Some Remarks on Relatively Free Homotopy.

Hiroshi Uehara.

(Received April 28, 1950)
Consider an arcwise connected topological space Z and select one of its points $*$ as a base point. Suppose furthermore that there is given an arcwise connected subspace Y of Z containing the base point $*$. Given a point $*^{\prime}$ of Y, which may or may not be distinct from $*$, a path component of Y, i. e. a homotopy class of paths from $*$ to $*^{\prime}$, induces an isomorphism between two n-th relative homotopy groups $\pi_{n}(Z, Y, *)$ and $\pi_{n}\left(Z, Y, *^{\prime}\right)$, attached to two points $*, *^{\prime}$ respectively. If in particular $*=*^{\prime}$, every element of the fundamental group $\pi_{1}(Y, *)$ induces an automorphism of the group $\pi_{n}(Z, Y, *)$, and therefore, algebraically speaking, the former may be regarded as a group of operators on the latter. Now I shall define a homotopy group $\sigma_{n}(Z, Y, *)$ for every integer $n \geqq 3$, containing subgroups isomorphic to $\pi_{n}(Z, Y, *)$ and $\pi_{1}(Y, *)$, in which the operation of $\pi_{1}(Y, *)$ on $\pi_{n}(Z, Y, *)$ forms an inner automorphism. As is seen later, an element of the group o_{n} can be represented by a continuous mapping belonging to $Z^{E^{n}}$ which transforms $S^{n-1}=\dot{E}^{n}$ into Y and to different points on S^{n-1} into the base point *. (E^{n} means an n-dimensional cube, see foot note) The pair (Z, Y) is usually called " relatively n-simple," if $\alpha^{\frac{5}{s}}=\alpha$ for any element ξ of $\pi_{1}(Y, *)$ and any α belonging to $\pi_{n}(Z, Y, *)$, and it is well known that in such a pair of spaces a base point $*$ can be arbitrarily selected in Y, in the sense that the isomorphism between two groups $\pi_{n}(Z, Y, *)$ and $\pi_{n}(Z$, $\left.Y, *^{\prime}\right)$ attached to an arbitraily chosen point $*^{\prime}$ in Y is determined indepently of the path connecting $*$ to $*^{\prime}$. Therefore the simplicity of a pair of spaces may be considered as an intrinsic property of the pair. A pair (Z, Y) which is relatively n-simple is characterized by the purely algebraic relation in $\sigma_{n}: \sigma_{n}(Z, Y, *)$ is isomorphic to the direct product of two groups $\pi_{n}(Z, Y, *)$ and $\pi_{1}(Y, *)$. This paper will contain these and some other remarks obtained by applying M. Abe's arguments in (1) to the case of relative homotopy groups.

1. Definition of $\sigma_{n}(Z, Y, *)$ for $n \geqq 3$.

Let $e\left(x_{0}\right), 1 \geqq x_{0} \geqq 0$, be a $*$-based loop in Y. Denote by σ_{n} the

1) $E^{n}=x^{n}\left(x_{0}, x_{1}, \cdots \cdots, x_{n-1}\right) ; 1 \geqq x_{1} \geqq 0, n-1 \geqq i \geqq 0$, $x^{n}{ }_{i}=\left(x_{i}, x_{i+1} \cdots \cdots \cdot x_{n-1}\right)$
collection of all the Z-valued functions of the n-dimensional cube E^{n} satisfying the following conditions: ${ }^{1)}$
i) $f\left(\bar{x}_{j}, x_{1}^{n}\right)$, for $1 \geqq \bar{x}_{0} \geqq 0$, represents an element of $\pi_{n-1}\left(Z, Y, e\left(\bar{x}_{0}\right)\right)$,
ii) $f\left(0, x_{1}^{n}\right)=f\left(1, x_{1}^{n}\right)=*$

Such a mapping f may also be described as follows;

$$
\begin{aligned}
f\left(x^{n}\right) & =* \quad \text { when } x_{0}\left(x_{0}-1\right)=0, \\
& =e\left(x_{0}\right) \text { when }\left(x_{n-1}-1\right) \prod_{i=1}^{n-2} x_{i}\left(x_{i}-1\right)=0, \\
& \in Y \text { when } \prod_{i=0}^{n-1} x_{i}\left(x_{i}-1\right)=0 .
\end{aligned}
$$

Two such functions f and g, belonging to σ_{n}, are multiplied together according to the rule :

$$
\begin{aligned}
f \cdot\left(x g^{n}\right) & =f\left(2 x_{0}, x_{1}^{n}\right) \quad \text { when } \frac{1}{2} \geq x_{0} \geq 0 \\
& =g\left(2 x_{0}-1, x_{1}^{n}\right) \quad \text { when } 1 \geqq x_{0} \geqq \frac{1}{2}
\end{aligned}
$$

and the resulting function $f \cdot g$ is again a member of the collection σ_{n}. The elements of σ_{n} are classified by the homotopy concept, and the multiplication in σ_{n} induces a multiplication in the set of homotopy classes. Thus the classes of elements of σ_{n} together with the multiplication defined between them constitute a group, which I designate by $\sigma_{n}(Z, Y, *)$. As an immediate consequence of the definition, we remark that the identity of the group may be represented by a mapping, which transforms E^{n} into Y, such that $e\left(x^{0}\right), 1 \geqq x_{0} \geqq 0$, can be shrunk in Y into the base point $\%$. For convenience' sake K^{n} is referred to as the point set $\left\{x^{n} ; x_{0}^{2}+\cdots \cdots+x_{n-1}^{2}\right.$ $\leqq 1\}$ and then the boundary \dot{K}^{n} of K^{n} is of course an ($n-1$)-dimensional sphere S^{n-1}. Now consider a mapping φ of E^{n} onto K^{n} such that $\varphi\left(x^{n}\left(0, x_{1}^{n}\right)\right)=p_{0}, \varphi\left(x^{n}\left(1, x_{1}^{n}\right)\right)=p_{1}$, where p_{0} and p_{1} are two distinct points on K^{n}; all the points of the same partial coordinate x_{0} on the faces (x_{n-1} -1) $\prod_{i=0}^{n-2} x_{i}\left(x_{i}-1\right)=0$ are mapped continuously by φ to a point of the arc C on $\stackrel{i=0}{S^{n-1}}$ joining p_{0} to p_{1}; and the interior of E^{n} into the interior of K^{n}. (See figure $1, n=3$) Then we have a mapping \bar{f} of K^{n} into Z such that $f\left(x^{n}\right)=\bar{f} \varphi\left(x^{n}\right)$ and designate by $\bar{\sigma}_{n}$ the set of all the mappings which transform K^{n} into Z, S^{n-1} into Y, and two points on S^{n-1} into k. It is easy to see that two function spaces σ_{n} and σ_{n} are homeomorphic by the
correspondence φ. For the reasons that an element of σ_{n} can be grasped in an intuitive manner and also be compared quite clearly with a representative of an element of the relative homotopy group $\pi_{n}(Z, Y, *)$, it seems advantageous to refer to the function space σ_{n}. As is well known, an element of $\pi_{n}(Z, Y, *)$ may be represented by a mapping which transforms K^{n}, into Z, S^{n-1} into Y, and the arc C on S^{n-1} joining p_{0} to p_{1} into $*$. The set of all such mappings will be denoted by Π_{n}. In order to avoid confusion we agree that the homotopic relation in $I I_{n}$ is described by the symbol \approx, while in case of such a relation in σ_{n} or σ_{n} the symbol~will be used.
2. Algebraic structure of $\sigma_{n}(Z, Y, *)$.

First we shall prove that $\sigma_{n}(Z, Y, *)$ contains a subgroup $\pi_{n}(Z, Y, *)$ isomorphic to $\pi_{n}(Z, Y, *)$, and then that the factor group of $\sigma_{n}(Z, Y, *)$ by $\bar{\pi}_{n}(Z, Y, *)$ is isomorphic to the group $\bar{\pi}_{1}(Y, *)$, where $\bar{\pi}_{1}(Y, *)$ denotes a subgroup of $\sigma_{n}(Z, Y, *)$ isomorphic to $\pi_{1}(Y, *)$.

It is obvious that for two mappings f and g belonging to $\Pi_{n}, f \sim g$, if $f \approx g$. In order to prove the first assertion it is sufficient to show that if $f \sim g$, then $f \approx g$. Since $f \sim g$, there exists a mapping $h(x, s)$ belonging to $Z K^{n} \times I_{I}^{s}$ such that $h(x, 0)=f(x)$ and $h(x, 1)=g(x)$ for $x \in K^{n}$.
Furthermore $h(x, s) \in Y$, if $x \in S^{n-1}$ and $s \in \stackrel{s}{\bar{I}}$,

$$
h\left(p_{0}, s\right)=h\left(p_{1}, s\right)=* \text { for } s \in \stackrel{s}{I}
$$

As a point set $\left\{C \times(0)+C \times(1)+p_{0} \times \stackrel{s}{I}\right\}$ is a deformation retract of $c \times \stackrel{s}{I}$, a deformation D_{t} can be defined. (See figure 2) Let $\left\{s^{n-1} \times(0)+s^{n-1} \times(1)\right.$ $+c \times \stackrel{s}{I}\}$ be denoted by T, then a mapping $\varphi(x, s, t)$ of $\left\{S^{n-1} \times \stackrel{s}{I} \times(0)+\right.$ $T \times \stackrel{s}{I\}}$ into Y is defined as follows;

$$
\begin{aligned}
& \varphi(x, s, o)=h(x, s) \quad \text { when } x \in S^{n-1}, s \in \stackrel{s}{I}, \\
& \varphi(x, o, t)=h(x, o)=f(x) \text { when } x \in S^{n-1}, t \in \stackrel{t}{I}, \\
& \varphi(x, 1, t)=h(x, 1)=g(x) \text { when } x \in S^{n-1}, t \in \stackrel{s}{I}, \\
& \varphi(x, s, t)=h\left(D_{t}(x, s)\right) \quad \text { when } x \in C, s \in \stackrel{\stackrel{s}{I}, \text { and } t \in \stackrel{t}{I},}{ }, l
\end{aligned}
$$

then the continuity of the mapping φ is verified from the following considerations. As an immediate consequence of the definition of D_{t}, we have
$\varphi(x, o, t)=h\left(D_{t}(x, 0)\right)=h(x, 0)=f(x)=*, \varphi(x, 1, t)=,g(x)=*$ if $x \in C$ and $t \in \stackrel{\frac{t}{I}}{I}$, and $\varphi(x, s, 0)=h\left(D_{0}(x, s)\right)=h(x, s)$ if $x \in C$ and $s \in \stackrel{s}{I}$. It should be noted that $\varphi(x, s, 1)=h\left(D_{1}(x, s)\right)=*$ when $x \in C$ and $s \in \stackrel{s}{I}$. Since T is a subcomplex of $S^{n-1} \times \stackrel{s}{I},\left\{S^{n-1} \times \stackrel{s}{I} \times(0)+T \times \stackrel{t}{I}\right\}$ may be regarded as a deformation retract of $S^{n-1} \times \stackrel{s}{\Gamma} \times \stackrel{t}{I}$ so that φ defined on $\left\{S^{n-1} \times \stackrel{s}{I} \times(0)\right.$ $+T \times \stackrel{s}{I}\}$ can be extended continuously to a mapping of $S^{n-1} \times \stackrel{s}{I} \times \stackrel{t}{I}$ into Y. This extended mapping φ can be extended again in the following manner:

$$
\begin{array}{ll}
\Psi \equiv \varphi & \text { on } S^{n-1} \times \stackrel{s}{I} \times \stackrel{t}{I}, \\
\Psi(x, o, t)=f(x) & \text { when } x \in K^{n}, t \in \stackrel{t}{I}, \\
\Psi(x, 1, t)=g(x) & \text { when } x \in K^{n}, t \in \stackrel{t}{I}, \\
\Psi(x, s, o)=h(x, s) & \text { when } x \in K^{n}, s \in \stackrel{\stackrel{\varepsilon}{I},}{l},
\end{array}
$$

thus Ψ is defined on the complex $\left\{K^{n} \times \stackrel{\stackrel{s}{I} \times(0)+S^{n-1} \times \stackrel{s}{I} \times \stackrel{t}{I}+K^{n} \times(0) \times \stackrel{t}{I}, ~(0)}{ }\right.$ $+K^{n} \times(1) \times \stackrel{\stackrel{t}{I}}{\check{I}}=\left\{S^{n-1} \times \stackrel{t}{I}+K^{n} \times(0)+K^{n} \times(1)\right\} \times \stackrel{t}{I}+K^{n} \times \stackrel{s}{I} \times(0)$ which is a deformation retract of $K^{n} \times \stackrel{s}{\Gamma} \times \stackrel{t}{I}$. Therefore Ψ can be extended to a mapping of $K^{n} \times \stackrel{t}{I} \times \stackrel{t}{I}$ into Z, which we denote by the same letter Ψ. Now the partial mapping $\Psi \mid K^{n} \times I \stackrel{s}{\times}(1)=\chi(x, s)$ is such that $\chi(x, 0)=f(x), \chi(x, 1)=g(x)$, and $\chi(x, s)=*$ if $x \in C, s \in \stackrel{\stackrel{\rightharpoonup}{I}}{ }$, and therefore the first assertion is established.

The next part of our assertion was $\sigma_{n}(Z, Y, *) \mid \bar{\pi}_{n}(Z, Y, *) \cong \bar{\pi}_{1}(Y, *)$. To every mapping $f \in \sigma_{n}$, let there correspond an element f the rule $f^{\rho}\left(x_{0}\right) \equiv f\left(x_{0}, 0, \cdots \cdots, 0\right)$. Then f^{φ} represents an element of $\pi_{1}(Y, *)$. As we can easily verify that $f \sim g \rightarrow f^{p} \sim g^{\xi}$ and $(f \cdot g)^{p}=f^{p} \cdot g^{p}, \varphi$ induces a homomorphism Φ of $\sigma_{n}(Z, Y, *)$ into $\pi_{1}(Y, *)$. Next a correspondence $\psi: a \rightarrow a^{\psi}$, where a is a representative of an element ξ of $\pi_{1}(Y)$, is defined by the rule $a^{\psi}\left(x^{n}\right) \equiv a\left(x_{0}\right)$, and a^{ψ} represents an element of $\sigma_{n}(Z, Y, *)$. As in case of φ it is easily verified that ψ induces a homomorphism Ψ of $\pi_{1}(Y, *)$ into $\sigma_{n}(Z, Y, *)$. Moreover $\left(a^{\psi}\right)^{\varphi}=a$, so that Φ is a homomorphism of σ_{n} onto π_{1} and as $\Phi \Psi=1, \Psi$ is an isomorphism of π_{1} into σ_{n}. Hence it follows that $\sigma_{n}(Z, Y, *)$ contains a $\operatorname{subgroup} \bar{\pi}_{1}(Y, *)$
isomorphic to $\pi_{1}(Y, *)$. Furthmore, it is easy to see that the kernel of Φ is contained in $\pi_{n}(Z, Y, *)$ and conversely $\Phi\left(\bar{\pi}_{n}(Z, Y, *)\right)=1$, so that our assertion is completely proved.
3. Remarks on relatively free homotopy.

By using the structure of the group $\sigma_{n}(Z, Y, *)$, we shall give some remarks on relatively free homotopy. First we prove $\alpha^{\xi}=\xi \alpha \xi^{-1}$, where $u \in \pi_{n}(Z, Y, *), \xi \in \pi_{1}(Y, *)$ and $\bar{\xi}=\Psi(\xi)$ just used in the proof in the last paragraph. From the definition of u^{ξ}, two mappings f, g representing α and μ^{5} respectively, are relatively free homotopic with respect to the path $c\left(x_{n}\right)$ so that a mapping $F\left(x^{n+i}\right)$ of $E^{n} \times I$ into Z can be defined as follows:

$$
\begin{aligned}
& F\left(x^{n}, 1\right)=f\left(x^{n}\right), \quad F\left(x^{n}, 0\right)=g\left(x^{n}\right), \text { when } x \in E^{n}, \\
& F\left(x^{n+1}\right) \in Y \quad \text { when } x^{n} \in \dot{E}^{n}, \\
& F\left(x^{n+1}\right)=e\left(x_{n}\right) \quad \text { when }\left(x_{n-1}-1\right) \prod_{i=0}^{n-2} x_{i}\left(x_{i}-1\right)=0 .
\end{aligned}
$$

Denote a system of curves drawn on the face $x^{n+1}\left(x_{0}, 0 \cdots \cdots 0, x_{n}\right)$ as in figure 3 by a system of parametric equations, $x_{0}=\varphi_{t}(s)$ and $x_{n}=\psi_{t}(s)$, where for a fixed $t, 1 \geqq t \geqq 0, x^{n+1}\left(\varphi_{t}(s), 0 \cdots, 0 \psi_{t}(s)\right)$ forms a curve according as s varies from 0 to 1 . Define $\dot{F}\left(\varphi_{t}(s), x_{1}, \cdots \cdots, x_{n-1}, \psi_{t}(s)\right)=$ $h_{t}\left(s, x_{1}, \cdots, x_{n-1}\right)$, then

$$
\begin{aligned}
& h_{0}\left(s, x_{1}^{n}\right)=F\left(\varphi_{0}(s), x_{1}^{n}, \psi_{0}(s)\right)=F\left(x_{0}, x_{1}^{n}, 0\right)=g\left(x^{n}\right) \\
& h_{1}\left(s, x_{1}^{n}\right)=F\left(\varphi_{1}(s), x_{1}^{n}, \quad \psi_{1}(s)\right)= \begin{cases}F\left(0, x_{1}^{n}, x_{n}\right) & \text { if } \frac{1}{3} \geqq s \geqq 0, \\
F\left(x^{n}, 1\right) & \text { if } \frac{2}{3} \geqq s \geqq \frac{1}{3}, \\
F\left(1, x_{1}^{n}, x_{n}\right) & \text { if } 1 \geqq s \geqq \frac{3}{3} .\end{cases}
\end{aligned}
$$

Since $F\left(x^{n}, 1\right)=f\left(x^{n}\right), F\left(0, x_{1}^{n}, x_{n}\right)=e\left(x_{n}\right)$, and $F\left(1, x_{1}^{n}, x_{n}\right)=e\left(x_{n}\right)$, it is obvious that $\bar{\xi} \alpha \bar{\xi}^{-1}$. Moreover we see that h_{t} belongs to σ_{n}, from the following considerations

$$
\begin{aligned}
& h_{t}\left(0, x_{1}^{n}\right)=F\left(\varphi_{t}(0), x_{1}^{n}, \varphi_{t}(0)\right)=F\left(0, x_{1}^{n}, 0\right)=g\left(0, x_{1}^{n}\right)=*, \\
& h_{t}\left(1, x_{1}^{n}\right)=F\left(\varphi_{t}(1), x_{1}^{n}, \psi_{t}(1)\right)=\left(1, x_{1}^{n}, 0\right)=g\left(1, x_{1}^{n}\right)=*, \\
& h_{t}\left(\bar{s}, x_{1}^{n}\right)=F\left(\varphi_{t}(\bar{s}), x_{1}^{n}, \Psi_{t}(\bar{s})\right)=e\left(F_{t}(\bar{s})\right) \text { when }\left(x_{n-1}-1\right) \prod_{i=1}^{n-2} x_{i}\left(x_{i}-1\right)=0, \\
& \quad h_{t}\left(\bar{s}, x_{1}^{n}\right) \in Y \quad \text { when } \prod_{i=1}^{n-1} x_{i}\left(x_{i}-1\right)=0 .
\end{aligned}
$$

Thus it is concluded that $g \sim h_{1}=a \alpha a^{-1}$, namely $a^{8}=\bar{\xi} \alpha \bar{\xi}^{-1}$, and the proof is completed.

If $\alpha^{\xi}=\alpha$ for any ξ of $\pi_{1}(Y, *)$, then $\alpha=\xi \alpha \xi^{-1}$ so that an element belonging to $\bar{\pi}_{n}(Z, Y, *)$ commutes with every element of $\sigma_{n}(Z, Y, *)$. Thus it follows that $\bar{\pi}_{n}(Z, Y, *)$ lies in the center of σ_{n} and that $\sigma_{n}(Z, Y, *)$ may be said to be isomorphic to the direct product of $\bar{\pi}_{n}(Z, Y, *)$ and if $\bar{\pi}_{1}(Y, *)$ (Z, Y) is relatively n-simple. Conversely it is also proved that (Z, Y) is relatively n-simple when $\sigma_{n}(Z, Y, *) \cong \pi_{n}(Z, Y, *) \oplus \pi_{1}(Y, *)$. Evident'y the pair (Z, Y) is relatively simple in any dimension n for $n \geqq 3$, if Y is simply connected.
4. Case $n \geqq 2$.

In case of $n=1$ the definition of the relative homotopy group $\pi_{1}(Z$, $Y, *)$ is inapplicable unless $Y=*$, and when $Y=*$ and $n=1$, the discussions are reduced to M. Abe's ones. When $n=2$, the same results as in case $n=3$ will hold true if the definition of $\sigma_{2}(Z, Y, *)$ is slightly changed as follows. Both homotopy and multiplication are defined as usual among the set of all the mappings, each of which satisfies the conditions : $f\left(x^{2}\right)=*$ when $x_{0}\left(x_{0}-1\right)=0$ and $f\left(x^{2}\right) \in Y$ when $\prod_{i=0}^{1} x_{i}\left(x_{i}-1\right)=0$. Thus the homotopy classes, together with the multiplication, constitute a group $\sigma_{2}(Z, Y, *)$, in which all the theorems mentioned above are proved in an analogus way as in case $n \geq 3$.

Institute of Mathematics,

 Nagoya University.
Bibliography

1) Abe, M., Über die stetigen Abbildingen der n-Sphäre in einen metrischen Raum. Jap. J. Math. 16 (1940) 169-176.
