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On the converse of Abel’s theorem.

By Masatsugu Tsuj1
(Received Nov, 21, 1952)

Concerning the converse of Abel's theorem, Hardy and Littlewood
proved the following two theorems.
THEOREM 1.0 Let flx)=>" a,v" be vegular for| x| -7 1 and f(x) — s,

72 =0

when x tends to x=1 alons the rcal axis. If a, are real and n a, <. K

(n=1,2, ), then > a,=s.
272=0

THEOREM 22  Let flv)=>a,x* be rcgular for |x|-_1 and
n 0

f(x) > s, when x teads to x=1 along a curve C in (x| <"1, which

ends at x=1. If nla,| < K(n=1,2,---,), then > a, =s.

20

The original proof of thcorem 1 is very complicated. Recently
Wielandt® gave a remarkably simple proof of it. In this paper, I shall
simplify somewhat the original proof of Theorem 2.

First we shall prove a lemma.

LEMMA. Let D be a sinply connccted domain on the z-plane,
which is contained in an angidar domain 4: 0-Zarg z<—«. The
boundary of D consists of a scginent AB on the positive real axis and
a Jordan arc C in 4, whicit cennccts A and B.  Let f(2) be regular
in the closed domain D and {f(z)| << M on AB, |f(2)| < m(m < M)
on C. Let L: argz=0 (0-"60 " «) be a half-linc. 1If L pcnetrates into
D, then at any point z= D on L,

0
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Proof. Let u(z) be the harmonic measure of AB with respect to D,
such that #(z) is harmonic in D and #(z)=1on AB, u(z)=00n C. Then
log | f(2) | < u(z) log M+ (1—u(z)) log m=u(z) (log M—log m)+log m.

Since u(z) < 1— 2T8Z and log M—log m >0, we have
a

loglf(z2)] < (1— _g_gg_g_-) (log M—Ilog m)+log m= (1— ﬂgﬁ-) log M +
«a «

argz log m
Q
Hence on L,

0

1f2) | <M @ me .

Proof of Theorem 2. We may assume that C is an analytic Jor-
dan arc and s=0, n|a,| < 1(n=1,2,---). We put x=¢7%, f(x)=F(2),

then
F(z)=% a,e (z=o+it). (1)

F(z) is regular for o >0 and F(z) — 0, when z tends to z=0 along an
analytic Jordan arc C ending at z=0, where we denote the image of
C on the z-plane by the same letter C.

PR <Sinlanler <DNew=_-1_ <l >0. (2)
n=1 n=1 ea-—]_ o

Let 4: |argz|<a<—'g— be an angular domain and 2Z'=o+it,

Z''"=o+1t" be two points of 4, which lie on the same vertical line,
then by (2),

| F)—F@") | < =] <2 tan «. (3)

ag

We consider two cases, according as (i) C is a Stolz path, or (ii) C is
not a Stolz path.
(i) C is a Stolz path.

Then C is contained in an angular domain 4: |argz| <<a < —2'"'— .



On the converse of Abel’s theorem 83

Let 2 be a point of C, then we may assume that| F(z’)| <1. Then
by (3), for any z in 4, which lies on the same vertical line as z,

|FRIZ|F@E)|+2 tan a < 1+2 tan «.

Hence F(z) is bounded in 4 and F(z) — 0, when z— 0 along C,
hence F(z)— 0, when z— 0 on the real axis, so that by [Theorem 1,
Z‘ba,,zo.

(ii) C is not a Stolz path.

We assume that C meets any half-line L: arg z=lzr——a for any
small « > 0. Let D be any simply connected domain, which lies in
an angular domain 4 :—g———a <largz < —i’z"— and is bounded by a part of
C and a segment AB on L, where C meets L at A, B. We may
assume that | F(z)| <1 on C. Then we shall prove that

;F(z)|=<:K=1+8cot% in D. (4)

Let O be the origin and OA < OB. First suppose that A is different

from O, then F(z) is regular in the closed domain D. Let M=
Max. | F(z) |on AB, then M=| F(z,)| at a point 2 on AB. Since (4)
holds evidently, if M <1, we assume that M > 1, then 2,F A,=B.

Let L’: arg z=%~—— g~be a half-line and 2/ be the point of L', which

lies on the same vertical line as z. If 2/ lies in D, then applying the
lemma for D < 4, we have

|F)IZ<v M. (5)
On the other hand, we have by (3),

| F(2)| = | F(2)]|—2 tan (—’5——%—)=M——2 .cot —g—,

so that
M-2 cot—g— <vM,
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hence

1+s/1+800t(2( "
M<\_ .. J<148 cot | =K. (6)

o 2

If 2’ lies outside D, then the segment z, 2" meets C at 2", so that by (3),

M=|F(z)| <<|F&")]+2 cot fj <2142 cot g < K. (7)

Hence in any case, M << K, so that by the maximum principle,
| F(z2)| <~ K in D. (4)

If A coincides with O, then we apply (4) for the part of D, which lies
between the positive imaginary axis and a line L', which passes
through ¢ (¢ > 0) and is parallel to L and then we make ¢-»0, then
we have (4). Hence (4) holds in general.

Suppose that C meets a half-line L: arg z= 727 —t (O o < g )

infinitely often, then the part of C, which lies between L and the
positive imaginary axis consists of a countable number of Jordan arcs
{C.}, whose end points A,, B, lic on L. C, and the segment A, B,
bounds a simply connected domain D,. Let| F(z)|<<$8, on C,, then
8,— 0 with v > . By 4),| F(z2)|] <K on A,B,.

Since C is not a Stolz path, a half-line L': arg z= 7; — g penc-

trates into infinitely many D,, D‘,k(k:],, 2,---), say.
Then by the lemma,

| F(2) | < VK8, (8)

on the part of L/, which lies in D,, .

Now the part of D,,, which lies between L and L' is decomosed
into a finite number of simply connected domains. Let D}, be such
one, which abutts on L. We modify C to a curve C/, by replacing
C., by the boundary of D?,k, except the segment A, B, (k=1,2,: ).

Then C’ lies between L’ and the negative imaginary axis. From (8),
F(z)— 0, when z— 0 along C’. If C' is a Stolz path, then by (i),
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i}au:O-
=0

If C' is not a Stolz path, then C’ meets the real axis infinitely
often. Then we modify C’ to C” as before, such that C” lies between
L' and the real axis and F(z)->0, when z— 0 along C”. Hence by

( 1 ); >_|1 au:O-
-0

-

If C meets any half-line L: arg z = 72T -a<0 < e < ;) only finite

times, then C touches the positive imaginary axis. If we define {D,}
for L as before, then there exists one Dvo, which has z=0 on its
boundary. Since by (4), F(z) is bounded in D, and F(z) — 0, when
z— 0 along C, which touches the positive imaginary axis, we see that

F(z) ->0, when z-»>0 on a half-line L': arg= g — (ZK . Since L' is

a Stolz path, we have > @,=0. Hence our theorem is proved.
7=0
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