Moduli of stable objects in a triangulated category

By Michi-aki Inaba

(Received July 31, 2007)
(Revised Feb. 4, 2009)

Abstract

We introduce the concept of strict ample sequence in a fibered triangulated category and define the stability of the objects in a triangulated category. Then we construct the moduli space of (semi) stable objects by GIT construction.

1. Introduction.

Let $X \rightarrow S$ be a projective and flat morphism of noetherian schemes. We consider the functor Splcpx ${ }_{X / S}:(\mathrm{Sch} / S) \rightarrow$ (Sets) defined by
$\operatorname{Splcpx}_{X / S}(T)$
where $E \sim E^{\prime}$ if there is a line bundle L on T such that $E \cong E^{\prime} \otimes L$ in $D^{b}\left(\operatorname{Coh}\left(X \times_{S}\right.\right.$ $T)$). We denote the étale sheafification of $\operatorname{Splcpx}_{X / S}$ by $\operatorname{Splcpx}_{X / S}^{\text {ét }}$. Then the result of [4] is that Splcpx $x_{X / S}^{\text {ét }}$ is an algebraic space over S. M. Lieblich extends this result in $[\mathbf{7}]$ to the case when $X \rightarrow S$ is a proper flat morphism of algebraic spaces. So the problem on the construction of the moduli space of objects in a derived category is solved in some sense. However, the moduli space Splcpx ét is not separated and it is not a good space in geometric sense. So we want to construct a projective moduli space (or quasi-projective moduli space with a good compactification) as a Zariski open set of Splcpx $\mathrm{e}_{X / S}^{\text {et }}$ such as the moduli space of stable sheaves.

This problem is also motivated by Fourier-Mukai transform. Let X, Y be

[^0]projective varieties over an algebraically closed field k and \mathscr{P} be an object of $D^{b}(\operatorname{Coh}(X \times Y))$. The functor
\[

$$
\begin{array}{r}
\Phi: D^{b}(\operatorname{Coh}(X)) \longrightarrow D^{b}(\operatorname{Coh}(Y)) \\
E \mapsto \mathrm{R}\left(p_{Y}\right)_{*}\left(p_{X}^{*}(E) \otimes^{L} \mathscr{P}\right)
\end{array}
$$
\]

is called a Fourier-Mukai transform if it is an equivalence of categories. Here $p_{X}: X \times Y \rightarrow X$ and $p_{Y}: X \times Y \rightarrow Y$ are the projections. Fourier-Mukai transform induces the isomorphisms on moduli spaces and for example the image $\Phi\left(M_{X}^{P}\right)$ of a moduli space of stable sheaves M_{X}^{P} on X by Φ sometimes becomes a moduli space of stable sheaves on Y. The problem on the preservation of stability under Fourier-Mukai transform is investigated by many people and this problem is clearly pointed out by K. Yoshioka in [11]. However, the image $\Phi\left(M_{X}^{P}\right)$ of the moduli space of stable sheaves by the Fourier-Mukai transform may not be contained in the category of coherent sheaves on Y in general and so we must consider certain moduli space of stable objects in the derived category $D^{b}(\operatorname{Coh}(Y))$.

In this paper we introduce the concept "strict ample sequence" in a triangulated category. "Strict ample sequence" satisfies the condition of ample sequence defined by A. Bondal and D. Orlov in [2], but it also satisfies many other conditions because we expect that a "polarization" is determined by strict ample sequence. Indeed we can define stable objects determined by a strict ample sequence and construct the moduli space of stable objects (resp. S-equivalence classes of semistable objects) as a quasi-projective scheme (resp. projective scheme). This is the main result of this paper (Theorem 4.4 and Theorem 4.8). If $\Phi: D^{b}(\operatorname{Coh}(X)) \rightarrow D^{b}(\operatorname{Coh}(Y))$ is a Fourier-Mukai transform and M_{X}^{P} is a moduli space of stable sheaves on X, then the image $\Phi\left(M_{X}^{P}\right)$ of M_{X}^{P} by Φ becomes a moduli space of stable objects in $D^{b}(\operatorname{Coh}(Y))$ whose stability is determined by some strict ample sequence on $D^{b}(\operatorname{Coh}(Y))$. So Fourier-Mukai transform always preserves certain stability in our sense (Example 5.3).
T. Bridgeland defined in $[\mathbf{1}]$ the concept of stability condition on a triangulated category. So we are interested in the relation between the stability condition of Bridgeland and the definition of stability determined by a strict ample sequence. However, it seems rather impossible to expect the construction of a strict ample sequence from the stability condition defined by Bridgeland without any other condition. How to treat the relation between strict ample sequence and stability condition of Brigeland is a problem still unsolved.

2. Definition of fibered triangulated category.

Let S be a noetherian scheme. We denote the category of noetherian schemes over S by (Sch / S) and the derived category of bounded complexes of coherent sheaves on U by $D_{c}^{b}(U)$ for $U \in(\mathrm{Sch} / S)$. We denote the derived category of lower bounded complexes of coherent sheaves on U by $D_{c}^{+}(U)$ for $U \in(\mathrm{Sch} / S)$. For a noetherian scheme X over S, we denote the full subcategory of $D_{c}^{b}(X)$ consisting of the objects of finite Tor-dimension over S by $D^{b}(\operatorname{Coh}(X / S))$. Then $D^{b}(\operatorname{Coh}(X / S))$ becomes a triangulated category. For a triangulated category \mathscr{T} and for objects $E, F \in \mathscr{T}$, we write $\operatorname{Ext}^{i}(E, F):=\operatorname{Hom}_{\mathscr{T}}(E, F[i])$.

Definition 2.1. $\quad p: \mathscr{D} \rightarrow(\mathrm{Sch} / S)$ is called a fibered triangulated category if
(1) \mathscr{D} is a category, p is a covariant functor,
(2) for any $U \in(\operatorname{Sch} / S)$, the full subcategory $\mathscr{D}_{U}:=p^{-1}(U)$ of \mathscr{D} is a triangulated category,
(3) for any object $E \in \mathscr{D}_{U}$ and for any morphism $f: V \rightarrow U=p(E)$ in (Sch/S), there exist an object $F \in \mathscr{D}_{V}$ and a morphism $u: F \rightarrow E$ satisfying the condition: For any object $G \in \mathscr{D}_{V}$ and a morphism $v: G \rightarrow E$ with $p(v)=f$, there exists a unique morphism $w: G \rightarrow F$ satisyfing $p(w)=\mathrm{id}_{V}$ and $u \circ w=v$, (we denote F by $f^{*}(E)$ or E_{V} and we call such morphism u a Cartesian morphism),
(4) any composition of Cartesian morphisms is Cartesian,
(5) for any morphism $V \rightarrow U$ in $(\operatorname{Sch} / S), \mathscr{D}_{U} \ni E \mapsto E_{V} \in \mathscr{D}_{V}$ is an "exact functor", that is, for any distinguished triangle $E \rightarrow F \rightarrow G$ in $\mathscr{D}_{U}, E_{V} \rightarrow$ $F_{V} \rightarrow G_{V}$ is a distinguished triangle in \mathscr{D}_{V} and for any $E \in \mathscr{D}_{U}$ and any $i \in \boldsymbol{Z}$, there is an isomorphism $(E[i])_{V} \cong E_{V}[i]$ functorial in E.

Definition 2.2. A fibered triangulated category $p: \mathscr{D} \rightarrow(\mathrm{Sch} / S)$ has base change property if
(1) for each $U \in(\mathrm{Sch} / S)$, there is a bi-exact bi-functor $\otimes: \mathscr{D}_{U} \times$ $D^{b}(\operatorname{Coh}(U / U)) \rightarrow \mathscr{D}_{U}$ such that there is a functorial isomorphism $E[i] \otimes$ $P[j] \cong(E \otimes P)[i+j]$ for $E \in \mathscr{D}_{U}, P \in D^{b}(\operatorname{Coh}(U / U))$,
(2) for a morphism $\varphi: U \rightarrow V$ in (Sch/S), the diagram

is "commutative", precisely, there exists a functorial isomorphism $\varphi^{*} \circ \otimes \xrightarrow{\sim}$ $\otimes \circ\left(\varphi^{*} \times L \varphi^{*}\right)$,
(3) for $U \in(\mathrm{Sch} / S)$, there is a bi-exact bi-functor

$$
\boldsymbol{R} \operatorname{Hom}_{p}: \mathscr{D}_{U} \times \mathscr{D}_{U} \longrightarrow D_{c}^{+}(U)
$$

such that for $E_{1}, E_{2} \in \mathscr{D}_{U}$ and for intgers i, j, there is an isomorphism $\boldsymbol{R} \operatorname{Hom}_{p}\left(E_{1}[i], E_{2}[j]\right) \cong \boldsymbol{R} \operatorname{Hom}_{p}(E, F)[j-i]$ functorial in E_{1} and E_{2} and also for $E_{1}, E_{2} \in \mathscr{D}_{U}$ there is an isomorphism $\operatorname{Hom}_{D(U)}$ $\left(\mathscr{O}_{U}, \boldsymbol{R} \operatorname{Hom}_{p}\left(E_{1}, E_{2}\right)\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{D}_{U}}\left(E_{1}, E_{2}\right)$ functorial in E_{1} and E_{2},
(4) for any $U \in(\mathrm{Sch} / S)$ and for any objects $E_{1}, E_{2} \in \mathscr{D}_{U}$, there exist a lower bounded complex P^{\bullet} of locally free sheaves of finite rank on U and an isomorphism

$$
P^{\bullet} \otimes \mathscr{O}_{V} \xrightarrow{\sim} \boldsymbol{R} \operatorname{Hom}_{p}\left(\left(E_{1}\right)_{V},\left(E_{2}\right)_{V}\right)
$$

in $D_{c}^{+}(V)$ for any morphism $V \rightarrow U$ in (Sch/S), such that the diagram

is commutative,
(5) for $U \in(\operatorname{Sch} / S), E_{1}, E_{2} \in \mathscr{D}_{U}$ and $F_{1}, F_{2} \in D^{b}(\operatorname{Coh}(U / U))$, there is a functorial isomorphism $\boldsymbol{R} \operatorname{Hom}_{p}\left(E_{1} \otimes F_{1}, E_{2} \otimes_{U} F_{2}\right) \cong \boldsymbol{R} \operatorname{Hom}_{p}\left(E_{1}, E_{2}\right) \otimes_{\mathscr{O}_{U}}^{L}$ $\boldsymbol{R} \mathscr{H} \operatorname{om}\left(F_{1}, F_{2}\right)$ such that for any morphism $\varphi: V \rightarrow U$ in (Sch/S), the diagram

is commutative.
Remark 2.3. For $E, F \in \mathscr{D}_{U}$, we denote the i-th cohomology $H^{i}\left(\boldsymbol{R} \operatorname{Hom}_{p}(E, F)\right)$ by $R^{i} \operatorname{Hom}_{p}(E, F)$. We notice that for three objects $E, F, G \in$ \mathscr{D}_{U}, there is a canonical morphism

$$
R^{0} \operatorname{Hom}_{p}(E, F) \times R^{0} \operatorname{Hom}_{p}(F, G) \rightarrow R^{0} \operatorname{Hom}_{p}(E, G) .
$$

Example 2.4. Let $X \rightarrow S$ be a flat projective morphism. Then $\left\{D^{b}\left(\operatorname{Coh}\left(X_{U} / U\right)\right)\right\}_{U \in(\operatorname{Sch} / S)}$ becomes a fibered triangulated category over S which has base change property.

Example 2.5. Let X be a projective scheme over \boldsymbol{C} and G a finite group acting on X. For a scheme $U \in(\operatorname{Sch} / \boldsymbol{C})$, let $D^{G}\left(\operatorname{Coh}\left(X_{U} / U\right)\right)$ be the derived category of bounded complexes of G-equivariant coherent sheaves on X_{U} of finite Tor-dimension over U. Then $\left\{D^{G}\left(\operatorname{Coh}\left(X_{U} / U\right)\right)\right\}_{U \in(\text { Sch } / C)}$ becomes a fibered triangulated category over \boldsymbol{C} which has base change property.

3. Strict ample sequence and stability.

Definition 3.1. Let $p: \mathscr{D} \rightarrow(\mathrm{Sch} / S)$ be a fibered triangulated category with base change property. A sequence $\mathscr{L}=\left\{L_{n}\right\}_{n \geq 0}$ of objects of \mathscr{D}_{S} is said to be a strict ample sequence if it satisfies the following conditions:
(1) $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s},\left(L_{n}\right)_{s}\right)=0$ for any $i \neq 0, N>n$ and $s \in S$.
(2) There exist isomorphisms

$$
\theta_{k}: R^{0} \operatorname{Hom}_{p}\left(L_{n}, L_{m}\right) \xrightarrow{\sim} R^{0} \operatorname{Hom}_{p}\left(L_{n+k}, L_{m+k}\right)
$$

for non-negative integers k, m, n with $n \geq m$ such that $\theta_{k} \circ \theta_{l}=\theta_{k+l}$ for any k, l and the diagram

is commutative for non-negative integers k, l, m, n with $n \geq m \geq l$.
(3) There exists a subbundle $V_{1} \subset R^{0} \operatorname{Hom}_{p}\left(L_{1}, L_{0}\right)$ such that the diagram

is commutative for $n \geq 0$, where the right vertical arrow and the bottom horizontal arrow are the canonical composition maps and there exists an integer n_{0} such that for any $n \geq n_{0}$,

$$
R^{0} \operatorname{Hom}_{p}\left(L_{n}, L_{1}\right) \otimes V_{1} \longrightarrow R^{0} \operatorname{Hom}_{p}\left(L_{n}, L_{0}\right)
$$

is surjective for any $n \geq n_{0}$.
(4) For any object $E \in \mathscr{D}_{U}$ and for any non-negative integer m, there exists a bounded complex P^{\bullet} of locally free sheaves of finite rank on U such that $\boldsymbol{R} \operatorname{Hom}_{p}\left(\left(L_{m}\right)_{V}, E_{V}\right) \cong P^{\bullet} \otimes \mathscr{O}_{V}$ for any $V \rightarrow U$. Moreover, there exists an integer n_{0} such that for any $n \geq n_{0}$, exists an integer N_{0} such that for any integers i, N with $N \geq N_{0}$ and for any $s \in U$,

$$
\operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n}\right)_{s}\right) \otimes \operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right) \rightarrow \operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s}, E_{s}\right)
$$

is surjective.
(5) If there exist integers i, n_{0} and an object $E \in \mathscr{D}_{U}$ satisfying $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)$ $=0$ for any $n \geq n_{0}$ and for any $s \in U$, then there exist an object $F \in \mathscr{D}_{U}$ and a morphism $u: E \rightarrow F$ such that for any $j>i, R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right)$ $\rightarrow R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right)$ are isomorphic for $n \gg 0$, and for any $j \leq i$, $R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right)=0$ for $n \gg 0$.
(6) Take two objects $E, F \in \mathscr{D}_{U}$ such that for any $i \geq 0, R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right)=0$ for $n \gg 0$ and that for any $i<0, R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right)=0$ for $n \gg 0$. Then we have $\operatorname{Hom}_{\mathscr{D}_{U}}(E, F)=0$.

Proposition 3.2. Take $E \in \mathscr{D}_{U}$ such that for any $i, R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right)=$ 0 for $n \gg 0$. Then we have $E=0$.

Proof. Applying the condition (6) of Definition 3.1, we have $\operatorname{Hom}(E, E)=$ 0 . In particular $\operatorname{id}_{E}=0$. So, for any object $F \in \mathscr{D}_{U}$ and for any morphism $f \in \operatorname{Hom}(F, E)($ resp. $g \in \operatorname{Hom}(E, F)), f=\operatorname{id}_{E} \circ f=0$ (resp. $\left.g=g \circ \mathrm{id}_{E}=0\right)$. Thus $E=0$.

Remark 3.3. By the condition in Definition 3.1 (2), we can see that $\theta_{0}=\mathrm{id}$ and $\theta_{k}(\mathrm{id})=$ id. We put $A:=\bigoplus_{n \geq 0} R^{0} \operatorname{Hom}_{p}\left(L_{n}, L_{0}\right)$ and define a multiplication

$$
\alpha: R^{0} \operatorname{Hom}_{p}\left(L_{n}, L_{0}\right) \times R^{0} \operatorname{Hom}_{p}\left(L_{m}, L_{0}\right) \longrightarrow R^{0} \operatorname{Hom}_{p}\left(L_{n+m}, L_{0}\right)
$$

by $\alpha=$ (composition) $\circ\left(\theta_{m} \times \mathrm{id}\right)$. Then A becomes an associative graded ring which is a finitely generated module over $S^{*}\left(V_{1}\right)$, where $S^{*}\left(V_{1}\right)$ is the symmetric algebra of V_{1} over \mathscr{O}_{S}.

Proposition 3.4. Let E_{1}, E_{2} be objects of \mathscr{D}_{U} and $u: E_{1} \rightarrow E_{2}$ be a morphism such that for any integer i the induced morphism $R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E_{1}\right) \rightarrow$ $R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E_{2}\right)$ is isomorphic for $n \gg 0$. Then u is an isomorphism.

Proof. For any i, there is an exact sequence

$$
\begin{aligned}
& R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E_{1}\right) \xrightarrow{\sim} R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E_{2}\right) \longrightarrow R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, \operatorname{Cone}(u)\right) \\
& \quad \longrightarrow R^{i+1} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E_{1}\right) \xrightarrow{\sim} R^{i+1} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E_{2}\right)
\end{aligned}
$$

for $n \gg 0$. Thus we have $R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}\right.$, $\left.\operatorname{Cone}(u)\right)=0$ for $n \gg 0$. By Proposition 3.2 we have Cone $(u)=0$, which means that u is an isomorphism.

Proposition 3.5. For an integer i and an object $E \in \mathscr{D}_{U}$ such that for $n \gg 0, \operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0$ for $s \in U$, the object F given in Definition 3.1 (5) is unique up to an isomorphism.

Proof. Let $F^{\prime} \in \mathscr{D}_{U}$ be another object with a morphism $u^{\prime}: E \rightarrow F^{\prime}$ having the same property as F. Consider the composite

$$
v: \operatorname{Cone}(u)[-1] \longrightarrow E \xrightarrow{u^{\prime}} F^{\prime} .
$$

Since there is a long exact sequence

$$
\begin{aligned}
\cdots & \longrightarrow R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right) \longrightarrow R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right) \longrightarrow R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, \text { Cone }(u)\right) \\
& \longrightarrow R^{j+1} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right) \longrightarrow R^{j+1} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right) \longrightarrow \cdots,
\end{aligned}
$$

we have, for any $j \geq i, R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}\right.$, $\left.\operatorname{Cone}(u)\right)=0$ for $n \gg 0$. Note that for any $j \leq i$, we have $R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F^{\prime}\right)=0$ for $n \gg 0$. Then we have $\operatorname{Hom}_{\mathscr{D}_{U}}\left(\operatorname{Cone}(u), F^{\prime}\right)=0$ and $\operatorname{Hom}_{\mathscr{D}_{U}}\left(\operatorname{Cone}(u)[-1], F^{\prime}\right)=0$ by condition (6) of Definition 3.1. So we have $v=0$ and there is a unique morphism $\varphi: F \rightarrow F^{\prime}$
which makes the diagram

commute. We can see that for any integer j, the morphism $R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right) \rightarrow$ $R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F^{\prime}\right)$ induced by φ is isomorphic for $n \gg 0$. Hence φ is an isomorphism by Proposition 3.4.

REmark 3.6. In the situation of Definition 3.1 (5), for $n \gg 0$, the induced morphism

$$
\operatorname{Ext}^{j}\left(\left(L_{n}\right)_{s}, E_{s}\right) \rightarrow \operatorname{Ext}^{j}\left(\left(L_{n}\right)_{s}, F_{s}\right)
$$

is isomorphic for any $j>i$ and for any $s \in U$, and we have, for $n \gg 0$, $\operatorname{Ext}^{j}\left(\left(L_{n}\right)_{s}, F_{s}\right)=0$ for any $j \leq i$ and for any $s \in U$.

Indeed consider the distinguished triangle $E \xrightarrow{u} F \rightarrow \operatorname{Cone}(u)$. Note that there is a long exact sequence

$$
\begin{aligned}
& R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right) \longrightarrow R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right) \longrightarrow R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, \operatorname{Cone}(u)\right) \\
& \quad \longrightarrow R^{j+1} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right) \longrightarrow R^{j+1} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right)
\end{aligned}
$$

Since $R^{i} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right)=0$ for $n \gg 0$, and for any $j>i, R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right) \rightarrow$ $R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, F\right)$ are isomorphic for $n \gg 0$, we have, for any $j \geq i$, $R^{j} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}\right.$, Cone $\left.(u)\right)=0$ for $n \gg 0$.

By Definition 3.1 (4), there are integers n_{0} and N_{0} with $N_{0}>n_{0}$ such that

$$
\operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s}\right) \otimes \operatorname{Ext}^{j}\left(\left(L_{n_{0}}\right)_{s}, \operatorname{Cone}(u)_{s}\right) \longrightarrow \operatorname{Ext}^{j}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}(u)_{s}\right)
$$

is suriective for any j, any $N \geq N_{0}$ and any $s \in U$. By Definition 3.1 (4), there are integers j_{0}, j_{1} such that for $j<j_{0}$ and $j>j_{1}, \operatorname{Ext}^{j}\left(\left(L_{n_{0}}\right)_{s}, \operatorname{Cone}(u)_{s}\right)=0$ for any $s \in U$. Then for any $N \geq N_{0}$, we have $\operatorname{Ext}^{j}\left(\left(L_{N}\right)_{s}\right.$, Cone $\left.(u)_{s}\right)=0$ for any $j>j_{1}$ and $s \in U$. For each j with $i \leq j \leq j_{1}$, there exists an integer $N(j)$ such that for any $N \geq N(j)$, we have $R^{j} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}, \operatorname{Cone}(u)\right)=0$. Put

$$
\tilde{N}:=\max \left\{N(i), N(i+1), \ldots, N\left(j_{1}\right), N_{0}\right\} .
$$

By Definition 2.2 (4), we have $\operatorname{Ext}^{j}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}(u)_{s}\right)=0$ for any $N \geq \tilde{N}$ and for each j with $i \leq j \leq j_{1}$ and for any $s \in U$, because $\operatorname{Ext}^{j_{1}+1}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}(u)_{s}\right)=0$ for any $s \in U$ and $R^{j} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}\right.$, Cone $\left.(u)\right)=0$ for $i \leq j \leq j_{1}$. Thus we have $\operatorname{Ext}^{j}\left(\left(L_{N}\right)_{s}\right.$, Cone $\left.(u)_{s}\right)=0$ for any $N \geq \tilde{N}, j \geq i$ and $s \in U$.

Note that there are integers k_{0}, k_{1} and a positive integer M_{0} such that for any $M \geq M_{0}$ and for any $s \in U, \operatorname{Ext}^{j}\left(\left(L_{M}\right)_{s}, F_{s}\right)=0$ for $j<k_{0}$ and $j>k_{1}$. We may also assume that for any $M \geq M_{0}$ and for any $s \in U$, $\operatorname{Ext}^{i}\left(\left(L_{M}\right)_{s}, E_{s}\right)=0$. From the exact sequence

$$
0=\operatorname{Ext}^{i}\left(\left(L_{M}\right)_{s}, E_{s}\right) \longrightarrow \operatorname{Ext}^{i}\left(\left(L_{M}\right)_{s}, F_{s}\right) \longrightarrow \operatorname{Ext}^{i}\left(\left(L_{M}\right)_{s}, \operatorname{Cone}(u)_{s}\right)=0,
$$

we have $\operatorname{Ext}^{i}\left(\left(L_{M}\right)_{s}, F_{s}\right)=0$ for $s \in U$ and $M \geq \max \left\{M_{0}, \tilde{N}\right\}$. By assumption, for each j with $k_{0} \leq j \leq i$, there exists an integer $M(j)$ such that $R^{j} \operatorname{Hom}_{p}\left(\left(L_{M}\right)_{U}, F\right)=0$ for $M \geq M(j)$. Put

$$
\tilde{M}:=\max \left\{\tilde{N}, M_{0}, M\left(k_{0}\right), M\left(k_{0}+1\right), \ldots, M(i)\right\}
$$

Then we have $\operatorname{Ext}^{j}\left(\left(L_{M}\right)_{s}, F_{s}\right)=0$ for $j \leq i, s \in U$ and $M \geq \tilde{M}$ by using Definition 2.2 (4), because $\operatorname{Ext}^{i}\left(\left(L_{M}\right)_{s}, F_{s}\right)=0$ and $R^{j} \operatorname{Hom}_{p}\left(\left(L_{M}\right)_{U}, F\right)=0$ for $k_{0} \leq j \leq i$. From the exact sequence

$$
\begin{aligned}
& \operatorname{Ext}^{j-1}\left(\left(L_{M}\right)_{s}, \operatorname{Cone}(u)_{s}\right) \longrightarrow \operatorname{Ext}^{j}\left(\left(L_{M}\right)_{s}, E_{s}\right) \\
& \quad \longrightarrow \operatorname{Ext}^{j}\left(\left(L_{M}\right)_{s}, F_{s}\right) \longrightarrow \operatorname{Ext}^{j}\left(\left(L_{M}\right)_{s}, \operatorname{Cone}(u)_{s}\right),
\end{aligned}
$$

we have an isomorphism $\operatorname{Ext}^{j}\left(\left(L_{M}\right)_{s}, E_{s}\right) \xrightarrow{\sim} \operatorname{Ext}^{j}\left(\left(L_{M}\right)_{s}, F_{s}\right)$ for $j>i, s \in U$ and $M \geq \tilde{M}$.

Lemma 3.7. If $E \in \mathscr{D}_{U}$ satisfies $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0$ for $n \gg 0, i \neq 0$ and $s \in U$, then there exist locally free \mathscr{O}_{U}-modules W_{0}, W_{1}, W_{2}, positive integers $n_{0}<n_{1}<n_{2}$ and morphisms

$$
\left(L_{n_{2}}\right)_{U} \otimes W_{2} \xrightarrow{d^{2}}\left(L_{n_{1}}\right)_{U} \otimes W_{1} \xrightarrow{d^{1}}\left(L_{n_{0}}\right)_{U} \otimes W_{0} \xrightarrow{f} E
$$

such that the induced sequence

$$
\begin{aligned}
& \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{2}}\right)_{s}\right) \otimes W_{2} \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{1}}\right)_{s}\right) \otimes W_{1} \\
& \quad \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s}\right) \otimes W_{0} \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s}, E_{s}\right) \longrightarrow 0
\end{aligned}
$$

is exact for $N \gg 0$ and $s \in U$.
Proof. By Definition 3.1 (4), there exist integers n_{0}, N_{0} with $N_{0}>n_{0}$ such that for any $s \in U$,

$$
\operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s}\right) \otimes \operatorname{Hom}\left(\left(L_{n_{0}}\right)_{s}, E_{s}\right) \rightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s}, E_{s}\right)
$$

is surjective for $N \geq N_{0}$ and $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0$ for $n \geq n_{0}, i \neq 0$ and $s \in U$. There is a canonical morphism

$$
f:\left(L_{n_{0}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, E\right) \longrightarrow E
$$

and we put $F^{1}:=\operatorname{Cone}(f)[-1]$. Then we can see that $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s},\left(F^{1}\right)_{s}\right)=0$ for $N \geq N_{0}, i \neq 0$ and $s \in U$. We can find integers n_{1}, N_{1} with $N_{1}>n_{1}$ such that for any $s \in U$,

$$
\operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{1}}\right)_{s}\right) \otimes \operatorname{Hom}\left(\left(L_{n_{1}}\right)_{s},\left(F^{1}\right)_{s}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(F^{1}\right)_{s}\right)
$$

is surjective for $N \geq N_{1}$ and $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s},\left(F^{1}\right)_{s}\right)=0$ for $n \geq n_{1}, i \neq 0$ and $s \in U$. Consider the canonical morphism

$$
g:\left(L_{n_{1}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{1}}\right)_{U}, F^{1}\right) \longrightarrow F^{1}
$$

and put $F^{2}:=\operatorname{Cone}(g)[-1]$. We can find again integers n_{2}, N_{2} with $N_{2}>n_{2}$ such that for any $s \in U$,

$$
\operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{2}}\right)_{s}\right) \otimes \operatorname{Hom}\left(\left(L_{n_{2}}\right)_{s},\left(F^{2}\right)_{s}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(F^{2}\right)_{s}\right)
$$

is surjective for $N \geq N_{2}$ and $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s},\left(F^{2}\right)_{s}\right)=0$ for $n \geq n_{2}, i \neq 0$ and $s \in U$. There is a canonical morphism

$$
h:\left(L_{n_{2}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{2}}\right)_{U}, F^{2}\right) \longrightarrow F^{2}
$$

and we obtain a sequence of morphisms

$$
\begin{aligned}
& \left(L_{n_{2}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{2}}\right)_{U}, F^{2}\right) \longrightarrow\left(L_{n_{1}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{1}}\right)_{U}, F^{1}\right) \\
& \quad \longrightarrow\left(L_{n_{0}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, E\right) \longrightarrow E
\end{aligned}
$$

such that for $N \geq \max \left\{N_{0}, N_{1}, N_{2}\right\}$, the induced sequence

$$
\begin{aligned}
& \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{2}}\right)_{s}\right) \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{2}}\right)_{U}, F^{2}\right) \\
& \quad \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{1}}\right)_{s}\right) \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{1}}\right)_{U}, F^{1}\right) \\
& \quad \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s}\right) \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, E\right) \\
& \quad \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s}, E_{s}\right) \longrightarrow 0
\end{aligned}
$$

is exact for any $s \in U$. If we put $W_{0}=R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, E\right)$ and $W_{i}=$ $R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{i}}\right)_{U}, F^{i}\right)$ for $i=1,2$, then we can see by Definition 2.2 (4) that W_{i} are locally free \mathscr{O}_{U}-modules and have the desired property.

Proposition 3.8. Let E_{1}, E_{2} be objects of \mathscr{D}_{U} such that $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s},\left(E_{j}\right)_{s}\right)$ $=0$ for $j=1,2, n \gg 0, i \neq 0$ and $s \in U$. If $f: E_{1} \rightarrow E_{2}$ is a morphism in \mathscr{D}_{U} such that the induced morphisms $R^{0} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E_{1}\right) \rightarrow R^{0} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E_{2}\right)$ are zero for $n \gg 0$, then $f=0$.

Proof. By assumption, there is an integer N_{0} such that for any $N \geq N_{0}$, the morphism

$$
R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}, E_{1}\right) \rightarrow R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}, E_{2}\right)
$$

induced by f is zero and $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s},\left(E_{j}\right)_{s}\right)=0$ for $j=1,2, i \neq 0$ and $s \in U$. By Lemma 3.7, there are locally free sheaves W_{0}, W_{1}, W_{2}, integers $n_{0}<n_{1}<n_{2}$ and morphisms

$$
\left(L_{n_{2}}\right)_{U} \otimes W_{2} \longrightarrow\left(L_{n_{1}}\right)_{U} \otimes W_{1} \longrightarrow\left(L_{n_{0}}\right)_{U} \otimes W_{0} \xrightarrow{\varphi} E_{1}
$$

such that the induced sequence

$$
\begin{aligned}
& \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{2}}\right)_{s}\right) \otimes W_{2} \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{1}}\right)_{s}\right) \otimes W_{1} \\
& \quad \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s}\right) \otimes W_{0} \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(E_{1}\right)_{s}\right) \longrightarrow 0
\end{aligned}
$$

is exact for $N \gg 0$ and $s \in U$. We can take n_{0} so that $n_{0} \geq N_{0}$. Consider the distinguished triangle

$$
\left(L_{n_{0}}\right)_{U} \otimes W_{0} \longrightarrow E_{1} \longrightarrow \operatorname{Cone}(\varphi)
$$

We can see that $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, \operatorname{Cone}(\varphi)_{s}\right)=0$ for $n \gg 0, i \neq-1$ and $s \in U$. So we have $\operatorname{Hom}_{\mathscr{D}_{U}}\left(\operatorname{Cone}(\varphi), E_{2}\right)=0$ by (6) of Definition 3.1 and the homomorphism

$$
\operatorname{Hom}_{\mathscr{D}_{U}}\left(E_{1}, E_{2}\right) \rightarrow \operatorname{Hom}_{\mathscr{D}_{U}}\left(\left(L_{n_{0}}\right)_{U} \otimes W_{0}, E_{2}\right)
$$

induced by φ is injective. On the other hand, the homomorphism

$$
R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U} \otimes W_{0}, E_{1}\right) \longrightarrow R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U} \otimes W_{0}, E_{2}\right)
$$

induced by f is zero. So we have $f \circ \varphi=0$. By the injectivity of (\dagger), we have $f=0$.

Since $A=\bigoplus_{n \geq 0} R^{0} \operatorname{Hom}_{p}\left(L_{n}, L_{0}\right)$ becomes a finite algebra over $S^{*}\left(V_{1}\right)$, the associated sheaf $\mathscr{A}:=\tilde{A}$ becomes a coherent sheaf of algebras on $\boldsymbol{P}\left(V_{1}\right)$. For each object $E \in \mathscr{D}_{U}$ satisfying $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0$ for $n \gg 0, i \neq 0$ and $s \in U$, the associated sheaf $\left(\oplus_{n \geq 0} R^{0} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right)\right)^{\sim}$ on $\boldsymbol{P}\left(V_{1}\right)_{U}=\boldsymbol{P}\left(V_{1}\right) \times_{S} U$ becomes a coherent \mathscr{A}_{U}-module flat over U.

Proposition 3.9. The correspondence $E \mapsto\left(\bigoplus_{n \geq 0} R^{0} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right)\right)^{\sim}$ gives an equivalence of categories between the full subcategory of \mathscr{D}_{U} consisting of the objects E of \mathscr{D}_{U} satisfying $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0$ for $n \gg 0, i \neq 0$ and $s \in U$ and the category of coherent \mathscr{A}_{U}-modules flat over U.

Proof. First we will prove that the functor

$$
\psi: E \mapsto\left(\bigoplus_{n \geq 0} R^{0} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right)\right)^{\sim}
$$

is fully faithful. Take any objects E, F of \mathscr{D}_{U} which satisfy $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0$, $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, F_{s}\right)=0$ for $n \gg 0, i \neq 0$ and $s \in U$. By Proposition 3.8,

$$
\operatorname{Hom}(E, F) \longrightarrow \operatorname{Hom}(\psi(E), \psi(F))
$$

is injective. Take any homomorphism $f \in \operatorname{Hom}(\psi(E), \psi(F))$. There exists an integer n_{0} such that for any $n \geq n_{0}, \operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0, \operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, F_{s}\right)=0$ for $i \neq 0$ and $s \in U$ and the homomorphisms

$$
\begin{aligned}
& \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s}\right) \otimes \operatorname{Hom}\left(\left(L_{n_{0}}\right)_{s}, E_{s}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s}, E_{s}\right) \\
& \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s}\right) \otimes \operatorname{Hom}\left(\left(L_{n_{0}}\right)_{s}, F_{s}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s}, F_{s}\right)
\end{aligned}
$$

are surjective for $N \gg 0$ and $s \in U$. For a coherent \mathscr{A}_{U}-module \mathscr{E}, we denote $\mathscr{E} \otimes \mathscr{O}_{\boldsymbol{P}\left(V_{1}\right)_{U}}(n)$ simply by $\mathscr{E}(n)$. We denote the structure morphism $\boldsymbol{P}\left(V_{1}\right)_{U} \rightarrow U$
by π. Then we may assume that $R^{i} \pi_{*}\left(\psi(E)\left(n_{0}\right)\right)=0, R^{i} \pi_{*}\left(\psi(F)\left(n_{0}\right)\right)=0$ for $i>0$ and that the homomorphisms

$$
\begin{aligned}
& \pi_{*}\left(\psi(E)\left(n_{0}\right)\right) \otimes \mathscr{A}\left(-n_{0}\right) \longrightarrow \psi(E) \\
& \pi_{*}\left(\psi(F)\left(n_{0}\right)\right) \otimes \mathscr{A}\left(-n_{0}\right) \longrightarrow \psi(F)
\end{aligned}
$$

are surjective. We may also assume that

$$
\begin{aligned}
& R^{0} \operatorname{Hom}\left(\left(L_{n_{0}}\right)_{U}, E\right) \longrightarrow \pi_{*}\left(\psi(E)\left(n_{0}\right)\right) \\
& R^{0} \operatorname{Hom}\left(\left(L_{n_{0}}\right)_{U}, F\right) \longrightarrow \pi_{*}\left(\psi(F)\left(n_{0}\right)\right)
\end{aligned}
$$

are isomorphic. Consider the distinguished triangles

$$
\begin{aligned}
& \operatorname{Cone}(v)[-1] \xrightarrow{\iota_{1}}\left(L_{n_{0}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, E\right) \xrightarrow{v} E \\
& \operatorname{Cone}(w)[-1] \xrightarrow{\iota_{2}}\left(L_{n_{0}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, F\right) \xrightarrow{w} F .
\end{aligned}
$$

Then we can see that $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}(v)[-1]_{s}\right)=0, \operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}(w)[-1]_{s}\right)$ $=0$ for $N \gg 0, i \neq 0$ and $s \in U$. The homomorphism $f: \psi(E) \rightarrow \psi(F)$ induces a homomorphism

$$
\begin{aligned}
& f\left(n_{0}\right): R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, E\right) \cong \pi_{*}\left(\psi(E)\left(n_{0}\right)\right) \\
& \quad \longrightarrow \pi_{*}\left(\psi(F)\left(n_{0}\right)\right) \cong R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, F\right) .
\end{aligned}
$$

Then $f\left(n_{0}\right)$ induces a homomorphism

$$
\tilde{f}:\left(L_{n_{0}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, E\right) \longrightarrow\left(L_{n_{0}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, F\right) .
$$

Consider the composite

$$
\begin{aligned}
& w \circ \tilde{f} \circ \iota_{1}: \operatorname{Cone}(v)[-1] \xrightarrow{\iota_{1}}\left(L_{n_{0}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, E\right) \\
& \quad \xrightarrow{\tilde{f}}\left(L_{n_{0}}\right)_{U} \otimes R^{0} \operatorname{Hom}_{p}\left(\left(L_{n_{0}}\right)_{U}, F\right) \xrightarrow{w} F .
\end{aligned}
$$

Then we have $\psi\left(w \circ \tilde{f} \circ \iota_{1}\right)=\psi(w) \circ \psi(\tilde{f}) \circ \psi\left(\iota_{1}\right)=f \circ \psi(v) \circ \psi\left(\iota_{1}\right)=f \circ \psi\left(v \circ \iota_{1}\right)=0$. Since

$$
\operatorname{Hom}(\operatorname{Cone}(v)[-1], F) \longrightarrow \operatorname{Hom}(\psi(\operatorname{Cone}(v)[-1]), \psi(F))
$$

is injective, we have $w \circ \tilde{f} \circ \iota_{1}=0$. So there is a morphism $f^{\prime}: E \rightarrow F$, which makes the diagram

commute. This commutative diagram induces a commutative diagram

Since $\left(\psi\left(f^{\prime}\right)-f\right) \circ \psi(v)=\psi\left(f^{\prime}\right) \circ \psi(v)-f \circ \psi(v)=\psi(w) \circ \psi(\tilde{f})-\psi(w) \circ \psi(\tilde{f})=0$, we have $\psi\left(f^{\prime}\right)-f=0$ because $\psi(v)$ is surjective. So we have $\psi\left(f^{\prime}\right)=f$. Thus (\dagger) is surjective and ψ becomes a fully faithful functor.

Take any coherent \mathscr{A}_{U}-module \mathscr{E} flat over U. There is an exact sequence of coherent \mathscr{A}_{U}-modules

$$
W_{2} \otimes \mathscr{A}\left(-n_{2}\right) \xrightarrow{\delta^{2}} W_{1} \otimes \mathscr{A}\left(-n_{1}\right) \xrightarrow{\delta^{1}} W_{0} \otimes \mathscr{A}\left(-n_{0}\right) \longrightarrow \mathscr{E} \longrightarrow 0,
$$

where W_{0}, W_{1}, W_{2} are locally free sheaves on U and $n_{2} \gg n_{1} \gg n_{0} \gg 0$. The above sequence induces a sequence of morphisms

$$
\left(L_{n_{2}}\right)_{U} \otimes W_{2} \xrightarrow{d^{2}}\left(L_{n_{1}}\right)_{U} \otimes W_{1} \xrightarrow{d^{1}}\left(L_{n_{0}}\right)_{U} \otimes W_{0} .
$$

By construction we have $d^{1} \circ d^{2}=0$. So there is a morphism $u:$ Cone $\left(d^{2}\right) \rightarrow$ $\left(L_{n_{0}}\right)_{U} \otimes W_{0}$ such that the diagram

is commutative. Note that $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}\left(d^{2}\right)_{s}\right)=0$ for $N \gg 0, i \neq-1,0$ and $s \in U$. So we have $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}(u)_{s}\right)=0$ for $N \gg 0, i \neq-2,-1,0$ and $s \in U$. Since \mathscr{E} is flat over U, the sequence

$$
\begin{aligned}
& W_{2} \otimes \mathscr{A}\left(-n_{2}\right) \otimes k(s) \longrightarrow W_{1} \otimes \mathscr{A}\left(-n_{1}\right) \otimes k(s) \\
& \quad \longrightarrow W_{0} \otimes \mathscr{A}\left(-n_{0}\right) \otimes k(s) \longrightarrow \mathscr{E} \otimes k(s) \longrightarrow 0
\end{aligned}
$$

is exact for any $s \in U$. So we obtain the exact commutative diagram

for $N \gg 0$ and $s \in U$. Here we denote $W_{i} \otimes k(s)$ by $\left(W_{i}\right)_{s}$ for $i=0,1,2$. We have a factorization

for $N \gg 0$ and $s \in U$, and the homomorphism $\operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{1}}\right)_{s} \otimes\left(W_{1}\right)_{s}\right) \longrightarrow$ $\operatorname{Hom}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}\left(d^{2}\right)_{s}\right)$ is surjective for $N \gg 0$ and $s \in U$, because $\operatorname{Ext}^{1}\left(\left(L_{N}\right)_{s}\right.$, $\left.\left(L_{n_{2}}\right)_{s} \otimes\left(W_{2}\right)_{s}\right)=0$ for $N \gg 0$ and $s \in U$. So we can see that the homomorphism

$$
\operatorname{Hom}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}\left(d^{2}\right)_{s}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s} \otimes\left(W_{0}\right)_{s}\right)
$$

is injective for $N \gg 0$ and $s \in U$. Since there is an exact sequence

$$
\begin{aligned}
0= & \operatorname{Ext}^{-1}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s} \otimes\left(W_{0}\right)_{s}\right) \longrightarrow \operatorname{Ext}^{-1}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}(u)_{s}\right) \\
& \xrightarrow{0} \operatorname{Hom}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}\left(d^{2}\right)_{s}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n_{0}}\right)_{s} \otimes\left(W_{0}\right)_{s}\right)
\end{aligned}
$$

for $N \gg 0$ and $s \in U$, we have $\operatorname{Ext}^{-1}\left(\left(L_{N}\right)_{s}, \operatorname{Cone}(u)_{s}\right)=0$ for $N \gg 0$ and $s \in U$.

By Definition 3.1 (5) and Remark 3.6, there is an object $E \in \mathscr{D}_{U}$ and a morphism $\alpha: \operatorname{Cone}(u) \rightarrow E$ such that $R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}\right.$, $\left.\operatorname{Cone}(u)\right) \rightarrow R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}, E\right)$ is isomorphic for $N \gg 0$ and that $\operatorname{Ext}^{j}\left(\left(L_{N}\right)_{s}, E_{s}\right)=0$ for $N \gg 0, j \neq 0$ and $s \in U$. We can see that the sequence

$$
\begin{aligned}
& R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U},\left(L_{n_{2}}\right)_{U} \otimes W_{2}\right) \longrightarrow R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U},\left(L_{n_{1}}\right)_{U} \otimes W_{1}\right) \longrightarrow \\
& \quad R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U},\left(L_{n_{0}}\right)_{U} \otimes W_{0}\right) \longrightarrow R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}, \operatorname{Cone}(u)\right) \longrightarrow 0
\end{aligned}
$$

is exact. Since $R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}\right.$, $\left.\operatorname{Cone}(u)\right) \cong R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}, E\right)$ for $N \gg 0$, there is an integer N_{0} such that for any $N \geq N_{0}$, there is a unique isomorphism $R^{0} \operatorname{Hom}_{p}\left(\left(L_{N}\right)_{U}, E\right) \xrightarrow{\sim} \pi_{*}(\mathscr{E}(N))$ which makes the diagram

commute. Note that there is a canonical commutative diagram

for $N \geq N_{0}$ and a non-negative integer m. Then we have an isomorphism

$$
\bigoplus_{n \geq N_{0}} R^{0} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right) \xrightarrow{\sim} \bigoplus_{n \geq N_{0}} \pi_{*}(\mathscr{E}(n))
$$

of graded A_{U}-modules. So we obtain an isomorphism

$$
\psi(E)=\left(\bigoplus_{n \geq N_{0}} R^{0} \operatorname{Hom}_{p}\left(\left(L_{n}\right)_{U}, E\right)\right)^{\sim} \xrightarrow{\sim}\left(\bigoplus_{n \geq N_{0}} \pi_{*}(\mathscr{E}(n))\right)^{\sim} \cong \mathscr{E} .
$$

Thus ψ becomes an equivalence of categories.

Definition 3.10. For a geometric point $\operatorname{Spec} k \rightarrow S$, an object $E \in \mathscr{D}_{k}$ is said to be \mathscr{L}-stable (resp. \mathscr{L}-semistable) if $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{k}, E\right)=0$ for $n \gg 0$ and $i \neq 0$ and the inequality

$$
\begin{aligned}
& \frac{\operatorname{dim} \operatorname{Hom}\left(\left(L_{m}\right)_{k}, F\right)}{\operatorname{dim} \operatorname{Hom}\left(\left(L_{n}\right)_{k}, F\right)}<\frac{\operatorname{dim} \operatorname{Hom}\left(\left(L_{m}\right)_{k}, E\right)}{\operatorname{dim} \operatorname{Hom}\left(\left(L_{n}\right)_{k}, E\right)} \\
& \quad\left(\text { resp. } \frac{\operatorname{dim} \operatorname{Hom}\left(\left(L_{m}\right)_{k}, F\right)}{\operatorname{dim} \operatorname{Hom}\left(\left(L_{n}\right)_{k}, F\right)} \leq \frac{\operatorname{dim} \operatorname{Hom}\left(\left(L_{m}\right)_{k}, E\right)}{\operatorname{dim} \operatorname{Hom}\left(\left(L_{n}\right)_{k}, E\right)}\right)
\end{aligned}
$$

holds for $n \gg m \gg 0$ and for any non-zero object $F \in \mathscr{D}_{k}$ satisfying $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{k}, F\right)=0$ for $N \gg 0$ and $i \neq 0$ with a morphism $\iota: F \rightarrow E$ such that ι is not isomorphic and $\operatorname{Hom}\left(\left(L_{n}\right)_{k}, F\right) \rightarrow \operatorname{Hom}\left(\left(L_{n}\right)_{k}, E\right)$ is injective for $n \gg 0$.

Remark 3.11. Let $\operatorname{Spec} k \rightarrow S$ be a geometric point and E an object of \mathscr{D}_{k} satisfying $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{k}, E\right)=0$ for $i \neq 0$ and $n \gg 0$. Let \mathscr{E} be the coherent $\mathscr{A}_{k^{-}}$ module corresponding to E as in Proposition 3.9. Then E is \mathscr{L}-stable (resp. \mathscr{L} semistable) if and only if for any coherent \mathscr{A}_{k}-submodule \mathscr{F} of \mathscr{E} with $0 \neq \mathscr{F} \subsetneq \mathscr{E}$, the inequality

$$
\begin{equation*}
\frac{\chi(\mathscr{F}(m))}{\chi(\mathscr{F}(n))}<\frac{\chi(\mathscr{E}(m))}{\chi(\mathscr{E}(n))} \quad\left(\text { resp. } \frac{\chi(\mathscr{F}(m))}{\chi(\mathscr{F}(n))} \leq \frac{\chi(\mathscr{E}(m))}{\chi(\mathscr{E}(n))}\right) \tag{1}
\end{equation*}
$$

holds for $n \gg m \gg 0$. We say a coherent \mathscr{A}_{k}-module \mathscr{E} stable (resp. semistable) if the corresponding object E of \mathscr{D}_{k} is \mathscr{L}-stable (resp. \mathscr{L}-semistable).

Remark 3.12. For a field K with a morphism Spec $K \rightarrow S$ and an object $E \in \mathscr{D}_{K}$, we say that E is \mathscr{L}-stable (resp. \mathscr{L}-semistable) if $E_{\bar{K}}$ is \mathscr{L}-stable (resp. \mathscr{L}-semistable), where \bar{K} is the algebraic closure of K.

4. Existence of the moduli space of stable objects.

Definition 4.1. Let $p: \mathscr{D} \rightarrow(\operatorname{Sch} / S)$ be a fibered triangulated category with base change property and $\mathscr{L}=\left\{L_{n}\right\}_{n \geq 0}$ be a strict ample sequence. For a numerical polynomial $P(t) \in \boldsymbol{Q}[t]$, we define a moduli functor $\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}:(\operatorname{Sch} / S) \rightarrow$ (Sets) by

$$
\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}(T):=\left\{\begin{array}{l|l}
E \in \mathscr{D}_{T} & \begin{array}{l}
\text { for any geometric point } s \text { of } T, \text { for } n \gg 0, \\
\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0 \text { for } i \neq 0 \text { and } \\
\operatorname{Hom}\left(\left(L_{n}\right)_{s}, E_{s}\right)=P(n) \text { and } E_{s} \text { is } \mathscr{L} \text {-stable }
\end{array}
\end{array}\right\} / \sim,
$$

where $E \sim E^{\prime}$ if there exists a line bundle L on T and an isomorphism $E \xrightarrow{\sim} E^{\prime} \otimes L$.
We also define a moduli functor $\overline{\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}}:(\mathrm{Sch} / S) \rightarrow($ Sets $)$ by
$\overline{\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}}(T):=\left\{E \in \mathscr{D}_{T} \left\lvert\, \begin{array}{l}\text { for any geometric point } s \text { of } T, \text { for } n \gg 0, \\ \operatorname{Ext}{ }^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right)=0 \text { for } i \neq 0 \text { and } \\ \operatorname{Hom}\left(\left(L_{n}\right)_{s}, E_{s}\right)=P(n) \text { and } E_{s} \text { is } \mathscr{L} \text {-semistable }\end{array}\right.\right\} / \sim$,
where $E \sim E^{\prime}$ if there exists a line bundle L on T such that $E \cong E^{\prime} \otimes L$ or there exist sequences $0=E_{0} \rightarrow E_{1} \rightarrow \cdots \rightarrow E_{\alpha}=E$ and $0=E_{0}^{\prime} \rightarrow E_{1}^{\prime} \rightarrow \cdots \rightarrow$ $E_{\alpha}^{\prime}=E^{\prime}$ such that $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s},\left(E_{j}\right)_{s}\right)=\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s},\left(E_{j}^{\prime}\right)_{s}\right)=0$ for $n \gg 0, i \neq 0$ and $s \in T, \operatorname{Hom}\left(\left(L_{n}\right)_{s},\left(E_{j}\right)_{s}\right) \rightarrow \operatorname{Hom}\left(\left(L_{n}\right)_{s},\left(E_{j+1}\right)_{s}\right)$ and $\operatorname{Hom}\left(\left(L_{n}\right)_{s},\left(E_{j}^{\prime}\right)_{s}\right) \rightarrow$ $\operatorname{Hom}\left(\left(L_{n}\right)_{s},\left(E_{j+1}^{\prime}\right)_{s}\right)$ are injective for $n \gg 0$ and $s \in T$ and $\bigoplus_{j=1}^{\alpha} F_{j} \cong \bigoplus_{j=1}^{\alpha} F_{j}^{\prime} \otimes$ L, where $F_{j}=\operatorname{Cone}\left(E_{j-1} \rightarrow E_{j}\right), F_{j}^{\prime}=\operatorname{Cone}\left(E_{j-1}^{\prime} \rightarrow E_{j}^{\prime}\right)$ and for any geometric point s of $T,\left(F_{j}\right)_{s}$ and $\left(F_{j}^{\prime}\right)_{s}$ are \mathscr{L}-stable such that

$$
\frac{\operatorname{dim} \operatorname{Hom}\left(\left(L_{m}\right)_{s},\left(F_{j}\right)_{s}\right)}{\operatorname{dim} \operatorname{Hom}\left(\left(L_{n}\right)_{s},\left(F_{j}\right)_{s}\right)}=\frac{P(m)}{P(n)}=\frac{\operatorname{dim} \operatorname{Hom}\left(\left(L_{m}\right)_{s},\left(F_{j}^{\prime}\right)_{s}\right)}{\operatorname{dim} \operatorname{Hom}\left(\left(L_{n}\right)_{s},\left(F_{j}^{\prime}\right)_{s}\right)}
$$

for $n \gg m \gg 0$ and for $j=1,2, \ldots, \alpha$.
Proposition 4.2. For any numerical polynomial $P(t) \in \boldsymbol{Q}[t]$, the family

$$
\left\{E \left\lvert\, \begin{array}{l}
E \in \mathscr{D}_{k} \text { for some geometric point } \operatorname{Spec} k \rightarrow S \\
E \text { is } \mathscr{L} \text {-semistable and } \operatorname{Hom}\left(\left(L_{n}\right)_{k}, E\right)=P(n) \text { for } n \gg 0
\end{array}\right.\right\}
$$

is bounded.
Proof. It suffices to show that the corresponding family of coherent \mathscr{A} modules on the fibers of $\boldsymbol{P}\left(V_{1}\right)$ over S is bounded. For a coherent sheaf \mathscr{G} on $\boldsymbol{P}\left(V_{1}\right)$, we can write

$$
\chi(\mathscr{G}(n))=\sum_{i=0}^{d} a_{i}(\mathscr{G})\binom{n+d-i}{d-i}
$$

with $a_{i}(\mathscr{G})$ integers and we write $\mu(G)=a_{1}(\mathscr{G}) / a_{0}(\mathscr{G})$. Let \mathscr{E} be a coherent \mathscr{A}_{k}-module such that $\chi(\mathscr{E}(n))=P(n)$ and the corresponding object of \mathscr{D}_{k} is \mathscr{L} semistable. Note that \mathscr{E} is of pure dimension. We can take the slope maximal destabilizer \mathscr{F} of \mathscr{E} as a sheaf on $\boldsymbol{P}\left(V_{1}\right)$. Let $\tilde{\mathscr{F}}$ be the image of $\mathscr{F} \otimes \mathscr{A} \rightarrow \mathscr{E}$.

Note that there exists a locally free sheaf W of finite rank on S, positive integer N and a surjection

$$
W \otimes \mathscr{O}(-N) \longrightarrow \mathscr{A}
$$

Then we obtain a surjection

$$
W \otimes \mathscr{F}(-N) \longrightarrow \mathscr{F} \otimes \mathscr{A} \longrightarrow \tilde{\mathscr{F}}
$$

Since $W \otimes \mathscr{F}(-N)$ is slope semistable, we have

$$
\mu(\mathscr{F})-N=\mu(W \otimes \mathscr{F}(-N)) \leq \mu(\tilde{\mathscr{F}}) \leq \mu(\mathscr{E}) .
$$

So the maximal slope $\mu(\mathscr{F})$ is bounded by $N+\mu(\mathscr{E})$. Then we obtain the boundedness by [$\mathbf{6}$, Theorem 4.2].

Proposition 4.3. Assume that $U \in(\operatorname{Sch} / S)$ and $E \in \mathscr{D}_{U}$ are given. Then the subsets

$$
\begin{aligned}
U^{s} & =\left\{x \in U \mid E_{x} \text { is } \mathscr{L} \text {-stable }\right\} \\
U^{s s} & =\left\{x \in U \mid E_{x} \text { is } \mathscr{L} \text {-semistable }\right\}
\end{aligned}
$$

of U are open.
Proof. First we will show that

$$
U^{\prime}=\left\{x \in U \mid \operatorname{Ext}^{i}\left(\left(L_{n}\right)_{x}, E_{x}\right)=0 \text { for } n \gg 0 \text { and } i \neq 0\right\}
$$

is open in U. By Definition 3.1 (4), there exists a positive integer n_{0} such that for any $n \geq n_{0}$, exists an integer N_{n} with $N_{n}>n$ such that for any $N \geq N_{n}$,

$$
\operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{n}\right)_{s}\right) \otimes \operatorname{Ext}^{i}\left(\left(L_{n}\right)_{s}, E_{s}\right) \longrightarrow \operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s}, E_{s}\right)
$$

is surjective for any i and $s \in U$. By Definition 3.1 (4), there are integers k_{1}, k_{2} with $k_{1}<k_{2}$ such that $\operatorname{Ext}^{i}\left(\left(L_{n_{0}}\right)_{s}, E_{s}\right)=0$ for any $s \in U$ except for $k_{1} \leq i \leq k_{2}$. Then we have $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{s}, E_{s}\right)=0$ for $N \geq N_{n_{0}}$ and $s \in U$, except for $k_{1} \leq i \leq k_{2}$. Now take any point $x \in U^{\prime}$. For each $i \neq 0$ with $k_{1} \leq i \leq k_{2}$, there is an integer m_{i} with $m_{i} \geq n_{0}$ such that $\operatorname{Ext}^{i}\left(\left(L_{m_{i}}\right)_{x}, E_{x}\right)=0$. For any $N \geq N_{m_{i}}$,

$$
\operatorname{Hom}\left(\left(L_{N}\right)_{s},\left(L_{m_{i}}\right)_{s}\right) \otimes \operatorname{Ext}^{i}\left(\left(L_{m_{i}}\right)_{s}, E_{s}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{N}\right)_{s}, E_{s}\right)
$$

is surjective for any $s \in U$. By using Definition 2.2 (4), we can see that there exists an open neighborhood U_{i} of x such that $\operatorname{Ext}^{i}\left(\left(L_{m_{i}}\right)_{y}, E_{y}\right)=0$ for any $y \in U_{i}$. Then we have $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{y}, E_{y}\right)=0$ for $N \geq N_{m_{i}}$. If we put

$$
V:=\bigcap_{k_{1} \leq i \leq k_{2}, i \neq 0} U_{i}
$$

then V is an open neighborhood of x. Put

$$
\tilde{N}:=\max \left(\left\{N_{m_{i}} \mid k_{1} \leq i \leq k_{2}, i \neq 0\right\} \cup\left\{N_{n_{0}}\right\}\right) .
$$

Then we have $\operatorname{Ext}^{i}\left(\left(L_{N}\right)_{y}, E_{y}\right)=0$ for any $y \in V, i \neq 0$ and $N \geq \tilde{N}$, which means $V \subset U^{\prime}$. Thus U^{\prime} is an open subset of U.

By Proposition 3.9, $E_{U^{\prime}}$ corresponds to a coherent $\mathscr{A}_{U^{\prime}}$-module \mathscr{E} flat over U^{\prime}. We can see that U^{s} coincides with

$$
\left\{x \in U^{\prime} \mid \mathscr{E} \otimes k(x) \text { is a stable } \mathscr{A}_{x} \text {-module }\right\} .
$$

We can see by the argument similar to that of [3, Proposition 2.3.1], that this subset is open in U^{\prime}. By the same argument we can also see the openness of $U^{s s}$.

Theorem 4.4. There exists a coarse moduli scheme $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ of $\overline{\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}}$ and an open subscheme $M_{\mathscr{D}}^{P, \mathscr{L}}$ of $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ which is a coarse moduli scheme of $\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}$.

Before constructing the moduli space, we first note the following lemma:
Lemma 4.5. Let $P(x)$ be a numerical polynomial. Then there exists an integer m_{0} such that for any $m \geq m_{0}$, any geometric point s of S, any semi-stable \mathscr{A}_{s}-module \mathscr{E} with $\chi(\mathscr{E}(n))=P(n)$,
(1) $\mathscr{E}(m)$ is generated by global sections and $H^{i}(\mathscr{E}(m))=0$ for $i>0$,
(2) for any nonzero coherent \mathscr{A}_{s}-submodule $\mathscr{F} \subset \mathscr{E}$, the inequality

$$
\operatorname{dim} H^{0}(\mathscr{F}(m)) \leq \frac{a_{0}(\mathscr{F})}{a_{0}(\mathscr{E})} \operatorname{dim} H^{0}(\mathscr{E}(m))
$$

holds, where

$$
\chi(\mathscr{E}(n))=\sum_{i=0}^{d} a_{i}(\mathscr{E})\binom{n+d-i}{d-i}, \quad \chi(\mathscr{F}(n))=\sum_{i=0}^{d} a_{i}(\mathscr{F})\binom{n+d-i}{d-i} .
$$

Moreover the equality holds if and only if $\chi(\mathscr{E}(n)) / a_{0}(\mathscr{E})=\chi(\mathscr{F}(n)) / a_{0}(\mathscr{F})$ as polynomials in n.

Proof. Proof is essentially the same as [8, Proposition 4.10].
Take m_{0} as in Lemma 4.5. Replacing S by its connected component, we may assume that S is connected. Replacing m_{0} if necessary, we may assume by Proposition 4.2 that for any geometric point $E \in \overline{\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}}(k)$ and for any $m \geq m_{0}$, $\operatorname{Ext}^{i}\left(\left(L_{m}\right)_{k}, E\right)=0$ for $i \neq 0$ and

$$
\operatorname{Hom}\left(\left(L_{n}\right)_{k},\left(L_{m}\right)_{k}\right) \otimes \operatorname{Hom}\left(\left(L_{m}\right)_{k}, E\right) \longrightarrow \operatorname{Hom}\left(\left(L_{n}\right)_{k}, E\right)
$$

is surjective for $n \gg 0$. For a geometric point $E \in \overline{\mathscr{M}}_{\mathscr{\mathscr { D }}}^{P, \mathscr{L}}(k)$, we consider the canonical morphism

$$
u:\left(L_{m_{0}}\right)_{k} \otimes \operatorname{Hom}\left(\left(L_{m_{0}}\right)_{k}, E\right) \longrightarrow E
$$

and put $E_{1}:=\operatorname{Cone}(u)[-1]$. We can take $m_{1} \gg m_{0}$ such that for any such E and for any $m \geq m_{1}, \operatorname{Ext}^{i}\left(\left(L_{m}\right)_{k}, E_{1}\right)=0$ for $i \neq 0$ and

$$
\operatorname{Hom}\left(\left(L_{n}\right)_{k},\left(L_{m}\right)_{k}\right) \otimes \operatorname{Hom}\left(\left(L_{m}\right)_{k}, E_{1}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{n}\right)_{k}, E_{1}\right)
$$

is surjective for $n \gg 0$. We consider the canonical morphism

$$
v:\left(L_{m_{1}}\right)_{k} \otimes \operatorname{Hom}\left(\left(L_{m_{1}}\right)_{k}, E_{1}\right) \longrightarrow E_{1}
$$

and put $E_{2}:=\operatorname{Cone}(v)[-1]$. We can take $m_{2} \gg 0$ such that for any E and for any $m \geq m_{2}, \operatorname{Ext}^{i}\left(\left(L_{m}\right)_{k}, E_{2}\right)=0$ for $i \neq 0$ and

$$
\operatorname{Hom}\left(\left(L_{n}\right)_{k},\left(L_{m}\right)_{k}\right) \otimes \operatorname{Hom}\left(\left(L_{m}\right)_{k}, E_{2}\right) \longrightarrow \operatorname{Hom}\left(\left(L_{n}\right)_{k}, E_{2}\right)
$$

is surjective for $n \gg 0$. We put

$$
r_{0}:=\operatorname{dim}_{k} \operatorname{Hom}\left(\left(L_{m_{0}}\right)_{k}, E\right), \quad r_{1}:=\operatorname{dim}_{k}\left(\left(L_{m_{1}}\right)_{k}, E_{1}\right), \quad r_{2}:=\operatorname{dim}_{k}\left(\left(L_{m_{2}}\right)_{k}, E_{2}\right)
$$

and

$$
W_{0}:=\mathscr{O}_{S}^{\oplus r_{0}}, \quad W_{1}:=\mathscr{O}_{S}^{\oplus r_{1}}, \quad W_{2}:=\mathscr{O}_{S}^{\oplus r_{2}}
$$

Note that r_{0}, r_{1}, r_{2} are independent of the choice of E and only depend on P and \mathscr{L}. We set
$Z:=\boldsymbol{V}\left(R^{0} \operatorname{Hom}_{p}\left(L_{m_{2}}, L_{m_{1}}\right)^{\vee} \otimes W_{2} \otimes W_{1}^{\vee}\right) \times \boldsymbol{V}\left(R^{0} \operatorname{Hom}_{p}\left(L_{m_{1}}, L_{m_{0}}\right)^{\vee} \otimes W_{1} \otimes W_{0}^{\vee}\right)$.
Let

$$
\left(L_{m_{2}}\right)_{Z} \otimes W_{2} \xrightarrow{\tilde{v}}\left(L_{m_{1}}\right)_{Z} \otimes W_{1} \xrightarrow{\tilde{u}}\left(L_{m_{0}}\right)_{Z} \otimes W_{0}
$$

be the universal family. There exists a closed subscheme $Y \subset Z$ such that

$$
Y(T)=\left\{g \in Z(T) \mid g^{*}(\tilde{u} \circ \tilde{v})=0\right\}
$$

for any $T \in(\operatorname{Sch} / S)$. Since the sequence

$$
\begin{aligned}
& \operatorname{Hom}\left(\operatorname{Cone}\left(\tilde{v}_{Y}\right),\left(L_{m_{0}}\right)_{Y} \otimes W_{0}\right) \xrightarrow{\beta} \operatorname{Hom}\left(\left(L_{m_{1}}\right)_{Y} \otimes W_{1},\left(L_{m_{0}}\right)_{Y} \otimes W_{0}\right) \\
& \xrightarrow{\tilde{v}^{*}} \operatorname{Hom}\left(\left(L_{m_{2}}\right)_{Y} \otimes W_{2},\left(L_{m_{0}}\right)_{Y} \otimes W_{0}\right)
\end{aligned}
$$

is exact and $\tilde{v}^{*}\left(\tilde{u}_{Y}\right)=\tilde{u}_{Y} \circ \tilde{v}_{Y}=0$, there exists a morphism $\tilde{w}: \operatorname{Cone}\left(\tilde{v}_{Y}\right) \rightarrow$ $\left(L_{m_{0}}\right)_{Y} \otimes W_{0}$ such that $\beta(\tilde{w})=\tilde{u}_{Y}$. We put $\tilde{B}:=\operatorname{Cone}(\tilde{w})$ and set

$$
Y^{\prime}:=\left\{x \in Y \mid \operatorname{Ext}^{-1}\left(\left(L_{n}\right)_{x}, \tilde{B}_{x}\right)=0 \text { for } n \gg 0\right\}
$$

Then we can see that Y^{\prime} is an open subset of Y. Note that for any $x \in Y^{\prime}$, $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{x}, \tilde{B}_{x}\right)_{\tilde{L}}=0$ for $n \gg 0$ except for $i=-2,0$. By Definition 3.1 (5), there exist an object $\tilde{E} \in \mathscr{D}_{Y^{\prime}}$ and a morphism $\tilde{B}_{Y^{\prime}} \rightarrow \tilde{E}$ such that $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{x}, \tilde{E}_{x}\right)=0$ for $n \gg 0, x \in Y^{\prime}$ and $i \neq 0$ and $\operatorname{Hom}\left(\left(L_{n}\right)_{x}, \tilde{B}_{x}\right) \rightarrow \operatorname{Hom}\left(\left(L_{n}\right)_{x}, \tilde{E}_{x}\right)$ is isomorphic for $n \gg 0$ and $x \in Y^{\prime}$. If we set

$$
\tilde{E}_{1}:=\operatorname{Cone}\left(\left(L_{m_{0}}\right)_{Y^{\prime}} \otimes W_{0} \rightarrow \tilde{E}\right)[-1],
$$

Cone $(\tilde{v})_{Y^{\prime}} \rightarrow\left(L_{m_{0}}\right)_{Y^{\prime}} \otimes W_{0}$ factors through \tilde{E}_{1}. Moreover, for any $x \in Y^{\prime}$, $\operatorname{Ext}^{i}\left(\left(L_{n}\right)_{x},\left(\tilde{E}_{1}\right)_{x}\right)=0$ for $i \neq 0$ and $\operatorname{Hom}\left(\left(L_{n}\right)_{x}, \operatorname{Cone}(\tilde{v})_{x}\right) \rightarrow \operatorname{Hom}\left(\left(L_{n}\right)_{x},\left(\tilde{E}_{1}\right)_{x}\right)$ is isomorphic for $n \gg 0$. If we set

$$
\tilde{E}_{2}:=\operatorname{Cone}\left(\left(L_{m_{1}}\right)_{Y^{\prime}} \otimes W_{1} \rightarrow \tilde{E}_{1}\right)[-1],
$$

then $\tilde{v}_{Y^{\prime}}$ factors through \tilde{E}_{2}. Now we put
$Y^{s s}:=\left\{x \in Y^{\prime} \left\lvert\, \begin{array}{l}W_{0} \otimes k(x) \rightarrow \operatorname{Hom}\left(\left(L_{m_{0}}\right)_{x}, \tilde{E}_{x}\right) \text { is isomorphic, } \\ \begin{array}{l}W_{j} \otimes k(x) \rightarrow \operatorname{Hom}\left(\left(L_{m_{j}}\right)_{x},\left(\tilde{E}_{j}\right)_{x}\right) \text { are isomorphic for } j=1,2, \\ \operatorname{Hom}\left(\left(L_{n}\right)_{x}, \tilde{E}_{x}\right)=P(n) \text { for } n \gg 0 \text { and } \tilde{E}_{x} \text { is } \mathscr{L} \text {-semistable }\end{array}\end{array}\right.\right\}$
and

$$
Y^{s}:=\left\{x \in Y^{s s} \mid \tilde{E}_{x} \text { is } \mathscr{L} \text {-stable }\right\} .
$$

Then we can check that $Y^{s}, Y^{s s}$ are open subsets of Y^{\prime}. If we put

$$
G:=G L\left(W_{0}\right) \times G L\left(W_{1}\right) \times G L\left(W_{2}\right),
$$

then there is a canonical action of G on Z and $Y, Y^{\prime}, Y^{s s}, Y^{s}$ are preserved by this action. For a sufficiently large integer N, we put

$$
\begin{aligned}
& \alpha_{0}:=\operatorname{rank} W_{2}+N \operatorname{rank} W_{1} \\
& \alpha_{1}:=-N \operatorname{rank} W_{0} \\
& \alpha_{2}:=-\operatorname{rank} W_{0}
\end{aligned}
$$

and consider the character

$$
\chi: G \longrightarrow \boldsymbol{G}_{m} ; \quad\left(g_{0}, g_{1}, g_{2}\right) \mapsto \operatorname{det}\left(g_{0}\right)^{\alpha_{0}} \operatorname{det}\left(g_{1}\right)^{\alpha_{1}} \operatorname{det}\left(g_{2}\right)^{\alpha_{2}} .
$$

Let us consider the quiver consisting of three vertices v_{2}, v_{1}, v_{0} and $\operatorname{rank}_{\mathscr{O}_{S}} R^{0} \operatorname{Hom}_{p}\left(L_{m_{2}}, L_{m_{1}}\right)$-arrows from v_{2} to v_{1} and $\operatorname{rank}_{\mathscr{O}_{S}} R^{0} \operatorname{Hom}_{p}\left(L_{m_{1}}, L_{m_{0}}\right)$ arrows from v_{1} to v_{0}. Then the points of Z correspond to the representations of this quiver (see [5] for the definition of quiver and its representation).

Lemma 4.6. If we take $N \gg m_{2} \gg m_{1} \gg m_{0} \gg 0, Y^{s s}$ is contained in the set $Z^{s s}(\chi)$ of χ-semistable points of Z in the sense of [5]. Moreover, Y^{s} is contained in the set $Z^{s}(\chi)$ of χ-stable points of Z.

Proof. Take any geometric point x of $Y^{s s}$ and vector subspaces $W_{i}^{\prime} \subset$ $\left(W_{i}\right)_{x}(0 \leq i \leq 2)$ which induce commutative diagrams

From [5], we should say that

$$
\alpha_{0} \operatorname{dim} W_{0}^{\prime}+\alpha_{1} \operatorname{dim} W_{1}^{\prime}+\alpha_{2} \operatorname{dim} W_{2}^{\prime} \geq 0
$$

Let \mathscr{E} be the $Y^{s s}$-flat $\mathscr{A}_{Y^{s s}}$-module corresponding to $\tilde{E}_{Y^{s s}}$ by Proposition 3.9. Then a morphism $\mathscr{A}\left(-m_{0}\right) \otimes W_{0}^{\prime} \rightarrow \mathscr{E}_{x}$ is induced and we denote its image by $\mathscr{E}\left(W_{0}^{\prime}\right)$. Note that \mathscr{E}_{x} is of pure dimension and so $\mathscr{E}\left(W_{0}^{\prime}\right)$ is also of pure dimension. Since the family

$$
\left\{\mathscr{E}\left(W_{0}^{\prime}\right) \mid W_{0}^{\prime} \subset\left(W_{0}\right)_{x}, x \text { is a geometric point of } Y^{s s}\right\}
$$

is bounded, we can find an integer $m_{1} \gg m_{0}$ such that for $K_{1}^{\prime}:=\operatorname{ker}\left(W_{0}^{\prime} \otimes\right.$ $\left.\mathscr{A}\left(-m_{0}\right) \rightarrow \mathscr{E}\left(W_{0}^{\prime}\right)\right), K_{1}^{\prime}\left(m_{1}\right)$ is generated by global sections and $H^{i}\left(K_{1}^{\prime}\left(m_{1}\right)\right)=0$, $H^{i}\left(\mathscr{A}_{x}\left(m_{1}-m_{0}\right)\right)=0$ for $i>0$. Moreover we can find an integer $m_{2} \gg m_{1}$ such that for $K_{2}^{\prime}:=\operatorname{ker}\left(H^{0}\left(K_{1}^{\prime}\left(m_{1}\right)\right) \otimes \mathscr{A}\left(-m_{1}\right) \rightarrow K_{1}^{\prime}\right), K_{2}^{\prime}\left(m_{2}\right)$ is generated by global sections and $H^{i}\left(K_{2}^{\prime}\left(m_{2}\right)\right)=0, H^{i}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)=0, H^{i}\left(\mathscr{A}_{x}\left(m_{2}-m_{0}\right)\right)=0$ and $H^{i}\left(K_{1}^{\prime}\left(m_{2}\right)\right)=0$ for $i>0$. If we put $\tilde{W}_{1}^{\prime}:=H^{0}\left(K_{1}^{\prime}\left(m_{1}\right)\right)$ and $\tilde{W}_{2}^{\prime}:=H^{0}\left(K_{2}^{\prime}\left(m_{2}\right)\right)$, then we have

$$
\begin{aligned}
\operatorname{dim} H^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)= & \operatorname{dim} H^{0}\left(\mathscr{A}_{x}\left(m_{1}-m_{0}\right)\right) \operatorname{dim} W_{0}^{\prime}-\operatorname{dim} \tilde{W}_{1}^{\prime} \\
\operatorname{dim} H^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{2}\right)\right)= & \operatorname{dim} H^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{0}\right)\right) \operatorname{dim} W_{0}^{\prime} \\
& -\operatorname{dim} H^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right) \operatorname{dim} \tilde{W}_{1}^{\prime}+\operatorname{dim} \tilde{W}_{2}^{\prime}
\end{aligned}
$$

Since the family $\left\{\mathscr{E}\left(W_{0}^{\prime}\right)\right\}$ is bounded, we can take by using Lemma 4.5 a positive integer $m_{0} \gg 0$ and a positive number $\epsilon>0$ such that

$$
\frac{h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{0}\right)\right)}{P\left(m_{0}\right)}<\frac{a_{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)}{a_{0}(P)}-\epsilon
$$

for any W_{0}^{\prime} such that

$$
\frac{\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(m)\right)}{\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(n)\right)}<\frac{P(m)}{P(n)}
$$

for $n \gg m \gg 0$. Here we write

$$
\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(n)\right)=\sum_{i=0}^{d} a_{i}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)\binom{n+d-i}{d-i}, \quad P(n)=\sum_{i=0}^{d} a_{i}(P)\binom{n+d-i}{d-i}
$$

with $a_{i}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)$ and $a_{i}(P)$ integers. Since

$$
\lim _{m_{1} \rightarrow \infty} \frac{h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)}{P\left(m_{1}\right)}=\frac{a_{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)}{a_{0}(P)}
$$

we can take $m_{1} \gg m_{0}$ such that

$$
\frac{h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)}{P\left(m_{1}\right)}>\frac{a_{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)}{a_{0}(P)}-\frac{\epsilon}{2}
$$

Since

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)-h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{2}\right)\right)}{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) P\left(m_{1}\right)-P\left(m_{2}\right)} \\
& \quad=\frac{h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)}{P\left(m_{1}\right)}
\end{aligned}
$$

we can take $N \gg m_{2}$ such that

$$
\begin{aligned}
& \frac{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)-h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{2}\right)\right)}{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) P\left(m_{1}\right)-P\left(m_{2}\right)} \\
& \quad>\frac{h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)}{P\left(m_{1}\right)}-\frac{\epsilon}{2}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \frac{h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{0}\right)\right)}{P\left(m_{0}\right)} \\
& \quad<\frac{a_{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)}{a_{0}(P)}-\epsilon \\
& \quad<\frac{h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)}{P\left(m_{1}\right)}+\frac{\epsilon}{2}-\epsilon \\
& \quad<\frac{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)-h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{2}\right)\right)}{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) P\left(m_{1}\right)-P\left(m_{2}\right)}+\frac{\epsilon}{2}+\frac{\epsilon}{2}-\epsilon \\
& \quad=\frac{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)-h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{2}\right)\right)}{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) P\left(m_{1}\right)-P\left(m_{2}\right)}
\end{aligned}
$$

for any W_{0}^{\prime} such that

$$
\frac{\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(m)\right)}{\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(n)\right)}<\frac{P(m)}{P(n)}
$$

for $n \gg m \gg 0$. Take W_{0}^{\prime} such that

$$
\frac{\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(m)\right)}{\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(n)\right)}=\frac{P(m)}{P(n)}
$$

for $n \gg m \gg 0$. Then we can see by Lemma 4.5 that

$$
\begin{aligned}
\frac{h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{0}\right)\right)}{P\left(m_{0}\right)} & =\frac{a_{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)}{a_{0}(P)} \\
& =\frac{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)-h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{2}\right)\right)}{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) P\left(m_{1}\right)-P\left(m_{2}\right)} .
\end{aligned}
$$

Hence we have the inequality

$$
\begin{align*}
& h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{0}\right)\right) \\
& \quad \leq \frac{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{1}\right)\right)-h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{2}\right)\right)}{\left(h^{0}\left(\mathscr{A}_{x}\left(m_{2}-m_{1}\right)\right)+N\right) P\left(m_{1}\right)-P\left(m_{2}\right)} P\left(m_{0}\right) \tag{2}
\end{align*}
$$

for any $\mathscr{E}\left(W_{0}^{\prime}\right)$. Moreover, the equality holds in (2) if and only if $\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(n)\right) /$ $a_{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)=P(n) / a_{0}(P)$ as polynomials in n. From the inequality (2), we obtain the inequality

$$
\left(r_{2}+N r_{1}\right) \operatorname{dim} W_{0}^{\prime}-N r_{0} \operatorname{dim} \tilde{W}_{1}^{\prime}-r_{0} \operatorname{dim} \tilde{W}_{2}^{\prime} \geq 0
$$

by using $\operatorname{dim} W_{0}^{\prime} \leq h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\left(m_{0}\right)\right)$. Since $\operatorname{dim} W_{1}^{\prime} \leq \operatorname{dim} \tilde{W}_{1}^{\prime}$ and $\operatorname{dim} W_{2}^{\prime} \leq$ $\operatorname{dim} \tilde{W}_{2}^{\prime}$, we have

$$
\begin{equation*}
\alpha_{0} \operatorname{dim} W_{0}^{\prime}+\alpha_{1} \operatorname{dim} W_{1}^{\prime}+\alpha_{2} \operatorname{dim} W_{2}^{\prime} \geq 0 \tag{3}
\end{equation*}
$$

Thus x becomes a geometric point of $Z^{s s}(\chi)$.
In the inequality (3), the equality holds if and only if $\operatorname{dim} \tilde{W}_{1}^{\prime}=\operatorname{dim} W_{1}^{\prime}$, $\operatorname{dim} \tilde{W}_{2}^{\prime}=\operatorname{dim} W_{2}^{\prime}, \quad h^{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)=\operatorname{dim} W_{0}^{\prime}$ and $\chi\left(\mathscr{E}\left(W_{0}^{\prime}\right)(n)\right) / a_{0}\left(\mathscr{E}\left(W_{0}^{\prime}\right)\right)=$ $P(n) / a_{0}(P)$ as polynomials in n. So, if x is a geometric point of Y^{s}, we have

$$
\left(r_{2}+N r_{1}\right) \operatorname{dim} W_{0}^{\prime}-N r_{0} \operatorname{dim} W_{1}^{\prime}-r_{0} \operatorname{dim} W_{2}^{\prime}>0
$$

for any $\left(W_{0}^{\prime}, W_{1}^{\prime}, W_{2}^{\prime}\right)$ with $(0,0,0) \neq\left(W_{0}^{\prime}, W_{1}^{\prime}, W_{2}^{\prime}\right) \subsetneq\left(\left(W_{0}\right)_{x},\left(W_{1}\right)_{x},\left(W_{2}\right)_{x}\right)$, which means that x becomes a geometric point of $Z^{s}(\chi)$.

By [5] and [9], there exists a GIT quotient $\phi: Y \cap Z^{s s}(\chi) \rightarrow\left(Y \cap Z^{s s}(\chi)\right) / / G$.
Lemma 4.7. $\quad \phi^{-1}\left(\phi\left(Y^{s s}\right)\right)=Y^{s s}$.
Proof. It is sufficient to show that $\phi^{-1}\left(\phi\left(Y^{s s}\right)\right) \subset Y^{s s}$. Take any k-valued geometric point x of $\phi^{-1}\left(\phi\left(Y^{s s}\right)\right)$. Let s be the induced k-valued geometric point of S. Since $\phi(x)$ is a geometric point of $\phi\left(Y^{s s}\right)$, there exists a k-valued geometric point y of $Y^{s s}$ such that $\phi(x)=\phi(y)$.
 Lemma 4.6. Then there is a Jordan-Hölder filtration

$$
0=F^{(0)} \subset F^{(1)} \subset \cdots \subset F^{(l)}=\mathscr{E} \otimes k(y)
$$

of $\mathscr{E} \otimes k(y)$. For each i with $1 \leq i \leq l$, we define $K_{1}^{(i)}, K_{2}^{(i)}$ by exact sequences

$$
\begin{aligned}
& 0 \longrightarrow K_{1}^{(i)} \longrightarrow H^{0}\left(F^{(i)}\left(m_{0}\right)\right) \otimes \mathscr{A}\left(-m_{0}\right) \longrightarrow F^{(i)} \longrightarrow 0 \\
& 0 \longrightarrow K_{2}^{(i)} \longrightarrow H^{0}\left(K_{1}^{(i)}\left(m_{1}\right)\right) \otimes \mathscr{A}\left(-m_{1}\right) \longrightarrow K_{1}^{(i)} \longrightarrow 0
\end{aligned}
$$

Then y corresponds to the representation of quiver given by

$$
H^{0}\left(K_{2}^{(l)}\left(m_{2}\right)\right) \longrightarrow H^{0}\left(K_{1}^{(l)}\left(m_{1}\right)\right) \otimes H^{0}\left(\mathscr{A}_{s}\left(m_{2}-m_{1}\right)\right)
$$

$$
H^{0}\left(K_{1}^{(l)}\left(m_{1}\right)\right) \longrightarrow H^{0}\left(F^{(l)}\left(m_{0}\right)\right) \otimes H^{0}\left(\mathscr{A}_{s}\left(m_{1}-m_{0}\right)\right)
$$

and the Jordan-Hölder filtration of $\mathscr{E} \otimes k(y)$ corresponds to the filtration of the quiver representation given by

$$
\begin{aligned}
& 0 \subset H^{0}\left(K_{2}^{(1)}\left(m_{2}\right)\right) \subset \cdots \subset H^{0}\left(K_{2}^{(l)}\left(m_{2}\right)\right) \\
& 0 \subset H^{0}\left(K_{1}^{(1)}\left(m_{1}\right)\right) \subset \cdots \subset H^{0}\left(K_{1}^{(l)}\left(m_{1}\right)\right) \\
& 0 \subset H^{0}\left(F^{(1)}\left(m_{0}\right)\right) \subset \cdots \subset H^{0}\left(F^{(l)}\left(m_{0}\right)\right) .
\end{aligned}
$$

We put $E^{(i)}:=F^{(i)} / F^{(i-1)}$ and $\overline{\mathscr{E}}:=\bigoplus_{i=1}^{l} E^{(i)}$. For $i=1, \ldots, l$, we define $\bar{K}_{1}^{(i)}, \bar{K}_{2}^{(i)}$ by the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \bar{K}_{1}^{(i)} \longrightarrow H^{0}\left(E^{(i)}\left(m_{0}\right)\right) \otimes \mathscr{A}\left(-m_{0}\right) \longrightarrow E^{(i)} \longrightarrow 0 \\
& 0 \longrightarrow \bar{K}_{2}^{(i)} \longrightarrow H^{0}\left(\bar{K}_{1}^{(i)}\left(m_{1}\right)\right) \otimes \mathscr{A}\left(-m_{1}\right) \longrightarrow \bar{K}_{1}^{(i)} \longrightarrow 0
\end{aligned}
$$

We can see from the proof of Lemma 4.6 that the quiver representation y_{i} given by

$$
\begin{aligned}
& H^{0}\left(\bar{K}_{2}^{(i)}\left(m_{2}\right)\right) \longrightarrow H^{0}\left(\bar{K}_{1}^{(i)}\left(m_{1}\right)\right) \otimes H^{0}\left(\mathscr{A}_{s}\left(m_{2}-m_{1}\right)\right) \\
& H^{0}\left(\bar{K}_{1}^{(i)}\left(m_{1}\right)\right) \longrightarrow H^{0}\left(E^{(i)}\left(m_{0}\right)\right) \otimes H^{0}\left(\mathscr{A}_{s}\left(m_{1}-m_{0}\right)\right)
\end{aligned}
$$

is stable with respect to the weight $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$. The direct sum $y_{1} \oplus \cdots \oplus y_{l}$ corresponds to a point y^{\prime} of $Y_{s}^{s s}$ given by the exact sequence

$$
\begin{aligned}
& H^{0}\left(\bigoplus_{i=1}^{l} \bar{K}_{2}^{(i)}\left(m_{2}\right)\right) \otimes \mathscr{A}\left(-m_{2}\right) \longrightarrow H^{0}\left(\bigoplus_{i=1}^{l} \bar{K}_{1}^{(i)}\left(m_{1}\right)\right) \otimes \mathscr{A}\left(-m_{1}\right) \\
& \quad \longrightarrow H^{0}\left(\bigoplus_{i=1}^{l} E^{(i)}\left(m_{0}\right)\right) \otimes \mathscr{A}\left(-m_{0}\right) \longrightarrow \bigoplus_{i=1}^{l} E^{(i)} \longrightarrow 0 .
\end{aligned}
$$

Then we can see that the quiver representations determined by y and y^{\prime} are S equivalent. So we have $\phi(x)=\phi(y)=\phi\left(y^{\prime}\right)$. Note that $G_{s} y^{\prime}$ is a closed orbit in $\left(Y \cap Z^{s s}(\chi)\right)_{s}$ by [5, Proposition 3.2]. Thus the closure of the G_{s}-orbit of x must contain y^{\prime}. Then, by Proposition 4.3, x becomes a geometric point of $Y_{s}^{s s}$.

Proof of Theorem 4.4. If we put

$$
\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}:=\phi\left(Y^{s s}\right),
$$

then we can see by Lemma 4.7 that $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ is an open subset of $\left(Y \cap Z^{s s}(\chi)\right) / / G$. We can see by a similar argument to that of [8, Proposition 7.3], that there is a canonical morphism $\Phi: \overline{\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}} \rightarrow \overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$. For two geometric points $x_{1}, x_{2} \in Y^{s s}$ over a geometric point s of $S, \phi\left(x_{1}\right)=\phi\left(x_{2}\right)$ if and only if the corresponding representations of quiver are S-equivalent ([5]), that is, the corresponding objects of \mathscr{D}_{s} are S-equivalent. Thus for any algebraically closed field k over $S, \Phi(k)$: $\overline{\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}}(k) \rightarrow \overline{M_{\mathscr{D}}^{P, \mathscr{L}}}(k)$ is bijective. We can see by a standard argument that $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ has the universal property of the coarse moduli scheme. If we put $M_{\mathscr{D}}^{P, \mathscr{L}}:=Y^{s} / G$, then $M_{\mathscr{D}}^{P, \mathscr{L}}$ becomes an open subset of $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ and we can easily see that $M_{\mathscr{D}}^{P, \mathscr{L}}$ is a coarse moduli scheme of $\mathscr{M}_{\mathscr{D}}^{P, \mathscr{L}}$. So we have proved Theorem 4.4.

Theorem 4.8. Assume that S is of finite type over a universally Japanese ring Ξ. Then the moduli scheme $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ is projective over S.

For the proof of Theorem 4.8, the following lemma is essential.
Lemma 4.9. Let R be a discrete valuation ring over S with quotient field K and residue field k. Assume that E is an object of \mathscr{D}_{K} which is \mathscr{L}-semistable. Then there is an object $\tilde{E} \in \mathscr{D}_{R}$ such that $\tilde{E}_{K} \cong E$ and \tilde{E}_{k} is \mathscr{L}-semistable.

Proof. The above E corresponds to a coherent $\mathscr{A}_{K_{\tilde{Z}}}$-module \mathscr{E} and it suffices to show that there exists an R-flat coherent \mathscr{A}_{R}-module $\tilde{\mathscr{E}}$ such that $\tilde{\mathscr{E}} \otimes_{R} K \cong \mathscr{E}$ and $\tilde{\mathscr{E}} \otimes k$ satisfies the semistability condition given by the inequality in Remark 3.11. For a sufficiently large integer N, we have $H^{i}(\mathscr{E}(N))=0$ for $i>0$ and $\mathscr{E}(N)$ is generated by global sections. Then there is a surjection $\mathscr{A}_{K}(-N)^{\oplus r} \rightarrow \mathscr{E}$ which determies a K-valued point η of the Quot-scheme $\operatorname{Quot}_{\mathscr{A}(-N) \oplus r}^{P}$ for some numerical polynomial P, where $r=\operatorname{dim} H^{0}(\mathscr{E}(N))$. Let $\mathscr{F} \subset \mathscr{A}(-N)^{\oplus r}$ be the universal subsheaf and Y be the maximal closed subscheme of Quot $_{\mathscr{A}(-N) \oplus r}^{P}$ such that $\mathscr{A} \otimes \mathscr{F}_{Y} \rightarrow \mathscr{A}(-N)_{Y}^{\oplus r}$ factors through \mathscr{F}_{Y}. Then η is a K-valued point of Y and extends to an R-valued point ξ of Y because Y is proper over S. ξ corresponds to an R-flat quotient coherent $\mathscr{A}_{R^{-}}$-module \mathscr{E}^{\prime} of $\mathscr{A}(-N)_{R}^{\oplus r}$ and we have $\mathscr{E}^{\prime} \otimes_{R} K \cong$ \mathscr{E}. From the proof similar to that of Langton's theorem ([3, Theorem 2.B.1]), we can obtain an R-flat coherent \mathscr{A}_{R}-module $\tilde{\mathscr{E}}$ by taking succesive elementary transforms of \mathscr{E}^{\prime} along $\boldsymbol{P}\left(V_{1}\right) \times \operatorname{Spec} k$ such that $\tilde{\mathscr{E}} \otimes_{R} K \cong \mathscr{E}^{\prime} \otimes_{R} K \cong \mathscr{E}$ and $\tilde{\mathscr{E}} \otimes k$ is semistable as $\mathscr{A} \otimes k$-module.

Now we prove Theorem 4.8. By construction, the moduli scheme $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ is quasi-projective over S. So it is sufficient to show that $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ is proper over S. Let R be a discrete valuation ring over S with quotient field K and let $\varphi: \operatorname{Spec} K \rightarrow$ $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ be a morphism over S. Then there is a finite extension field K^{\prime} of K such that the composite $\psi: \operatorname{Spec} K^{\prime} \rightarrow \operatorname{Spec} K \xrightarrow{\varphi} \overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ is given by an \mathscr{L}-semistable object E^{\prime}. We can take a discrete valuation ring R^{\prime} with quotient field K^{\prime} such that $K \cap R^{\prime}=R$. Let k^{\prime} be the residue field of R^{\prime}. By Lemma 4.9, there exists an object E of $\mathscr{D}_{R^{\prime}}$ such that $E_{K^{\prime}} \cong E^{\prime}$ and $E_{k^{\prime}}$ is \mathscr{L}-semistable. Then E gives a morphism $\bar{\psi}:$ Spec $R^{\prime} \rightarrow \overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ which is an extension of ψ. We can easily see that $\bar{\psi}$ factors through Spec R. Thus $\overline{M_{\mathscr{D}}^{P, \mathscr{L}}}$ is proper over S by the valuative criterion of properness.

5. Examples.

In this section, we give several examples of moduli spaces of stable objects determined by a strict ample sequence.

Example 5.1. Let $f: X \rightarrow S$ be a flat projective morphism of noetherian schemes and let $\mathscr{O}_{X}(1)$ be an S-very ample line bundle on X such that $H^{i}\left(\mathscr{O}_{X_{s}}(m)\right)=0$ for $i>0, s \in S$ and $m>0$. Consider the fibered triangulated category $\mathscr{D}_{X / S}$ defined by $\left(\mathscr{D}_{X / S}\right)_{U}=D^{b}\left(\operatorname{Coh}\left(X_{U} / U\right)\right)$ for $U \in(\operatorname{Sch} / S)$. Then $\mathscr{L}=\left\{\mathscr{O}_{X}(-n)\right\}_{n \geq 0}$ becomes a strict ample sequence in $\mathscr{D}_{X / S}$.

Proof. Definition 3.1 (1), (2), (3) are easy to verify. Let us prove Definition 3.1 (4). Take any $U \in(\operatorname{Sch} / S)$ and any object $E^{\bullet} \in\left(\mathscr{D}_{X / S}\right)_{U}$. We may assume that E^{\bullet} is given by a complex

$$
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow E^{l_{1}} \xrightarrow{d^{l_{1}}} E^{l_{1}+1} \xrightarrow{d^{l_{1}+1}} \cdots \xrightarrow{d^{l_{2}-1}} E^{l_{2}} \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots,
$$

where each E^{i} is a coherent sheaf on X_{U} flat over U. By flattening stratification theorem, there is a stratification $U=\coprod_{j=1}^{m} Y_{j}$ of U by subschemes Y_{j} such that each coker $\left(d^{i}\right)_{Y_{j}}=\operatorname{coker}\left(d_{Y_{j}}^{i}\right)$ is flat over Y_{j} for any i and j. Then we can see that $\operatorname{im}\left(d_{Y_{j}}^{i}\right)$ and $\operatorname{ker}\left(d_{Y_{j}}^{i}\right)$ are flat over Y_{j} for any i and j. For any point $s \in U$, the sequence

$$
0 \longrightarrow \operatorname{im}\left(d_{Y_{j}}^{i-1}\right) \otimes k(s) \longrightarrow E^{i} \otimes k(s) \longrightarrow \operatorname{coker}\left(d_{Y_{j}}^{i}\right) \otimes k(s) \longrightarrow 0
$$

is exact because coker $\left(d_{Y_{j}}\right)$ is flat over Y_{j}. Then the homomorphism $\operatorname{im}\left(d_{Y_{j}}^{i-1}\right) \otimes$ $k(s) \longrightarrow \operatorname{ker}\left(d_{Y_{j}}^{i}\right) \otimes k(s)$ is injective for any $s \in Y_{j}$. Thus the cohomology
sheaf $\mathscr{H}^{i}\left(E_{Y_{j}}^{\bullet}\right):=\operatorname{ker}\left(d_{Y_{j}}^{i}\right) / \operatorname{im}\left(d_{Y_{j}}^{i-1}\right)$ is flat over Y_{j} for any i and j. We can take a positive integer n_{0} such that for any $n \geq n_{0}, R^{p}\left(f_{Y_{j}}\right)_{*}\left(E_{Y_{j}}^{i}(n)\right)=0$, $R^{p}\left(f_{Y_{j}}\right)_{*}\left(\operatorname{im}\left(d_{Y_{j}}^{i}\right)(n)\right)=0$ and $R^{p}\left(f_{Y_{j}}\right)_{*}\left(\operatorname{ker} d_{Y_{j}}^{i}(n)\right)=0$ for any $p>0$ and any i, j. Then we have $R^{p}\left(f_{Y_{j}}\right)_{*}\left(\mathscr{H}^{i}\left(E_{Y_{j}}^{\bullet}(n)\right)\right)=0$ for any $p>0$, any i, j and $n \geq n_{0}$. From the spectral sequence $R^{p}\left(f_{Y_{j}}\right)_{*}\left(\mathscr{H}^{q}\left(E_{Y_{J}}^{\bullet}(n)\right)\right) \Rightarrow R^{p+q}\left(f_{Y_{j}}\right)_{*}\left(E_{Y_{j}}^{\bullet}(n)\right)$, we have an isomorphism $R^{i}\left(f_{Y_{j}}\right)_{*}\left(E_{Y_{j}}^{\bullet}(n)\right) \cong\left(f_{Y_{j}}\right)_{*}\left(\mathscr{H}^{i}\left(E_{Y_{j}}^{\bullet}\right)(n)\right)$ for any i, j and $n \geq n_{0}$. So we can see that $\boldsymbol{R}\left(f_{Y_{j}}\right)_{*}\left(E_{Y_{j}}^{\bullet}(n)\right)$ is quasi-isomorphic to the complex

$$
\begin{aligned}
& \cdots \longrightarrow 0 \longrightarrow\left(f_{Y_{j}}\right)_{*}\left(E_{Y_{j}}^{l_{1}}(n)\right) \longrightarrow\left(f_{Y_{j}}\right)_{*}\left(E_{Y_{j}}^{l_{1}+1}(n)\right) \\
& \longrightarrow \cdots \longrightarrow\left(f_{Y_{j}}\right)_{*}\left(E_{Y_{j}}^{l_{2}}(n)\right) \longrightarrow 0 \longrightarrow \cdots
\end{aligned}
$$

for any i, j and $n \geq n_{0}$. Note that there are canonical isomorphisms

$$
\begin{aligned}
\boldsymbol{H}^{i}\left(E_{s}^{\bullet}(n)\right) & \cong R^{i}\left(f_{Y_{j}}\right)_{*}\left(E_{Y_{j}}^{\bullet}(n)\right) \otimes k(s) \cong\left(f_{Y_{j}}\right)_{*}\left(\mathscr{H}^{i}\left(E_{Y_{j}}^{\bullet}\right)(n)\right) \otimes k(s) \\
& \cong H^{0}\left(X_{s}, \mathscr{H}^{i}\left(E_{s}^{\bullet}\right)(n)\right) .
\end{aligned}
$$

for any i, j, any $s \in Y_{j}$ and $n \geq n_{0}$. If we take n_{0} sufficiently larger, we may assume that the homomorphism

$$
\left(f_{Y_{j}}\right)^{*}\left(f_{Y_{j}}\right)_{*}\left(\mathscr{H}^{i}\left(E_{Y_{j}}^{\bullet}(n)\right)\right) \longrightarrow \mathscr{H}^{i}\left(E_{Y_{j}}^{\bullet}\right)(n)
$$

is surjective for any $n \geq n_{0}$ and any i, j. Thus there exists a positive integer $N_{0} \gg n$ such that

$$
\left(f_{Y_{j}}\right)_{*}\left(\mathscr{O}_{X_{Y_{j}}}(N-n)\right) \otimes\left(f_{Y_{j}}\right)_{*}\left(\mathscr{H}^{i}\left(E_{Y_{j}}^{\bullet}(n)\right)\right) \longrightarrow\left(f_{Y_{j}}\right)_{*}\left(\mathscr{H}^{i}\left(E_{Y_{j}}^{\bullet}\right)(N)\right)
$$

is surjective for any $N \geq N_{0}$ and any i, j. So we obtain a commutative diagram

for any i, j, any $s \in Y_{j}$ and $N \geq N_{0}$. Hence

$$
\operatorname{Hom}\left(\mathscr{O}_{X_{s}}(-N), \mathscr{O}_{X_{s}}(-n)\right) \otimes \operatorname{Ext}^{i}\left(\mathscr{O}_{X_{s}}(-n), E_{s}^{\bullet}\right) \longrightarrow \operatorname{Ext}^{i}\left(\mathscr{O}_{X_{s}}(-N), E_{s}^{\bullet}\right)
$$

is surjective for any $s \in U$, any i and $N \geq N_{0}$ and we have proved Definition 3.1 (4).

Now we prove Definition 3.1 (5). Assume that an object $E \in\left(\mathscr{D}_{X / S}\right)_{U}$ and integers i, n_{0} are given such that $\operatorname{Ext}^{i}\left(\mathscr{O}_{X_{s}}(-n), E_{s}^{\bullet}\right)=0$ for any $s \in U$ and $n \geq n_{0}$. Replacing n_{0} by a sufficiently large integer, we have

$$
\operatorname{Ext}^{i}\left(\mathscr{O}_{X_{s}}(-n), E_{s}^{\bullet}\right) \cong \boldsymbol{H}^{i}\left(E_{s}^{\bullet}(n)\right) \cong H^{0}\left(X_{s}, \mathscr{H}^{i}\left(E_{s}^{\bullet}\right)(n)\right)=0
$$

for any $s \in U$ and any $n \geq n_{0}$. Then we have $\mathscr{H}^{i}\left(E_{s}^{\bullet}\right)=0$. If E^{\bullet} is given by

$$
E^{l_{1}} \xrightarrow{d^{l_{1}}} E^{l_{1}+1} \xrightarrow{d^{l_{1}+1}} \cdots \xrightarrow{d^{l_{2}-1}} E^{l_{2}}
$$

such that each E^{j} is flat over U, then the induced homomorphism $\operatorname{coker}\left(d^{i-1}\right) \otimes$ $k(s) \rightarrow E^{i+1} \otimes k(s)$ is injective for any $s \in U$. Then $\operatorname{coker}\left(d^{i}\right)$ is flat over U and $\operatorname{coker}\left(d^{i-1}\right) \rightarrow E^{i+1}$ is injective. Let F^{\bullet} be the complex given by

$$
\cdots \longrightarrow 0 \longrightarrow \operatorname{coker}\left(d^{i}\right) \longrightarrow E^{i+2} \xrightarrow{d^{i+2}} \cdots \xrightarrow{d^{l_{2}-1}} E^{l_{2}} \longrightarrow 0 \longrightarrow \cdots .
$$

Then there is a canonical morphism $u: E^{\bullet} \rightarrow F^{\bullet}$. Note that

$$
R^{j} \operatorname{Hom}_{f}\left(\mathscr{O}_{X_{U}}(-n), E^{\bullet}\right)=R^{j}\left(f_{U}\right)_{*}\left(E^{\bullet}(n)\right) \cong\left(f_{U}\right)_{*}\left(\mathscr{H}^{j}\left(E^{\bullet}\right)(n)\right)
$$

for $n \gg 0$. So u induces isomorphisms

$$
\begin{aligned}
& R^{j} \operatorname{Hom}_{f}\left(\mathscr{O}_{X_{U}}(-n), E^{\bullet}\right) \xrightarrow{\sim}\left(f_{U}\right)_{*}\left(\mathscr{H}^{j}\left(E^{\bullet}\right)(n)\right) \\
& \quad \xrightarrow{\sim}\left(f_{U}\right)_{*}\left(\mathscr{H}^{j}\left(F^{\bullet}\right)(n)\right) \xrightarrow{\sim} R^{j} \operatorname{Hom}_{f}\left(\mathscr{O}_{X_{U}}(-n), F^{\bullet}\right)
\end{aligned}
$$

for $j>i$ and $n \gg 0$. By definition we have $R^{j} \operatorname{Hom}_{f}\left(\mathscr{O}_{X_{U}}(-n), F^{\bullet}\right)=$ $\left(f_{U}\right)_{*}\left(\mathscr{H}^{j}\left(F^{\bullet}(n)\right)\right)=0$ for $j \leq i$ and $n \gg 0$. Thus we have proved Definition 3.1 (5).

Finally, let us prove Definition 3.1 (6). Let E^{\bullet} and F^{\bullet} be objects of $\left(\mathscr{D}_{X / S}\right)_{U}$. Assume that $R^{j}\left(f_{U}\right)_{*}\left(E^{\bullet}(n)\right)=0$ for $j \geq 0$ and $n \gg 0$ and that $R^{j}\left(f_{U}\right)_{*}\left(F^{\bullet}(n)\right)=$ 0 for $j<0$ and $n \gg 0$. Since $R^{j}\left(f_{U}\right)_{*}\left(E^{\bullet}(n)\right) \cong\left(f_{U}\right)_{*}\left(\mathscr{H}^{j}\left(E^{\bullet}\right)(n)\right)$ for $n \gg 0$, we
have $\mathscr{H}^{j}\left(E^{\bullet}\right)=0$ for $j \geq 0$. Then E^{\bullet} is quasi-isomorphic to the complex given by

$$
\cdots \longrightarrow 0 \longrightarrow E^{l_{1}} \xrightarrow{d_{E}^{l_{1}}} E^{l_{1}+1} \longrightarrow \cdots \longrightarrow E^{-2} \longrightarrow \operatorname{ker}\left(d_{E}^{-1}\right) \longrightarrow 0 \longrightarrow \cdots
$$

On the other hand, we have $\mathscr{H}^{j}\left(F^{\bullet}\right)=0$ for $j<0$, because $R^{j}\left(f_{U}\right)_{*}\left(F^{\bullet}(n)\right) \cong$ $\left(f_{U}\right)_{*}\left(\mathscr{H}^{j}\left(F^{\bullet}\right)(n)\right)$ for $n \gg 0$. Then F^{\bullet} is quasi-isomorphic to the complex given by

$$
\cdots \longrightarrow 0 \longrightarrow \operatorname{coker} d_{F}^{-1} \longrightarrow F^{1} \xrightarrow{d_{F}^{1}} \cdots \longrightarrow F^{m_{2}} \longrightarrow 0 \longrightarrow \cdots
$$

We can take a complex

$$
\cdots \longrightarrow 0 \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow I^{2} \longrightarrow \cdots
$$

such that each I^{j} is an injective sheaf on X_{U} and that I^{\bullet} is quasi-isomorphic to F^{\bullet}. Then we have $\operatorname{Hom}_{\left(\mathscr{D}_{X / S}\right)_{U}}\left(E^{\bullet}, F^{\bullet}\right) \cong H^{0}\left(\operatorname{Hom}^{\bullet}\left(E^{\bullet}, I^{\bullet}\right)\right)=0$. So we have proved Definition 3.1 (6).

For an object $E \in\left(\mathscr{D}_{X / S}\right)_{U}, \operatorname{Ext}^{i}\left(\mathscr{O}_{X_{s}}(-n), E_{s}\right)=0$ for $n \gg 0, i \neq 0$ and $s \in U$ if and only if E^{\bullet} is quasi-isomorphic to a coherent sheaf on X_{U} flat over U. Hence, for a numerical polynomial P, the moduli space $M_{\mathscr{D}_{X / S}}^{P, \mathscr{L}}\left(\right.$ resp. $\overline{M_{\mathscr{D} X / S}^{P, \mathscr{L}}}$) is just the usual moduli space of $\mathscr{O}_{X}(1)$-stable sheaves (resp. moduli space of S equivalence classes of $\mathscr{O}_{X}(1)$-semistable sheaves) on X over S.

Example 5.2. Let $X, S, \mathscr{O}_{X}(1)$ and $\mathscr{D}_{X / S}$ be as in Example 5.1. Take a vector bundle G on X. Replacing $\mathscr{O}_{X}(1)$ by some multiple, $\mathscr{L}_{G}=\left\{G \otimes \mathscr{O}_{X}(-n)\right\}_{n \geq 0}$ also becomes a strict ample sequence in $\mathscr{D}_{X / S}$ and the moduli space $M_{\mathscr{D}_{X / S}}^{P, \mathscr{L}_{G}}$ (resp. $\left.\overline{M_{\mathscr{D}_{X / S}}^{P, \mathscr{L}_{G}}}\right)$ is the moduli space of G-twisted $\mathscr{O}_{X}(1)$-stable sheaves (resp. moduli space of S-equivalence classes of G-twisted $\mathscr{O}_{X}(1)$-semistable sheaves) on X over S.

Example 5.3. Let X, Y be projective schemes over an algebraically closed field k and let $\mathscr{O}_{X}(1)$ be a very ample line bundle on X such that $H^{i}\left(X, \mathscr{O}_{X}(m)\right)=$ 0 for $i>0$ and $m>0$. Assume that a Fourier-Mukai transform

$$
\begin{gathered}
\Phi: D_{c}^{b}(X) \xrightarrow{\sim} D_{c}^{b}(Y) \\
E \mapsto \boldsymbol{R}\left(p_{Y}\right)_{*}\left(p_{X}^{*}(E) \otimes \mathscr{P}\right)
\end{gathered}
$$

with the kernel $\mathscr{P} \in D_{c}^{b}(X \times Y)$ is given. Then Φ extends to an equivalence of
fibered triangulated categories

$$
\Phi: \mathscr{D}_{X / k} \xrightarrow{\sim} \mathscr{D}_{Y / k} .
$$

Since $\mathscr{L}=\left\{\mathscr{O}_{X}(-n)\right\}_{n \geq 0}$ is a strict ample sequence in $\mathscr{D}_{X / k}, \mathscr{L}^{\Phi}=$ $\left\{\Phi\left(\mathscr{O}_{X}(-n)\right)\right\}_{n \geq 0}$ is a strict ample sequence in $\mathscr{D}_{Y / k}$. Moreover Φ determines an isomorphism

$$
\Phi: M_{\mathscr{D} X / k}^{P, \mathscr{L}} \xrightarrow{\sim} M_{\mathscr{D}_{Y / k}}^{P, \mathscr{L}^{\Phi}}
$$

of the moduli space of stable sheaves on X to the moduli space of stable objects in $D_{c}^{b}(Y)$.

Example 5.4. Let G be a finite group and X be a projective variety over \boldsymbol{C} on which G acts. Take a G-linearized very ample line bundle $\mathscr{O}_{X}(1)$ on X such that $H^{i}\left(X, \mathscr{O}_{X}(m)\right)=0$ for $i>0$ and $m>0$. Let $\rho_{0}, \rho_{1}, \ldots, \rho_{s}$ be the irreducible representations of G. Consider the fibered triangulated category $\mathscr{D}_{X / C}^{G}$ defined by $\left(\mathscr{D}_{X / C}^{G}\right)_{U}=D^{G}\left(\operatorname{Coh}\left(X_{U} / U\right)\right)$, for $U \in(\operatorname{Sch} / \boldsymbol{C})$, where $D^{G}\left(\operatorname{Coh}\left(X_{U} / U\right)\right)$ is the full subcategory of the derived category of bounded complexes of G-equivariant coherent sheaves on X_{U} consisting of the objects of finite Tor-dimension over U. For positive integers $r_{0}, r_{1}, \ldots, r_{s}, \mathscr{L}_{\left(r_{0}, \ldots, r_{s}\right)}^{G}=\left\{\mathscr{O}_{X}(-n) \otimes\left(\rho_{0}^{\oplus r_{0}} \oplus \cdots \oplus \rho_{s}^{\oplus r_{s}}\right)\right\}_{n \geq 0}$ becomes a strict ample sequence in $\mathscr{D}_{X / C}^{G}$. The moduli space $M_{\mathscr{D}_{X / C}^{G}}^{P, \mathscr{L}_{\left(r_{0}, \ldots, r_{s}\right)}^{G}}$ is just the moduli space of G-equivariant sheaves \mathscr{E} on X satisfying the stability condition: \mathscr{E} is of pure dimension $d=\operatorname{deg} P$ and for any G-equivariant subsheaf $0 \neq \mathscr{F} \subsetneq \mathscr{E}$, the inequality

$$
\begin{aligned}
& \frac{\operatorname{Hom}_{G}\left(\rho_{0}^{\oplus r_{0}} \oplus \cdots \oplus \rho_{s}^{\oplus r_{s}}, H^{0}\left(X, \mathscr{F} \otimes \mathscr{O}_{X}(n)\right)\right)}{a_{0}(\mathscr{F})} \\
& \quad<\frac{\operatorname{Hom}_{G}\left(\rho_{0}^{\oplus r_{0}} \oplus \cdots \oplus \rho_{s}^{\oplus r_{s}}, H^{0}\left(X, \mathscr{E} \otimes \mathscr{O}_{X}(n)\right)\right)}{a_{0}(\mathscr{E})}
\end{aligned}
$$

holds for $n \gg 0$, where we define

$$
\chi(\mathscr{E}(m))=\sum_{i=0}^{d} a_{i}(\mathscr{E})\binom{m+d-i}{d-i} \quad \text { and } \quad \chi(\mathscr{F}(m))=\sum_{i=0}^{d} a_{i}(\mathscr{F})\binom{m+d-i}{d-i}
$$

and so on.

Example 5.5. Let X be a projective variety over \boldsymbol{C} and let $\mathscr{O}_{X}(1)$ be a very ample line bundle on X such that $H^{i}\left(X, \mathscr{O}_{X}(m)\right)=0$ for $i>0$ and $m>0$. For a torsion class $\alpha \in H^{2}\left(X, \mathscr{O}_{X}^{\times}\right)$, consider the fibered triangulated category $\mathscr{D}_{X / C}^{\alpha}$ over $(\operatorname{Sch} / \boldsymbol{C})$ defined by $\left(\mathscr{D}_{X / C}^{\alpha}\right)_{U}:=D^{b}\left(\operatorname{Coh}\left(X_{U} / U\right), \alpha_{U}\right)$, where $D^{b}\left(\operatorname{Coh}\left(X_{U} / U\right), \alpha_{U}\right)$ is the derived category of bounded complexes of coherent α_{U}-twisted sheaves on $X \times U$ of finite Tor-dimension over U and α_{U} is the image of α in $H^{2}\left(X_{U}, \mathscr{O}_{X_{U}}^{\times}\right)$. For a locally free α-twisted sheaf G of finite rank on X, $\mathscr{L}_{G}^{\alpha}=\left\{G \otimes \mathscr{O}_{X}(-n)\right\}_{n \geq 0}$ becomes a strict ample sequence in $\mathscr{D}_{X / C}^{\alpha}$, after replacing $\mathscr{O}_{X}(1)$ by some multiple. The moduli space $M_{\mathscr{D}_{X / C}^{\alpha}}^{P, \mathscr{L}_{G}^{\alpha}}$ is just the moduli space of G-twisted stable α-twisted sheaves on X in the sense of [10].

Acknowledgments. The author would like to thank Professor Kōta Yoshioka for valuable discussions and giving him a useful idea. He also would like to thank Doctor Yukinobu Toda for valuable discussions and comments.

References

[1] T. Bridgeland, Stability conditions on triangulated categories. Ann. Math. (2), 166 (2007), 317-345.
[2] A. Bondal and D. Orlov, Reconstruction of a variety from the derived category and the groups of autoequivalences, Comp. Math. 125 (2001), 327-344.
[3] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg \& Sohn, Braunschweig, 1997.
[4] M. Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ., 42 (2002), 317-329.
[5] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), 45 (1994), no. 180, 515-530.
[6] A. Langer, Semistable sheaves in positive characteristic, Ann. of Math. (2), 159 (2004), 251-276.
[7] M. Lieblich, Moduli of complexes on a proper morphism, J. Algebraic. Geom., 15 (2006), 175-206.
[8] M. Maruyama, Construction of moduli spaces of stable sheaves via Simpson's idea, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), 147-187, Lecture Notes in Pure and Appl. Math., 179, Dekker, New York, 1996.
[9] C. S. Seshadri, Geometric reductivity over arbitrary base, Adv. in Math., 26 (1977), 225-274.
[10] K. Yoshioka, Moduli spaces of twisted sheaves on a projective variety, Moduli spaces and arithmetic geometry, 1-30, Adv. Stud. Pure Math., 45, Math. Soc. Japan, Tokyo, 2006.
[11] K. Yoshioka, Stability and the Fourier-Mukai transform I, Math. Z., 245 (2003), 657-665.

Michi-aki INABA
Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
E-mail: inaba@math.kyoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 14D20, 18E30.
 Key Words and Phrases. moduli, triangulated category.
 The author is partly supported by Grant-in-Aid for Scientific Research (Wakate-B 18740011), Japan Society for the Promotion of Science.

