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Abstract. We introduce a Siegel-Eisenstein series of degree 2 which gen-
erates a cohomological representation of Saito-Kurokawa type at the real place.
We study its Fourier expansion in detail, which is based on an investigation
of the confluent hypergeometric functions with spherical harmonic polynomi-
als. We will also consider certain Mellin transforms of the Eisenstein series,
which are twisted by cuspidal Maass wave forms, and show their holomorphic
continuations to the whole plane.

Introduction.

In this paper we will study a real analytic Siegel Eisenstein series on G4 =
Sp(2,A), A= Ag, which generates a nontempered cohomological representation
m(d) of Goo = Sp(2, R) of Saito-Kurokawa type. The representation 7(d) has the
minimal K -type of dimension 2d + 1, where d is an even positive integer.

This paper may be viewed as a continuation of our previous work [HM]. The
distinction from [HM] is that we are concerned here with the unitary representa-
tion 7(d) whose infinitesimal character is regular, whereas our motivation is kept
the same as before. Namely, our purpose is to find out some specific properties of a
real analytic automorphic form of Saito-Kurokawa type, through an investigation
of the Fourier expansion, or the twisted Mellin transforms, of the Eisenstein series
which is suitably attached to the m(d). The similar problem is discussed in [HM]
for a certain unitary representation, which can be understood as the limit 7(0).

Let P, denote the maximal Siegel parabolic subgroup in G,. According to a
result in [L] by Lee, it is known that the cohomological representation 7(d) can be
embedded into a degenerate principal series representation I, (s4) = Ig; (] det |*¢)
with a suitably chosen parameter s; € C. Then our idea is as following. Let 7(d)
denote the minimal K. -type of 7(d). For any s € C, we consider the equivalent
Koo-type 7(d) of I (s), and take a function As(geo,s)(¢) which belongs to it.
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Here we note that the Ko.-type 7(d) of I(s) can be realized explicitly by us-
ing spherical harmonic polynomials ¢ of homogeneous degree d. We consider an
unramified Eisenstein series

E(g,9)(9) = Y Alvg,5)(9), g€Ga,
YEP\G

which is convergent if Re(s) is sufficiently large. Then we define the Eisenstein
series E(g,sq)(¢), which will be our main ingredient, by means of the analytic
continuation of the F(g, s)(yp) with respect to the parameter s. It has the Fourier
expansion

E(n(z)g,sa)(p) = Y e(tx(Bx))Eg(g,sa)(p), (0.1)
B=tBeL

where L stands for the set of all semi-integral symmetric 2 x 2 matrices. See
Sections 2 and 3 of this paper for the precise definitions of all these above.
The followings are our main results.

THEOREM 1. Suppose that B € L is a non-degenerate matriz. Then one
has the vanishing Eg(g,sq)(p) = 0, unless the matriz B is indefinite, that is, it
has one positive and one negative eigenvalues.

It is to be noted that the choice A (goo, Sa)(¢) € 7(d) is crucial for this asser-
tion to hold, whereas our method of the proof does not appeal to the representation
theoretic language. Indeed, the proof will be based on the direct exploration of
the confluent hypergeometric function twisted by ¢. The function, £(h, o, 5; @), is
defined by the integral

/S e 2] det (e ()~ det(e(x)) P p(e(x) e(x))da.

Here S, denotes the set of all real symmetric matrix of size 2, h € Su, () =
ea—ix, and (a, 3) € C?. Tt is convergent if Re(a+3) > 2. Following the arguments
by Shimura in [S1], [S2], we will prove its analytic continuation in («,3) to the
whole C?2. This will be our Theorem 5.2. In addition, we will give a criterion of its
vanishing at (o, 8) = (1/2,d + (1/2)) in terms of the signature of h (see Theorem
5.4), which yields the theorem above. These results give the heart of this paper.
In Section 6, we will investigate the confluent hypergeometric functions when
the matrices h have the low rank. For instance, the case h = 05 will be treated in
Proposition 6.2. Those observations will be applied in the next section to describe
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the Fourier coefficients Eg(g, sq4)(¢) for the degenerate matrices B.

Let

E@(go)= > Enlg,s0)(),

B: regular

be the regular part of the Fourier expansion (0.1). In Section 8, we will define its
integral transform by

M6.50) = [

SL2(Z)\$H1

(/Ooo t*E® (g, ‘Pz)dXt> o(T)du(r), (0.2)

which is referred to as the Mellin transform twisted by ¢. Here ¢ is a cuspidal
Maass wave form for SLo(Z) of weight —21 with —d <1 < d, and ¢, is a homoge-
neous harmonic polynomial of degree d of SO(2)-weight 2/. This turns out to be
zero when [ is odd (Lemma 8.1). For even [, we will obtain the following.

THEOREM 2. Let ¢ be a cuspidal Maass wave form for SLo(Z) of weight —21
with an even integer |, —d <1 < d. Then the twisted Mellin transform # (¢, s; ¢1)
has an entire continuation in s. Moreover, it satisfies the functional equation

M (b, —s501) = M (9,55 01).

This will be our Theorem 8.3.
Let —4v(v + 1) denote the Casimir eigenvalue of ¢. Then we will be able to
describe (¢, s; ;) in the following way.

THEOREM 3.  The twisted Mellin transform . (¢, s; ;) becomes the product
D(s51,1)¢(25 + 1)Di(s, 9)

up to a constant multiple, where T'(s;1,v) is the function which will be defined in
(9.8), and

>, H(d,N)b(N)
Dils,6) = > ~rertam—arm
N=1

is the Rankin product Dirichlet series attached to Cohen’s Fisenstein series for
I'v(4) of weight d + (1/2) and the cuspidal lifting 84 of ¢ of weight I + (1/2).

This will be given in Theorem 9.2. See (9.1), or (9.9), (9.5) and (9.6), for the
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definitions of H(d, N) and b(N) in the above statement. We also give an analytic
property of I'(s; [, v) in Corollary 9.4.

The following problems are still remaining: (i) to formulate and to study an
integral transform, which should be different from (0.2), when [ is odd; (ii) to
study the Mellin transforms twisted by non-cuspidal Maass forms ¢. This should
involve a discussion of a regularization process. We hope to come back to these
problems in future.

ACKNOWLEDGEMENTS. The author would like to thank Tamotsu Tkeda and
Hisayosi Matumoto for stimulating discussions which motivated him to consider
the materials in this paper.

NoTATIONS.  For a field F' let M, (F) be the set of n X n matrices with
coefficients in F. For every z = (z;;) € M,(F) let 'z, o(x), or §(x) stand for
the transpose, the trace, or the determinant, of x, respectively. Also we put
01(x) = z11. For any x € M,,(C), T denotes its complex conjugation, and Re(x)
and Im(z) are defined as usual. We use the symbol GL,(F), or SL,(F), in the
usual way. Let e, or 0,, denote the unit, or the zero, matrix of size n.

For each matrix z = 'z € M,,(F) and a € GL,(F) we use x[a] = 'aza. The
symbol x > y means that x — y is positive definite for real symmetric matrices
r ="z and y =y € M, (R).

Let {oc}, or f, denote the sets of the archimedean prime, or the non-
archimedean primes, of @, respectively. For each v € {oco} U f we set @, to
be the v-adic completion of Q. Let A denote the ring of adeles of Q.

Put i = /=1 € C. Let §; = {r € C | Im(7) > 0} be the upper half plane.
Let $ be the Siegel upper half space of degree 2, that is,

H={z€M(C)|z="z 2Im(z) = —i(z — 2) > 02}.
Also let $' = —i$) be the right half space of degree 2, which is defined by

9 ={2€My(C)|z="2z 2Re(z) =2+7% > 02}.

1. Preliminaries.

Let G = Sp(2, Q) be the symplectic group of degree 2, which is defined by

Gz{geGL4(Q)\thg=J} with Jz(?a eo2>
—eg
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It gives an algebraic group over Q. For each v € {oo} U f, we put G, = G(Qy).
Let us write G 4 for the adelization of G and put Gy = G 4 ﬂnvef G,. If x € Gy,
then we define 2o, € G and xy € Gy to write © = vz p. We use the symbol G
to denote the group of Q-points embedded in G 4. We will keep these conventions
for any algebraic group in the following.

The real group G, acts on § in the standard way. For each g = (Z 3) € Gy
and z € §, we put

pog(z) =cz+d and jg(z) = 0(pge(2)). (1.1)

A maximal compact subgroup K, of G, at each prime v is defined by

KU:{{reGoori:i} (v = c0),
G’u N GL4(Z’U) (U € f)a

where i = ies € §. Then K, is isomorphic to the unitary group U(2) by the map
sending r € Ko to p,-(2). Take the product group K = [[, K, over all primes,
and define a discrete subgroup I" of G4 by I' = GNG o, K, which is identified with
the Siegel modular group Sp(2, Z).

Let S be the @Q-vector space defined by

S ={u="ue M(Q)}.

Consider the standard action of G; = GL2(Q) on S, which sends u to u[a] = taua,
a € G1. The completion S, at every v € {oo}Uf and the adelization S 4 are defined
as before.

Let us take subgroups N and M of G by N = {n(u) | v € S} and M =
{m(a) | a € G1}, where

n(u) = (602 ;;) and m(a) = (8 taol).

Then P = NM gives the Siegel maximal parabolic subgroup of G. We have the
Iwasawa decomposition G4 = PaK and G = PI'. Define a function d, of p € P,
p = n(u)m(a), at each place v by

du(p) = 16(a)lv, (1.2)

where | - |, stands for the normalized absolute value on Q,. For any s € C, let
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us consider the degenerate principal series representation I,(s) = IIC;::’(S) of G,
whose space consists of all smooth functions f € C*°(G,) satisfying the condition

f(pg) = 6,(p)°f(g) for pe P, and g€ G,

on which G, acts by right translations.

Consider the principal series I, (s) at the real place. We recall that it has the
multiplicity free K.-type decomposition. All K -types of I (s) are parameter-
ized by the highest weights (dy, d2) with even integers d; > ds, each of which is as-
signed to an irreducible U(2)-module being equivalent to det® ®@Symm — (Cc?).
Here C? stands for the standard representation of U(2).

The Goo-module structure of I (s) was studied in detail by Lee, [L], which
we recall in a form suitable for our use. Let us put

sg=d+1 (1.3)

for an even integer d > 0. Then

PRrOPOSITION 1.1 ([L, Theorems 4.1 and 5.2]).  The principal series I (sq)
is reducible. It contains an irreducible subrepresentation w(d), which has the min-
imal Koo-type of the highest weight (d,—d). In fact, all the K-types of w(d) are
given by K -modules of the highest weights (d42i, —d—2j) for all integersi,j > 0.
Moreover, 7(d) is unitarizable.

It is well known that every cohomological representation is characterized by
the unitarizability, the K,.-type decomposition, and its infinitesimal character,
among all the irreducible (sp(2), Ko )-modules, see [VZ, Proposition 6.1], for ex-
ample. Now, besides the above proposition, we know the infinitesimal character
of m(d) which is, of course, equal to the one of I(sq). Using these data, one can
identify the m(d) with a nontempered cohomological representation Aq(Aq). Here
q is a #-stable maximal parabolic subalgebra q of sp(2) of Siegel type, and A4 is
a suitable linear form on the Levi subalgebra [ ~ u(1,1) ® C of q. This A5(Aq)
belongs to a local A-packet of Saito-Kurokawa type.

2. Eisenstein series with spherical harmonics polynomials.

We set T = {u = 'u € My(C)}. Let &, denote the space of homogeneous
polynomials p(u) on T of degree d. The unitary group U(2) acts on £, by sending
p(u) to p(trur), r € U(2), whose restriction to the subgroup SU(2) factors through
the quotient SU(2)/{*es} ~ SO(3).
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We shall put coordinates {uy, us, uz} on T by

w— us + 1uq U2
iUQ uz — ’L"U,l ’

Recall that a polynomial ¢ € Cluq,us,us] is said to be harmonic, if it satisfies the
equation

0? 0? 9?
20= (g g * )=

Let 72 C &, denote the subspace of homogeneous harmonic polynomials of degree
d. Then the following facts are well known.

LEMMA 2.1.

(1) The space 5 is stable under the action of U(2). It realizes an irreducible
representation of U(2) of the dimension 2d + 1, which is isomorphic to
Symm?24(C?).

(ii) Consider a vector space 67 ® Hy_o; for every integer 0 < j < [d/2], which
is linearly spanned by the polynomials §(u)?o(u), ¢ € H—24. Then it gives
an irreducible U (2)-submodule of P4 of dimension 2d —4j+1. We have an
1rreducible decomposition

/2
Py~ P @ Ay, (2.1)

§=0
which is multiplicity free.

Let 74 denote the irreducible U (2)-action on J;: [r2a(r)¢](u) = ¢(*rur) for
r € U(2) and p(u) € ;. Also let L(5;) denote the space of linear forms on 5
with the dual U(2)-action 75, given by [75,(r)A](¢) = A72a('r)e) for r € U(2),
A € L(H), and ¢ € .

Let us provide a basis of 7 in the following. For every integer k, 0 < k < d,
we define a function C on {u € T | §(u) > 0} by

Cr(u) = 8(u)@=P72CkH(1/2) (5(u)_1/20<;)>. (2.2)

Here
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I'(n + 2p) 1 1-—¢
P — _ .
Cn(t)—inw@p) 2F1< n n2p, o o )

is the Gegenbauer polynomial; see Chapter IX of [V]. The formula (3) in Subsec-
tion 1 of [V, Chapter IX-3]:

p _ an(n+p) n n(n_ 1) n—2
Calt) = n!T'(p) (t 2+ p-1)
n(n—1)(n —2)(n —3) e
+24-1-2(n+p—1)(n+p—2)t 4+"') (2:3)

gives us the following fact.

LEMMA 2.2.  We find that Cy(u) € Clo(u/2),5(u)]. Hence, it is a polyno-
maal on T, which also belongs to Py_y.

Let us put

5¢(u) = 6 (cuc) with ¢ = % C i)

Then we have §§(u)* € 4, for every integer k > 0. Now, for each k, 0 < k < d,
we define the polynomials ¢y (u) and ¢_j(u) by the products

~ ~

o (1) = 65(u)*Ch(u) = (iug — u2)*Ci(u), and

) A 10
o_p(u) = (iug + ug)*Cr(u) = @r(tur), = <O _1) .
LEMMA 2.3.  The polynomials ¢i(u) and ¢_r(u), 0 < k < d, are all har-
monic and homogeneous of degree d. They form a basis of 7.

For the proof, see Chap. IX of [V], for example.
We give some remarks. Firstly, we find that

vr(e2) = ¢_k(e2) =0 for every k #0. (2.4)

The action of SO(2) C U(2) on the polynomial ¢y, or ¢_y, is described by a
character multiplication, indeed, one finds that

i2k6 72'2190%0&(,“)7

[T2a(ro)pr](u) = " (u), or [ma(re)p—kl(u) =e
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for every ro = ( °%9, 5n9) € SO(2).

Let d > 0 be an even integer as before. For every s € C and ¢ € 5%, we
define a function A (g,s)(p) on G by

Aso(9,9)(#) = lig (DI 7o ()~ Y0 (g (1) 11g(3)), g € Goo,

which is belonging to I (s). It will be convenient to regard Ay (g,s)(:) as a
linear form on ¢, namely as Ao (g,s)(-) € L(5;). Then each right translation
Aoo(gr, s)(p) by 1 € K is written as

Aso(gr,s) (@) = 6 (pr(2)) - [154(" 11 (3)) Ao (95 9)] (),

which is identified with the self dual module det™* ©@Symm24(C?).
According to Proposition 1.1, we have the following observation.

LEMMA 2.4.  Keep the notations above. Then, for every p € 523, the function
Ao (g, 84)(¢) belongs to the subrepresentation m(d) of Ino(sq4). More precisely, it
belongs to the minimal K -type of w(d).

At each finite prime v € f we define a function A,(g, s) € I,,(s) on G, by

Ay(g,8) = by (p)s

for g = pw with p € P, and w € K,. This is a right K, -invariant function. Then
we define the function A(g, s)(¢) on G 4 by the product

A(9,9)(0) = Ase(90,5)(@) [] Aol ), 9= (90) € Ga.
vef

It is easy to check that A(vg, s)(¢) = A(g, s)(p) for any v € P. Thus we can define
an Eisenstein series on G 4 by

E(g,5)(9) = Y A(19,5)(¢), g€Ga and s€C (2.5)
YyEP\G

for every ¢ € ;. This is convergent locally uniformly and absolutely if Re(s)
is sufficiently large. We will study the Fourier expansion of (2.5) in the following
section in order to discuss the behavior of

E(gvsd)(@% 906%
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by means of the analytic continuation. By Lemma 2.4, we know that E(g, sq)(p),
@ € S, belongs to the cohomological representation 7(d) at the archimedean
place.

3. The Fourier expansion.

Fix an additive character e(-) on A, which is trivial on @, in the standard way:
let us put e (t) = > for t € R and e,(t) = e~ 2™ for t € Q,, with ¢ty € Z[1/p]
so that ¢ty = ¢ modulo Z,, then we define e = e, Hpef e,. We identify S, with
its @,-dual at every place v by using the bilinear form (u1,us) — o(ujuz). Let

L C S be the dual lattice of SN Seo [[,¢ ¢ S(Zp); which is explicitly given by

m

r
2 m,n,r € Z
n

N =

For each B € L we put Dp = —§(2B), and set ep = ged(m,n,r) if B # 0.
Consider a subgroup KGo, of Ga. Then, E(n(x)g, s)(¢), g € KGw, has the
Fourier series expansion with respect to x € Sy

E(n(x)g,5)(¢) = Y e(a(Bx))Eg(g,5)(¢), (3.1)

BelL

where every coefficient Ep(g, s)(¢) is given by the integral

Es(g,5)(¢) = /S BB ) ()i (3.2)

Here we take a measure du on S4 such that fSA/S du = 1. Since the right K-
action has been specified, it suffices to take ¢ as the base ¢ or the p_j for all
0 < k < d in order to study the behavior of (3.2).

Recall a disjoint decomposition of G

G= ][] Pw;P with w;=
j=0,1,2

which we apply into the definition (2.5). Then one finds that the sum over
P\ Pwy P contributes to the coefficient (3.2) by



Eisenstein series attached to cohomological representations 609

W (g,5)(p) = /S e(—o(Bu)) Awsn(w)g, ) (p)du. (3.3)

Let Py = {(a%) € G1} be the Borel subgroup of G1 = GL3(Q), and let
I = SLy(Z). If the rank of B € L is equal to 1, then there exists a unique coset
(vg) € I N P)\I7 so that one has
Blyg'] ='v5'Byg' = diag(0,ep), or diag(0,—ep)

for any representative yp of it. We set vp, = es if B = 02. Also we define a

subgroup S of S by
00
s={(02)]-=a}

Now assume that B is degenerate, that is, D = 0. Then, the partial sum
over P\ Pw; P contributes to the integral (3.2) by

W (g,5)(¢) = /S e( - o(Blvg'Jw) ACwrn(wm(yp)g, s) (9)du.  (3.4)

One can verify directly the following facts.

LEMMA 3.1.

(1) Suppose B € L is regular, that is, B has the rank 2. Then one has
Ep(g.5) = W5 (9.9)(9) for g€ KGo.
(ii) Suppose B € L has the rank 1. Then one has

Eg(g,5)(¢) = W5 (9.5)(0) + W5 (g,5)(¢) for g€ KGw.

For the constant term with B = 05 we have

LEMMA 3.2.  The constant term Eo,(g,s)(p), g € KGw, is equal to the sum

We(g,9)(@) + Y. W (m(1)g, s)(¢) + Alg, s)().
yEP;\G1
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Each of the Wg)(g, s)(p), 7 = 1,2, in (3.3), (3.4) is a product of the corre-
sponding local integrals:

WS (g, 9)(0) = ¢; WE (900, 8)(0) - [[ W) (e28), g€ KGoo (35
pef

with a constant c;, where the non-archimedean local integral at p € f is defined
by

Wiers) = [ ey(=o(Bu)d,uwan(u.s)du

p

for every B € L, or

ng(ez, s) = /s ep( - a(B[vgl]u))Ap(wm(u), s)du

1,p

for every B € L of lower rank. Here we take a measure du on Sy, or S, so that
the volume fs(zp) du, or fsl(zp) du, is equal to 1.

Kaufhold, in [K], gave explicit formulas of these non-archimedean local inte-
grals. We recall it now.

We need some notations. For each regular matrix B € L, we put 05 to be
the fundamental discriminant of the quadratic extension Q(v/Dg)/Q, and thus we
have Dp = dpf% with a positive integer fp. For every p € f we set ay , = ord,ep
and o, = ord,fg. Let x5(-) = (22) denote the Kronecker symbol. Then we define

a1,p op—J ap—j—1
Fy(B;s) = Zp’@‘s)( Do —xppp' T Y pl(3‘25)>
3=0 m=0

=0

for s € C. This gives the constant function 1 for almost all primes. The important
functional equation

Fy(B;3 — s) = p*»* 79 F,(B; s)
was proved in [K], and thus, in particular, we have

Fp(3—s) =3 "Fg(s)
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by putting Fp(s) = [[,c; Fp(B;s). Also we define

ordy,b

Fy(bis)= Y p¢)
=0

for every integer b # 0. Set the Euler factors L,(s,x5) = (1 — xp(p)p~*)~! and
¢p(s) = (1 —p~*)~! in the usual way.

ProprosITION 3.3 (Kaufhold). Keep the notations above. Then each local
integral WJ(B]L(&;, s), j = 1,2, has the following expression.

(1) Suppose Dp # 0. Then we have

L,(s—1,xB)Fp(B;s)
Cp(s)¢p(2s — 2)

W (e4,5) =

D
(ii) Suppose Dg = 0. Then we have

Cp(2s — 3)Fy(ep; s)

B #02),
(2) Gp(8)¢p(2s — 2) (B # 02)
WB,p(€4, s) =
Gp(s = 2)Gp(25 — 3) (B = 0,)
G2 9) -
(iii) Suppose Dp = 0. Then WE(;;,(Q, s) is equal to
Fy(ep;s+1) G5 — 1)
O 2P (B=
Cp(s) (B #0z), or ¢ (s) (B = 02),
respectively.

See the paper [K] for the proofs.

4. Some auxiliary formulas.

We shall give some auxiliary lemmas, which will be used in the analysis of the
archimedean local integrals W](leo (9,8)(p), 1 =1,2.
For each x € S, we set

e(x)=es—iz €8, px)=clx) telx) € UQ2),
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and

() ()

) = @ D se@) e

The following identities (4.1), (4.2), and (4.3) can be checked easily: for every
z € ) one has

65(271%) = 20§(2 " 'Re(2)). (4.1)

Also one has

5(z)a(z_;z> — §(Re(2)) + 6(Im(=))

= 25(Re(2)) — 5 (5(2) +5(2)
= 26(Im(z)) + 5(6(2) + 6(2)), (1.2)

and

LEMMA 4.1.

(i) For each ¢y € 54, 0 < k < d, the function §(e(x))%pr(p(z)) can be written
into a finite sum

chl L0(e(x)) 15 (e(2))"

11l
with suitable ¢, 1, € C for non-negative integers l; and la.

(ii) For each ¢, € H#;, 0 < k < d, the function §(p(x))~?pr(p(x)) can be
written into a finite sum

|6(e(x))|"6 (e () kZQDkH i (e(x) )
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with suitable choices of polynomials 1y, € 6" ® H_j_or, wherel and r are
integers satisfying 0 <1 <d—k and 0 <r <[(d—k)/2].

PROOF. By Lemma 2.2 ¢ (p(z)) is written as a product of §(p(z))* and
some polynomial in é(p(x)), o(p(x)/2). Then the equations (4.1) and (4.2), which
are applied to z = £(z), concludes the first assertion.

To prove (ii) we recall the addition theorem for the Gegenbauer polynomial:

Ch(cos(0 +v))

I &= (D220 p+DPn—D)IT2p+1—1)(20+2p—1)
L(n+1+ 2p)l!

x CP*(cos ) sin' ¢ - CP 1 (cos ) sin' 0,

n—I

which is the formula (3) in Subsection 2 of Chapter IX-4 of [V]. Using this formula
and (4.1) and (4.3), we write d(p(x))~%?¢(p(z)) into a finite linear sum of

18(e(2)) 8 (e (@) Fprsa(e(@)™) - 67 (@) ) Crpale(@) ™)

for 0 < 1 < d — k. Notice that the polynomial 5f(u)l6'k+l(u) € Py_1 can be
expressed as a sum of polynomials in 6" ®.55_j—2, for 0 < r < [(d—k)/2] according
to the decomposition of &;_j given in Lemma 2.1. We apply this expression to
each factor 0%(c(x) 1) Chiy(e(x) 1) occurring above, which concludes the second
assertion of the lemma. O

Next we recall some integral transforms of spherical harmonic polynomials.
To each U(2)-module §7 ® 5#;_»; of the highest weight (2d — 2j,2j), 0 < j < d/2,
we assign a product of the classical Gamma-functions defined by

Ta—jj(s) =val(s+d—j)T (s +j— ;) : (4.4)

Let ST C S denote the subset of all positive definite matrices. Then we recall
the following formulas given in [S2].

LEMMA 4.2.

(i) Foreveryz€ /', s€ C, and f € § ® Hy_2j, one has

/ e §(0) =D f(v)dv = Ty_j ;1 (5)0(2)~* f(z~1)
sS4
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when Re(s) > 1/2.
(ii) For everyv € ST, 2 € Soe, s € C, and f € 67 @ H;_2j, one has

2lq—;.i(s) / 210 W) 5y 4 2iu) 7 f((v + 2min) ") du

oo

- efg(vw)é(x)sf(fi/mf(x) (:L’ € S(;Fo),
- 0 ($ ¢ S:o)’
when Re(s) > 2.

For the proofs, see [S1, Section 1], and [S2, Proposition 3.1].

5. Confluent hypergeometric functions.

We recall the integral

n(z o, B) = /OO e Pt + 1) P Ldt
0
and set
w(za, B) =T(8) 2 n(za, B)

for o, 8 € C satisfying Re(8) >0 and z € ) = {y+iz |y >0, x € R}. The
following facts are well known; (i) w(z;«, 8) can be continued as a holomorphic
function to the whole £} x C?; (ii) for every compact subset U of C?, there exist
positive constants A and B depending only on U so that one has the uniform
bound

w(gsa, B)] < A(L+g7") (5.1)

for all g > 0 and (a, 8) € U. For the proofs, see [S1, p.282].

We define the archimedean local integrals ngo (9,8)(p), p € g, 7 =1,2,
by

Wikla. (o) = [ e B A (uan(w)g. ) (o). (5.2)

oo

for all B € S, and
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wgug,sx@):/g e 2B 10 A (win(2)m(vp)g,5)(9)de (5.3)

for every B € L of lower rank. Here dx denotes the Euclidean measure on Sy, =
R3, or on S; o, = R, respectively.

In this section we study the behavior of the integrals (5.2) at s = sq =d+1
with a positive even integer d, while those for (5.3) will be discussed in the next
section.

We remark that

Wi (m(a)g, s)(@) = (@) 2 Wi (9.5)(9) (5.4)

for all m(a) € Mo and g € Goo.
Now let g = m(a) € Ms. Then we can write

Pavan(z)g(t) = —ia - E(a_lxta_l)

using the matrix e(x) defined in Section 4, and thus get an expression

s—d std ) (5.5)

WL (m(a).s)(e) = 5@t "¢ ( Blal. 52 S5

Here £(h, «, B; ¢) is the confluent hypergeometric function, which is defined by

£(h,a, i) = / =210 () 5 (e (1)) 25 (2(2)) P (pla))

oo

for h € S, (o, 3) € C?, and ¢ € #;. Since p(x) € U(2) and ¢ is a polynomial,
this is convergent if Re(a + 3) > 2, see [S1, Lemma 1.1].
Recall the basis {pr, v—r | 0 < k < d} of ;. Then we note the following.

LEMMA 5.1.  For each ¢ € 7, 0< k <d, and B € L, one has

W co(m(a), $)(gx) = (=) W5l (m(a), 5)(en).
The similar equalities hold also for p_y.

Proor. Consider the change of the variables from x to —x for the above
integral £(Blal, (s — d)/2, (s + d)/2; ). Since
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3(p(x)) " Y r(p(a)) = (=1)*8(p(2))~ P r(p(x)),
which can be verified directly from the definition, we obtain the assertion. O
By Lemma 4.1 (i) we remark that (h, «, 3; @) is a finite linear sum of

/ e—27ria(hm)5(6(x))—a—d+k+l1 5(%)—6—&-555(6(%)—1)1@6&:.
Soo

Now we follow the arguments in [K] and [S1] to get the following result.

THEOREM 5.2.  For every h € So and ¢ € S, the function £(h, o, B;¢)
has a meromorphic continuation in (c,3) to the whole C2. Moreover, if h is
non-degenerate, this continuation is holomorphic.

PROOF. By the above remark it suffices to prove the continuation of
[ et @) 65 @) o (o)
Soo

Applying Lemma 4.2 (i) to f(u) = §¢(u)* € 4., one obtains that this equals

2m)3 )
( 7T) / efa(v)(;(v)af(?)/Z)éf(v)k / 627rw(v727rh)a:6(62 + 2ﬂi$)76d$dv.
Lro(a) Jst Se

Then, by Lemma 4.2 (ii), it further equals

47T2(a+ﬂ)+k

- e—27ra'(v—h)6 v (X—(3/2)6 v —2h ﬁ—(3/2)6c v kd’U, 5.6
Lr0(a)lo,0(5) /V(o,zh) () ( ) i) (5.6)

where we set V(hi,he) = {v € S | v > hy, v > ho} for hy, hy € S

We shall analyze the integral (5.6) case by case according to the signature of
h.

(1) Firstly, let us assume h > 02 with eigenvalues ¢’ > ¢ > 0. Set hg = diag(¢/, q) >
02. Then there exists a matrix g € GLy(R) so that h[g] = ez and *gg = hy " hold.
By a change of variables, the integral (5.6) is written in the form

4(2m)k5(2mh) e tB=B/De=2mo (D, ()10 0(8) 7!

></ e =479 (hov) 54y 4 ¢2)0= (/2 §(1)B=GID 5 (v + ) [g 1)) do.
v>02
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Now we take the expansion

k
. N ; x z
(0 els ™) =3 o) v (1:)>0
J:
with suitable polynomials f;(z,y) € C[z,y] and use it in the analysis of the factor
FO,O(B)il/ 6747r0(hov)5(,u 4 62)04*(3/2)5(0)[3*(3/2)55((U + 62)[971])kd’u7 (57)
v>02

which occurs in the above expression of (5.6).
Recall that the domain {v = (%) > 02} maps bijectively onto (vy,vo,w) €
R~y X R~g X R by putting

r=wv1, y=uva(l+w?+ (v +1Dw? z=wyvi(vy+1),
[K, p.465], or [S1, p.283]. We also recall that
S(v+eg) = (v1 + D(vg + D(w? + 1), §(v) =viva(w? + 1),
dxdydz = v/v1 (v + 1)(w? 4 1)dvy dvaduw.

This change of variables takes (5.7) to the finite sum of functions
> 2 . .
Cj17j27j3,j4F0,0(/8)71/ e AT (1 4 w?) a2y

) . 1 1 )
X n(4mrgr; a +]17ﬂ+32)77<4ﬁg2;0¢ - 5,6 ~3 +Js>dw
for non-negative integers jo < js < j1 < k and j3 < k, where we put
_ 2 _ 2
g1 =q¢ +quw”, g2=q(l+w),

and the constants Cj, j, js.j, do not depend on «w and 3. According to (5.1), we can
choose constants A, B > 0 for every compact subset U of C? to get the uniform
bound
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_ i . . _ j 1 1 .
To0(8) " g 2 n(4mgr; a + j1, B+ ja)gh (1/2)”377<47792; a— §,ﬁ ~5 +33> ’
< A(l+q¢7P)

for all (o, 8) € U. Then each function above is bounded by
oo
A(l + q—B)‘q—ﬂ+(1/2)—j3|/ e—4ﬂqw2}(q/ + qu?) P2 (1 + w2)a—(3/2)+j4 dw,
— 00
uniformly on U, where the integral part is further estimated by
/ e~ (1 4 ?)2 =6/ |, if Re(8) > —jo.

o0
/ 6_4”qw2|(1 + w2)a_ﬁ_j2+j4_(3/2)|dw, if Re(f8) < —7a.

— 00

The last one is convergent for general o, 3 in the respective case. Thus the proof
in the case h > 09 is completed by varying U.

If h < 03, we use Lemma 5.1 to replace it with —h > 0o, thus the proof is
reduced to the above case.

(2) Let h have the signature (1, 1), and write its eigenvalues as ¢, —q with ¢, ¢’ > 0.
We set hg = diag(q’, q) > 02. Take a matrix g € GLy(R) so that hlg] = diag(1,—1)
and *gg = hy* hold. In this case (5.6) becomes

4(2m)k|6(2mh) |2 A= B/ e=2mo(hol Dy o (a) 1T 0(B) 7!
y / AoV 5y £1)7 B/ §(y — )P~ 3/D 52 (o 61)[971])%@7
V(ei,e2)
(5.8)

where we put e; = diag(—1,0) and e5 = diag(0,—1).
The domain V(ey,e2) = {(*1'7) > 02 and (% y%1) > 02} maps bijectively
onto (v1,vg,w) € Rsg X Rsg X R by

r=v (1 +w?)+w? y=uv(l+w?) +w?

(5.9)
z=w\/(1+v1)(1+v2)(1 +w?),

[K, p.466], for which we have
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S(v—-e1) =1 +uv)va(l +w?), 6uv—-ecr)=uv1(14v2)(1+w?),

drdydz = /(14 v1)(1 4 v2)(1 + w?) (1 + w?)dv; dvaduw.
We put
g1 =q¢(1+w?) and go = q(1+w?).

Then, (5.8) becomes a finite sum of functions

Fho(a)*lfo,o(ﬂ)*l/ 6747r(q+q’)w2w2j5(1+w2)a+ﬁ+jr(3/2)

. 1 . 1
X 77<47791§CV+3175— 3 +32)77<47T92;5+31704— 3 +Js)dw

up to holomorphic factors, for non-negative integers j1, j2, Js, ja, j5 < k. Again by
(5.1), we get uniform bounds for

and

_ ; . 1 .
To0(8) g} (1/2)“277(4@1; a+j1,0 - 5 +32>

2

_ oa— ] . 1 .
Tro(a) g (1/2””17(47792; B4 jr,oa— 5+ ]3) ’

on every compact subset U in C2. Thus the proof is completed by the similar
arguments as given in the case (1).

(3) Lastly, we treat the case that h is degenerate. We take g € SO(2) so that
hlg] = ho = diag(q,0) with ¢ € R holds. Then (5.6) is equal to

A2 OFOFRD (@) T ,0(B) 7

<[ €270 5y -+ hg)@ G/ 51 — hg)P~ /265 (v + ho) g} dv.
V(ho,—ho)

The domain {(”fq Z) > 02} maps bijectively onto v;1 +¢ > 0, vo > 0, —c0 < w <
oo by

r=v +wvyt, Y= z=w (5.10)

for which we have
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5(v+ho) = (v1 + @)v2, (v —ho) = (v1 — q)va.
Consequently, the above integral becomes the finite sum of integrals

D ([ g - g0
Lr0(@)L0,0(8) \ Ju,>q]

0o oo
3o _ 2 —1 L
% (/ e—27rv2,u20t+ﬁ 3+j2 ]3/ e 2rw=v, w2(]3+]4)dwdv2>
0

—0o0

for non-negative integers ji, jo, j3, j4. Each integral can be computed as

I‘(Oz+ﬂ—§+j2+j4>
Lk0(a)T0,0(8)

/ e‘Q””l(v1+q)a‘(3/2)+j1(vl—q)ﬁ‘(?’/?)dvl (5.11)
v1>q]

up to a multiple of a simple holomorphic function of (a,3) € C2. These all
have meromorphic continuations in (a, 3) to the whole C?, and thus the proof is
completed. O

COROLLARY 5.3.  The integral W](;) (9,8)(p), g € Goo, has a meromorphic

continuation in s to the whole C for all% € L and ¢ € . In particular, the
continuation is holomorphic if Dg # 0.
PrOOF. This is obtained by Theorem 5.2 and (5.5). O
We give the criterion of vanishing at s = sg.
THEOREM 5.4.  Suppose that B € L satisfies one of the following conditions;

(i) B is positive, or negative, definite; or (ii) B is degenerate. Then we have

Wi (9,54) () = 0
for all g € G and p € .

ProOOF. It suffices to prove that £(Blal, (sq — d)/2, (sa + d)/2; ¢1) = 0 for
all 0 < k < d under the conditions on B. Let us put h = Bla]. According to
Lemma 4.1 (ii), £(h, (s — d)/2, (s + d)/2; k) can be written as a sum of integrals

/S o—2mio(hx) ‘5(5(1~))|*S+d5(%)7k¢k+l (s(x)71)¢z,r (%71)d$
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with0 <! <d—kand 0 <r <|[(d—k)/2]. By Lemma 4.2 (i) and (ii) this is equal
to

—d\ " —d !
47r25+k1“d,0(s B ) der,r<8 2 - +k>

« / 6727ra(v7h)5(v)(sfd73)/26(,u o Qh)(sfd73)/2+kgok+l(v)wl,r(v o 2h)dv
V(0,2h) (51

Firstly we assume that k£ > 0. In this case, the key point in the proof will be
the finiteness of the integral occurring in (5.12) at s = sq4 for all I, 7, which will be
checked case by case:

(1) We assume k > 0 and h > 02. We consider the integral
/ 6727ra(v+h)5(,u + 2h)(57d73)/25(v)(sfd73)/2+ksok+l(v + 2h)¢l7r(v)dv
v>02

within (5.12). Since k > 0 this is obviously finite at s = s4 for each I,7. On the
other hand, the factor 'y o((s — d)/2)~! in (5.12) has a simple zero at s = sg4.
Consequently, the function (5.12) specializes to 0 at s = s4 for all [ and r, and
thus we get the conclusion in this case.

(2) Assume k > 0 and that h is degenerate which is conjugate by SO(2)-action to
ho = diag(q,0) with ¢ > 0. To show the finiteness at s = s4 of the integrals

/ €21 § 1y 4 o) =325y — o) =T/ oy 1 hoYp(v — ho)dv
V(ho,—ho)

for polynomials ¢ € J; and ¥ € §" ® H__o., We repeat the same argument
as in the proof of the case (3) of Theorem 5.2. Then it shows that each of the
integrals above equals a sum of integrals of the type (5.11) with parameters a =
8 —k = (s—d)/2. Since k > 0, they are all finite at s = s4, which completes the
conclusion.

(3) Let us assume that k£ > 0 and h < 0q, or that h is degenerate with one negative
eigenvalue —¢ < 0. Then we can apply Lemma 5.1 to reduce each to the case (1),
or (2), above respectively. Thus the proof is done.

(4) Next we assume B = 05 and k > 0. If, moreover, k is odd, then Lemma 5.1

implies that Wéf?oo(m(a), $)(pr) = 0 for s in the range of absolute convergence of

the integral expression (5.2). Consequently, it vanishes on the whole C, because
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of the analytic continuation which was proved in Corollary 5.3.
Hence, we assume that k£ > 1 is even. If we put B = 0, then the factor of
integral in (5.12) becomes

/s+ e 27§ (0) 3 R Ly (0) Y (v)d.

We apply Lemma 2.1 to express pi4i1%;,» € P2q—k as a sum of polynomials ¢,
in 0" @ Hyg_j_om for 0 < v/ < d — (k/2). Then Lemma 4.2 (i) gives that the
above integral is equal to the sum of

3
Cl,r,r/(s)FQdfkfr’,r’ (8 —d+k— 2)7
where ¢, (s) are elementary entire functions in s. Since k > 1, these terms are
all finite at s = s4. Thus the proof is completed in this case.
Now we consider the remaining case that &k = 0. Here we can write the
function d(p(z)) (2 g (p(x)) into the finite sum

d
5@ e - pile@) Ne_i(E@) ) with « € C.

=0

Correspondingly, &(h, (s — d)/2, (s + d)/2; ¢o) becomes a finite linear sum of the
functions

47T25

s—d 2/\/h,h
Fd,o< ) (h,—h)

6727ra(v)5(v + h)(sfd73)/2

2 x §(v — h)E=4=3/ 20, (v 4+ h)p_; (v — h)dv.

As concerns these functions, one notes that the factor T'yo((s — d)/2)? in the
denominator has a double pole at s = s4, whereas each integral part provides a

simple pole at s = s4 under the assumptions on B. Thus the proof is completed.
O

Let us consider the archimedean local integral attached to the zonal polyno-
mial g € F;. It turns out the analysis of its specialization at s = s4 can be
carried out explicitly, which provides the following result.

PROPOSITION 5.5.  Suppose B € L is regular and indefinite; i.e. Dg > 0.
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We put y = ata for a € GLa(R). Then we have

d
W (@), sa)(0) = oy D 260 /2 o (2B + Dad(),

where K, (z) denotes the K-Bessel function.

PROOF. We extend ¢o(u) = Co(u) to the function @g(vu) = @o(uv) =
wo(v/2uv'/?) for all v € St and u € S,.. Then one recalls the integral formula

/ L e T CO5(0) Dy (ve(@))dv = Tao()5(e(x)) " po(p(x)),
Soo
see [Mu, Theorem 7.2.7]. Using this formula and the identity

po(ve(x)) = 6(v)6(e(x)) %0 (v e(z) ")

we write {(h, (s — d)/2, (s +d)/2;¢0), h = Blal, as

(2m)3 )/ =70 5(v)(s+d=3)/2
sL

s—d
Fd,o( 5

y / e2rio(v=2mh)e 5 (o)) ([d=9)/2 (Uflm’l)dajdv.
S

oo

Now Fourier’s inversion formula is applied to show that {(h, (s—d)/2, (s+d)/2; o)
equals

)
47‘(‘25Fd70 (S — d) / 6_27“7(”)6(11 + h)(s—d—S)/Q
2 V(h,~h)

x 0(v — h)~4=/2P, (v)dv, (5.13)
where we set
®p(v) = 0(v+ h)%po((v 4 h) v — h)).

According to Lemma 2.2 and a variant of the identity (4.2), we can write
¥y (v) as a polynomial in §(v + h) and §(v — h), whose constant term is given by
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F(d + ;) (dIv/7) " [—5(2h)]"

(see the expansion formula (2.3)). Consequently, the value of (5.13) at s = sq4,
that is £(h,1/2,d + (1/2);¢0), coincides with the value of

1
4 257(3/2)1" -
i (4+3)  Loem)
2 2
F<s+d> Jl I‘<s—al—1>
2 2

« / 672770(11)5(1} + h)(sfd73)/26(v . h)(sfd73)/2dv
V(h,—h)

at the same point.

Let ¢' and —q (g, ¢’ > 0) denote the eigenvalues of the indefinite matrix h, and
set ho = diag(q’,q) > 02 as before. Take a g € GLy(R) so that hlg] = diag(1, —1)
and ‘gg = hy ! hold. Then, by the change of variables (5.9), we can compute the
latter integral as

—2
[_5(2h)]dr<m> / 6*271'0'(11)5(,0 + h)(sfde)/25(,U _ h)(s—d—S)/de
2 V(h,—h)

_ [75(2}1)]57(3/2)67271'0@0) (47Tgl)(d+175)/2(47ng)(d+175)/2

v /Oo 6747ra(h0)w2(1+w2)57d7(3/2)

—d s—d—1 —d s—d—-1
X w<47rgl;82,82>w<47rg2;82,82>dw

with the previously defined notations. Since w(z;,0) =1 (see [S1, (3.15)]), this
concludes that £(h,1/2,d + (1/2); o) is equal to

4(2m)24[—5(2h)])4-(1/2)
(2d)!

11
e—27m(ho)77<471-0-(h0); 3 2) .

Finally, the relation

Comtotd 11
e—27(a+q )77<47T(q+q');2,2) = Ko(2n(q+¢"))
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is verified by direct computation, which completes the proof of the proposition. [

6. Degenerate confluent hypergeometric functions.

We study the archimedean local integral Wg’lo(g, s)(p), (5.3), for a matrix
B € S of lower rank.

LEMMA 6.1.  For every base polynomial o), € 7, 0 < k < d, and a degen-
erate matrix B € Sy, we have

1
WG co(m(a), $)(gx) = (=) W5 (m(a), 5)(en).
The similar equalities hold also for ¢_j.

PRrROOF. By definition we find that

()=o)
00

which implies Ao (win(—u), s)(¢r) = (1) A (win(u), s)(¢x) for u = (§9).
This remark together with the change of variables from u to —u in (5.3) concludes
the assertion. g

Let us attach the matrix a, € SLy(R) to each 7 = u + v € $;1 by

(1w vl/2 . ol/2 p= /2y
4r = 1 v /2) T\ 0 V2 )

Also one sets a,; = tY4, e GLy(R) for t > 0 and 7 € 9.

Now let us consider the case B = 05. Then we have

Wol o (m(arre), s)(wan) = e2R04 205 WD (eq,s)(p1r)  (6.1)

02,00 ,00

for every rg € SO(2). Here Wé;’)oo(ezl, s)(pr) = Wéi?oo(e4, s)(p—k) are equal to

e 2 —(s+k) /2 ~k+(1/2) L )
i e+ 1 C —— |dx. 6.2
/,oo( ) d=k (x/aﬂ +1 (6.2)

These give rise to the following evaluations at s = s4.
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PROPOSITION 6.2.  For every ¢ € ¢, 0 < k < d, one has

o Um)ANT TR)
Wit r(mlar.), sa)(x) = 2( 2d)! ) mpa’ " k=),

0 (k # d).

PROOF. Recall the identity 05351/2)(_2) = (—1)’“0539/2)(2) for Gegen-
bauer polynomial. Then the integral (6.2) obviously vanishes, if k is odd.
Suppose k < d even. Then (6.2) at s = s4 becomes

1
/ (1 _ yQ)(d—k)/2—1(1 _ y2)k05j£1/2)(y)dy

-1

Now we recall the formula (7) in p. 485 of [V];

1 kNd+k)! di=F
yCk () = L BRI ey

(1= T 2d=k dl(d — k)! dyd—*

Then integration by parts concludes the vanishing of the above integral for each
k <d-—2. If k=d, then the formula is obtained by a direct computation. O

7. The lower rank parts of the Fourier expansion.

In this section we discuss the part of the Fourier expansion (3.1) of the Eisen-
stein series with the matrices B € L of lower rank.

We begin with the constant term Ey,(g,sq)(p) for B = 0s. According to
Lemma 3.2 and Theorem 5.4, one has

Eo,(g.50) (@) = A@)()+ Y. Au(m(Ng)(e), g€ KGo,  (7.1)
yeP;\G1

by putting A(g)(p) = A(g, sqa)(¢), and Anr(9)(¢) = Anr(g, sa)(p) with
Ani(9,8)(9) = Wil (g,9) ().

Let us also put

grt = m(aﬂt) H eq € KGs
vef
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for 7 € 97 and ¢t > 0.
By the remark (2.4), A(g)(y) in (7.1) can be evaluated as following.

LEMMA 7.1.  Keep the above notations. Then one has

0 (k #0),

Alg- _
(97.6)(p2) {05/2(1)75((”1)/2 — a2 ().

Next we are concerned with the latter infinite sum in (7.1): we put

Ev(9)(p) = Y Au(m()g)(#). (7.2)

yEP1\G1

It is easily verified that the function Aps(g)(¢) restricted to g € M4 defines a
function belonging to a certain principal series representation of GLy(A) ~ Ma,
cf. (6.1). Therefore, the function Ej/(g)(¢) is indeed an Eisenstein series on
GLy(A). Let us consider its Fourier expansion

oo

En(ni(w)g)(®) = Aum(9)(0) + Y e(Nu)Wn(g; ),
N=—oc0

where we put ny(u) = m(({ %)) € Ma and g € (K N Ma)M. The N-th Fourier
coefficient Wi (g; ¢) is given by

Wy(g: o) = /A e(—Nz) Ay (wprmi (2)g) (o) da (7.3)

with wy, = m(( 9 5)) € M, which is a product of the local integrals:
W (g:0) = c1 - Wioo(goos @) [[ Wivp(es) for g€ (KN Ma)My
pef

with some constant c¢; in the usual way. For the non-archimedean local integral
we get the following formula.

LEMMA 7.2.  For every finite prime v =p € f one has

L(2d— 1 N =0),
Wi o(ea) = ¢,(d) y {C ( ) ( )

G(d+1)Gp(2d) | Fp(N;2d+1) (N #0).



628 T. MIYAZAKI

Proor. The result is obtained directly by computing the integral

Wivs(es) = [ ep<—Nx>(

P S1.p

Ay (win(w)warna (z), sd)du> dz.

We omit the details here. O

As for the archimedean local integrals

Wanlaip) = [ emve( [ A lmnum(s sa)()u )

— 0o
for g € M, we obtain the following result.

LEMMA 7.3.  For each base polynomial @i, or p_y, in Hy, 0 < k < d, we
have the following formula.

(1) Wnoo(m(ars);or) =0ifk#d and N € Z, orif k=d and N <0.

(1) Wi oo(m(ars);o—x) =0ifk#d and N € Z, orifk=d and N > 0.

(iii) For every N > 0 we have that Wi oo (m(@iv,t); 9a) = W_nN 0o (M(@iv,t); 0—d),
which is nonvanishing. The explicit value is given by

2
.9 ( (‘g();ld') 1/2,d N2d—1 ,—27Nv

Proor. It suffices to prove the assertion for every ¢ = g, 0 < k < d. The
integral Wi oo (m(aiv ¢); x) was defined by the value at s = s4 of

0o —2miNzx -\ k
1/2, s—1 € (z —iv) (1)
11720 (/_Oo rR— +w)kdx) Wil (en,s) (o). (74)

Here we note that the middle integral equals

2m(—1)k
D(s+k—1I(s—k—1)

/ e~ 2(=mN)stk=2(4 _ opNYs=h=2gt  (7.5)
t>0

t>27N

This is finite at s = s4 for any 0 < k < d. Thus the vanishings for all & # d and all
N are deduced from Proposition 6.2, which says that Wéi?oo(eél, s4)(¢r) = 0 for
0<k<din (74). If k=d and N <0 we have the vanishing of (7.5) at s = s4.
These prove the assertion (i).

On the other hand, a direct computation of the integral, which is combined
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with the formula in Proposition 6.2, provides the assertion (iii) for k& = d and
N > 0. We omit the details here. ]

By Proposition 3.3 and Lemmas 7.1, 7.2, and 7.3, we obtain the following
description of the constant term.

PROPOSITION 7.4 (The constant term). Keep the previous notations. Then
we have the following formulas.

( i ) EOQ(gr,tan)(SDk) = EOz(gT,tasd)(Sofk;) = 0 fO?" a” 0 < k < d,
(i) Eo,(gr.e: 5a)(po) = /% and
(iii) Eo,(grt, sa)(wa) = En(grt)(@a), and this is equal to

(40)%%q - C(1 — d)t 20 (C(1 —2d) &
G (o ),

where we put q = *™7, kg = (2mi)?d!/(2d)!, and o,(N) = 2Nl
(iv) Eo,(grt, sa)(p—a) is the complex conjugation of the formula in (iil) above.

Next we shall give some remarks on the rank 1 part of the Fourier expansion
(3.1) at s = s4: we set

EW (n(u)g; @) = Z e(o(Bu))Ep(g,sa)(p)
B of rank 1

for u € Sv and g € KG,. By Lemma 3.1 and Proposition 5.4, this is equal to

Y Y el )W )@ = Y Gmnwg) (),

"/EFlﬂPI\Fl N#0 ’YEFlﬁPl\Fl

where we set 11 = SLo(Z), C = diag(0, N), and

Gn(w)g)(p) = Y e(d(Cxu)W) (g, 54)(¢)-

N#£0

Thus we have

ED(go)= > Gm()g)(e). (7.6)

'yGFlﬂPl\Fl

Take an embedding m' : SLy(Q) — G defined by
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mmy =1 ¢ U for n= (‘c’ Z) € SI5(Q).
c d

Let M’ ~ SLy(Q) denote its image. Then we find that

114 12,
pl/2  41/4
G(n(u)gr) (i) = HHD/1@D2G | [Tei| (9
vl/2
0 vef
t1/4

for every u = (%) € Se, where the latter factor gives a function on (KNM/y ) ML,

o0
which can be related to an Eisenstein series on My as below.

We define a function Eyp (n(u)g)(¢), g € KG, for each u € Sy, ¢ € H5 by

Enr(n(u)g)(¢) = G(n(u)g)(p) + Alg)(p) + Ar(g) (). (7.7)

This is equal to
Ag)e)+ > ™I (g, 50)(9)  (Co=0,),
N=—o0

which implies the equality

Exi(9)p)= > Am'(1g)(p)

’)’EFlﬁpl\Fl

for every g € (K N M/,)M. . This is also right K N M/, -finite, and thus it gives
an Eisenstein series on (K N M} )M/.

8. Twisted Mellin transforms.

Let us define the regular part of the Fourier expansion (3.1) at s = sg4 by

E@ (n(u)g; @) = Z e(o(Bu))Eg(g,54)(¢)
B of rank 2

for u € Sa, g € KGy, and ¢ € 5. Using the previous notations, we can write
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E(n(u)g, sa)(¢) = Eo,(g,5a)() + BV (n(u)g; ¢) + E® (n(u)g; ¢)
= A(9)(¢) + Ex(9) () + EW (n(u)g; ¢) + E® (n(u)g; ¢)

(see (7.1) and (7.2)).

Let ¢ be a Maass wave form on SLy(R)/{tea} for the group It = SLy(Z).
We regard it as an unramified automorphic form on M} with M! = {m(a) € M |
a € SL2(Q)} in the standard way, which is also denoted by ¢. We will assume
that ¢ is cuspidal in the following arguments.

Put g, = gr1 € M} for 7 € $;. We take measures du(r) = dudv/v? on £,
and d*t = dt/t on R’. Also we take a measure dr on K}, = [oesofo) (Ko nM})
so that le dr = 1.

M

For every s € C with Re(s) sufficiently large and ¢ € 5, we define an

integral transform . (¢, s; ) of E®)(g;¢) by

o= [ [ ([ EO o stg it 1

We call it the Mellin transform of E(g, sq¢)(¢) twisted by the cuspidal Maass wave
form ¢.

LEMMA 8.1.

(1) Ifk, 0 <k <d, is odd, then E(Q)(gﬂt; wr) and E?) (gr.1;90—k) are both equal
to 0. In particular, if k is odd, then M (¢,s;pr) = M (P,s;0-1) = 0 for
any cuspidal ¢.

(ii) If k is even, then E® (g, 45 01) = E@ (wag, 13 @)

PrOOF. The first assertion is verified by using Lemma 3.1, Proposition 3.3,
Lemma 5.1 and Theorem 5.4, where we remark that

1 —d,xp)Fp(2—d)
C(14d)¢(1 —2d)

_aL
H Wpg.v(eq, sq) = (Qnd)leg/Q) aL(
vef

depends only on Dp and ep (see also (9.2)).
In order to prove (ii) we take Iwasawa decompositions

wym(ar) =m(a_,-1,)m(r1) and wom(a, 1 )wy ' =m(a_ -1 )m(rs)

in M, where 71 and ro € SO(2) are explicitly given by
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—_ —Uu v _ vou
7"1:|7'1(_U —’U,)’ T2:|T|1(_u 'U>.

Then we find that

E@ (g, 01) = E®(wargris ox) =77 "E@ (g1 45 08)
and

E@(wag, ;-1501) = E® (wag, 1wy s 1) = (1) *E@ (g_ 1 15 0).

Comparing these two, we obtain the assertion (ii). O

In order to prove the analytic continuation of .Z (¢, s; ¢) as in Theorem 8.3,
we will essentially use the method of Arakawa, Makino, and Sato, [AMS]. Let us
begin with the following lemma.

LEMMA 8.2. For every cuspidal Maass form ¢ and @ € 5, the twisted
Mellin transform A (¢, s; ) is equal to

1

/p \9 /K1 </°°(t5 + t*S)E(2) (gri7; 0)d*t + I (7,7, 5 ga)) o(grr)drdu(r),

where I(1,7,s;p) is defined by

/100 t* (BN (grar; ) + Enr(grar)(9) + A(grar)(9)
— EW (g, 1-1750) = Ear(gr1-17)(0) — Algr.i—17) () d*t.

Proor. By Lemma 8.1 it suffices to prove the formula for every ¢ = ¢y
with k& even. We compute the inner integral in the definition (8.1) as

/ tSE(Q)(gT,t;wk)dXt=/ tE@ (g, -1301) + °E® (g7 01)d "t
0 1
:/ (t* +t7)EP (gr1; 0)d*t
1

+/ t (E@(gy-1508) — E® (gre3 01) ) d*L.
1
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On the other hand, the modularity of the Eisenstein series implies that

-1

E(grt,8a)(pr) = B _1 grty8d | () = E(gr -1, 84)(Pk)

1 (k : even).

These combined together conclude the formula in the lemma. O

THEOREM 8.3. Let ¢ be any cuspidal Maass wave form. Then the twisted
Mellin transform # (o, s; ) has an entire continuation in s for all ¢ € Hy. More-
over it satisfies the functional equation

'%(d)a —S5; SD) = %((bﬂsa(p)

PrOOF. By Lemma 8.2, it is sufficient to show that the integral

/ / I(7,7, 53 0)d(g7r)drdp(r)
Fl\le K}VI

has the analytic continuation in s. In fact, we prove that it vanishes for all s € C'.
To show the vanishing, it suffices to check that

[ T [Ar) (90) — Algre)(0)]6(gr)d tdu(r) =0 and
I\ J1

/ / t7*[EW (gr4301) + Enr(gre) (k)
IM\9H: J1
— EW (g -1501) = Enr(gra-1) ()] d(g-)d " tdp(r) = 0.

If Re(s) > (d + 1)/2, the former integral is equal to

1 1
d+1 d+1 ) du(T),
(s_ IR E: )/Fl\maﬁ(g)u(f)

which is obviously meromorphic in s on the whole C. It is, indeed, equal to 0,
since ¢ is assumed to be cuspidal.

On the other hand, by (7.2) and (7.6), we unfold the second integral, provided
Re(s) > d/2, to obtain
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/ ( / T (G lgn) (01) + Anr(gr0) ()
— Glgri ) () — AM<gT,t1><sok>]dXt)v1¢<T>duoo,

where we put Foo = {7 € 91 | -1/2 < u <1/2, 0 < v < oo} with the measure
dpioe = dud™v. Since A(w1giv,:)(p) = A(w1giy,t-1)(p), this can also be written as

(/mts+(d/2)dxt/oo ts(d/2)d><t)
1 1

8 / @072 [Gm/ (0™ 2)) (k) + Ant (m/ (0™ 2)) (0)
Foo
— Afwim’ (v72)) ()] $(7) dpioo (8.2)

c 0
0c?t

using the notation m/(c) = m’(( )) with ¢ > 0. Now we check the following.

LEMMA 8.4.  For every cuspidal ¢, the integral

[ oG 0 ) 0) + Al (07 ) )
— A(wim’ (v™%)) ()] () dpo (8.3)
absolutely converges.

PROOF. Recall (7.7) and the last paragraph of Section 7. Then we know
that Epp(m')(p) = G(m/) () + Apr(m') () + A(m/)(¢) gives an automorphic form
on M/,. In particular, it is equal to Epv(wim’)(p). Let us put Fy = {7 € Fy |
0 < v < 1}. Then we split the integral (8.3) into the sum of

/F VDG (0T2) () + Anr(m! (07 12)) () = A(m! (012 w1)(9)) (7 dpoc
and

/F PG ) () + Ans (o)) ()

— A/ (v2))(9)) () dpice.

Now we have the following estimates for the functions in the integrands; namely,
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|G (v™2)) ()] < Myl D2, |G (012 )wn) ()| < Mapv™ (7072,
Apr(m! (v™2) () = 017D Ay (ea) (),
A (! (012 )wn) () = o= @D 2 A (w1) (),
A(m (02 )wn) () = 0 D2 A (w1) (), A/ (072) () = 0~ D2 A(e) ()
with some constants M;, M>. These bounds and the cuspidality of ¢ concludes

the assertion. O

The absolute convergence in the above lemma justifies to write (8.3) as

/ D2 (G (07 12) (03) + Ap (! (0 2)) ()
A (0)0) (9)) o () v,

where ¢g(v) = fiﬁz (T)du is the constant term of ¢. We have that ¢o(v) = 0

by the cuspidal assumption. Therefore, (8.2) vanishes everywhere in C, which
completes the proof of Theorem 8.3. O

9. Dirichlet series.

Let us recall Cohen’s function H(d, N), [C], for an even integer d and every
integer N > 0. If N = 0 or 1 mod 4, then we write N = Df? > 0 with D being
the discriminant of the real quadratic algebra Q(v/'N), and define

H(d,N)=L(1-d,xp) Z w(c)xp(e)etog (f>, (9.1)

c
el f

where p(+) is Mébius function and xp(-) = (£) is Kronecker symbol. We define
H(d,N)=0if N =2 or 3mod 4, and H(d,0) = ((1 — 2d). Then Cohen proved
that the Fourier series

Hyyya)(T) = Z H(d, N)e*™ ™ (1 € 1)
N=0

provides a holomorphic Eisenstein series of weight d 4 (1/2) for the group I'(4).

Now we take a normalization of E(g, sq)(¢) as
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E(9)() = ka- ¢(L+ d)H(d, 0)E(g, 54) ().

The regular part of its Fourier expansion is given by

~ 1 _
E®(gri)(@) = 5 Y AB)DR Wil (mars), s)(0)
BeLg

with the coeflicients

A(B)=L(1—d,xg)Fp(2 —d),

where we set Lo = {B € L | Dp > 0}. Also the equality
D
— d B
AB)=>"1 H(d, z2>
l|eB

is well known.
We will relate the Mellin transform of (9.2):

M (9, 5:0) = iT(d + 1)C(d + 1)C(1 — 2d).4 (8, 55 ),

(9.2)

(9.3)

twisted by a cuspidal Maass form ¢, to some familiar Dirichlet series of the con-

volution type.

For each B € Ly, 7 = u+iv € H1, r € SO(2), and ¢ € 5 we define an

archimedean integral by

—~ 1 [®
Wg(s,a.r; @) = 5/ tSW](;’lo(m(aT’tr),sd)(go)dxt, seC.

0

Let I'g C I} be the stabilizer of B € Ly with respect to the I'j-action on Lg.
It is easy to see that I'p is isomorphic to Z/2Z x Z, if B is anisotropic over Q; or
to Z/2Z, if B is isotropic. Also let Ly denote the complete set of representatives

of all I'i-classes in Lg.
Given a cuspidal Maass form ¢ we define

Po(ovsie) = |

I'e\$1

Using this, we can write the Mellin transform as

( WB(S, ar; <p)¢(a7r)dr>v_2dudv.
50(2)
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Mb,si0) = Y. AB)DE P Pp(¢,519).

[B]eLo
We compute Pg(¢, s; p) for every B € Lg as follows. Firstly, we may assume

without a loss of generality that the SO(2)-types of ¢ and ¢ are matching together,
hence,

PB(¢7S;¢)=/F\ /WB(S,GT;@W(LLT)U_QdudU.
B\H1

Choose a matrix hg € SLy(R) so that one has Blhp] = D,lg/zBO with By =
'/2). Then we find that
n e Z}

hp' Tshp = { + (CB _1>
Cp

with some number c¢g > 1. Let us write h;laT = @171, where 7, € SO(2).

(1/2

Using these notations, we can compute Pg(¢, s; @) as

D§S+(d/2)_1/ W, (s, a7 9)d(hpar)v~>dudv
hp I'shp\$H1

s _ = 1
_ D) 1/ W, (s, <0 ?) ;ga)
h'Tehp\$H1
Vv 1 u -1
X ¢(hB ( 0 \[ v dudv.

Also using the cg above, this is further equal to

pyeHa/- /_ D; Wa, (s (é 7;) ;cpk)
(LAl 2D o

To state the results we need some more notations. If B € L is anisotropic over
Q, then we define a number pg(¢) by
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1= [ oo (4 2) Ja o9

for a cuspidal Maass form. This definition does not depend on the choice of hp.

On the other hand, if B is isotropic, that is, if B is equivalent to (T(/)Q T{f) by the

I1-action, then we put

o0 1
pB(¢) = /0 ¢ d*v. (9.6)

= 3|3

(" %)

These values pg(¢) in the both cases provide the integrals of ¢ over the geodesics
in $; attached to B € Ly.

PRrROPOSITION 9.1.  Let k, 0 < k < d, be an even integer. Let —4v(v + 1)
denote the Casimir eigenvalue of a cuspidal Maass form ¢ of weight —2k. Then
there exists a function T'(s; k,v), which depends only on s, k, v, so that the identity

Pg(6, s;08) = T(s; k,v)p(¢) D5~ T2
holds.

PROOF. The proof is given by following the arguments of Maass, [Ma], and
Katok-Sarnak, [KS]. We treat the case B being anisotropic. Within the expression
(9.4) of Pg(¢,s; k) we observe that

—~ 1 _ N
W (5 (o 1) 1) = 02 4 07424 4 W (s, cxsn)

by putting

u—Vu?+1

D(u):;(w\/g?ﬁ 0 )

Therefore, Pg(¢, s; @) is equal to

D;er(d/Q)fl /

— 00

(04 g e )= o (5 ) )awe 01

where ¢p(g) is a function on SLa(R) defined by



Eisenstein series attached to cohomological representations 639

oot = [ o (L 0) oo

We also note that
Wp(—u) (8, €2;501) = Wpu (s, €2; ¢k),

since k is even.

The function ¢(g) is left-invariant by the action of the subgroup {(“,-1)} in
SLs(R), and also has the specified right SO(2)-action. Therefore ¢ p is determined
by the restrictions ¢5((§ %)) = ¢5(u) for u € R.

Let C = H? +2EF + 2FE with H = (§ %), E = (3}), and F = (99),
be the Casimir element in the enveloping algebra of sly. Since it is assumed to
act on ¢ by the scalar —4v(v + 1), we obtain an ordinary differential equation
of second order satisfied by ¢p. Indeed, the differential equation satisfied by
JB.o(w) = (u—i)*¢p(u) is explicitly given by

(L+u)jp. s —2(k — Dujp 4 + (k(k— 1) —v(v+1))jp,e = 0.
We write its solutions in the form
3B,6(1) = jB,6(0)Y0(u) + ji5 5 (0)¥1(u)

where 1, 1; are the solutions satisfying o (—u) = ¥g(u), ¥0(0) = 1 and ¥{(0) = 0;
or ¥1(—u) = —1(u) and 91 (0) = 1. In fact, we find

B v+k v—k+11 4
wolw) =ohi - 55 T2 ),

We see that only the even function jp 4(0)to(u) contributes to the inte-
gral (9.7), and also jp 4(0) = (—1)*/2pp(¢). Therefore we get the expression
of Pp(¢, s;¢k) by putting

D(s;k,v) = (—=1)F/2 /OO (u? + 1)_k/2w0(u)/V[7D(u)(s,eg; vk )du. (9.8)

— 00

This obviously depends only on s, k, v, but not on B, ¢. Hence the proof is
completed for every anisotropic B. A similar argument works also for isotropic B,
for which we omit the details here. (]
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Define fév = {[B] € Lo | Dp = N}, which is a finite set, and let us put

B(N)=N"3* 3" pg(¢). (9.9)

[BleLy
THEOREM 9.2.  With the same assumption as in Proposition 9.1 one has
M, 55:01) =T sk, v)((25 + 1) D5, 6),

where Dy (s, ¢) is a Dirichlet series given by
_ x~ H(d,N)b(N)
Di(s:¢) = > Nertarm—tii-
N=1
PROOF. Proposition 9.1 implies that /Z/\Z(b, $; ¢k ) is equal to the sum

S ]i) l/ Z A —s (d+1)/2
[B]eLo

Note that one has p.p(¢) = pp(¢) by taking h.p = hp. Let ZS = {[C] € Lo |
ec = 1} denote the subset of all primitive classes in Ly. Then we can rewrite the
above summation over Lg as

> D
Z ;e DC —s— (d+1)/zzldH< elzc>

[CleL; le

o0
B —s—(d+1)/2 H(d, Dpc)
= Y pe(d)Dg D mrdimetT

[CleL, m,l=1
=(@2s+1) Y. H(d, Dp)pp(¢)Dy"~ D2,
[BleLo
This provides the desired formula. O

The Dirichlet series Dy (s, ®) can be understood as the convolution product
attached to Hj41/2(7) and ¢. To explain this, we recall some facts on the theta
correspondence studied by Shintani [Sh], Niwa [N], and [KS].

Let us take
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4

which has 1 positive and 2 negative eigenvalues, and define
(z,y) ="yQu = 2(2x1y3 + 2x3y1 — x2y2) for z,y € R®.
For every even integer k, 0 < k < d, we define a function fi(x1, 72, 23) on R?® by

fk($1,x2,x3) _ (i(El - img)ke—27r(2mf+w§+2$§).

For any g € SLa(R)/{xe2} ~ SO(Q) and 7 = u + iv € H; we define

9(7’7 g) — ,U3/4 Z e—27riu(z§—4m1m3)fk (ﬁg_lx) .

r=(z1,T2,23)€EZ3
It satisfies 0(7, grg) = €2*90(1, g) for all the rotation matrices ry € SO(2).

Take a cuspidal Maass form ¢ of weight —2k for the group I';. We define the
lifting of ¢ by

B,(r) = () K/2+0/D) / 0(r.9)6(g)dg.
IN\SL2(R)

This lifting satisfies
05(y7) = 4 (7, T)2k+10¢(7) for every « € I'p(4)

and provides a cuspidal Maass form for the group I'y(4). Here we put

gy, 7) €d<d>(CT+d)1/2|CT+d| /2 y= (CCL d) € Ty(4)

by setting €4 = 1 or i according to d = 1 or 3 mod 4, and using the quadratic
residue symbol (*) defined in [S3].
As for the Fourier expansion

Os(7) = Z c(n,v)e*mne

n#0
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we get that ¢(n,v) = 0 for every n = 1 or 2 mod 4. One can compute the coeffi-
cients ¢(n,v) for any negative n = —N < 0 using the methods of [Ma] and [KS].
Let —4v(v + 1) be the Casimir eigenvalue of ¢ as before. Then we find that

2_1b(N)W(k/2)+(1/4)},(V/2)7(1/4) (47TN1}), if N =0 or 1 mod 4,
¢(—N,v) =

otherwise,

)

where Wy, ,(z) denotes the Whittaker function, see [MOS, Chapter VII].

We introduce an Eisenstein series

CE D DN (e PO

Y€ oo \I0(4)

for the group Iy(4) of even weight —I, where [y, = {fy = i((l) ’1’) |be Z}. Also
one sets

El(r,s)=T (s + ;)77_5 (2s)EZ! (7, ).

Define a normalization of the Dirichlet series Dy/(s, ¢) by

(s, ) = Hsr(s i ‘HQH)F( i d;”)c@s - 1)Di(s,9)

for every even k, 0 < k < d. Then we have the following result.

PROPOSITION 9.3.  The normalized Dirichlet series Ay (s, d) has the integral
expression

Ay(s,0) = 225“/

~ 1
(o) YDHO Lo ()0 (r) B ( s+ ) au().
I'o(4)\$H1 2

In particular, it is continued to an entire function in s, and satisfies the functional
equation

Ak(_sa ¢) = Ak(s7 d))

PrROOF. We can prove the integral expression by the standard unfold-
ing argument combined with the formulas of Fourier coefficients of 64(7) and
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Hgi(1/2)(T). Also the idea of the proof of [DI, Theorem 6] (and [KZ, Corol-
lary 5]), can be applied successfully to our situation, which gives the holomorphic
continuation and the functional equation of the integral expression. We omit the
details here. O

COROLLARY 9.4. For each k, 0 < k < d, the quotient

, d 0\ ! d—v\ "
w%r(s++2”+> r<s+2”> T(s; k,v)

gives an entire function of s € C, which is invariant under the exchange of vari-
ables between s and —s.

Proor. This is a direct consequence of Theorems 8.3, 9.2 and Proposition
9.3. O

Using Proposition 5.5, one can compute explicitly the above quotient for k& =
0, which yields the constant function 2¢/(m(2d)!).

10. Concluding remarks.

We keep the previous notations. Take a holomorphic elliptic cusp form f =
f(r) for the group SL2(Z) of weight 2d, and let h(7) be the holomorphic cusp
form for I'h(4) of weight d + (1/2) attached to f by Shimura correspondence. Let
¢(N) denote the N-th Fourier coefficient of h(7) for every N > 1. Let us put

(4i)?kg - 120> (Zld—1c<]lvj>)qfv (k =d),

Fo, (grt)(0r) = N>1 NN
0 (0<k<d)

and Fy, (g-,+)(¢—k) be its complex conjugation. Also, for every B € Ly and ¢ €
5, we set

Fp(gr1)(p) = % (”Z l%(?f) ) DYWL (m(ars), sa)(p).

Using these functions, we define a function F(g)(¢) on KG, for all ¢ € J#; by
the Fourier series

F(n(u)g)(p) = Fo,(9)(0) + > "B Fg(g) (), (10.1)
BeLg



644 T. MIYAZAKI

where u € So and g € KG . We understand F(gr)(y) translates according to

Fgr)(#) = 0(ur(8)) " F(g) (r2a(per (i)))

for every r € K.
We define a twisted Mellin transform .#r (¢, s; ) of F(g)(p) by the integral

w(o.5i) = [ . / ( | e t)as(gfr)drdum, (102)

which is similar to (8.1) but E®(g;¢p) is replaced by F®(g;p) =
> Ber, F'B(9)(p). For this integral transform we claim the following.

ProprosSITION 10.1.  Suppose that ¢ is a cuspidal Maass form of weight —2k,
0 < k < d, and has Casimir eigenvalue —4v(v + 1). Then Mp (9, s;r) has a
meromorphic continuation in s to the whole C for each base polynomial vy, € 3,
which, furthermore, is entire if k # d. Also the functional equation

%F((ba —S; 90) = e%F((ﬁv S (P)

is satisfied for every ¢ € ;.

PrROOF. Our discussion in the proofs of Proposition 9.1 and Theorem 9.2
continues to work in the current situation. Then, we can write .#Zr (¢, s; py) for
Y = YL as

—  ¢(N)b(N)
T(s; b, v)C(25 + 1) NEW

up to a constant multiple, with the same notations as before. Also the completed
Dirichlet series

B d+v+1 d—v o~ c(N)b(N)
2s -
7 r(s+2>r(s+ 5 )C(28+1)21N5+<d/2>(1/@

can be expressed by the integral

~ 1
g2st / " (4m)<d/2>+<1/4>h(7)9¢(T)E§Od(T,s+2)@.
1
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This has the meromorphic continuation to C, and satisfies the functional equation
for changing s with —s. It is entire if 64(7) is linearly independent of h(7). Then,
Corollary 9.4 completes the assertion. O

If the Fourier series (10.1) was known to give an automorphic form, then
Proposition 10.1 could be justified by repeating the arguments in the proof of
Lemma 8.2 and Theorem 8.3. Lastly, we remark that the #-lift h(7) to the orthog-
onal group SO(3,2) ~ PGSp(2) has the Fourier expansion whose appearance is
very close to the one in (10.1), see [Mi].

References

[AMS] T. Arakawa, I. Makino and F. Sato, Converse theorem for not necessarily cuspidal
Siegel modular forms of degree 2 and Saito-Kurokawa lifting, Comment. Math. Univ.
St. Pauli, 50 (2001), 197-234.

C] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic
characters, Math. Ann., 217 (1975), 271-285.

[DI] W. Duke and O. Imamoglu, A converse theorem and the Saito-Kurokawa lift, Internat.
Math. Res. Notices, 7 (1996), 347-355.

[HM] Y. Hasegawa and T. Miyazaki, Twisted Mellin transforms of a real analytic residue of

Siegel-Eisenstein series of degree 2, Internat. J. of Math, 20 (2009), 1011-1027.

[KS] S. Katok and P. Sarnak, Heegner points, cycles and Maass forms, Israel J. of Math.,
84 (1993), 193-227.

[KZ] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the
critical strip, Invent. Math., 64 (1981), 175-198.

K] G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modul-
funktion 2, Grades, Math. Ann., 137 (1959), 454-476.
[L] S. T. Lee, Degenerate principal series representations of Sp(2n, R), Composit. Math.,

103 (1996), 123-151.

[Ma] H. Maass, Uber die rdaumliche Verteilung der Punkte in Gittern mit indefiniter Metrik,
Math. Ann., 138 (1959), 287-315.

[MOS] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special
functions of mathematical physics, third edition, Die Grundlehren der mathematischen
Wissenschaften, 52, Springer-Verlag New York, Inc., New York, 1966.

[Mi] T. Miyazaki, On Saito-Kurokawa lifting to cohomological Siegel modular forms,
manuscripta math., 114 (2004), 139-163.

[Mu] R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley Series in Probability
and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982.

[N] S. Niwa, Modular forms of half integral weight and the integral of certain theta-
functions, Nagoya Math. J., 56 (1974), 147-161.

[S1] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann., 260
(1982), 269-302.

[S2] G. Shimura, On differential operators attached to certain representations of classical
groups, Invent. Math., 77 (1984), 463-488.

[S3] G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973),
440-481.

[Sh] T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya


doi:10.1007/BF01436180
doi:10.1155/S1073792896000220
doi:10.1142/S0129167X09005625
doi:10.1007/BF02761700
doi:10.1007/BF01389166
doi:10.1007/BF01360845
doi:10.1007/BF01344150
doi:10.1007/BF01461465
doi:10.1007/BF01388834
doi:10.2307/1970831
doi:10.1142/S0129167X09005625

646

(V]

N

T. MIYAZAKI

Math. J., 58 (1975), 83-126.

N. J. Vilenkin, Special Functions and the Theory of Group Representations, Trans-
lated from the Russian by V. N. Singh, Translations of Mathematical Monographs, 22,
American Mathematical Society, Providence, R. 1., 1968.

D. Vogan and G. Zuckerman, Unitary representations with nonzero cohomology, Com-
positio Math., 53 (1984), 51-90.

Takuya MIYAZAKI

Department of Mathematics

Keio University

3-14-1 Hiyoshi, Kohoku
Yokohama 223-8522, Japan
E-mail: miyazaki@math.keio.ac.jp



