suppose that φ ∈ Isom[π, π2, sM ], then by [1, Corollary
3.3] there exists f ∈ Aut•(M) such that φ ◦ f ' c ◦ f . We may assume that
f̂ = (f, νM ) ∈ Aut•(M, w2) [3, Lemma 3.1]. Let φ bf ∈ Aut•(B,w2) denotes the

image of f̂ , we have ĵ(φ bf ) = φ. ¤

Lemma 3.9. ker(β : Aut•(B,w2) → Ω4(B〈w2〉)) = Isom〈w2〉[π, π2, sM ] and
the image of H̃ (M, w2) in Aut•(B,w2) is equal to Isom〈w2〉[π, π2, sM ].

Proof. In the non-spin case, the map β : Aut•(B,w2) → Ω4(B〈w2〉) is
defined by β(f̂) = [M, f̂ ] − [M, ĉ]. Let f̂ ∈ Aut•(B,w2) and suppose first that
f̂ ∈ kerβ, then (j ◦ f̂)∗[M ] = c∗[M ]. But since (j ◦ f̂) is a 3-equivalence, there
exists φ ∈ Aut•(B) with φ ◦ c = j ◦ f̂ . So, φ∗(c∗[M ]) = c∗[M ] which means
ĵ(f̂) = φ ∈ Isom[π, π2, sM ]. Therefore ker(β) ⊆ Isom〈w2〉[π, π2, sM ]. It is easy to
see the other inclusion from the commutativity of the braid. The result about the
image of H̃ (M, w2) follows from the exactness of the braid [3, Lemma 2.7] and
the fact that ker(β) = Isom〈w2〉[π, π2, sM ]. ¤

The relevant terms of our braid are now:

H1(M)⊕H3(M ;Z/2)
⊕ Z/2

ÂÂ>
>>

>>
>>

&&
H̃ (M, w2)

ÂÂ>
>>

>>
>>

>

&&
Isom〈w2〉[π, π2, sM ]

0

ÂÂ>
>>

>>
>>

>>

H1(M)

0

ÀÀ;
;;

;;
;;

??¡¡¡¡¡¡¡¡
Aut•(M, w2)

α

ÀÀ;
;;

;;
;;

??¡¡¡¡¡¡¡¡¡
0.

π1(E•(B))

AA¤¤¤¤¤¤¤¤¤¤

0 11

KH2(M ;Z/2)
⊕

H3(M ;Z/2)

γ
AA¤¤¤¤¤¤¤

∼= 44

KH2(M ;Z/2)
⊕

H3(M ;Z/2)

AA¤¤¤¤¤¤¤
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The proof of Theorem 1.1. We have a split short exact sequence

0 // K̂1
// Aut•(M, w2) // Isom〈w2〉[π, π2, sM ] // 1

where K̂1 = ker(Aut•(M, w2) → Aut•(B,w2)). Any element f̂ will act as identity
on im(α) = KH2(M ;Z/2) ⊕H3(M ;Z/2), so λ is a homomorphism. Also K̂1

∼=
KH2(M ;Z/2)⊕H3(M ;Z/2) and the rest of the proof follows as in the spin case.

¤

Remark 3.10. We have

H2(M ;Z/2) ∼= H0

(
π;H2(M̃ ;Z/2)

) ∼= (π2 ⊗Z/2)⊗Λ Z.

Therefore any element of H2(M ;Z/2) can be represented by a map S2 → M .
Let 0 6= x ∈ KH2(M ;Z/2) and α : S2 → M corresponds to x via the above
isomorphism. Choose an embedding D4 ↪→ M and shrink ∂D4 to a point, to get
a map M → M ∨ S4. Now let η : S3 → S2 be the Hopf map, Sη : S4 → S3 its
suspension and η2 : S4 → S2 the composition η2 = η ◦Sη. Let f be the composite
map

M // M ∨ S4
id∨η2

// M ∨ S2 id∨α // M

f induces identities on π1 and on Hi(M̃), so f is homologous to the idM , and
hence it is a homotopy equivalence, but it is not homotopic to the identity, for γ

is injective.
To realize H3(M ;Z/2) as homotopy equivalences, first observe that H3(M) ∼=

H3(M̃)⊗ΛZ and reduction mod 2 is onto, so by Hurewicz theorem for any element
of H3(M ;Z/2) there exists a map β : S3 → M . Now the following composite map

M // M ∨ S4
id∨Sη // M ∨ S3

id∨β // M

is again a homotopy-equivalence.
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