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Abstract. Let p € (0, 1]. In this paper, the authors prove that a sublinear
operator T (which is originally defined on smooth functions with compact
support) can be extended as a bounded sublinear operator from product Hardy
spaces HP(R" x R™) to some quasi-Banach space £ if and only if T maps all
(p, 2, 51, $2)-atoms into uniformly bounded elements of #. Here s; > [n(1/p —1)]
and s2 > |m(1/p—1)]. As usual, [n(1/p—1)] denotes the maximal integer no
more than n(1/p — 1). Applying this result, the authors establish the boundedness
of the commutators generated by Calderén-Zygmund operators and Lipschitz
functions from the Lebesgue space LP(R" x R™) with some p > 1 or the Hardy
space HP(R" x R™) with some p <1 but near 1 to the Lebesgue space
LY(R" x R™) with some ¢ > 1.

1. Introduction.

The theory of Calderén-Zygmund operators and Hardy spaces on product
spaces has been studied by many mathematicians extensively in the past thirty
years, see, for example, [8], [9], [11], [12], [18], [20], [28], [29]. Recently,
Ferguson and Lacey [13] characterized the product BMO (R? x R%) by the
nested commutator determined by the one-dimensional Hilbert transform in the
jth variable, j = 1,2. Motivated by this, Chen, Han and Miao in [6] established
the boundedness on H!(R" x R™) of bi-commutators of fractional integrals with
BMO functions. The boundedness on H'(R" x R™) of the Marcinkiewicz integral
and its commutator with Lipschitz function was also established in [28].

To establish the boundedness of operators on Hardy spaces on R" and
R" x R™, one usually appeals to the atomic decomposition characterization of
Hardy spaces, which means that a function or distribution in Hardy spaces can be
represented as a linear combination of atoms; see [7], [21] and [3], [5] respectively.
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Then, the boundedness of linear operators on Hardy spaces can be deduced from
their behavior on atoms in principle.

However, Meyer [23, p. 513] (see also [2], [15]) gave an example of f €
H'(R"), whose norm cannot be achieved by its finite atomic decompositions via
(1, co)-atoms. Based on this fact, Bownik [2, Theorem 2] constructed a surprising
example of a linear functional defined on a dense subspace of H!(R"), which maps
all (1, co)-atoms into bounded scalars, but yet cannot extend to a bounded linear
functional on the whole H'(R"). This implies that it cannot guarantee the
boundedness of linear operator T from HP(R") with p € (0, 1] to some quasi-
Banach space & ounly proving that T maps all (p, co)-atoms into uniformly
bounded elements of . This phenomenon has also essentially already been
observed by Y. Meyer in [22, p. 19]. Moreover, motivated by this, Yabuta [27]
gave some sufficient conditions for the boundedness of T' from HP(R") with p €
(0, 1] to LI(R") with ¢ > 1 or HY(R") with ¢ € [p, 1]. However, these conditions
are not necessary. In [29], a boundedness criterion was established as follows: a
sublinear operator T (which is originally defined on smooth functions with
compact support) extends to a bounded sublinear operator from H?(R") with
p € (0,1] to some quasi-Banach spaces £ if and only if T maps all (p, 2)-atoms into
uniformly bounded elements of Z. This result shows the structure difference
between atomic characterization of HP(R") via (p,2)-atoms and (p,oo)-atoms.
This result is generalized to spaces of homogeneous type in [30)].

The purpose of this paper is two folds. We first generalize the boundedness
criterion on R" in [29] to product Hardy spaces on R" x R™. Precisely, we prove
that a sublinear operator T' (which is originally defined on smooth functions with
compact support) extends to a bounded sublinear operator from H?(R" x R™)
with p € (0,1] to some quasi-Banach spaces % if and only if T maps all
(p,2)-atoms into uniformly bounded elements of . Invoking this result and
motivated by [6], [13], [28], we then establish the boundedness of the
commutators generated by Calderén-Zygmund operators and Lipschitz functions
from the Lebesgue space LP(R" x R™) with some p > 1 or the Hardy space
HP(R" x R™) with some p <1 but near 1 to the Lebesgue space LI(R" x R™)
with some ¢ > 1.

To state the main results, we first recall some notation and notions on product
Hardy spaces. For n, m € N, denote by #(R" x R™) the space of Schwartz
functions on R" x R™ and by .#/(R" x R™) its dual space. Let Z(R" x R™) be
the space of all smooth functions on R" x R™ with compact support. For
S1, S2 € Zy, let Dy, 5, (R" x R™) be the set of all functions f € Z(R" x R™) with
vanishing moments up to order s; with respect to the first variable and order sy
with respect to the second variable. More precisely, if f € Z(R" x R™), then for
ay € Z' and oy € Z" with |ag| < 51 and |ag| < s9, one has
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flx1, o)z dzy =0 for all =z, € R™,
.

flxy, xo)zy*dry =0 forall z, € R".
Rm

For s1, s, € Z and o1, 03 € [0,00), we denote by Dy, s,.01,0,(R" x R™) the space
Ds, 5, (R" x R™) endowed with the norm

1/]

G or (mxrmy = SUp (L [z )7 (1 + [z2) ] f (1, 22)]-
1,52 1,02 :Z:IERH.’./L‘ZER”L

In articles [3], [4], [5], Chang and Fefferman introduced the following atoms
and atomic Hardy spaces on the product space R" x R™.

DEFINITION 1.1. Let p € (0,1], s1 > [n(1/p—1)]| and so > [m(1/p—1)]. A
function a supported in an open set 2 C R" x R™ with finite measure is said to be
a (p, 2, s1, s2)-atom provided that

(AD) a can be written as a = 3 pc 4(q) ar, Where .Z(S2) denotes all the maximal
dyadic subrectangles of Q2 and ap is a function satisfying that

(i) ag is supported on 2R = 2I x 2J, which is a rectangle with the same
center as R and whose side length is 2 times that of R,

(ii) ag satisfies the cancelation conditions that

/ ap(z1, z2)z{" dzy =0  for all o € 2J and |az| < s1,
21

/ ap(x1, x2)x5* dey =0 for all z1 € 21 and |as| < s3;
2J

1/2-1/p

(AII) a satisfies the size conditions that ||al;2(gey gy < 9] and

1/2

2 1/2—1
Z ||aR||L2(Ranm) < ‘Q| / /p.
Re.#(Q)

DEFINITION 1.2. Let p € (0, 1], 81 > [n(1/p—1)] and s3 > |m(1/p—1)]. A
distribution f € .%/(R" x R™) is said to be an element in H”%**(R" x R™) if
there exist a sequence {A\;}, .y C C and (p, 2, s1, s2)-atoms {a;},cn such that
F = ken M in ' (R" x R™) with >, n [ A" < 0o. Moreover, define the quasi-
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norm of fe€ HP%5%2(R"x R™) by 1Al 2 (o ey = IE{ (e IXP)PY,
where the infimum is taken over all the decompositions as above.

It is well known that H?:%:%(R" x R™) = HP>!2(R" x R™) with equiv-
alent norms when sy, t; > [n(1/p —1)] and sq, t5 > |m(1/p — 1)]; see [3], [4], [5],
[10], [17]. Thus, we denote H?%*:*(R" x R™) simply by H?(R" x R™).

Recall that a quasi-Banach space % is a vector space endowed with a quasi-
norm | -||4 which is nonnegative, non-degenerate (i.e., || f|| = 0 if and only if
f =0), homogeneous, and obeys the quasi-triangle inequality, i.e., there exists a
constant Cy > 1 such that for all f, g € A,

I1f +9llz < Colllfll 5 + llgll )- (1.1)

DEFINITION 1.3.  Let ¢ € (0, 1]. A quasi-Banach spaces %, with the quasi-
norm || - |4, is said to be a g-quasi-Banach space if || - ||J3 satlsﬁes the triangle
< |I£1l%, + g, for all £, g € 5,

inequality, i.e.

We point out that by the Aoki theorem (see [1] or [16, p. 66]), any quasi-
Banach space with the positive constant Cj as in (1.1) is essentially a g-quasi-
Banach space with g = [log,y(2C)) | ~!. From this, any Banach space is a 1-quasi-
Banach space. Moreover, ¢, LY(R" x R™) and HY(R" x R™) with q € (0, 1) are
typical g-quasi-Banach spaces.

Let g € (0, 1]. For any given g-quasi-Banach space %, and linear space ¢/, an
operator T from % to %, is called to be %,-sublinear if for any f, g € % and
A, v e C, we have

1/q
ITOF +v9)lla, < (TN, + MIT @)%,

and [|T'(f) = T(9)ll 5, < IT(f — 9)l.5,; see [29], [30]. Obviously, if T'is linear, then
T is %B,-sublinear. Moreover, if %, is a space of functions, T is sublinear in the
classical sense and T'(f) > 0 for all f € &, then T is also %,-sublinear.

The following is one of main results in this paper, which generalizes the main
result in [29] to product Hardy spaces.

THEOREM 1.1. Let p € (0, 1], g € [p, 1] and %, be a q-quasi-Banach space.
Suppose that s1 > |n(1/p—1)| and sy > |m(1/p—1)]. Let T be a HB,-sublinear
operator from D, ., (R" x R™) to %B,. Then T can be extended as a bounded
Bq-sublinear operator from HP(R" x R™) to %, if and only if T maps all
(p, 2, 51, s2)-atoms in Dy, s, (R" x R™) into uniformly bounded elements of %,,.
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Theorem 1.1 further complements the proofs of Theorem1 in [11] and a
theorem in [9], whose proof is presented in Section 2 below. The necessity of
Theorem 1.1 is obvious. To prove the sufficiency, for p € (0,1], s; > [n(1/p —1)],
sy > |m(l/p—1)| and f € D, 5,(R" x R™), we first prove that f has an atomic
decomposition which converges in P 50,0, (R X R™) for some o€
(max{n/p, n+ s}, n+ s+ 1) and o9 € (max{n/p, n+ s}, n+ s+ 1) (Lemma2.3),
and then extend T to the whole % s,.0,.0,(R" x R™) boundedly (Lemma?2.4).
Finally, we continuously extend T to the whole HP(R" x R™) by using the density
of D5 (R" x R") in H?(R" x R™).

Recall that a function a is said to be a rectangular (p, 2, s1, s9)-atom if

(Rl) suppa C R =1 x J, where I and J are cubes in R" and R, respectively;

fRn (x1, z2)z]" dzy =0 for all z € R™ and |y | < s1, and me a(zy, xo)xy? deg =
0 for all ;1 € R" and |ag| < s9;

(R3) llall 2o remy < |RIVZVP.

As a consequence of Theorem 1.1, we obtain the following result which

includes a fractional version of Theorem1 in [11] and is known to have many
applications in harmonic analysis.

COROLLARY 1.1. Let gy € [2,00) and T be a bounded sublinear operator
from L*(R" x R™) to L®(R" x R™). Let p € (0,1] and 1/q—1/p=1/qy — 1/2. If
there exist positive constants C and 6 such that for all rectangular
(p, 2, 51, 82)-atoms a supported in R and all v > 8 max{n'/?, m!/?},

/(R - |Ta(xy, x5)|? dry dzy < Cy~°,

where ]:21, denotes the vy-fold enlargement of R, then T can be extended as a bounded
sublinear operator from HP(R" x R™) to LY(R" x R™).

The proof of Corollary 1.1 is given in Section 2 below. We point out that if
q@o =2 and T is linear, then Corollary 1.1 is just Theorem 1 in [11]. Moreover,
there exists a gap in the proof of Theorem 1 in [11] (so is the proof of a theorem in
[9]), namely, it was not clear in [11] how to deduce the boundedness of the
considered linear operator T on the whole Hardy space HP(R" x R™) from its
boundedness uniformly on atoms. Our Theorem 1.1 here seals this gap.

REMARK 1.1. Using Corollary 1.1, we now give affirmative answers to the
questions in Remark 4.2 and Remark 4.3 of [28]. We use the same notation and
notions as in [28]. Particularly, denote by pg the Marcinkiewicz integral operator



326 D.-C. CHANG, D. YANG and Y. ZHOU

on R"x R™ with kernel Q € Lip (a1, a9; 8" ", 8™ "), here aj,a € (0,1]. If
max{n/(n+ ai),m/(m+ az)} <p <1, then in Remark4.2 of [28], we proved
that for all (p,2,0,0) atoms a, [po(a)llgixpry S 1. Moreover, let
b € Lip (61, Bo; R" x R™) with 1, 3 € (0,1] satisfying fi/n = B2/m and Cy(ua)
be the commutator of b and ug. If 1/¢ =1/p — $1/n and

max{n/(n+ ai),m/(m+az)} <p <1,

then in Remark 4.3 of [28], we proved that for all (p,2,0,0) atoms a,

”Cb(:uﬂ)(a)”L‘l(R"><R"’) S L

However, in [28], it is not clear how to obtain the boundedness of ug from
HP?(R" x R™) to L?(R" x R™) and boundedness of Cy(ugq) from HP(R" x R™) to
LI(R" x R™) by these known facts. Applying Theorem 1.1 here, we now obtain
these desired boundedness, and hence answer the questions in Remark4.2 and
Remark 4.3 of [28].

Now we turn to the boundedness of commutators generated by Lipschitz
functions and Calderén-Zygmund operators. We first introduce the notion of
Lipschitz functions on R" x R™. Let a € (0,1]. A function b on R" is said to
belong to Lip (a; R") if there exists a positive constant C' such that for all
z, 7 € R",

|b(x) — b(x")| < Clx — 2'|".

Obviously, a function in the space Lip (a; R") is not necessary bounded. For
example, |z|* € Lip (o; R"), but |z|* & L®(R").

DEFINITION 1.4. Let aj, ag € (0,1]. A function f on R" x R™ is said to
belong to Lip (a1, ag; R™ x R™), if there exists a positive constant C' such that for
all 1, y1 € R" and xo, y2 € R™,

[f(z1, 22) = f(21, y2)] = [f(y1, 2) = f(yr, o)l < Cloy — ya|“fwg — 3™, (1.2)

The minimal constant C satisfying (1.2) is defined to be the norm of f in the space
Lip (a1, as; R" x R™) and denoted by || flLip(ay, a0 R x B™)-

We remark that a function in the space Lip (aq, ag; R" x R™) is also not
necessary to be bounded. In fact, if f; € Lip (a1; R") and f2 € Lip (ag; R™), then
it is easy to check fi(z1)fa2(xq) € Lip (a1, ag; R* x R™).
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In this paper, we consider a class of Calderén-Zygmund operators T' on
R" x R™, whose kernel K is a continuous function on (R" x R" x R™ x R™)\
{(z1, y1, T2, Y2) : o1 =y1 or ks =yo} and satisfies that there exist positive
constants C' and €, €2 € (0,1] such that

(K1) for all z1 # y; and 2 # yo,

1 1

|K(5E1,y1,l’2, y2)| SC n
|71 — " |22 — o

‘771 I

(K2) for all 21 # y1, 22 # yo, 21 € R" and |y1 — 21| < |1 — v1]/2,

ly1 — 21| 1
|K((E17 Y1, T2, y?) - K(mlv 21, T2, y2)| S C n+e ™o
J— 1 J—
lz1 — w1l |2 — yo|
(K3) for all z1 # y1, ©2 # y2, 22 € R™ and |y, — 2| < |22 — 42|/2,
1 |ya — 22|
|[K (21, Y1, T2, y2) — K(71, y1, 72, 22)| < C P

|I1 - Z/1|n |$2 - y2|
(K4) for all xy #y1, 2o £y, 21 € R", 20€ R", |th — 21| < |21 —1]/2 and
Y2 — 22| < |22 — 32]/2,

|[K(z1, y1, @2, y2) — K(x1, 21, T2, y2)] — [K (1, Y1, @2, 20) — K(x1, 21, T2, 22)]|

ly1 — 21" |y2 — 2o|®

< C n+e; |$2 _ yQ‘m-&-eg :

T e =l

The minimal constant C satisfying (K1) through (K4) is denoted by | K]|.

Let aj, as € (0,1], b€ Lip(ay, ag; R* x R™) and T be any Calderén-
Zygmund operator with kernel K satisfying the above conditions from (K1) to
(K4). For any suitable function f and (z;,z2) € R" x R™, define the commutator
[b, T] by

[b, T1(f) (1, 22)
:/ K(zh Y1, T2, yQ)
R’HXR'VU
x [b(z1, 22) = b(w1, y2) = b(y1, @2) + b(y1, y2)|f(y1, y2) dyndyz.  (1.3)

The following result gives the boundedness of the commutator [b, T] on
Lebesgue spaces.
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THEOREM 1.2. Let €1, €9, a1, ag € (0,1], ay/n=as/m, p € (1,n/a1) and
1/g=1/p—«ai/n. Let b€ Lip(ai, as; R" x R™), T be a Calderon-Zygmund
operator whose kernel K satisfies the conditions from (K1) to (K4), and [b, T)
be the commutator as in (1.3). Then there exists a positive constant C independent

of 10llLip (o, a0 xRy a0 || K| such that for all f € LP(R" x R™),

||[b7 T](f)”L‘I(R"xR’”) < CHK”||bHLip(al,aggR”><R"’)||f||LP(R"><R'”)'

Here is another main result of this paper, whose proof depends on
Corollary 1.1.

THEOREM 1.3.  Let 0 < o1 <min{n/2, 1}, ag/n = as/m, €1, €3 € (0,1],
max{n/(n+e€), n/(n+a1), m/(m+e), m/(m+a)} <p<1 (1.4)

and 1/q=1/p—ai/n. Assume that b€ Lip (ai, ag; R" x R™). Let T be a
Calderdn-Zygmund operator whose kernel K satisfies the conditions (K1) through
(K4), and [b, T] be the commutator defined in (1.3). Then there exists a positive
constant C independent of ||bl|yip, a0 mixrmy and ||K| such that for all
fe H(R" x R™),

116 TYON zagrrxrry < CHE B iy, an; < &) [l (R -

The proofs of Theorem 1.2 and Theorem 1.3 are presented in Section 3.

We finally make some conventions. Throughout this paper, let N =
{1,2,---} and Z, = NU{0}. We always use C to denote a positive constant
that is independent of the main parameters involved but whose value may differ
from line to line. We use f < g to denote f < Cgand f ~ g to denote f < g < f.

2. Proofs of Theorem 1.1 and Corollary 1.1.

As a matter of convenience, in this section, we denote n and m, respectively,
by ny and ny. For i =1, 2 and s; € Z, denote by Z,,(R"™) the set of all smooth
functions with compact support and vanishing moments up to order s;. Then
there exist functions ¢ € 2, (R™) and ¢ € .7(R™) such that

(i) supp ) c BY(0, 1), w >0 and J@\)(fl) > % if% < |&| <2, where and in
what follows, B®(0, r;) = {x; € R" : |z;| <r;} and E(’\) denotes the Fourier
transform of ¢,

(i) supp ) C {& € R : 1/2 < |&] < 2} and o) > 0;
(iii) sup{e® (&) : 3/5 < |&| < 5/3} > C for some positive constant C;
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(iv) fo" 9O (&)W (t:&) 4 =1 for all & € R™ \ {0}.
Such 1 and ¢ can be constructed by a slight modification of Lemma (1.2) of
[14]; see also Lemma (5.12) in [14] for a discrete variant. Then by an argument
similar to the proofs of Theorem (1.3) and Theorem 1 in Appendix of [14], we have
that for all f € S(R™ x R™) and (z1,22) € R™ x R™,

for o) = | : / s # o % ) a1, z) L2 (2.1)

t1 to

in both L*(R™ x R™) and pointwise, where and in what follows, for any i = 1, 2,
o € S (R™), z; € R" and t; € (0, 00), we always let ¢§j>($i) =t "¢ (7 ;) and
Gu.0a(21,22) = 61 (1)@}, (2). For any set E C (R" x R"), set E* = (R" x R™)\
E.

LEMMA 2.1.  Lets; € Z,, 9" € 2, (R") and o) € .Z(R™) satisfy the above
conditions (i) through (iv), where 1 =1,2. Let 0<o0; <0, <mn;+s;,+1 for
i=1,2. Then for any f € D, s,(R™ x R™), there exists a positive constant C
such that for all €1, €2 € (0, 1) and Ly, Ly € (1,00),

sup (T4 |21 ) (1 + |22])
(21, 22)€ER™ X R™

X (/OEI/OOO+/:/OOC+/OOO/OQ+/OOO/;)/Rmm|(<m17t2*f)(y1,y2)|

dty dty

X |t 1 (21 — Y1, w2 — yo)| dyy dyp — —
t1 1o

S C|:€l +es+ (Ll)mfmfslfl + (L2)027n278271:|7

sup (L[ )7 (1 + [a2])™

(21, 22)ER™ x R™

Ly 00
o A A R [ (7]
0 0 [BM(0,2L;)]" x R"™

dt dt o
X |ty 1, (1 — Y1, @2 — y2)| dy dyo t—l t_2 < C(Ly) (2.2)
1 1o

and (2.2) with Ly, 01, ny, s1 and BW replaced, respectively, by Lo, 09, na, so and
B2,

In order to prove Lemma2.1, we need the following technical lemma. For
1=1,2,u; >0, let
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L (R = {cp e S(R"): / o(x;)xd de; = 0, |af < uz}
R

For any s1, s2 € Z_1 = NU{0,—1}, we denote by .77, 5, (R™ x R™) the space of
functions in .Z(R™ x R™) with the vanishing moments up to order s; in the first
variable and order s, in the second variable, where we say that f € /(R™ x R™)
has vanishing moments up to order —1 in the first or second variable, if f has no
vanishing moment with respect to that variable.

LEMMA 2.2. Let 8; € Z 1, ;€ Z_y, 0; €[0,00) and o) € .7, (R") for
i=1,2. For any f € L5, 5, (R"™ x R™), there exists a positive constant C' such
that

(i) if wp > —1, then for all t; € (0, 1] and (z1, z2) € R™ x R™,
(ot 1 £, )| < O+ )™ (1 + o)™,
where and in what follows, ({1 f)(x1, 22) = [gu @i (1) fl@1 =y, @) dys;
(ii) if s1 > —1, then for all t; € [1, 00) and (z1, z2) € R™ x R™,

|21

.
(A w1 Dozl < 0 (14 )
1

(iil) of uy, ug > —1, then for all ty, t2 € (0,1] and (z1, 22) € R™ x R™,
|(@or, % F) (@1, w2)| < CETHEFH L4 g )77 (1 + |2]) ™7

(iv) if ug, sy > —1, then for all t; € (0, 1], ts € [1, 00) and (x1, x2) € R™ x R™,

u —ng—Sy— -0 L2 e
|Wmﬂﬁ%ﬂﬂ§CWW22“ﬂ+mDIO+%g |
2
(v) if 51, ug > —1, then for all t; € [1, 00), t2 € (0, 1] and (z1, z2) € R™ x R™,

.
o —so—1 X1 _

|w@wwasmﬂ”%”O+%U<me%

1

(vi) if s1, s2 > —1, then for all t1, t3 € [1, 00) and (z1, 2) € R™ x R™,

1 to

x|\ "7 o\ "%
L TR el (O B CER
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PrROOF. To prove Lemma?2.2, we use some ideas in the proofs of Lemma 2
and Lemma4 in Appendix (IIT) of [14].
To prove (i), by [z ¢V(z1)2§ dzy = 0 for |a| < ui, we have

(611 )@, ) = /R A [ =y ) — YD D) ) |y

h<w

1
:/I s o (1) | Flar =y, @) — > —vi(D1f) (@1, @2) | dyn
y1|<|z1 :

[v|<w
o
[y1|>]z1]/2

= Il +I2

For the estimation of I, noticing that |x1]|/2 < |x1 — 21| < 2|a1] for |z1| < |x1]/2,
by |y1| < |z1|/2 and the mean value theorem, we obtain

flxr =y, 22) — Z i!yl/(Dgf)(ﬂh, 3)

[v[<w

= sup sup |(D]f)(@1 — 21, z2)|ln|" "
[yl=ur 41 [z <[z —y1

Sl sup (1 |on — 21 ]) (1 A+ Jaaf)

|z1]<|21]/2
Sl )77 (A ), (2.3)
where Y= (71, Ty ')/m) € Zz-lﬂ T = (.’ﬂ%, T le) and DY = (%)71 o (8311)%'
This leads to that '
|Il| < (1+ |$1|)7UI(1—|— |x2|)0’2/| . |y1|u]+1|§0£11)(y1)|dy1
y|<|z1]/2

SE Al )™ [ e )

SETHL A+ 2 ]) 77 (1 fza]) ™

To estimate I, similarly to (2.3), we have
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1 ,
flar =y w) = 3 D)@, )| S Il L) (24)

[v]<s1

If |z1] > 1 and o > 0, by |z;| " < 2(1 + |z|)”" and (2.4), for all ¢; € (0, 1], we
have

RS [l el
1 [=711/2
S Wl ™ [ )] dn

[y1|=]a1]/(2t1)
oo

R AR

ST )77 (L faa]) 7

If |z1] < 1or oy =0, by (2.4),
B S o)™ [l o o) 070+ )7 (1 aal)

Thus combining the estimations for I; and I, yields (i).
To prove (ii), since o) € Zo(R™) and f € .7,, ,,(R™ x R™), we have

(o) %1 f)(@1, 22)

1
= /R o ) = > = —2) (D]l ) @) | Fl@n =, 22) dyp

Iv|<s1
1
= / o ) = > = (= 2) (Dle)) (@) | flmn =y, @) dys
[z1—y1]<|z1]/2 Iy<s 1
+ /
21— ][22 /2
=J1+ Jo.

On the estimation for Ji, notice that if |z| < |x; —y1| < |z1|/2, then
|z1]/2 < |21 — 21| < 2|z1|. By this and ) € .Z,(R™), we have
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W)~ 3 - ) (D))

[v<s1

< sup osup [(Dlpt) (@ — 21|z — |
[v[=s1+1 [21|<[w1 =1 ]

|21 — Zl| - 1

—ny—s1—1 s1+

St sup (1 + 7> |z — 1 ]™
|z1|< |21 —y1] t

—ny—s1—1 |l’1| - s14+1

,S 2} 14— |£C1 — y1| .
t

Thus, applying

(@1 = g1, 22)| S (Lo =)™ 721+ )77 (2.5)

we further have

|21] o lz1 — y1|lerl
(1 + ? ( )n1+51+2 dyl

] SN+ () /
1+ |z — w1l

RM
|21

5 t;n175171 (1 + T

oy
) (14 [a2]) "

To estimate Jo, if |z1] > 1 and o7 > 0, using an estimate similar to (2.5) and the
estimation that

1 , —ny—si— 51
Py = > = —2) (D] (@) S e — g,

[v]<s1

we obtain
I |z — g
| o] 5/ (14 [ao]) 2ty dy:
[y1 =1 [>|21/2 (1 + |x1 - y1|)01+m+51+1
o0
SHMTT L+ )7 / 7 dry
|1/2

SHMTE T o) (1 fanl)

where in the last step, we used the fact that |z1|™7" < (1 + |z1|/t1)” " for ¢, > 1. If
|z1] <1 or o1 =0, by (2.5), we then have
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n1+51
™

o0
) < (1+ |x2|>-“2tf”“‘“’1/ ary

0 (1 _|_T1)711+51+2

Ja]

5 t;71178171 (1 + tl

)

This gives (ii).
To prove (iii), by an argument similar to (i), we obtain that for all ¢; € (0, 1],

(@) %0 f)(r, 22)] S B2 L+ Jaa]) ™7 (1 |a]) ™, (2.6)

where and in what follows, (cpg) 9 ) (21, 22) = [ gog>(y2)f(:r1,x2 — y2) dyo.

Thus, if |y1| < |2z1]/2, then by the mean value theorem, (2.6) and the fact that
|x1 — 21| ~ |x1] for |z1] < |z1|/2, we have

2 1 2
(P50 F) (@1 =y, m2) = Y = (11— 21) 0] (91 %2 f)(w1, 2)
[v[<ur
<" sup sup [(9f %o (D)) (@1 — 21, @)
[yl=ur+1 |21 ] <]z [/2
S [+ 2 ]) (L fan]) (2.7)

If |y1] > |z1|/2, by the mean value theorem and (2.6), we then have

1

(Wg? 9 f)(x1 — Y1, T2) — Z — - 561)73?(%(53) *9 [) (1, T2)
[y<s T
Sty [ [T (2.8)
Noticing that
(P * D@1, 22) = (1)) 51 (1) %2 ) (1, 22), (2.9)

replacing (2.3) and (2.4) respectively by (2.7) and (2.8), and repeating the proof of
(i), we obtain (iii).
For (v), by (2.6), we have

(@) %0 f) (@1 — g1, @2)] S 2T (14 |2a]) (L + oy — ) ™2
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for all ¢t € (0,1]. Replacing (2.5) by this estimate, using (2.9) and repeating the
proof of (ii) lead to (v). A similar argument to (v) yields (iv).
To obtain (vi), by an argument similar to (ii), we obtain

—ny—s1— —ny—s— Z2 B
(et 2 ) =, 22)] S 677 (L | — i) 2<1+'t ')
2

for all to € [1,00). Replacing (2.5) by this, using (2.9) and repeating the proof of
(ii) leads to (vi). This finishes the proof of Lemma 2.2. O

PROOF OF LEMMA 2.1. Let ¢, € (0, 1). Notice that for all ¢; € (0, c0), |y1| <

t; and x € R™, we have t; + |z1| < 2(¢1 + |21 — y1]). By this and Lemma 2.2 (iii)

and (iv), we have that for any ¢ € (0,e1), to € (0, 1), |y1] < t1, |y2| < t2 and
(z1, 22) € R" x R™,

[(Per, e, * @1 = y1, 2 = y2)| S trto (L4 [aa )77 (L + |22))™, (2.10)

and that for any t; € (0,€1], t2 €[1,00), |y1] <t1, |y <te and (xy, 22) €
R™ % R”Z,

(pres * P =y, @2 = y2)| S 0ty 7 (Lt fan )™ (L4 Janl)™™. (2.11)

From this and o9 < ng + s9 + 1, it follows that

€1 00
sup (Lt |or) (1 + 2] / / / o (91, 32)]
(21, 29)ER™ x R™ o Jo JRmxmm

dty dty
X |(pu,t, % (@1 = y1, 2 = yo) [ dyn dyo — —=
t1 ta
€ 0 1
S/o /0 /R” B Whﬁtl,zz(yhyz)\dylddehdtQ
R B

561-

Let Ly > 1. By Lemma2.1 (v) and (vi), we have that for any ¢; € (L, 00),
ty € (O, 1), |y1| < t1, |y2| <ty and (331, :1?2) € R" x R™,

(Prey * P =y, 22 = y2)| ST (L4 o)™ (L4 Jaal)™™, (2.12)

and that for any ¢ € (L1, 00), ts € [1, 0), |y1] <t1, |y2| <t2 and (xy, 22) €
R7L1 X Rng’
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(ot ) (@1 = yr, @0 — o) | ST THE T2 (L )77 (1 )™ (2.13)

From this, (2.12), 01 < ny + s; + 1 and 0y < ns + 9 + 1, it follows that

o0 o0
sup (14 o)) (14 [z2])® / / / n (1 92)]
(z1,29)ER™ X R™ Ly JO R" xR™

dty dty

X (1 * )1 — Y1, 2 — y2)|dy1dy2—t—
t t

dt, dty
/ / / |<Pt1 P yl’ y2)| dyl dyz 771+91+2 o1 ng+s2+2—0:
Ly R"xR" 2

01 ny—sy— 1

N

Using the symmetry, we then obtain the desired estimates for the cases €; € (0, 1),
Ly € (1, 00), (t1, t2) € (0, 00) x (0, €) or (t1, t2) € (0, 00) x (Lg, c0), which gives
the first inequality of Lemma 2.1.

To prove (2.2), notice that if |y;| > 2Ly > 2 and |z — y1| < t; < Ly, we have
|z1] > |y1| — |z1 — y1| > L1. Then by (2.10) through (2.13) with o; replaced by
o, € (i, n1 — s1 — 1), we have

Ly
sup (L4 [er) (1 + [zal)” / / / (o * )51, )]
(1, 75)ER™ x R"™ )(0,2L,)° x R™

dty dty
X |y, 1, (X1 — Y1, T2 — y2)|dy1dy2t—t—
S s (L) + ) / // W (31, 2)]
|x1\>L1,x2€R” R"xR™
1

1_|_tn| s1+2— (rl 1+tnz So+2— (; dyl dyQ dtl dtQ

g (Ll)al Jla
which gives (2.2) and hence completes the proof of Lemma2.1. O

Let p € (0,1], s; > |ni(1/p—1)] and ¢ € 7, (R") such that (2.1) holds for

i=1,2 For f€ . (R"™ x R™) and (z1,72) € R™ x R™, we define

S(f)(xl, xZ)

1/2
R e dt; dto
= / / / / (e, * £, y2)|* dyr dys — T T |
0 0 ly1—z1|<t1 J|ya—a2|<to t t
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It is well-known that f € HP(R™ x R™) if and only if f €. (R™ x R™) and
S(f) € LP(R™ x R™). Moreover,

[ (e <y ~ IS o (e < 2y

see [3], [4], [5], [10]. Using this fact, Lemma2.1 and some ideas from [3], [4], [5],
[10], we obtain the following conclusion.

LEMMA 2.3.  Let p € (0,1], s; > |ni(1/p—1)] and o; € (max{n; + s;, n;/p},
n; +s;+ 1) fori =1, 2. Then for any f € D, s (R™ x R™), there exist numbers
{Metieny € C and (p, 2, s1, s2)-atoms {ar}eny C Do), s (R™ X R™) such that f =

S hen Mk i1 Do 01,0, (RY X B™) and {3 e P H? < Cl fll oo o) where
C is a positive constant independent of f.

PROOF. We use Z to denote the set of all dyadic rectangles in R™ x R™.
For k € Z, let

U = {(w1, 22) € RY x B 5(f) (w1, 22) > 2'}

and

Q= {(z1, 22) € R" x R™ : M(x,,)(z1, x2) > 1/2},

where M, denotes the strong maximal operator on R™ x R™. It is easy to see that
Q is a bounded set. In fact, observing that 1+ |z;| <t + |a;| ~ ¢t + |y;| for
|z —yi| <t; and ¢; > 1, by Lemma2.2 and n; + s; + 1 — 0; > 0, we have

[S( Il,fEQ 2

dty dty
<[ [ i
0 ly1—z1|<ty J|y2—zo|<ta tl t?
1 - 9. dtq dtsy
+/ / / / <1+ (L fol) ™™ i i iy
1 0 Jyi—zi|<ty J|yo—ma|<ty t ty 5
1 o8} —209
72 2] dt,  dty
+/ / / / (1 +[yl) ”‘<1+t> W dys e
0 1 ly1—z1|<ty J|y2—zo|<ts 2 1 t2
Jyr[\ > g\ 75
14— 14— dyy dys
[y1— T1|<f1 [yp—o|<to ty to

X t2n|+9|+2 tdnz+291+3
1 2

S (L fea) 727 (L )2
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Thus, for any k € Z, Q) is a bounded set in R™ x R™ and so is ﬁk.
For each dyadic rectangle R =1 x J, set

M(R) = {(y17y27t17 t2) : (y17 y2> S R7
VAl <t < 2yl yill <t < 2y},

and

Ry, = {RE%Z |RﬂQk| > 1/27 |RﬂQk+1| < 1/2}

Obviously, for each R € Z, there exists a unique k£ € Z such that R € %.
From (2.1), for any (z1, 22) € R™ x R™, it is easy to see that

dty dts
f(@r, @0) = Z{ Z / Vet (21 — Y15 T2 — 2) (01,6 % F) (Y1, y2) din dy?t—t_}'
keZ \ ReZ), ) 2

Let A, = &2¥("7 and

dty dtsy
a(w1, v2) = / Yty (1 — Y1, T2 — Y2) (0,0 * £) (Y1, y2) dy1 dya PR
ReR), 1 2

where C' is a positive constant. By the argument used in [3], [4], [5], [10], we see
that if we suitably choose the constant C, then {ai},., are (p, 2, s1, s2)-atoms
and

1/p
{zw} < e
keZ

It remains to prove that f =3, , Aray, converges in Dy, 5,0, 0, (R" x R™).
Since €, is bounded, we may assume that € C BV (0, 251) x B®)(0, 2£2). Then
for any o € Z"! and B € Z7?, by Lemma 2.2, we have

dty dtg

/ (0200 tey.,) (@1 — 1, @2 — y2)|(per.t, * F) (1, y2)| dyy dyo —
REZR), 1 t2

dtq dto
S Z / (1,0, % £) (Y1, y2)ldyr dy2 [T T T
Reg, /9 (R) ty

Ly L
/ / / / dtl dtz dyl dy2 < 00,
B (0,252) (2)(0,252)



Boundedness of sublinear operators on product Hardy spaces 339

where (z1, x3) € (~2k This shows that ay € D, s,.01,0,(R™ x R™). Moreover,
assume that supp f C BY(0,71) x B?(0,r). For any N; >1+logr; with
1=1, 2, let

En, v, = BY(0, 2") x BO(0, 2%) x [27M, 2M] x 274, 2M2),

Then there exist finite dyadic rectangles R, whose set is denoted by %22, such
that &/ (R) N Ex, v, # 0. For each R € 2", there exists a unique k € Z such
that R € Q. Let Ky, n, be the maximal integer of the absolute values of all such
k. Then for K > Ky, y,, by the facts 2" C U<k Z) and Lemma 2.1 together
with 0; < 0} <n; +s;+ 1 for i = 1,2, we then have

f—= E Ak,
| <
‘k‘iK -@SLSQIUl,Uz (Rnl XRW)

< sup (L4 [z )7 (1 + [22])™

(@1, 22)ER™M X R™

2~ 00 00 0O 0 27V 00 00
(/ L[+ [ +] /)/ (= D)o, )
0 0 v Jo o Jo o Jov ) JRnxR™

dty dty
X @t 1, (21 — Y1, 2 — y2)| dyr dyp — —— + sup (L4 [z )7 (1 + [22])”
th t2 (2),2))eR" xR™

2M

></ ; / / e ‘(gptlatz *f)(yla 3/2)|
2-NM Jo [BM(0,2M)]" x R™

dty dt _
X (@1 =y, @ — o)l dyndys ———=+  sup (L4 [;])” (1 + |22])™
t1 t2 (2,2)eR" xR"

o 2N
<[] e o, )
0 J2de JRMx[BD(0,2%)]

dty dity
X |1 (21 — Y1, ®2 — y2)| di dszT
1t

S 27N1 + 27N2 + 2N1(0170’1) + 2N2(0270’2)'

This implies the desired conclusion and hence, finishes the proof of Lemma 2.3. [

The following result plays a key role in the proof of Theorem 1.2. In what
follows, for any f € Z2(R™ x R™), we set

sup diam (supp f(-, z2)) = sup {ler =]+ flxr, 22) #0, f(y1, x2) #0},

T9€ER™ z1, nER™M  zoeR™
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and sup,, ¢ gn diam(supp f(x1,-)) is similarly defined by interchanging x; and s,
and y; and ys.

LEMMA 24. Letp € (0, 1], g € [p, 1] and B, be a q-quasi-Banach space. Let
s1, 82 € Z and T be a PB,-sublinear operator from Dy 4 (R™ x R™) to B,. If
there exists a positive constant C' such that for any f € Py, 5,(R™ x R™),

n/p
||Tf\|dé, <C sup, diam (supp f(-,x ))]

T9€ER

na/p

X l sup diam (supp f(z1, ))1 £l oo (s < ey
r1ER™M

then T can be extended as a bounded B, -sublinear operator from Dy, s, 0, 0, (R™ X R™)

to B,.

PROOF. Let ¢ € C*(R) such that 0 <¢(z) <1 for all z € R, ¢(z) =1 if
|z] <1/2 and ¥(z) =0 if |x| > 1. Let ¢(z) = ¢¥(x/2) — ¢(x) for all x € R. Then
suppp C {z € R: 1/2 <|z| <2} and Y, ,¢(277z) =1 for all z € R\ {0}. Let
Pj(z) = ¢(277x) for all z € R and je€ N, and ®y(z) =1 - Y72, ¢(277z) for all
z € R. Then ), , ®;j(z)=1forallz € R.

Let i =1, 2. For j; € Z. and z; € R", 1et <I>()( )= (|x,|) Then for all

€ R", we have >, 5 (<)( ) = 1. Set R ()( )andR ={z; € R":
2]1 U< |zy] < 29+1} for j; € N. Then supp <I>( C R() for j; € Z,. For ji € Z,, let
{1&7”% : |a1\ < sl} C C*°(R") be the dual bablb of {x”f i |og| < s} with respect to
weight fIJ( |R | , namely, for all «;, 8; € Z, with |a;| < s; and |5;| < s;,

1 3, (i i
17| /R 20 ()@ () dy = S,

Let 1/152)0 = |R§Z)|_11Z§l>a<by) Then for j; € N and x; € R", we have

1/)5:>a1(172) = 2~ UimDmitleil) ¢(7 (27 Ui 1>1'i)'
From this, it is easy to see that for all j; € Z, and || < s,

| oo gy S 27 i), (2.14)

[
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For f € 2, ,,(R™ x R™), assume that supp f C B (0, 2") x B (0, 2#) for
some ki, kg € N and [|f|l, (Rnlan =1 by the %,-sublinear property of T
For ji, jo € Z,, we set fj, j, = f<I> ( ) , and for any (z1, z2) € R™ x R™,

1 1 «
P;la)jQ(zl7 ) = Z wﬁi?m (z1) /R’” fjl-,jz(yla xQ)yll dyr,

e | <51
2)
PJ(l J2 xl’ x2 Z w]z Qs x2 / f]l J2 xl? yQ)yQZ dys
Jaa|<sy
and
_ 1 2
G N S ST (561)1#;2,)@2(3?2)/ Fiva (15 y2) Y y5* dyy dys.
o |[<s1 |ag|<sg R™ = R™
Then
k1+1 ko+1 (2>
f Z Z (fjl J2 Jl Jz ‘le-,jz + ‘le,jz)
J1=0 jo=
k141 ko+1 k141 ko+1 ki+1 ko1
+ZZ(M Pys)+ ZZ(M m)+ZZPm
71=0 ja= J1=0 jo= J1=0 jo=

By the definition of Z, ,.0,.0,(R™ x R"™), it is easy to see that
1f 1. go e (mor sy S 2 ke, (2.15)

Using ||<I>§-f)|\Lm(Rn,) <1, we obtain

< giilmtlonl=o1) g0z (2.16)
L*(R™)

H,/Rn fjlﬁjz(yly .)y(ivl dyl

< 27j]g|2j2(n2+‘0t2‘702), (2.17)
L®(R™)

H/}{n» fjl,jz('7 y2)y32 dyz

and

< gii(mtlar|=o1)gfa(na+|as|—02) (2.18)

/ fjlsjl (ylv y2)y1 y22 dy dy2
R xR™

By the estimates (2.14) through (2.18), we have
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[ B = P2+ P < rimgmin,

]l J2

L=(R" xR"™)

. 2 71 9 :
Since fj j, — PJ<1 >J2 Pj(l,)jz + P}, j, € Dy, 5,(R™ x R™), by the assumption of the

lemma, we then have

and hence, by o; > n;/p for i =1, 2,

k141 ko +1 (1)
Z Z(‘ff' B2 P]l Ja R/l J2 +]DJ' JZ)
=0 jo= B,
{k|+1 Ey+1 1/q
< Z Z 2j1r1(n1/pm)gm(nz/prfz)} <1 (2.19)
71=0 ja=0

Moreover, we write

k141 ko+1

(1)
Z ['le-,]‘z(xl’ x2) - F)’jl‘jz (xlv xQ)
71=0 5>=0
ki+1 ko1 ki +1

S ID 30 30 M [N R o) | A RS

lar|<s1 1=1 j2=0 bi=j

DR /R - er (s y2)y 5" dy dyg]

‘aa‘<52

ki+1 ko+1 ki +1
= E E E E Alll‘jl-,[hjz(x17 xQ)'
lar|<s1 j1=1 jo=0 1=}

By (2.14), (2.15) and (2.18), we have

||Aa g1, jHLx(R”l an) < 2—j|(n|+\m\)2(31(m+|a||—a|)2—jgaz
1,J1,%1, )2 : X ~ *

Noticing that Aq, .6,y € s, s (R™ x R™), by the assumption of the lemma, we
obtain

||T( o by /2)”} < gii(m/p—m—lea]) 9l (m+lar|=o1) 9a(n2/p—02)
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Thus, by o; € (max{n;/p, n; + s;}, n; + s; + 1) for i = 1, 2, we further have
il kol

ZZ( Jida leh)

J1=0 j>=0

2,

1/q
ki+1 ko1 k41 /

< Z Z Z Z 9d19(m/p—m—|aa|) 9lig(nitlen|—o1) 9jaq(na/p—o2) <1. (2.20)

Jar|<s1 G1=1 jo=0 £1=5;

Similarly, by symmetry, we have

i1 ko1
Z Z( i je 71,72> S L (2.21)
=0 jo= 2,
Finally, we write

kitlhptl kit ko] kil ket "
1

Z ZPJL]'Z = Z Z Z Z Z Z( Ji,on _wjl l,al)

j1=0 j>=0 o] <s1 |az]<se j1=1 Jja=1 1=j; br=j

2 2 .
X (WG —%(-2)-1,@2) /R - fo o (yrs y2)yi ys* dyr dys

ki+1 ko+1 ky+1 ko+1

=2 2 200 ) Aupnmin

|| <s1 |az|<sp j1=1 ja=1 £1=j1 Lr=j>
From (2.14) and (2.17), it follows that

. ) =ji(m+|aa]) 9l (mi+|aa|=o1) 9—ja(ne+|az]) 9 la(na+|az|—o2)
ah]lllﬂb]%@||L:>o(R"1XR"z) 5 2 2 2 2 :

14

Since Ao, ji b1, a0, 0 ts € Py, s, (R™ x R™), by the assumption of the lemma, then

HT(Aahh«fh(l2-,j27[2) B,

< 9d(m/p—mi—len]) 9l (mi+en]|=01) 9fa(n2/p—na—laz|) 9la(na+laz|—0o2)

From this and ¢; € (max{n;/p, n; + s;}, n; +s; + 1) for i = 1, 2, it follows that
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By
ki+1 ko+1 ky+1 ko+1
§ E E E E 2]|q(711/p ny—|aql) 2/111 ny+|ag|—o1)
ay|<sy |ag|<sp 1=1 Jjo=1 li=j1 la=j>

1/q
« 9J2a(n2/p—na—|as]) 9lag(na+|az|—o2) } <1.

By this together with the estimates (2.19) through (2.21) and the %,-sublinear
property of T', we obtain that [[T'f|| 4 < [fllo, . . (&% xge=), which implies that T
is bounded from % s,.0,0,(R" x R™) to 2, This finishes the proof of
Lemma2.4. O

PROOF OF THEOREM 1.1. The necessity is obvious. In fact, if T" extends to a
bounded Z,-sublinear operator from HP(R™ x R™) to %, then for any
(p7 27 S1, 82)_a‘t0m a,

1Tall g, S llallm@n <y S 1
a ( )

To prove the sufficiency, for any f € 2, ., (R™ x R™), let

¢ = sup diam(supp f(-, x2))

z9€R™

and /3 = sup,, cpn diam(supp f(xl, -)). Then there exists a positive constant C
independent of f such that C(;) "7 (£,)” ”2/p||f||2310(l,{ul «re)fisa(p, 2, s1,52)-atom,
and thus, by the assumption of the theorem,

1T 1L, S (0" P (o)™ ll ey

which shows that T satisfies the assumptions of Lemma 2.4. For ¢ = 1, 2, choose
o; € (max{n; + s;, n;/p}, n; +s;+1). By Lemma2.4, T is bounded from
D sy, spion,0(R" X R™) to Ay

On the other hand, for any f € &, 5, (R™ x R™), by Lemma 2.3, there exist
numbers {\;},cny C C and (p, 2, s1, s2)-atoms {a;},cny C Py, 5, (R™ x R™) such
that f E]EN )‘ i@ in ‘@51762,01702<Rn1 X an) and {E]EN |)‘ |p}1/;u N ||f||HV R xR™)*
From this and Lemma 2.4, it follows that T'f = ZJGN AjTa;in #,. Thus, Tf € Ay,
and by the monotonicity of the sequence space ¢4,



Boundedness of sublinear operators on product Hardy spaces 345

1/q 1/p
7, < {Z |)\j|q|Taj||qu} S {Z |>\j|p} S W e (g < rey-

JjEN JEN

This together with the density of Z;, ,,(R™ x R™) in HP(R™ x R™) implies that
T can be extended as a bounded %,-sublinear operator from H?(R™ x R"™) to %,,
which completes the proof of Theorem 1.1. O

Using Theorem 1.1, we can now prove Corollary 1.1.

PROOF OF COROLLARY 1.1. By Theorem 1.1, it suffices to prove that for all
smooth atoms a, || T(a)l| g xg=) S 1. To prove this, we follow the procedure
used in the proof of Theorem 1 in [10] (see also [11]). Assume that a is a smooth
(p, 2, s1, 82)-atom supported in open set . Let Q= {(z1, x9) € R™ x R™ :
M(xqa)(z1, x2) > 1/2} and

Qo = {(x1, z2) € R™ x R™ : MS(XE)(.’El, x9) > 1/16}.

Then |Q+ Q| <[Q|. By the boundedness of T from L2(R™ x R™) to
L%(R™ x R™) and the Holder inequality, we have

1 1/a0
{ |T(a)(x1, $2)“I da:‘l d$2} S { ‘T(Cl)(xl, x2)|(10 dxl de} ‘Q|1/q—1/q0
o Qo

1/p—1/2
S ||a||L2(R"1><R"?)‘Q| =t S L

We still need to prove that f i |T(a)(z1, z2)|" dry dze S 1. Without loss of
generality, we may assume that ¢ < < 1. The proof of the case ¢ € (1,2) is similar
and we omit the details. To this end, for each R € .Z((2), assume that R =1 x J.
Denote by .2 ( ) the set of all maximal subrectangles in the first direction in 2.

Let R=1xJe.#V(Q )andR IxJe.#V(Q), and define ~,(R, Q) = |1]/|1]
and (R, Q) = |J|/|J|. Then 16R C €. Notice that by the Journé covering
lemma (see [24]), for any fixed § > 0, we have

S (R, QIR S 19 (2.22)
Re.#(Q)

and
ST (R, QIR <19 (2.23)

Re.a™M(Q)
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Since ¢ < 1, we write

/ [T(an) (@1, 22)|" day das
()

< > / [T (ag) (w1, )| day day
Re.a() Y ()

< / . |T(ag)(x1, x2)|* dzy dzs + Z / R
Re./() / (BM\IGD)x R Re.() /B <(R™\16J)

EL1 —|—L2

Noticing that aR|R|1/271/pHarR”ZQl(Rm <R 1s a rectangle atom, we have

/<Rm\16f>xm (T(ar) (a1, @)|" dar dos < (R, Q] 1R lanlfs o

By 1/g0—1/¢g=1/2—1/p and p < 1 and (2.22), we obtain

q/2
L Z ||GR||2L2(R"1xR"2)
REA(Q)
1—q/2
« Z (R, Q)]*Qé/(Q*Q)|R|[2(qo*q>]/[510(2*¢1)]
REA(Q)
1—q/2
< |Q|‘Z(1/2*1/P)|Q|Q(1/2*1/%) Z (R, Q)}*Qé/(Q*Q)|R|
Re(9)

1/2-1 1-q/2
< |Q|Q(/ /Q)|Q| qa/ <1

Similarly, by (2.23), we have Ly < 1. This finishes the proof of Corollary 1.1. O

3. Proofs of Theorem 1.2 and Theorem 1.3.

To prove Theorem 1.2, we recall the well-known boundedness of fractional
integrals on R"; see [25, p. 117].

LEMMA 3.1. Leta€(0,1),p€ (1,n/a) and 1/¢=1/p — a/n. Let I, be the
fractional integral operator on R" defined by
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L@ = [ A

for f € L (R") and x € R". Then I, is bounded from LP(R") to LY(R"), namely,
there exists a positive constant C' such that for all f € L*(R"),

Mo zarry < CllA N o (rer)-

PROOF OF THEOREM 1.2. Since [b, T] is linear with respect to b and T,
then it suffices to prove Theorem1.2 for b€ Lip (a1, az; R" X R™) with
10l Lip(ay, ar: xRy = 1 and T with [| K| = 1. By (K1) and Definition 1.4, we have

b, TI(F) (@, 2)] < / !

R"'xR™ |$1 - y1|"7a1 |$2 - y2|

19 [1205)] @1, 2),

m—an |f(y17 y2)| dyl dy?

where L(lll) and L(XZQ) are the fractional integral operators with respect to x; or s,

respectively. By Lemma 3.1, for all f € LP(R" x R™), we have

16, TV po(rrsmmy <

D[@am]|

L‘I(Rm_’ dzz) Li(R", day)
<
HHIaz |f‘ HLG(R’“ dxz) LP(R", dzy)
f, ”f”LP(R"xR”")?
where and in the sequel, we use || || ;ygr 4r) a0d [ || 1o(g" asy) to denote the

LP(R")-norm with respect to the variable x; and x5 respectively. This finishes the
proof of Theorem 1.2. (I

PROOF OF THEOREM 1.3. Since [b, T] is linear with respect to b and T,
then it suffices to prove Theorem1.3 for b € Lip (a1, ao; R" x R™) with
100l Lip(ar, a0 B2 xRy = 1 and T with ||K[| = 1. By Theorem 1.1 and Corollary 1.1,
it suffices to prove that there exists a positive § such that for all rectangular
(p, 2, 51, s3)-atoms a supported on R =1 x J and vy > 8 max{n'/?, m!/?},

/(R” . [[b, T)(a)(z1, £2)|? dxy dzy < 0. (3.1)
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Without loss of generality, we may assume that R=1x J =[0,1]" x [0,1]". In
fact, if letting by 40 4, 4, (21, 22) = 0705 () + Oy, 1) + lox),

Koo o0 0,0, (%1, Y1, T2, y2) = OO K (2] + Gz, 2 4+ Gyn, 33 + boxs, 5 + Gys)

and Ty .0 4 4, be a Calderén-Zygmund operator with kernel Ko .0, ,, for some
Va9, b, NN
:v(l) € R", xg € R™ and some {1, ¢ > 0, then it is easy to check that

be?,zg,él,ég”Lip(m,az;R"xR'”) = ||b||Lip(a1A,(12;R”><Rm) =1

and K .0, 4, also satisfies (K1) through (K4) with [[K o 0, .| = [K] = 1.
029,10 049,10

Moreover, if let @ be a rectangular (p, 2, s1, s3)-atom supported in

R =TI xJ={a+ 061} x {23 + €]}, and a(z1, 2) = 45 a(x) + b1, 25 + loxs),

then a is a rectangular (p, 2, s1, s2)-atom supported in R = [0, 1]" x [0, 1], where

zy+ 061 ={z)+xy : 2y € I} and 23 + £>J is similarly defined. By setting 2} =

3:? +4iz; and Y, = y? + l;y; for 1 =1, 2, we have

b, T)(@)(x}, x3)
[ K )
R"XR"I
x [b(x], x5) — b(xy, 5) — b(y), ¥h) + b(yy, vh)ld (v, vh) dy dify
= elqunﬁngm/n R Kv?,arg,ﬂ].éz(xl’ Y1, L2, yQ)[bx?,arg,&.éz(mh x?)
R
= by a0 00,0, (T Y2) = by 00 0, (Y1, @2) + 000 00 4, 0, (Y15 Y2)la(yrs y2) dyr dys

= €i¥177L£3277n[bm[1),xg,kl,lf27 Tr‘f‘mg,k‘l,kz](a)(xlv .132),

which together with 1/¢=1— a;/n =1 — ay/m yields

/<R" R\R |[b, T)(@) (=, @5)|" day dy
x v

—ae [ b @ ) i d
(R <R\,

= Bt T @, )l o s,
X y
where R’ denotes the ~ fold enlargement of R'. Then by this, (1.3) and the facts

that Kz?,zgll,b and bz?,xg,fl,éz satisfy the same conditions as K and b respectively,
we may assume that R =1 x J = [0, 1]" x [0, 1]™.
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Let a be a rectangular (p, 2, s1, s2)-atom supported in R =1 x J = [0, 1]" x
[0, 1]™. Let v, = 8n'/2, 75 = 8m!/? and v > max{~, 72}. Then

/( b TI(@)en, o) dode
1 R’NZ

/ / |[b, T)(a)(x1, x2)|* deidzy + / +/ /
x1@y1 Jas€vysJ a1yl JxodyeJ sl Jaagyd

=G+ Go + Gs.

By symmetry, it suffices to estimate G; and Gs.
The Hélder inequality implies that

Gig [ b Tiaer. e sy
1yl

By [ga(zy, 22) dxy = 0 for all z, € R™, we have

[b7 T](a)(xla xQ)
= / [K(mh Y1, T2, y2) - K(xlv 07 T2, yQ)}
TI,XRM
X [b(x1, x2) — b1, x2) — b(x1, y2) + (Y1, y2)|a(yi, y2) dyr dys

+/ K(‘Tla 07 Z2, yQ)
"o R

X [b(0, z2) — b(0, y2) — b(y1, x2) + b(y1, y2)la(y1, yo) dy: dy»
= L1 + LQ.

Notice that if 1 € vI and y; € I, then |y;| < |z1|/2 and |z — y1| < 2|21|. Thus, for

any x1 € vI and z € R™, by Definition 1.4, (K1), (K2) and the Hoélder inequality,
we obtain

|y1|” 1
|L1| <// |$ |n+51 a1 |5C _y |m a9 ‘ (y1? y2)|dy1 dyQ

1/2
2
S |x1|n+617m /J |$L'2 — yQ‘m—aQ </[ |a(y1, y2)| dy1> dy»

1
S ng) [||a||L2(R",dy1):| (z2)
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and
|yl
|L2| ~ // m—a |(L(y1, y2)|dy1 dy?
s |
S |x 18 [nauw,dyl)} (z2):

Since (1.4) implies that n — (n 4+ € — a1)g < 0 and n — ng < 0, then by (R3) and
Lemma 3.1, we obtain

G S / (”LlHLun R dey) T ”LQ”L‘“ R", dz, )dml
¢yl

/ 1 n 1 d
) Z1
A B

< ,ynf(n+qfoz1)q + ,ynfnq.

N

Choosing § = —max{n —ng, n — (n + e, — a;)q} >0, we have G <y7°
To estimate Gy, by the vanishing moments of a, we have

(b, T](a)(
:/ [K(xhylax%yQ)_K(x1707x27y2)_K(x17y17x270)+K(x1707$270)]
s R
X

a)(z1, 22)

[b(z1,22) — b(z1, 22) — b(y1, x2) + b(y1, y2)]alyr, y2) dyi dyo
+/ [K(x1,y1,x2,0) — K (21,0, 22,0)]
R'xR"

X [b(z1,0) = b(z1,y2) — b(y1,0) + b(y1, y2)]a(y1, y2) dyr dya
+ [ R 0m) — K0.8,0)
R

[6(0,z2) — b(y1, x2) — b(0,y2) + b(y1, y2)]a(ys, ya) dyr dys
+/ K(x1707m270)
R
[b(

0,0) — b(y1,0) = b(0,92) + b(y1, y2)]a(y1, y2) dy: dy»
EL3+L4+L5+L6

Notice that if z; & vI and y; € I, then |yi| < |z1]/2 and |z — y1| < 2|xy; if
xg € yoJ and yo € J, then |yo| < |z2|/2 and |9 — ya| < 2|xs|. Thus, for ; ¢ I and
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xo & o J, by Definition 1.4, (K1) through (K4), (R3) and the Holder inequality,
we obtain

1] |y2|” 1 1
|L3| S // |$ |n+61 ap | |m+sz—o¢2 |a(y1, y2)|dy1 dys 5 |x1|n+61—(¥1 ‘x2|m+sz—<¥2 ;

™ yel™ 1 1
|L4|<//|x T g la(y1, y2)| dy1 dya < WW’

[y lyel® 1 1
|L5| 5 /I 7 |x1|n |x2|m+527a2 |a(y1’ y2)| dyl dyQ ,S |ZL‘1‘" |x2|m+627a2 ;

and

[l el 11
|L6| ~ W \z |m |a(y1, y2)\dy1 dy2 S | | W

From this together withn — (n+ e —a1)g<0,n —ng <0, m — (m+e —az)g <
0 and m — mgq < 0, it follows that

st/ / (ILal? + |La[?
1 EyT JxagyeJ

1 1 1 1
g (n+e1—ay) (m+e—asz) + (n+e1—ay) mg
I|¢'y1 oy ‘331| reToue |SC2| ez ‘l’1| ra—olg |1132|

d$1 d$2

|q) dxl d(EQ

|z1|nq | |(m+€2*0’2){1 + |x1|nq |I2|mq

5 ,er—(rL+51—al) + ,yn—nq.
This shows Gy < v °, which together with G; < ~° gives (3.1) and the proof of
Theorem 1.3 is therefore complete. O

REMARK 3.1. The restriction a; < min{n/2, 1} is to guarantee the bound-
edness of the commutator [b, T] from L*(R"x R™) to L%(R"x R™) with
1/q1 = 1/p — a1/n; see Theorem 1.2. Since the L?(R" x R™) norm appears in
the definition of HP(R" x R™) rectangular atoms, we need this boundedness of
the commutator [b, T] in the proof of Theorem 1.3; see Corollary 1.1.
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