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Fundamental theorems in potential theory.

By Masatsugu Tsuj1

(Received April 5, 1952)

The potential theory plays an important role in function-theory,
so that in this paper, I shall prove fundamental theorems in potential
theory in the shortest lines. Almost all results are known and the
proofs are not new, but are somewhat simpler than the usual ones.

seems to be new and of some interest. In view of

applications to function-theory, we confine ourselves to logarithmic
potentials.

1. Maximum principle.

Let F be a bounded closed set on the z-plane and u(e) =0 be a
positive mass distribution on F of finite total mass and consider the
potential :

1
=\ log- ———-d .
u()= | Jog 1 . dula

THEOREM 1. (Maximum principle)’ If u(z) < K on F, then
u(2) < K in the whole z-plane. .

Proor. Let D be the complement of F and a,e F be its boundary
point. It is sufficient to prove

lim #(2) < K (z2eD).

Z2-ao

Let D, be the part of D contained in |z—a,]| <p and F, be that of F

1) For Newtonian potentials: M. A. Maria: The potential of a positive mass and the
weight function of Wiener. Proc. Nat. Acad. Sci. U S. A. 20 (1931). For general potentials:
O. Frostman : Potentiel d’équilibre et capacité des ensembles, Lund (1935). Frostman’s
proof depends on Poincaré’s sweeping-out process. A simple proof independent of the
sweeping-out process was given by Y. Yosida: Sur le principe du maximum dans la théorie
du potentiel. Proc. Imp. Acad. 17 (1941).
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contained in |z2—a,| < p. Since u(z) < Kon F, a single point does not
contain a positive mass, so that we take p so small that w(F,) <e.
Let ze D,. We choose ze F,, such that [z—z|<|z—a]| for any ae F,,
then

lz;—a|<Z|z—2z |+ |z—a|<2|2z—ai for any aeF,,

so that

[ 108 1 due)<uF)log2+ | tog- !
F, |z—al F, |z1—a |
du(a) <elog 2+ g log B - du(a) —S log I
F lz,—al JF-Fp | z;—a|
du(a) < elog 2+ K— S log— L dula),
' F-F, I Z1—a I
1 1 1 |
j log—— 1 du(a)+ j log- Y du(@)<elog2+K.
F,  |z—al F-F, — |z—al
Since 2z, — a,, as z— a,, if z is sufficiently near to a,
1 - 1
jF—Fp log l*;;_*él* du(a) )SF—FP log *l*z*_a I du(a)—e,
hence "
_ 1 1
u(z)= j‘ log ———— du(a)+ j log — = du(a)<elog 2+ K +¢,
F, lz—a| F-F, lz—a|
so that
lim #(z) < K.

2=ay

THEOREM 2%, Let aye Fbe a boundary point of D. If u(z) is
conlinuous at a, consideved as a function on F, then u(z) is continuous
at a, considered as function in the full neighbourhood of a,.

2) G.C. Evans: Application of Poincaré’s sweeping-out process, Proc. Nat. Acad. Sci.
U.S.A. 19 (1933). On potentials of positive mass, I, Trans. Amer. Math. Soc. 37 (1935).
Vasilesco: Sur la continuité du potentiel & travers des masses et la démonstration d’un

lemme de Kellogg, C.R. 200 (1935). For general potentials u(P)=SFtI>(FQ)dM(Q):
T. Ugaheri: On the general potentials and capacity, Jap. Journ. Math. 20 (1950).




72 M. Tsun

ProoF. In the above proof, if p is small, then %(z) < u(a)+e,
hence taking K=u(a,)+¢, we have
Iim #(z) < u(ay) (ze D).

z-%ao

Since u(z) is lower semi-continuous, we have lim «»(2)=u(a), q.e.d.

z-¥ao

THEOREM 3. Let ule) =0 be a positive mass distribution of finite
total mass in a finite domain D. If

u(z)= SDIOg - 1Ai du(a)=const.=V

| z—a

almost everywhere in a neighbourhood U D, then pn(U)=0.
Proor. We suppose that U:|z|<p and let D be contained in |z|<R.
We put

o= dua) (0<r<R).

Then since

irﬂlog |7e?®*—a| dd=Max (log 7, loglal),

27 Jo

1 27 . R
_j u(rei®) de=—§ Max (log 7, log £) d2(t)
2% Jo 0

=jR_~9_§D_ dt—2(R)log R .

r

By Fubini’s theorem, #(rei®)=V almost everywhere on |z|=7 (0<r<p),
except a null set of » in (0, p), so that for a non-exceptional 7,

——1——j2¢u(7e“’) do=V .

27 Jo

Hence for a non-exceptional 7,

JR%t) dt=const. (0 <7r<p),

r

so that 2(»)=0 (0 <7» <p), or u(U)=0.
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2. Capacity and conductor potential.

1. Let F be a bounded closed set on the z-plane and u(e) =>0 be
a positive mass distribution on F of total mass 1. We consider with
Frostman the energy integral:

I(p)= ﬂplog

and let

L du(a) du(d), w(F)=1, (1)
la—b]

V=inf I(n) . (2)
m
We take K >1 so large that |[a—b| < K for any ac F, béF, then
K
I(w)= log ——“* — > — .
()= |[ Jog | K duta) dutt)~tog K = —log K.,
so that V> — o,
We define the capacity of F by
C(F)=e™V. (3)

If C(F)>>0, then there exists u, such that I(x)=V.» We call ux the
equilibrium distribution and

@)= log 1 dua), wF)=1 @)
F |z—a| _

the conductor potential of F. u(z) is lower semi-continuous and super-
harmonic. :

The kernel F'* of u is defined as the set of points @, such that any
small neighbourhood of a contains a positive u-mass. Evidently F* is
a closed sub-set of F.

The capacity of any Borel set ‘E is defined by

C(E)=sup C(F), (5)
FCE
where F' are closed sub-sets of E.
It can be proved easily that if C(E)=0, then the measure of E is
zero and if C(Ex)=0 (n=1, 2, ---), then c@1 En»)=0.

3) Frostman, l.c. 1).
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In this paper ‘“‘almost everywhere” means
zero”.

THEOREM 4. Let ule) =0 be a positive mass distribution on a
bounded closed set F of total mass 1 and

except a set of capacity

u(z:>:jlogI 1 dula), =1,

If Spu(z) du(z) <oo, then any Bovel set e F of capacity zero does not

contain a positive u-mass, i.e. u(e)=0.
ProOF. Suppose that u(e)=m > 0. We may assume that e is closed.
We take K> 1, so large that |a—b| < K for any ac F, be F, then

u(z)+log K= jFlog i fbi du(b)

hence

[, #(a) du(a) +1og K =({ 105 % du(a) du)

=f 1o 1, dula) du(d) i Tog K.

Hence (Llog, 1“ dia) du(b) < <o, so that C(e)>>0, which con-

tradicts the hypothesis. Hence wu(e)=0.
THEOREM 5. Let E be a bounded F,-set of capacity zero, thén
we can distribute a positive mass u(e) >0 on E, such that

@)= | tog-— 1 dua), wE=1
E " |z—al

tends to + o, when z tends to any point of E.

This follows from Evans’s theorem?®, where E is closed.

We call #(z) the Evans’s function with respect to E. We use this
function frequently in this paper.

2. Now we shall prove the following fundamental theorem in
the potential theory. '

4) G.C. Evans: Potentials and positively infinite singularities of harmonic functions,
Monatshefte f. Math. u. Phys. 43 (1936).
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THEOREM 6. Let u(z) be the conductor potential of a bounded
closed set F, which is of positive capacity. Then u(z) <V in the whole
z-plane and u(2)=V “ almost everywhere” on F, such that u(z)=V on
F, except at an F,-set of capacity zero. ~

Proor. First we shall prove

u(2) =V “almost everywhere” on F. (1)

Suppose that #(z) <.V on a set Ec F, such that C(E) >0, then we
can find a suitable closed set F,c E, such that C(F,) >0 and

u(z) < V—2¢ on F, for some ¢ >0. (2)

Let F* be the kernel of u, then since S u(a) du(a)=V, there exists
F¥*

aye F*, such that u(a)) > V—e, then @, lies outside F,. By the lower

semi-continuity of u«(z),
u(z) >V—e in Ula), 3)

where U(a,) is a neighbourhood of @, which we take so small that
U(ay) and F, have a positive distance.
Since C(F,) > 0, there exists ¢ >0 on F,, such that

o(F)=pu(Ula))=m>>0, I@;):”F log iTiW do(@) do(b) < o . (4)
We put
or=—p in Ula), o=c in F,, o=0 elsewhere, ' (5)
then

Ko)=|{ 108 doy(@) do(B) = © , o F)=0.

la—b|

Hence for 0 <7 <(1, we have u+#5o; >0, S‘F d(p+n0)=1 and
O1=Lpu+no)—H(w)=20 | ude+7lx)

< 20| m(V=20)~m(V~&) |+-n2 L) = —n | 2me—nle) | <O

5) Frostman, l.c. 1).




76 M. Tsumn

for a small » >0, which contradicts the definition of I(x). Hence
u(z) >V “ almost everywhere” on F.
Next we shall prove

u(z) < Von F*.

Suppose that #(a,) > V+e (a,e F*,e>0), then by the lower semi-
continuity of (z),

u(2) > V+e in Uy=Ul(a) . (7)

Hence by (1) and [Theorem 4,
V= L‘*Uou(a) dula) + SF*—F*UO
+V(1“#(Uo))=v+ ew(Up) >V,

u(@) dp(a) = (V+¢) (U

which is absurd, so that #(z) <V on F*. Hence by the maximum
principle, #(z) < V in the whole z-plane, so that by (1), #(z)=V “al-
most everywhere” on F.

Since #(z) is lower semi-continuous and #(z) < V, the set of points
of F, such that #(z) <V is an F,-set. Hence our theorem is proved.

We have easily

THEOREM 7. If uw(a)=V (aye F), then u(z) is continuous at a,.

The complement of F consists of at most a countable number of
connected domains D..+{D,}, where D.. contains z=-co. Let /" be the
boundary of D.. We call I’ the outer boundary of F.

THEORFM 8.2 pu-mass lies on the outer boundary I' of F and
I’'—F* is of capacity zero.

PROOF. %(z) is a bounded harmonic function in D, and by
6, its boundary value is V “almost everywhere”, so that #(z) =7V in
D,. Let z, be an inner point of F and U:|z—z,|<_p be contained
in F, then #(z)=V almost everywhere in U, so that by (Theorem 3,
w(U)=0, hence u(z,) is harmonic in U and u(z))=V. Hence u(z)=V at
inner points of . Now the complement of I’ consists of at most a
countable number of connected domains D.+{4,}. Since #(z2)=V in
D, and at inner points of F and u(z)=V ‘ almost everywhere” on the
boundary of D,, #(z)=V almost everywhere in 4,, so that by

6) Frostman, l.c. 1).
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3, u(4,)=0. Hence the mass lies on 7. We put E=1"—F* and sup-
pose that C(E£) > 0. Then E contains a closed sub-set F, of positive
capacity. Since F, and F* have a positive distance, «#(z) <V on Fy,
but by F contains a point, such that #(z)=V, which is
absurd. ' Hence C(E)=0.

THEOREM 9.” u is unique.

Proor. Suppose that I(p;)=1I(u,)=V and let

w@=log 1 dw@, w@=10g 1 -dua,
r |z—a| r |z—a

pl M) =pl)=1,
then u,(2)=uy(2)=V * almost everywhere” on /'. Hence

wD=m@—u@=| log = 1~ du@), (w=pm—m)
T |z—a |
is a bounded harmonic function in D.. and its boundary value vanishes
“ almost everywhere”’, so that #(z) =0 in D.. Since #(z2)=0 in 4, and
“ almost everywhere” on I’, #(z)=0 almost everywhere in the whole
z-plane, so that by Theorem 3, x =0, or u;=pu,.

3. Green’s functions.

1. Let D be a finite or an infinite domain, but we assume that
its boundary I’ is a bounded closed set of positive capacity. Let uw =0
be a positive mass-distribution on I” of total mass 1 and z, be a fixed

point of D. ;
We consider with Frostman
_ 1 B 1
Gw=| (] tog 1, dul@—2log |, 2 ) du(d), )
G=inf G(u). (2)
*

Then there exists u.,, such that G(uz)=G?¥. u., is called the mass of
balayage.

7) Frostman, l.c. 1).
8) Frostman, l.c. 1).
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Since G=G(uz,) = o,

” log 1 — duz (@) dpz(b) < =,
JJr la—b]

hence by a set of capacity zero on I" does not contain a
positive pz,-mass.

We put
1
h - 1 — - d Z *I — 2 I :1 3
@=[log [ 1 duif@)=log 1 (wl1)=1) 3)
and let

v(z)=sup h(z), (4)
where I'* is the kernel of u.. Then we can prove similarly as

m 6,
h(z)=v(z,) “ almost everywhere” on I’. (5)

First we shall prove
h(z) = v(z,) “ almost everywhere” on I’. (6)

If h(z) <v(z) on a set Ec I' of positive capacity, then by the same
notation as in the proof of [Theorem 6|

h(z) <(z)—2¢ on Fy, C(Fy)>0.

By the definition of (z,), there exists a,e I™*, such that z(ay) > v(z,)—e,
so that

h(z) > y(z)—e in Uy=Ul(a).
We define o, oy as before, then for 0 <7 <1,

8G =G(pz,+7n01)— G(pz,) = 277jr h(a) do(a)+7*1(ay)
< 27)[’" (v(20)—2¢ ) —m(v(z0)—¢) ] +9°1(a1)

=~ 2me—nl() | <0

for a small » > 0, which contradicts the definition of G(u.). Hence
h(z) = v(z;) “ almost everywhere” on I'.
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Since 2(z) < v(z) on I’ and h(z) is harmonic at z=<, by the
maximum principle,
h(z) < v(z,) in the whole z-plane, (7)
so that by (6),
h(z)=w(z) * almost everywhere” on 1, q.e.d.

- If D is a finite domain, then (z)=0. For let

ule)=| log L o dula) (w(r)=1)

be the conductor kpotential of I, then since wu(z)=V and u(z)=V
“almost everywhere” on I" and a set of capacity zero does not contain
a positive 4 and w., mass, we have by (5),

vz = hiz) dut2)

= d,;zo(aﬂ tog L du(@)— [ Tog 1 du(a)=V~V=0.(8)
r r r

|z—a z2—2zp |

If D is an infinite domain, then v(z,) > 0. For

v<z0>=v—jrlog L agu@z>o. 9)

[z2—z |

2. We define the Green’s function g(z, z,) of D by

£(z, z)=v(z)—h(z) (2 <),

(10)
2(z, oo)zv—§ log -1 du(a),
r l Z2—a
where u is the equilibrium distribution on 7°.
Hence :
(i) If D is a finite domain,
, 1 1 _
,)=1log - — |\ log - duza); 11
mam)l%:u_%! Slﬂog,z_al pz,(@) (11)

(ii) If D is an infinite domain,
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gz, z)=log 1 +oz)—[ log L dusfa) (aF ),
lz2—2| r

|z—a|

] (12)
|

Hence from (9) and (12),
v(20)=g(20, °)=g(0, z)) . (13)

2(z, z;) is upper semi-continuous and subharmonic. Hence the set of
points on I’, such that g(z,z) >0 is an F,-set.

We can prove easily that g(z, z))=0 in the complement of D+ I".
By this and the upper semi-continuity and subharmonicity of g(z, z,), we
can prove that g(ay, z)=0 (g,e I’), when and only when lim g(z, z)=0

(ze D). Hence we have proved :

THEOREM 102 g(z,2) >0 in D and g(z, 2z)=0 “almost every-
where” on I'. The set of points z on I' such that g(z,2,) >0 is an
F,-set of capacity zero.

Let aye Iy then g(ay, z)=0, when and only when lim g(z, 2)=0

2=%ao

(ze D).

Since h(z) < v(z,) in the whole z-plane and A(z)=v(z,) * almost
everywhere” on I’, we can prove similarly as

THEOREM 11. Let I’} be the kernel of up., them I'—1'} is of
capacity zero.

THEOREM 12.1°% u. is unique.

PrROOF. Suppose that “ almost everywhere” on I,

B S v1(2p) —-S log :fl*** dul(a)=0,
|z—2 | r - iz—al

1

|z2—2z |

log

+ofe) = | Jog 1 dut(@=0,

log
|z—a

then “ almost everywhere” on I7,

w(z)=| log du(@)=r(z) =z (w=ph—4l).

|z—al

9) Frostman, l.c. 1).
10) Frostman, l.c. 1).
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From this we can prove easily that u(z)=1v,(z,)—v:(2) almost every-
where in the whole z-plane, so that by Theorem 3, x =0 or wl =4us.
THEOREM 13 g(z,, 2,)=g(21, 22).
ProOF. Since g(z, ©)=g(, z), we assume that z, 7= o, z,=F co.
It suffices to prove

va)—| tog L dus(@=vz)—| log 1 dusfa). (1)
Tl z—al r o |z—aj
Since g(z, z;)=0 ‘“ almost everywhere” on I’,
log S =—u(z)+ j 10g dup=,(b)
| z2—a b

for “almost all” @ on I'. Since the except10na1 set does not contain
a positive pe,-mass,

| 1og 1 due(@=—re)+ || log T duala) dusb),
r r a—b| .

| z,—a | la—

rHe)— | log -

1 22

Ry dpz(a@)="(21) + v(22) — “‘ log *vbwlﬂ dpz(a)dp=,(b).
Hence by the symmetry, we have (1).

THEOREM 14. We approximate D by a sequence of domains
D,c D, ---< D, — D, where the boundary I, of D, consists of a
finite number of analytic Jordan curves and z ¢ D,. Let g,(z, z,) be the
Green's function of D, and

dut (@)= Z}r "”g"f,;j 20). s (@el's),

where v is the inner normal and ds the arc element of I', at a.
Then
82, 2) = 8(z,20),  ph— pz(n— ).
Since dpl(a) is a bounded harmonic function of z, du:(a) is a bounded
harmonic function of z,.
Hence if f(a) is a bounded B-measurable function on 17, then

uz)= | f(a) dus(a)

11) Frostman, l.c. 1).
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is a bounded harmonic function in D.
PROOF. Since g,(z, z)) < g,.1(2, 2), let

lim g,(z, 2) =Gz, 2) . (1)
We shall prove G(z, z,)=g(z, z,).
Since g(z,2,) >0 on 1',, g(z,20) > g4z, 2) in D,, so that
g(z,2) = G(z,2,) in D. (2)

Let e be the F,-set of capacity zero on I’, where g(z, z) >0 and
v(z) be the Evans’s function with respect to ¢, then since lim G(z, z)) = 0

on I, we have for any ¢ >0,
G(z, 20) > g(2,20)—e—ev(2) in D,

so that for e — 0,

G(z, 2)) = g(2, 2) in D. ‘ (3)
Hence from (2), (3), we have
G(z,20)=g(2,2) in D. (4)

Next we shall prove the second part of the theorem. If D is a
finite domain, then

gn(zy ZO) :gn(zﬂy Z) == log 1 o ‘VI‘S lOg o 1—- . agn(a, ZO)’ ds
lz—2zy | 2w Jr, | z—a | ov
—log—1  — S log — 1 duz(a).
| z— 2] r, lz—al

Since S dp?(a)=1, we select a partial sequence, such that p?— v,
. r, ) 0

so that by (4),
2(z, z0)=log 1

lz—zol

g log 1 dv:Sa) .
r al

Hence by the uniqueness of u., we have »;=gpu,. Since pe, is in-
dependent of the choice of #n,, lim u? exists and =pu.,. If D is an
n

infinite domain, then let ~,:|1&—2z)!=p, v:lt—2z]|=p, C:|¢|{=R and
4, be the domain bounded by 1, v, v, C. If we apply the Green’s

formula S (u v, U \ ds=0 for u=g,(&, zy), v=log 1

in 4
ov ov / [e—z ! "
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and make p — 0, R — <, we have

2.z, zp)=log 1 +g,(, z)— LS log 1 0gda,z) 4
| z—2z | 27 Jr, | z—a | ov

1 T +gn(oo9 ZO)—j‘ IOg —l'—"—d/‘"go(a)'
| z—20| r, lz—a

= log _
Hence

s a)=log 1 +g(w,m)~| log, L dvfa),

| z—2z0 | z—al

so that v, =pu-, and lim u? exists and = ,uz(,{
n

4. Dirichlet problem.

1. Let D be a finite or an infinite domain. We assume that its
boundary 7" is a bounded closed set of pqgitive capacity. Let f(a) be a
given continuous function on 7'. We extend it to a continuous function
F(2) in the whole z-plane, such that f=F on I’. We approximate D
by a sequence of domains D;— D,<= --- < D,— D,where the boundary
I’, of D, consists of a finite number of analytic Jordan curves. Let
#,(z) be the solution of the Dirichlet problem for D, with F' as its
boundary value. Then Wiener” proved that hm u,(2)=u(z) ex1sts

where u(z) is independent of the choice of Dx and F By means of

we can prove
THEOREM 15. lim u,,(z):u(z):jr fla)dua),

where duza)is the mass of balayage.
Proor. Let g,(¢,z) be the Green’s function of D,, then

u,(2)= —Z%L Fa) g-”—é%i) ds .

Hence by Theorem 14,
u2) = | fl@)dusl@),  a.ed

2. Let a, be a point of I'. If lim u(z)=f(ay) for any f, a, is called

zZ=Qo

12) N. Wiener : Certain notions in potential theory, Journ. Math. Massachusetts Inst.
Technology, 1924.
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a regular point and, otherwise, @, is called an irregular point. By
[Theorem 15, we have

THEOREM 162 aye 1’ is a regular point, when and only when
dua) — 1 as z — a,.

dua) — 1 (z — ay) means that for any §>> 0 and for any neighbour-
hood U(a) of ay, if | z—ay| <n=n(8), then the mass du:(a) contained
in Ula) is > 1-34.

THEOREM 17.% aye I’ is a regular point, when and only when
lim g(z, 20)=0 (ze D).

zZ>ao

Proor. If D is a finite domain, then

g(z, 0)=log 1 S log__l____
lz2—2] r | z0—a |

d/laz(a) . (1)

Hence if du.(a) — 1(z — &), then g(z, z,) — O.
Next suppose that g(z, zo).—> 0 (z— ay), then we choose a sequence
2, — &, such that pz, = v, SO that putting z=z, in (1), we have

log—— 1 = j log— 1 di(a). 2)
[ @o—2 | r - |z—al
Since if g(z,z) — 0, then g(z,z)— 0 for any z e D, (2) holds for any
20e D. Since log p 1 is a harmonic function of z, (3= a,), we have by
020

Theorem 3, dv(a)=0, if a 3= a, and dv(a)=1, if a=a,. Hence dp.(a) — 1
as z— a. ’
If D is an infinite domain and du.(a) — 1 (z — &), then
w(z)zjri a—ay| dua)— 0 as z— ay.

We enclose 7" in a Jordan curve C, such that 2z, lies outside of C.

Let D, be the domain bounded by I' and C. We take K > 0, so large
that

Kw(z) > g(z, 2) on C,
then for any ¢ > 0,
Kuw(z) > g(z,20)—e—e v(z) in Dy,

13) de la Vallée-Poussin: Les nouvelles méthodes de la théorie du potentiel et le
probléme généralisé de Dirichlet, Actualités scientifiques et industrielles, 1937.
14) Bouligand: Sur le probléme de Dirichlet, Ann. de la Soc. Polonaise de Math. 1925.
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where »(z) is the Evans’s function with respect to the set of points of
I" such that g(z, z) > 0. Hence for e — 0,

Kw(z) = g(z,2,) in D,.

Since w(z) — 0, we have g(z,z)— 0 as z— a,.
Next suppose that g(z, z;) — 0, (z — @,). Since
1

g(z, z)=log = +g(z, «)— j log 1 duda),
{z2—2| | z—al

and g(z, ) — 0 with g(z,z)— 0 as z — @, we have

o 1 (ol gu@o0 G,
| 2~z r l'zy |

so that du:(a)—1 as z— @, q.e.d.

From and 17, we have ‘

THEOREM 18 The sct of irvegular points is an F,-set of capacity
z2ero.

From the expression of g(z, oo) in (12) of §3. 2 and [Theorem 10

and 17, we have

THEOREM 19. Let u(z) be the conductor potential of a bounded
closed set F and I' be its outer boundary and a, be a point of I'.
Then u(a)=V, when and only when a, is a regular point of D..

3. By [Theorem 16, if @, is a regular point, then du.(a) — 1 as
z—a. If @, is an irregular point, then du.(a) is dispersed on 7" in
such a way as the following theorem.

THEOREM 20. Let D be a finite domain and a, be an irregular
point on its boundary I', so that liIIP g(z,,20) >0 for some z,— a,.

We select a partial sequence, which we denote again k, such that
Mz, = V. Let I'* be the kernel of v, thenm I'—1'* is of capacity zero.

Proor. From

g(zky zO)'_—IOg *—1—“ — S log 1 Wdfl‘zk(a):>:"7> 0 (k=]’ 2, ) ’
]Zk“20| r | zp—a |

we have

‘15) O.D. Kellogg: Unicité des fonctions harmoniques, C.R. 187 (1928). G.C. Evans:
Application of Poincaré’s sweeping-out process, Proc. Nat. Acad. Sci. U.S. A. (1933).
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g 1 — j g L d@)>,>0. (1)
| ay—2z | r* | z)—a |
Since g(z ,2)= 1 j log _L—« dpz,(@)>> 0 for any ze D,
k |zp—2z | r a|
_ 1 1 .
w(z)=log - o { log - 1 d@>0inD, 2)
| ap—z | r lz—a|

so that lim#(z) =0 on I'*, hence by the upper semi-continuity of
u(z), u(z) =0 on I'*. Since u(z) is harmonic at z= o, by the maximum
principle, #(z) = 0 in the complement of 7'*. Since by (1), u(z) > 0,
we have

#(z) > 0 in the complement of 7°*. 3)
From
loggflf g lo g~—v — d,uz (@)
2,—2 | [ z—
=log 1 j log 1 duda),
| ze—z| r7 | z—al
we have

[ 1og ﬁJ—ﬁ du (@)= | log L dula),

[z2— |zy—a |
so that by Fatou’s theorem,
1

| og 1 @@= 108 1 - dula).
rx lz—a| r lay—a|
Hence by (2),
0<u@<log .~ 1 —{log 1 duda) in D. (4)

|a—z| Jr 7 |@y—a

We put E=1"—71"* and suppose that C(E£)>0. Then E contains a
regular point « and if z tends to «, duz(a) — 1, so that the right hand
side of (4) tends to zero, hence #(z) —> 0 as z-—> «a. But since « lies
outside 1'*, u(z) is harmonic at « and u(«) >0, which is absurd.
Hence C(E)=0.

4. Let D be a domain and I’ be its boundary and @, 1’ and D,
be the part of D, which is contained in |z—ay| <p. If w(z) satisfies
the following condition, then w(z) is called a barrier at a,.
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(i) w(z) >0 and is continuous and superharmonic in D,,,
(i) limw(z)=0 (zeD),

z2-ao

(iif) w@)=d(p)>0on lz—a|=p (0<p=<py).

THEOREM 21.1® gq,e I’ is a regular point, when and only when a
barrier exists at a,. ‘

Hence the regularity and irregularity is a local property.

ProOOF. (i) Suppose that a barrier w(z) exists at @, We take p so
small than p <|z,—a,|. Then if we take K > 0 sufficiently large, we
have for any ¢ >0, :

Kuw(z) > g(z,z))—e—ev(2) in D,,

where v(z) is the Evans’s function with respect to the set of irregular
points. Hence for ¢ — 0,

Kuw(z) = g(z, z) in- D,,

so that g(z,z)— 0. Hence @, is a regular point.
(i) Next suppose that ¢, is a regular point and put

w@)= | |a—a| dua),

then by [Theorem 16, w(z) — 0 as z—a, and the boundary value of
w(z) coincides with that of | z—a,| ““ almost everywhere” on /°. If D
is a finite domain, then |z—a,| is subharmonic in D, so that

w(z) = |z—a| in D,

hénce w(z) is a barrier at @, If D is an infinite domain, we enc]_osé
I" in a Jordan curve C and D, be the domain bounded by 7° and C.
We take K > 1, so large that '

Kw(z) =>|z—a,| on C,

then Kw(z) > |z—a,| in D, so that w(z) is a barrier at a,.
" 5. Let D be adomain and 7’ be its boundary, which is a bounded
closed set of positive capacity. Let f(z) be a bounded B-measurable
function on I". We define with Brelot an upper function y(z) as
follows : :

(i) 4Y(z) is continuous and superharmonic in D,

16) O.D. Kellogg: Foundations of potential theory, Berlin (1929) p. 326.
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(i) limy(z)=f(a) (zeD) on I".

We put o
H f(Z)ZiE’lf V(). (1)

A lower function @(z) is defined as follows :
(i) ¢(z) is continuous and subharmonic in D,

(ii) lim ¢(2) < f(a) (zeD) on I'.

We put _
Hs(z) =sup #(2) . (2)

Brelot called H/z) the hyperfonction, H{z) the hypofonction.
THEOREM 227 H,(z2)=H f"(z)=Hf(z)——-STf(a)d;cz(a),
where du.a) is the mass of balayage. Hence
#(2) < | fla) dus@) < ¥(2) in D.
ProoF. Let

uz)= | fla) dua), &

then #(z) is a bounded harmonic function in D (§ 3). If f(@) is lower
semi-continuous on /°, then at a regular point a,

lim u(z) = f(a) .

z2-a
Let v(z) be the Evans’s function with respect to the set of irregular
1_)_oints, then for any e >0, u(z)+ev(2) is an upper function, so that
H ;(z) < u(z)+ev(2), hence for e — 0,

Hs(2) < u(2). (2)
If f(a) is upper semi-continuous on 7°, then similarly
Hs(2) = u(z2) . (3)

Let f(a) be a bounded B-measurable function on 1°, then by Vitali-
Carathéodory’s theorem, there exist upper semi-continuous functions
U,(a) and lower semi-continuous functions L,(a), such that

17) M. Brelot: Familles de Perron et probléme de Dirichlet, Acta de Szeged 19
(1938). .
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U@ S U a) < - X Un(a) S fla) < Ln(e) < - < Lia) < Ly(a),

¥uld)= | Li@dusa) ~ | fla)duda)=u(z),

@)= | Ula)dusa)— | fladuda)=u(2).

By @), 3), _
HLn(z) é \I’n(z) ’ EUM(Z) :->;- (Pn(Z) .

Since f << L, on I', H/(z) < H,,(2), so that H(z) < ¥,(z) — u(z). Hence
H [(z) < u(z). Similarly H{z) = u(z), so that H{z)=H {z)=HAz)=u(z).
6. By means of and 22, we can prove easily the
following theorem.
- THEOREM 23 Let D be a domain and a, be a point on ils
boundary 1'. If there exists a continuous superhavmonic function
w(z) >0 in D, such that lim w(z)=0(ze D), then a,is a regular point.

2= ao

Proor. We may assume that w(z) is bounded, since otherwise we
consider Min(w(z), 1) instead of w(z). Let D, be the part of D, which
is contained in |z—a,| <p and A, be its boundary. We take p so
small that C:|z—a,|=p contains an inner point of D. Let

0<m<wiz)< M on an arcc;zj’of C. (1)
For any ac/4,, we put

lim w(z)=w(a) (zeD,),

z-a

then w(a) is a bounded lower semi-continuous function on A,. Let

W)= |, wa)dula) (zeD,), (2)
where du<a) is the mass of balayage with resepct to D,. Since w(z)
is an upper function of w(a), we have by [Theorem 22,

0 <<u(z) <w(z) in D,.
Hence

z—ao

lim u(z)=0. | (3)

18) Brelot, l.c. 17).
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Suppose that @, is an irregular point of D, then g, is an irregular point

of D,, so that by [Theorem 20,

j,ad,uzk(a)gn>0 for some z,— a,.

Since w=w =m > 0 on c?@,
wen) = | m dusf@) = mn>0 (2, av),

which contradicts (3). Hence g, is a regular point.

5. Elliptic capacity and elliptic conductor potential.

Let K be the Riemann sphere of diameter 1, which touches the
la—b|

z-plane at z=0 and [a, b]= At aBD AT

be the spherical dis-

tance of a,b.
Let F be a closed set on K and u(e) > 0 be a positive mass dis-
tribution on F of total mass 1 and let

Iw= [ Jog . 1 du@dud), )
V. :in I(p) . (2)
We define the elliptic capacity of F by
Ci(F)=eV+ (3)
and of any Borel set E by
C.(E)=sup C.(F), (4)

where F' are closed sub-sets of E. The capacity defined in §2 may be
called the parabolic capacity.!”® We can prove easily that C.(E)=0,
when and only when C(E)=0.

If C.(F)> 0, then there exists u, such that I(x)=V, and

19) Similarly we can define the hyperbolic capacity and the elliptic and hyperbolic
transfinite diameter. I have proved the identity of the elliptic (hypserbolic) capacity with
the elliptic (hyperbolic) transfinite diameter in another paper, M. Tsuji: Some metrical
theorems on Fuchsian groups, Jap. Journ. Math. 19 (1947). '
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wlz)= j log [J,] dla), WF)=1 (5)
is called the elliptic conductor potential of F. u(z) is lower semi-
continuous on K and is subharmonic outside the mass. We can
prove similarly as

THEOREM 24. u(z) V. on the whole sphere K, and u(z)=V,
on F except at an F,-set of capacity zevo.

We shall prove ‘

THEOREM 25. wu(z)=V. at inner points of F and the density of
p at inner points is 1/mr.

Proor. We consider at z=0 and put

g(r)zglal <r d”(a).

Since
u(rei®)= 5 log V(A+7)A+lal®) dila)
| rei®—a |
—log /147 + j log V1+1alP 440,
[rei’—a|
we have
ZLSZ ulrei)dg=log v/ 1+ + | (logy/T+# —Max(log 7, log 1) d2(t
wT
R - P (&)
—log v I+7 + So o jo D .
Since
— Vit+lal = 02 dt
#(0) S log V- Tal dpla)= S v 4
we have
_L 2= 0 — & —\7 ‘Q(t),
o jo u(re’®) dd=1log 1/1+»* +u(0) SO ; dt. (1)

‘Hence ‘
. 1 2 K
l1m——S u(rei®) do=u(0). 2)
r=0 m v0
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If z=0 is an inner point of F, then «(z)=V, almost everywhere in
a neighbourhood of z=0, so that from (2), we have «(0)=V,. If
|z]<p belongs to F, then wu(rei®)=V, (0 <r<p), W0)=V,, so that
from (1),
[ @ dt=log y/1+77.

0
Hence 2(r)=7%14#?% so that lirgl Ar)/mr*=1/w. Hence the density of
p at z=0is 1/7.
REMARK. If [z|<Tp lies outside F, then 2(»)=0 (0 <7»<p), so
that from (1),

ZLSZ’I u(rei®) dod=1logy/'1+7* +u(0) > u(0), (3)
™ .
which expresses that #(z) is subharmonic outside the mass. If F consists
of a finite number of Jordan domains and A be the area of F, then
the mass contained inside of F is A/m, so that the boundary of F
contains a mass (r—A)/w, where =—A is the area of the complement
of F.

THEOREM 26. u is unique.

PrROOF. Let

ul(z)=jFlog [z’la] dula), uflz)= Llog [z.a] dpda),

p(F)=pF)=1,

such that u(z)=u 2z)=V, “ almost everywhere” on F. We may assume,
by a suitable rotation of K, that F is projected on a finite distance
on the z-plane. Then

dl-"zta) +

u(z)zul(z)——uz(z)z.“lrlog I_zia | du(a)— Llog —a]

+const.= Splog du(a)+const. (p=p,—p)

1
| z—a|
is harmonic outside F. Since #(z)=0 ‘ almost everywhere” on the
boundary of the complement of F and #=0 at inner points of F,
u{z)=0 almost everywhere in the whole z-plane, so that by Theorem
3, =0, or u=p,. :
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THEOREM 27. Let F be a closed set on the Riemann sphere K
and the complement of F consists of only one domain D. Let a, be a
boundary point of D, then ula))=V., when and only when a, is a
regular point of D. :

ProOF. (i) Suppose that u(a,)=V.. Then by the lower semi-
continuity of u(z) and w(z)<< V,, we have lim u(z)=V, (ze D). .Since

w(z)=V,.—u(z) > 0 is superharmonic in D and tends to zero, by Theo-
rem 23, a, is a regular point of D.

(ii) Next suppose that ¢,=0 is a regular point of D. Let D, be
the part of D contained in jz| <p and F, be that of F' contained in
|z]| < p. Then if we put

+E logl/(1+lZf2 )A+]a ) du(a)
F-F, lz—a]

J
+ S 1/1+| 2P dua)+g(z),

then ling @(z)=0, so that if [ z| <p1 <p then | ¢(2) ]| <8. We put

w@=|, log V1L quay+ | 10g V1M aua), )
p P l I
then
u(z)=uy(2) + @(2) . (2)
Since u(z)=V, on F, except at an F,-set E of capacity zero,
V,—u(2)=¢(z) <& on F,,1 , except at E. (3)

Let w(z) be a barrier at z=0, then for a large K > 1,
Kuw(z) > V,—u(z)—6—ev(z) in D,

for any e >0, where v(z) is the Evans's function with respeét to E,
so that making ¢ — 0,

Kw(z) = V,—wu(2)—8 in D, ,
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or
u(z2)—p(2)+8+ Kw(z) >V, in D,,1 .

Since w(z) » 0, (z) >0 as z— 0 and & is arbitrary, limu(z) = V..

Fad!

Since u(z2) < V., we have limu(z)=V, (ze D).

z=0
Since #(z)=V, “almost everywhere” on F and u(z)— V., (z—0),
we have

u(z) >V.—38

almost everywhere in a full neighbourhood |z|<p of z=0, where
5 — 0 with p — 0. Hence by (2) of the proof of [Theorem 25, we have
u(0)=V,.

6. Functions of U*-class.

Let w(z) be regular and |w(z)| <1in |z| <1 and linll | w(rei®) =1

almost everywhere on | z |=1, then w(z) is called a function of U-class.
Frostman? proved that a function of U-class takes any value &
(ja] <1), except a set of capacity zero.

We generalize the definition of U-class as follows. Let F' be a
closet set of positive capacity on the Riemann sphere K and w(z) be
meromorphic in | z| < 1 and does not take values on F and lim w(re*)

r-1

=w(e’®) belongs to F almost everywhere on |[z|=1. We call w(z) a
function of U*-class and F its lacunary set. The complement of F
consists of at most a countable number of connected domains {D,}.
Let D be one of D,, which contains w(0), then w(z) belongs to D.

Similarly as Frostman, we shall prove

THEOREM 28. Let w(z) be a function of U*-class in |z|<1.
Then w(z) takes any value in D, except a set of capacity zero.

ProoF. Let g(w,a)(aeD) be the Green’s function of D, then
g(w, a)=0 on F, except at a set E of capacity zero, where E is inde-
pendent of @. Let ¢ be a bounded closed set of positive capacity con-
tained in D and x be the equilibrium distribution of e, then we can
prove easily

20) Frostman, l.c. 1).
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uw)= | gw,a) dula)

is bounded in D. If w(z) does not take values on e, then
2 . 21 . \
jo u(w(fe’e))dﬁ = Se dula) jo g( w(re®®), a) d@zZer g(w(O), a) dula)

=2m u(w(0)) >0 (0<r<1).
Since #(w) is bounded, by Lebesgue’s theorem, if we make » — 1,
2 VRN 2n .
27 u(w(O)) =S0 u(w(e"’)) de:L dup (a)SO g(w(el“), a) do .

Since E is of capacity zero, its image on |z|=1 is of measure zero,
so that g(w(e""), a):—O almost everywhere on |z | =1, hence z/ w(O)):O,
which is absurd. Hence w(z) takes any value in D, except a set of
capacity zero.

THEOREM 29. Let D be a domain on the w-plane and its boundary
I' is of positive capacity. We map D on |z| <1 conformally. Lei E
be a closed sub-set of I', such that E and I'—E have a positive distance
and let e be the image of E on |z|=1. Then the wmeasure of e is
positive, when and only when C(E) > 0.

ProoF. If me >0, then by Frostman’s theorem,? C(E)>> 0.
Next suppose that C(E) > 0 and we shall prove me > 0.
If C(1"—E)=0, then 7’—E is mapped on a null set on |z{=1, so that
me=2mr">0. If C(I'—E)>0 and me=0, then the mapping function
w=f(z) belongs to U*-class, whose lacunary set is I’—E. Since f(2)
does not take values on E (C(E)>>0), this contradicts Theorem 28|
Hence me > 0. |

Mathematical Institute,
Tokyo University.

21) Frostman, l.c. 1).
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