On the converse of Abel's theorem.

By Masatsugu Tsuji

(Received Nov. 21, 1952)

Concerning the converse of Abel's theorem, Hardy and Littlewood proved the following two theorems.

THEOREM 1.1) Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be regular for |x| < 1 and $f(x) \to s$, when x tends to x=1 along the real axis. If a_n are real and n $a_n \le K$ $(n=1,2,\cdots)$, then $\sum_{n=0}^{\infty} a_n = s$.

THEOREM 2.2) Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be regular for |x| < 1 and $f(x) \to s$, when x tends to x=1 along a curve C in |x| < 1, which ends at x=1. If $n \mid a_n \mid \le K(n=1,2,\cdots)$, then $\sum_{n=0}^{\infty} a_n = s$.

The original proof of theorem 1 is very complicated. Recently Wielandt³⁾ gave a remarkably simple proof of it. In this paper, I shall simplify somewhat the original proof of Theorem 2.

First we shall prove a lemma.

LEMMA. Let D be a simply connected domain on the z-plane, which is contained in an angular domain $\Delta: 0 < \arg z < \alpha$. The boundary of D consists of a segment AB on the positive real axis and a Jordan arc C in Δ , which connects A and B. Let f(z) be regular in the closed domain \bar{D} and $|f(z)| \leq M$ on AB, $|f(z)| \leq m$ $(m \leq M)$ on C. Let $L: \arg z = \theta$ $(0 < \theta < \alpha)$ be a half-line. If L penetrates into D, then at any point $z \in D$ on L,

$$|f(z)| \leq M^{1-\frac{0}{\alpha}} m^{\frac{0}{\alpha}}.$$

¹⁾ Hardy and Littlewood: Tauberian theorem concerning power series and Dirichlet's series whose coefficient are positive. Proc. London Math. Soc. 13 (1914).

²⁾ Hardy and Littlewood: Abel's theorem and its converse. (II). Proc. London Math. Soc. 22 (1923).

³⁾ Wielandt: Zur Umkehrung des Abelschen Stetigkeitssatzes. Math. Zeits. 56 (1952).

82 M. Tsuji

Proof. Let u(z) be the harmonic measure of AB with respect to D, such that u(z) is harmonic in D and u(z)=1 on AB, u(z)=0 on C. Then $\log |f(z)| \le u(z) \log M + (1-u(z)) \log m = u(z) (\log M - \log m) + \log m$.

Since $u(z) \le 1 - \frac{\arg z}{\alpha}$ and $\log M - \log m \ge 0$, we have

$$\log |f(z)| \le \left(1 - \frac{\arg z}{\alpha}\right) (\log M - \log m) + \log m = \left(1 - \frac{\arg z}{\alpha}\right) \log M + \frac{\arg z}{\alpha} \log m.$$

Hence on L,

$$|f(z)| \leq M^{1-\frac{\theta}{\alpha}} m^{\frac{\theta}{\alpha}}.$$

Proof of Theorem 2. We may assume that C is an analytic Jordan arc and s=0, $n \mid a_n \mid \leq 1$ $(n=1, 2, \dots)$. We put $x=e^{-z}$, f(x)=F(z), then

$$F(z) = \sum_{n=0}^{\infty} a_n e^{-nz} \quad (z = \sigma + it). \tag{1}$$

F(z) is regular for $\sigma > 0$ and $F(z) \to 0$, when z tends to z=0 along an analytic Jordan arc C ending at z=0, where we denote the image of C on the z-plane by the same letter C.

$$|F'(z)| \le \sum_{n=1}^{\infty} n |a_n| e^{-n\sigma} \le \sum_{n=1}^{\infty} e^{-n\sigma} = \frac{1}{e^{\sigma} - 1} < \frac{1}{\sigma} \quad (\sigma > 0). \quad (2)$$

Let Δ : $|\arg z| < \alpha < \frac{\pi}{2}$ be an angular domain and $z' = \sigma + it'$, $z'' = \sigma + it''$ be two points of Δ , which lie on the same vertical line, then by (2),

$$|F(z')-F(z'')| < \frac{|t'-t''|}{\sigma} < 2 \tan \alpha.$$
 (3)

We consider two cases, according as (i) C is a Stolz path, or (ii) C is not a Stolz path.

(i) C is a Stolz path.

Then C is contained in an angular domain $a: |\arg z| < \alpha < \frac{\pi}{2}$.

Let z' be a point of C, then we may assume that $|F(z')| \leq 1$. Then by (3), for any z in Δ , which lies on the same vertical line as z',

$$|F(z)| \leq |F(z')| + 2 \tan \alpha \leq 1 + 2 \tan \alpha$$
.

Hence F(z) is bounded in Δ and $F(z) \to 0$, when $z \to 0$ along C, hence $F(z) \to 0$, when $z \to 0$ on the real axis, so that by Theorem 1, $\sum_{n=0}^{\infty} a_n = 0$.

(ii) C is not a Stolz path.

We assume that C meets any half-line L: arg $z=\frac{\pi}{2}-\alpha$ for any small $\alpha>0$. Let D be any simply connected domain, which lies in an angular domain $\Delta:\frac{\pi}{2}-\alpha<\arg z<\frac{\pi}{2}$ and is bounded by a part of C and a segment AB on L, where C meets L at A, B. We may assume that $|F(z)|\leq 1$ on C. Then we shall prove that

$$|F(z)| \leq K=1+8\cot\frac{\alpha}{2} \text{ in } D.$$
 (4)

Let O be the origin and $\overline{OA} < \overline{OB}$. First suppose that A is different from O, then F(z) is regular in the closed domain \overline{D} . Let M= Max. |F(z)| on AB, then $M=|F(z_0)|$ at a point z_0 on AB. Since (4) holds evidently, if $M \leq 1$, we assume that M>1, then $z_0 \neq A, \neq B$. Let L': arg $z=\frac{\pi}{2}-\frac{\alpha}{2}$ be a half-line and z' be the point of L', which lies on the same vertical line as z_0 . If z' lies in D, then applying the lemma for $D \subseteq A$, we have

$$|F(z')| \leq \sqrt{M} . \tag{5}$$

On the other hand, we have by (3),

$$|F(z')| \ge |F(z_0)| - 2 \tan\left(\frac{\pi}{2} - \frac{\alpha}{2}\right) = M - 2 \cot\frac{\alpha}{2}$$

so that

$$M-2\cotrac{lpha}{2}\!\leq\!\sqrt{M}$$
 ,

M. Tsuji

hence

$$M \le \left(\frac{1+\sqrt{1+8\cot\frac{\alpha}{2}}}{2}\right)^2 < 1+8\cot\frac{\alpha}{2} = K. \tag{6}$$

If z' lies outside D, then the segment $z_0 z'$ meets C at z'', so that by (3),

$$M = |F(z_0)| \le |F(z'')| + 2 \cot \frac{\alpha}{2} \le 1 + 2 \cot \frac{\alpha}{2} \le K.$$
 (7)

Hence in any case, $M \leq K$, so that by the maximum principle,

$$|F(z)| \leq K \text{ in } D. \tag{4}$$

If A coincides with O, then we apply (4) for the part of D, which lies between the positive imaginary axis and a line L', which passes through it (t>0) and is parallel to L and then we make $t\to 0$, then we have (4). Hence (4) holds in general.

Suppose that C meets a half-line L: arg $z=\frac{\pi}{2}-\alpha\left(0<\alpha<\frac{\pi}{2}\right)$ infinitely often, then the part of C, which lies between L and the positive imaginary axis consists of a countable number of Jordan arcs $\{C_{\nu}\}$, whose end points A_{ν} , B_{ν} lie on L. C_{ν} and the segment A_{ν} B_{ν} bounds a simply connected domain D_{ν} . Let $|F(z)| \leq \delta_{\nu}$ on C_{ν} , then $\delta_{\nu} \to 0$ with $\nu \to \infty$. By (4), $|F(z)| \leq K$ on $A_{\nu}B_{\nu}$.

Since C is not a Stolz path, a half-line L': arg $z=\frac{\pi}{2}-\frac{\alpha}{2}$ penetrates into infinitely many D_{ν} , $D_{\nu_k}(k=1,2,\cdots)$, say.

Then by the lemma,

$$|F(z)| \le 1/K \delta_{\nu_k} \tag{8}$$

on the part of L', which lies in D_{ν_k} .

Now the part of D_{ν_k} , which lies between L and L' is decomosed into a finite number of simply connected domains. Let $D^0_{\nu_k}$ be such one, which abutts on L. We modify C to a curve C', by replacing C_{ν_k} by the boundary of $D^0_{\nu_k}$, except the segment $A_{\nu_k}B_{\nu_k}$ $(k=1,2,\cdots)$. Then C' lies between L' and the negative imaginary axis. From (8), $F(z) \to 0$, when $z \to 0$ along C'. If C' is a Stolz path, then by (i),

$$\sum_{n=0}^{\infty} a_n = 0.$$

If C' is not a Stolz path, then C' meets the real axis infinitely often. Then we modify C' to C'' as before, such that C'' lies between L' and the real axis and $F(z) \to 0$, when $z \to 0$ along C''. Hence by (i), $\sum_{n=0}^{\infty} a_n = 0$.

If C meets any half-line L: $\arg z = \frac{\pi}{2} - \alpha \left(0 < \alpha < \frac{\pi}{2}\right)$ only finite times, then C touches the positive imaginary axis. If we define $\{D_{\nu}\}$ for L as before, then there exists one D_{ν_0} , which has z=0 on its boundary. Since by (4), F(z) is bounded in D_{ν_0} and $F(z) \to 0$, when $z \to 0$ along C, which touches the positive imaginary axis, we see that $F(z) \to 0$, when $z \to 0$ on a half-line L': $\arg = \frac{\pi}{2} - \frac{\alpha}{2}$. Since L' is a Stolz path, we have $\sum_{n=0}^{\infty} a_n = 0$. Hence our theorem is proved.

Mathematical Institute,

Tokyo University.