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This paper provides some theorems in dimension theory for non-
separable spaces. Let $R$ be a topological space, $\dim R$ the covering
dimension of $R$, ind $R$ the so-called “ small ” inductive dimension of $R$

defined by means of boundaries of neighborhoods of points, and $IndR$

the so-called “ large “ inductive dimension of $R$ defined by means of
boundaries of neighborhoods of closed sets. (Cf. [14]. In the notations
of [2], Appendix, p. 153, we have $indR=d_{1}(R),$ $IndR=d_{2}(R).)$ It is
to be noted that when $R$ is normal, $\dim R\leqq n$ is equivalent to the
following condition: For any closed subset $C$ of $R$ and for any
mapping ( $=continuous$ transformation) $f$ from $C$ into an n-sphere there
exists a continuous extension $g$ of $f$ defined on the whole space $R$.

In \S 1 we shall give the sum theorem of covering dimension for
metric spaces which Is a generalization of the known. In \S 2 we
shall study closed mappings which lower dimension and related pro-
blems. In \S 3 we shall give a new definition of dimension-kernel and
shall study some properties concerning it.

\S 1. Sum theorem of covering dimension.

Let $R$ be a topological space and $\mathfrak{U}=\{U_{\alpha} ; \alpha\in A\}$ be a collection
of subsets of $R$. Then $\mathfrak{U}\cap S,$ $S$ being a subset of $R$, stands for $\{U_{a}\cap$

$S;\alpha\in A\}$ .
LEMMA 1. Let $S$ be a closed subset of a normal space $R$ and

$U=\{U. ; \alpha\in A\}$ be a finite open covering of $S$ whose elements are $F_{\sigma}$ .
Then there exists a finite open collection $\mathfrak{V}=\{V_{\alpha} ; \alpha\in A\}$ of $R$ whose
elements are $F_{\sigma}$ such that the order of $\mathfrak{V}$ is not greater than that of
$\mathfrak{U}$ and $V_{\alpha}\cap S=U_{\alpha}$ for every $\alpha\in A$ .

LEMMA 2. An $F_{\sigma}$ -subset of a normal space is also normal as a
relative space.
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LEMMA 3. Let $R$ be a normal space and $F_{i},$ $ i=1,2,\cdots$ , be subsets

$oJ$ R. If $\bigcup_{i=1}F_{i}j$ is closed for every $j<\infty,$ $\dim\bigcup_{i\overline{-}1}^{\infty}F_{i}\leqq\sup_{i=1}^{\infty}\dim F_{i}$ .
PROOF. It suffices only to prove the inequality for the case when

$\sup_{i=1}^{\infty}\dim F_{j}=n<\infty$ and $\bigcup_{i=1}^{\infty}F_{i}=R$ by virtue of lemma 2. First we shall

show by the induction on $m$ that $\dim\bigcup_{i=1}^{m}F_{j}\leqq n$ for every $ m<\infty$ .
Suppose that $\dim\bigcup_{i=1}^{m}F_{j}\leqq n$. Let $\mathfrak{G}=\{G_{a};\alpha\in A\}$ be a finite open

covering of $\bigcup_{i-1}^{m+1}F_{i}$. Then $\dim\bigcup_{i=1}^{m}F_{i}\leqq n$ asserts the existence of a finite

open $F_{\sigma}$ covering $\mathfrak{U}=\{U_{\alpha} ; \alpha\in A\}$ of $\bigcup_{i=1}^{m}F_{i}$ such that the order of $\mathfrak{U}$

Is not greater than $n+1$ and $\mathfrak{U}$ refines $\mathfrak{G}\cap(\bigcup_{i=1}^{m}F_{j})$ . Then, by lemma

1, there exists a finite open $F_{\sigma}$ collection $\mathfrak{V}=\{V_{\alpha} ; \alpha\in A\}$ of $\bigcup_{i=1}^{Jn+1}F_{i}$ such

that i) the order of $\mathfrak{V}$ is not greater than $n+1$ , ii) $V_{\alpha}\cap(\bigcup_{i=1}^{m}F_{i})=U_{a}$

for every $\alpha\in A$ , iii) $\mathfrak{V}$ refines G. Let $G$ be an open set of $\bigcup_{\dot{g}=1}^{n?+1}F_{i}$ such

that $\bigcup_{i=1}^{m}F_{i}\subset G\subset Gc\bigcup_{a\in A}V_{a}$ and consider a finite open covering $\mathfrak{W}=$

$(\mathfrak{V}\cap F_{m+1})\cup(\mathfrak{G}\cap(F_{m+1}-\overline{G}))$ of $F_{m+1}$ . Then $\dim F_{m+1}\leqq n$ asserts the
existence of a finite open covering $\mathfrak{D}=\{D_{\alpha}, D_{a}^{\prime} ; \alpha\in A\}$ of $F_{m},$ , such
that i) the order of $\mathfrak{D}$ is not greater than $n+1$ , ii) $D_{a}\subset V_{a}\cap F_{m+1}$

for every $\alpha\in A$ , iii) $D_{\alpha}^{\prime}\subset G_{\alpha}\cap(F_{m+1}-\overline{G})$ for every $\alpha\in A$ . It is almost

evident that $E_{\alpha}=D_{a}\cup(V_{\alpha}\cap G)$ is open in $\bigcup_{i=1}^{m+1}F_{i}$ . Hence $\mathfrak{E}=\{E_{a},$ $D_{\alpha^{\prime}}$ ; $\alpha$

$\in A\}$ Is a finite open covering of $\bigcup_{i=1}^{m+1}F_{i}$ . Moreover we can easily see

that $\mathfrak{E}$ refines $\mathfrak{G}$ and the order of $\mathfrak{E}$ is not greater than $n+1$ , which
completes the induction. Thus we have established the fact that

$\dim\bigcup_{i=1}^{m}F_{j}\leqq n$ for every $ m<\infty$ . Hence $\bigcup_{i\Leftarrow 1}^{\infty}F_{i}$ is a countable sum of

closed sets whose dimension are at most $n$ and we know, by the usual

sum theorem, that $\dim\bigcup_{i=1}^{\infty}F_{j}\leqq n$ .
It is to be noted that when ” $\dim=covering$ dimension “ in the

above lemma is replaced with “ large inductive dimension”, the pro-
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position thus obtained also holds under some additional conditions: i)
$R$ is completely normal, ii) $F_{i}$ are mutually disjoint. (Cf. [1].)

LEMMA 4. Let $R$ be a metric space and $S$ be a subset of R. If
every point of $S$ has a neighborhood $V$ (in $R$) such that $V\cap S$ is an $F_{\sigma}$

in $R$, then $S$ is an $F_{\sigma}$ in $R$.
This was proved in [5].
THEOREM 1. Let $R$ be a metric space and $F_{\alpha}$ subsets of $R$ indexed

by all ordinals $\alpha$ less than some fixed ordinal $\eta$ . If $\bigcup_{\beta<\alpha}F_{\beta}=H_{\alpha}$ is closed

for every $\alpha<\eta,$
$\dim\bigcup_{\alpha<\eta}F_{\alpha}\leqq\sup_{\alpha<\eta}\dim F_{\alpha}$.

PROOF. It suffices only to prove the inequality for the case when
$\sup_{a<\eta}d{\rm Im} F_{\alpha}=n<\infty$ and $R=\bigcup_{\alpha<\eta}F_{\alpha}$. Moreover we can assume, by lemma

3, with no loss of generality that $\eta$ is a limit ordinal. Let $\rho$ be a
metric on $R$ which agrees with the preasigned topology of $R$. Set-
ting $G_{\alpha i}=\{p;\rho(p, H_{a})<1/i\},$ $ i=1,2,\cdots$ , it can easily be seen that i)

$H_{a}=\bigcap_{i=1}^{\infty}G_{\alpha i}$ , ii) $G_{\alpha i}\supset\overline{G}_{\alpha,i+1}$ , iii) $G_{ai}\subset G_{\beta i}$ for every $\alpha<\beta<\eta$ . We set
$ G_{1;}=\emptyset$ . Then $F_{ai}=F_{\alpha}-G_{ai}$ is a closed set with $\dim F_{\alpha i}\leqq n$. Let $D_{\alpha i}$

$=G_{\alpha^{\mathfrak{t}}1,j+1}-\overline{G}_{a,i+1}$ and then $D_{\alpha i}$ is open and includes $F_{\alpha};$. Moreover
$\{D_{\alpha i} ; \alpha<\eta\}$ is as can easily be seen a mutually disjoint collection.
Therefore $\dim\bigcup_{\alpha<\eta}F_{\alpha i}\leqq n$ . Setting

$F_{i}=\bigcup_{a<\eta}F_{\alpha i},$
$F_{i}$ is, by lemma 4, an $F_{\sigma}$ .

Since $F_{a}-H_{a}=\bigcup_{i=1}^{\infty}F_{\alpha i}$ and hence $\bigcup_{a<\eta}F_{a}=\bigcup_{i=1}^{\infty}F_{i}$, we can see, by the usual

sum theorem, that $\dim R\leqq n$, which completes the proof.

\S 2. Mappings which lower dimension.

It is well known that

(A) $\dim R=indR=IndR$

for every separable metric space. Recently M. Kat\v{e}tov [3] and K.
Morita [9] have succeeded independently in proving the validity of
(B) $\dim R=IndR$

for every non-separable metric space. Moreover Morita [9] has proved
the validity of (A) for every metric $S_{\sigma}$ -space, where an $S_{\sigma}$ -space is a
space which is the sum of a countable number of closed subsets with
the star-finite property.

Let $\varphi$ be a mapping from a space $R$ onto another space $S$. If
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$\varphi$ is a closed mapping, then the inequality

(C) $\dim R\leqq\sup_{y\in S}\dim\varphi^{-1}(y)+\dim S$

holds when $R$ and $S$ are separable metric [2]. Our concern is to
establish the analogous inequalities to (C):

(D) $\dim R\leqq\sup_{y\in S}\dim\varphi^{-1}(y)+IndS$ ,

(E) $\dim R\leqq\sup_{y\in S}\dim\varphi^{-1}(y)+indS$ ,

for some class of non-separable spaces. First we shall show the
validity of (D) for the case when $R$ is paracompact Hausdorff and $S$

is hereditarily paracompact Hausdorff (Theorem 2 below). By virtue
of the validity of (B) for metric spaces, we can know that (C) is
valid even if $R$ and $S$ are non-separable metric spaces (Corollary 2
below). Moreover the validity of (E) will be shown for the case
when $R$ is a normal $S_{\sigma}$ -space (Theorem 3 below). This extends a
theorem due to Morita [7] which asserts the validity of (D) for the
case when $R$ is compact Hausdorff. Two corollaries are deduced from
theorem 3: One is Morita’s theorem which asserts $\dim R\leqq indR$ for
every normal $S_{\sigma}$ -space and another is a generalization of N. Vedenisoff $s$

theorem concerning a continuous decomposition of a compact space
(Corollaries 3 and 4 below). Whether (E) holds for the case when $R$

and $S$ are metric is an open problem. The method used in this paper
seems to be unable to apply to this case. If this question could be
answered in the affirmative, we could determine $\dim R\leqq indR$ for
every non-separable metric $R$ ; this is surely one of the most impor-
tant unsolved problems in the dimension theory.

We start from some preliminary lemmas.
LEMMA 5. Let $R$ be a non-empty hereditarily paracompact Haus-

dorff space, $i.e$. a Hausdorff space any of whose subspace is paracompact.
Then $IndR\leqq n(<\infty)$ if and only if for every open covering $\mathfrak{U}$ there
exists a collection $\mathfrak{V}=\{V\}$ of mutually disjoint open sets such that i)
$\overline{\mathfrak{V}}=\{\overline{V}\}$ refines $\mathfrak{U}$ , ii) $\overline{\mathfrak{V}}$ is locally finite, iii) $R-\cup V=\cup(\overline{V}-V)$ , iv)
$Ind(R-\cup V)\leqq n-1$ .

AN OUTLINE OF THE PROOF. Since if-part is evident, we shall
prove only-if-part. Since every paracompact Hausdorff space is
strongly screenable [18], [10], there exists an open covering $\mathfrak{W}=\{W_{\alpha}$ ;

$\alpha\in\bigcup_{1i\overline{\approx}}^{\infty}A_{j}\}$ and a closed covering $\mathfrak{F}=\{F_{\alpha} ; \alpha\in\bigcup_{i=1}^{\infty}A_{i}\}$ such that i) $\overline{\mathfrak{W}}$ Is
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locally finite and refines $\mathfrak{U}$ , ii) for every $i,$ $\{W_{\alpha} ; \alpha\in A_{i}\}$ is mutually

disjoint, iii) for every $\alpha\in\bigcup_{i=1}^{\infty}A_{i},$ $W_{a}\supset F_{a}$ . Setting
$F_{i}=\bigcup_{\alpha\in A_{i}}F_{a}$

and $W_{i}$

$=\bigcup_{a\in A_{i}}W_{a}$
, there exists an open set $G_{1}$ with $F_{1}\subset G_{1}\subset G_{1}\subset W_{1}$ and

$Ind(\overline{G_{1}}-G_{1})\leqq n-1$ . Since $Ind(R-G_{1})\leqq n$ , there exists a relatively
open set $G_{2}$ of $R-G_{1}$ with $F_{2}-G_{1}\subset G_{2}\subset\overline{G}_{2}\subset W_{2}-G_{1}$ and $Ind(\overline{G}_{2}-G_{2})$

$\leqq n-1$ . Proceeding this procedure successively, we get for every $i$ a
relatively open set $G_{j}$ of $R-\bigcup_{j<i}G_{j}$ with $F_{j}-\bigcup_{j<i}G_{j}\subset G_{j}\subset\overline{G}_{j}\subset W_{j}-\bigcup_{j<i}G_{j}$

and $Ind(\overline{G}_{j}-G_{j})\leqq n-1$ . Setting for $\alpha\in A_{1},$ $V_{\alpha}=W_{\alpha}\cap G_{1}$ and for
$\alpha\in A_{j}(i>1)V_{\alpha}=W_{a}\cap G_{i}-\bigcup_{j<i}\overline{G}_{j}$, it is not so hard to see that { $V_{a}$ ;

$\alpha\in\bigcup_{i=1}^{\infty}A_{f}\}$ satisfies the conditions i), ii), iii) in the lemma. Since

$\alpha\in\cup A_{i}\cup(\overline{V}_{\alpha}-V_{\alpha})=\bigcup_{i=1}^{\infty}(\overline{G}_{j}-G_{j}),$ $Ind(R-\bigcup_{a\in\cup A}V_{\alpha})\leqq n-1$ by the sum theorem

of large inductive dimension [1], which shows $\mathfrak{V}$ satisfies condition iv)
and the lemma is proved.

As a corollary of this lemma we get the decomposition theorem
for non-separable metric spaces which has recently proved by Kat\v{e}tov
[3] and Morita [9] independently.

COROLLARY 1. Let $R$ be a metric space with $IndR\leqq n<\infty$ . Then
$R$ can be decomposed into the sum of $n+1$ subsets $R_{j}$ with $IndR_{i}\leqq 0$

for $i=1,\cdots,$ $n+1$ .
PROOF. When $n=0$ , the assertion is trivial. Now let $n=m\geqq 1$

and put the induction assumption that the assertion Is valid for $n=$

$m-1$ . Let $\mathfrak{U}_{j}$ be a collection of mutually disjoint open sets such that
$Ind(R-UU)\leqq m-1$ and a diameter of each set of $\mathfrak{U}_{j}$ is less than

$u\in u_{i}$

$1/i$. This $\mathfrak{U}_{j}$ exists by lemma 5, since every metric space is para-
compact. Set $R_{1}=\cap^{\infty}\cup U$ and we can show $IndR_{1}\leqq 0$ as follows.

$i=1U\in 11_{i}$

Let $F$ and $G$ be respectively a closed and an open subsets of $R_{1}$ with
$F\subset G$. Let $V_{i}$ be the sum of sets $U\in \mathfrak{U}_{j}$ such that $U\cap R_{1}\subset G$. Then
$H=R_{1}\cap(\bigcup_{i=1}^{\infty}V_{j})\ddagger s$ evidently open in $R_{1}$ and $F\subset H\subset G$. Moreover $H$ is

closed: Let $p$ be a point of $R_{1}$ with $p\oplus H$. Let $j$ be a positive
integer such that $ S_{2/j}(p)\cap F=\phi$ where $S_{2/j}(p)$ denotes an open sphere
of radius 2/7 with centre $p$. Then

$t\bigcup_{i\geqq j}V_{j}$
) $\cap S_{1/j}(p)=\phi$ . Since $V_{i}\cap R_{1}$
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Is closed in $R_{1},$
$(\bigcup_{<tj}V_{i})\cap R_{1}$ is closed in $R_{1}$ . Setting $ V(p)=S_{1/j}(p)\cap$

$(\bigcup_{i<j}V_{i})$ A $R_{1},$ $ V(p)\cap H=\emptyset$ . Hence $H$ is closed in $R_{1}$ . Thus $H$ is open

and closed in $R_{1}$ , which proves $IndR_{1}\leqq 0$ . Since the sum theorem of
large inductive dimension holds in metric spaces [1], and $R-R_{1}$ is the
sum of a countable number of closed subsets with large inductive
dimension $\leqq m-1,$ $Ind(R-R_{1})\leqq m-1$ . Hence $R-R_{1}$ is the sum of
an $m$ number of subsets $R_{j},$ $i=2,\cdots,$ $m+1$ with $IndR_{j}\leqq 0$ . Thus $R$ is
the sum of $m+1$ subsets $R_{j},$ $i=1,\cdots,$ $m+1$ , and hence the induction is
completed.

LEMMA 6. Let $H$ and $F$ be closed subsets of a normal space $R$

and let $f$ and $g$ be mappings defined respeclively on $H$ and on $F$ with
values in an n-sphere $S_{n}$ . Let a subset $A=\{x;f(x)\neq g(x)\}\subset H\cap F$. If
$\dim A\leqq n-1$ , then $f$ can be extended continuously to the whole space $R$.

This will be verified by a quite analogous method used in [2] in
view of [8, Theorem 6.3] and hence its proof is omitted.

LEMMA 7. Let $C$ be a closed subset of a normal space $R$ and $f$

be a mapping defined on $C$ with values in $S_{n}$ . If for any open set $G$

with $G\supset C$ there exists a closed subset $F$ with $C\subset F\subset G$ such that
$\dim(R-F)\leqq n,$ $f$ can be extended continuonsly to the whole space $R$.

PROOF. Since $S_{n}$ is a neighborhood-extensor for normal spaces,
there is a continuous extension $g$ defined on some open set $G$ with
$C\subset G$. Then from the hypothesis-condition there exists a closed subset
$F$ with $C\subset F\subset G$ and $\dim(R-F)\leqq n$ . By [8], there is a continuous
extension $h$ of $g|F$, defined on the whole space, which is the desired
extension.

THEOREM 2. Let $\varphi$ be a closed mapping from a non-empty para-
compact Hausdorff space $R$ onto a non-empty hereditarily paracompact
Hausdorff space S. Then

$\dim R\leqq\sup_{y\in S}\dim\varphi^{-I}(y)+IndS$ .
PROOF. When either $\sup_{y\in S}\dim\varphi^{-1}(y)=\infty$ or $IndS=\infty$ , the in-

equality trivially holds. We treat the case when $\sup_{y\in S}\dim\varphi^{-1}(y)^{\prime}=m<\infty$

and $IndS=n<\infty$ and prove the theorem by the induction on $n$. Let
$C$ be an arbitrary closed subset of $R$ and $f$ a mapping from $C$ into
$S_{n\dagger n}$ . For any point $y\in S$ there is, by lemma 7, a continuous exten-
sion $f_{y}$ of $f$, defined on $C\cup\varphi^{-1}(y)$ . Since $S_{m^{1}n}$ Is a neighborhood-
extensor for normal spaces, there is an open subset $G_{y}\supset C\cup\varphi^{-1}(y)$
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and a mapping $g_{y}$ : $G_{y}\rightarrow S_{m+n}$ with $g_{y}|C\cup\varphi^{-1}(y)=f_{y}$ . Since $\varphi$ is a
closed mapping, $\varphi(R-G_{y})$ is closed in $S$ and does not contain $y$. Hence
$V(y)=S-\varphi(R-G_{y})$ is an open neighborhood of $y$. Then by lemma 5
there exists a collection $\mathfrak{V}=\{V_{a} ; \alpha\in A\}$ of mutually disjoint open sets
of $S$ such that i) 8 refines $\{V(y);y\in S\}$ , ii) $\{V_{\alpha} ; \alpha\in A\}$ is locally
finite, iii) $S-\bigcup_{a\in A}V_{\alpha}=\bigcup_{\alpha\in A}(V_{a}-V_{a})$ , iv) $Ind(S-\bigcup_{\alpha\in A}V_{\alpha})\leqq n-1$ . Set $T$

$=\bigcup_{a\in A}(\overline{V}_{\alpha}-V_{a})$ .
When $n=0$ , we have $ T=\emptyset$ . Hence $\{\varphi^{-1}(V_{a}) ; \alpha\in A\}$ is a mutually

disjoint open covering of $R$ which refines $\{G_{y};y\in S\}$ . For every
$\alpha\in A$ , there exists $G_{y(\alpha)}$ with $\varphi^{-1}(V_{\alpha})\subset G_{y(a)}$ . Let $g:R\rightarrow S_{m}$ be a
mapping defined as follows: $g|\varphi^{-1}(V_{\alpha})=g_{\mathcal{Y}^{(\alpha)}}|\varphi^{-1}(V_{\alpha})$ . Then $g$ is uni-
quely defined and continuous and $g|C=f$, which proves $\dim R\leqq m$ .
Thus the theorem is valid for $n=0$ .

We make the induction assumption that the theorem is valid
for $n<i,$ $i>0$ . Now let $n=i$ and assume that $A$ consists of all
ordinals less than some fixed ordinal $\eta$ . Let $f_{2}$ : $\overline{\varphi^{-1}(V_{1}}$) $\cup C\rightarrow S_{m+i}$ be
$g_{y(1)}|\overline{\varphi^{-1}(V_{1}})\cup C$. Take an arbitrary ordinal $\alpha<\eta$ and put the trans-
finite induction assumption that there is a mapping $f_{\beta}$ : $\bigcup_{\delta<\beta}\varphi^{-1}(V_{\delta})\cup$

$C\rightarrow S_{m+i}$ with $f_{\gamma}=f_{\beta}|\bigcup_{\delta<\gamma}\varphi^{-1}(V_{\delta})\cup C$ for any $\gamma<\beta<\alpha$. We construct
$f_{\alpha}$ : $\bigcup_{\delta<a}\overline{\varphi^{-1}(V_{\delta}}$) $\cup C\rightarrow S_{m+i}$ as $f_{a}|U\overline{\varphi^{-1}(V_{\delta})}\delta<\beta\cup C=f_{\beta},$

$\beta<\alpha$ . This $f_{\alpha}$ is con-

tinuous, since $\{\overline{\varphi^{-1}(V_{\delta}});\delta<\eta\}$ is locally finite. Let $g_{y(\alpha)}^{\prime}=g_{y^{(\alpha)}}|\overline{\varphi^{-1}(V_{\alpha}}$)

and then $B=\{x;g_{y(\alpha)}^{\prime}(x)\neq f_{\alpha}(x)\}$ is an $F_{\sigma}$ -set with $B\subset\varphi^{-1}(T)$ . $\varphi|\varphi^{-1}(T)$

is a closed mapping from $\varphi^{-1}(T)$ onto $T$. Since $IndT\leqq i-1,$ $\dim\varphi^{-1}(T)$

$\leqq m+i-1$ by the induction assumption. Hence $\dim B\leqq m+i-1$ .
Therefore there exists a mapping $f_{a+1}:\bigcup_{\delta<\alpha+1}\overline{\varphi^{-1}(V_{\delta}}$) $\cup C\rightarrow S_{m+i}$ with

$f_{\alpha+1}|\bigcup_{\delta<\alpha}\varphi^{-1}(V_{\delta})\cup C=f_{\alpha}$. Thus we can construct a mapping $f_{\alpha}$ : $\bigcup_{\delta<\alpha}\overline{\varphi^{-1}(V_{\delta})}$

$\cup C->S_{m+i}$ for any $\alpha<\eta$ such that $f_{\alpha}|\bigcup_{\delta<\beta}\overline{\varphi^{-1}(V_{\delta}}$) $\cup C=f_{\beta}$ for any $\beta<\alpha$.
Define $h:\bigcup_{\alpha<\eta}\overline{\varphi^{-1}(V_{a})}\cup C\rightarrow S_{m+i}$ as follows: $h|\bigcup_{\delta<\alpha}\overline{\varphi^{-1}(V_{\delta})}\cup C=f_{\alpha}$. Then

$h$ is continuous, since $\{\overline{\varphi^{-1}(V_{a}});\alpha<\eta\}$ is locally finite. Since $\dim\varphi^{-1}(T)$

$\leqq m+i-1$ and $\bigcup_{a<\eta}\overline{\varphi^{-J}(}V_{\alpha}\overline{)}\cup C$ is closed, there exists by lemma 7 a

mapping $g;R\rightarrow S_{m+i}$ with $g|\bigcup_{\alpha<\eta}\overline{\varphi^{-1}(V_{\alpha})}\cup C=h$. It Is evident that
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$g|C=f$, which proves $\dim R\leqq m+i$. Thus the theorem is completely
proved.

Since $IndR=\dim R$ for metric spaces, we get at once the follow-
ing

COROLLARY 2. Let $R$ and $S$ be non-empty metric spaces and $\varphi$ be
a closed mapping from $R$ onto S. Then

$\dim R\leqq\sup_{y\in S}\dim\varphi^{-}(y)+\dim S$ .
THEOREM 3. Let $\varphi$ be a closed mapping from a non-empty normal

$S_{\sigma}$ -space $R$ onlo a non-empty space S. Then

$\dim R\leqq\sup_{y\in S}\dim\varphi^{-1}(y)+indS$ .
PROOF. First we remark that if we assume that the theorem is

valid for the case when $R$ is a normal space with the star-finite
property, our theorem can be easily deduced from the assumption:

Let $R=\bigcup_{j=1}^{\infty}R_{j}$ where $R_{j}$ are closed subspaces with the star-finite pro-

perty. Let $\varphi_{i}=\varphi|R_{i}$ and $\varphi_{j}$ is a closed mapping from $R_{j}$ onto $\varphi(R_{i})$ .
Since $\varphi_{i}^{-1}(y),$ $y\in\varphi(R_{i})$ , is a closed subset of $\varphi^{-1}(y)$ , $\dim\varphi_{i}^{-1}(y)\leqq$

$\dim\varphi^{-1}(y)$ . Hence by the assumption and by the monotonicity of small
inductive dimension $\dim R_{i}\leqq\sup_{y\in\varphi(R_{i})}\dim\varphi_{i}^{-1}(y)+ind\varphi(R_{i})\leqq\sup_{y\subset- S}\dim\varphi^{-1}(y)$

$+indS$. Since every $R_{i}$ is closed, $\dim R\leqq\sup_{i=1}\dim R_{j}$ and hence $\dim R$

$\leqq\sup_{y\in S}\dim\varphi^{-1}(y)+indS$ .
Thus it suffices to prove the theorem for the case when $R$ is a

normal space with the star-finite property and we shall treat $R$

having this property. It is to be noted that a regular space with the
star-finite property is always paracompact. When either $\sup_{y\in S}\dim\varphi^{-1}(y)$

$=\infty$ or $indS=\infty$ , the theorem is evidently true. Hence we shall
prove the theorem for the case when $\sup_{y\in S}\dim\varphi^{-1}(y)=m<\infty$ and
$indS=n<\infty$ and shall prove it by the induction on $n$ .

Let $C$ be an arbitrary closed subset of $R$ and $f$ be an arbitrary
mapping from $C$ into $S_{m+n}$ . For every $y\in S$, there exists a mapping
$f_{y}:\varphi^{-1}(y)\cup C\rightarrow S_{m+n}$ with $f_{y}|C=f$. Then there exist an open set
$G_{y}\supset\varphi^{-1}(y)\cup C$ and a mapping $g_{y}$ : $G_{y}\rightarrow S_{m+n}$ with $g_{y}|\varphi^{-1}(y)\cup C=f_{y}$ .
Since $\varphi$ is a closed mapping, $U(y)=S-\varphi(R-G_{y})$ is an open neigh-
borhood of $y$. From the condition ind $S=n$ , there exists an open
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neighborhood $V(y)$ of $y$ with $\overline{V(y)}\subset U(y)$ and ind $(\overline{V(y)}-V(y))\leqq n-1$ .
When $n=0,$ $V(y)$ is open and closed, and hence $\varphi^{-1}(V(y))$ is open

and closed and is contained In $G_{y}$ . Since $\mathfrak{V}=\{\varphi^{-1}(V(y));y\in S\}$ is an
open covering of $R$, there exists a star-finite open covering $\mathfrak{W}=\{W_{a}$ ;
$\alpha\in\bigcup_{\lambda\in\Lambda}A_{\lambda}\}$ of $R$ which refines $\mathfrak{V}$ such that $|A_{\lambda}|\leqq\aleph_{0}$ for any $\lambda\in\Lambda$

and $ W_{\alpha}\cap W_{\beta}=\emptyset$ for any $\alpha\in A_{\lambda}$ and $\beta\in A_{\mu}$ where $\lambda\neq/\ell$ . For every
$\alpha\in A_{\lambda}$ , take $\varphi^{-1}(V(y_{\alpha}))$ such that $\varphi^{-1}(V(y_{a}))\supset W_{\alpha}$. Since $A_{\lambda}$ consists
of at most a countable number of indices, we can construct, by the
successive process, a mapping $f_{\lambda}$ :

$\bigcup_{a\in A_{\lambda}}\varphi^{-1}(V(y_{\alpha}))\rightarrow S_{n\iota}$
such that the

values of $f_{\lambda}$ are identical with those of $f$ on
$(\bigcup_{\alpha\in A_{\lambda}}\varphi^{-1}(V(y_{\alpha})))\cap C$

. Define

$g:R\rightarrow S_{m}$ as $fo$llows:
$g|\bigcup_{a\in A_{\lambda}}W_{\alpha}=f_{\lambda}|\bigcup_{a\in A_{\lambda}}W_{\alpha}$

. Then $g$ is uniquely de-

fined and continuous on $R$. Moreover it is evident that $g|C=f$. Thus
the theorem is valid for $n=0$ .

Next we treat the case when $n=i>0$ and assume that the theorem
is valid for $n\leqq i-1$ . In this case $\varphi_{y}=\varphi|\varphi^{-1}\overline{(V(y)}$) $-\varphi^{-1}(V(y))$ is a
closed mapping and hence by the induction assumption $\dim(\varphi^{-1}(\overline{V(y}))$

$-\varphi^{-1}(V(y)))\leqq m+i-1$ . Then lemmas 6 and 7 can be applied and by
the analogous arguments used in the above and in the proof of
theorem 2 we can find a continuous extension $g$ of $f$ to the whole
spaec $R$. Thus the induction is completed and the theorem is proved.

When we consider $\varphi$ as the identity mapping from $R$ onto itself,
we get at once the following

COROLLARY 3. When $R$ is a normal $S_{\sigma}$ -space, $\dim R\leqq indR$.
COROLLARY 4. Let $\varphi$ be a mapping from a locally compact para.

compact Hausdorff space onto a space S. Then

$\dim R\leqq\sup_{y\in S}\dim\varphi^{-1}(y)+indS$ .

PROOF. Let $x$ be an arbitrary point of $R$ and $F(x)$ be a compact
neighborhood of $x$. Then $\varphi_{X}=\varphi|F(x)$ is a closed mapping from
$F(x)$ onto $\varphi(F(x))$ . For every point $y\in\varphi(F(x)),$ $\varphi_{x}^{-1}(y)$ is a closed
subset of $\varphi^{-1}(y)$ and hence $\dim\varphi_{x}^{-1}(y)\leqq\dim\varphi^{-1}(y)$ . Therefore $\dim F(x)$

$\leqq\sup\dim\varphi_{x}^{-1}(y)y\in\varphi(F(x))+ind\varphi(F(x))\leqq\sup_{y\in S}\dim\varphi^{- 1}(y)+indS$. Since $\dim R$

$\leqq\sup_{x\in R}\dim F(x)[11]$ , we get at once the desired inequality.

Finally let us conslder the case when $\dim S=0$ .
THEOREM 4. Let $\varphi$ be a closed mapping from a normal space $R$
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onto a paracompact Hausdorff space $S$ with $\dim S=0$ . Then

$\dim R\leqq\sup_{y\in S}\dim\dot{\varphi}^{-1}(y)$ .
PROOF. When $\sup\dim\varphi^{-1}(y)=\infty$ , the theorem is evidently true.

Let us consider the case when $\sup\dim\varphi^{-1}(y)=m<\infty$ . Let $\mathfrak{U}=\{U\}$ be
an arbitrary finite open covering of $R$. Since $\dim\varphi^{-1}(y)\leqq m$, there
exists a finite open covering $\mathfrak{U}_{y}$ of $\varphi^{-1}(y)$ whose order is at most $m+1$ .
Then by lemma 1 there exists a collection $\mathfrak{V}_{y}$ of open sets of $R$ whose
order is at most $m+1$ such that i) $\mathfrak{V}_{y}$ covers $\varphi^{-1}(y)$ , ii) $\mathfrak{V}_{y}$ refines $\mathfrak{U}$ ,
iii) $\{V\cap\varphi^{-1}(y);V\in \mathfrak{V}_{y}\}$ refines $\mathfrak{U}_{y}$ . Let $G_{y}=UV$ and $F_{y}=R-G_{y}$ .

$\iota\in \mathfrak{B}_{y}$

Then $W(y)=S-\varphi(F_{y})$ is an open neighborhood of $y$. Since $\dim S=0$ ,
there exists an open covering $\mathfrak{W}=\{W_{a} ; \alpha\in A\}$ of $S$ whose order is 1
such that $\mathfrak{W}$ refines $\{W(y) ; y\in S\}$ . Since $\{\varphi^{-1}(W_{a}) ; \alpha\in A\}$ is an open
covering of $R$ and refines $\{G_{y} ; y\in S\}$ , we can choose, for every
$W_{\alpha}\in \mathfrak{W},$ $G_{\mathcal{Y}^{(a)}}$ with $G_{y(a)}\supset\varphi^{-1}(W_{a})$ . Then it can easily be seen that
$\{V\cap\varphi^{-1}(W_{\alpha}) ; V\in \mathfrak{V}_{y(\alpha)}, \alpha\in A\}$ is an open covering of $R$ whose order
is at most $m+1$ which refines U. Thus the theorem is proved.

\S 3. A new definition of dimension-kernel.

It is well-known that the dimension-kernel of an n-dimensional
separable metric space is of dimension $\geqq n-1$ and that the equality
sign of this cannot be redundant [4, \S 22]. It is to be noted that the
classical dimension-kernel is defined by means of boundaries of neigh-
borhoods of points. On the other hand our new dimension-kernel
given in this paper is defined by means of neighborhoods of points.
Then our dimension-kernel of an n-dimensional space becomes also an
n-dimensional closed subset for some class of spaces and is homo-
geneous in the sense of dimension. Our definition seems to be more
natural than the classical, because so-called small-inductive method
cannot be so useful for non-separable spaces and the covering dimen-
sion of a paracompact Hausdorff space or the so-called large inductive
dimension of a hereditarily paracompact Hausdorff space is respec-
tively completely determined by the local covering dimension or by
the local large inductive dimension $[$11 $]^{}$ .

1) In [11] we were concerned with only the covering dimension but the analogous
statements about the large inductive dimension of a hereditarily paracompact Hausdorff
space can easily be obtained by use of the sum theorem of the large inductive dimension
for hereditarily paracompact Hausdorff spaces [1].
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DEFINITIONS AND NOTATIONS. Let $R$ be a non-empty space with
$\dim R=n$ or with $IndR=n,$ $ n<\infty$ . Let $kR$ or $KR$ be respectively
the aggregate of points which have no closed neighborhoods $U$ with
$\dim U<n$ or $IndU<n$ . $kR$ or $KR$ is called respectively the cov-
dimension-kernel or the Ind-dimension-kernel of $R$. When $R=kR$ or
$=KR,$ $R$ is called respectively cov-homogeneous or Ind-homogeneous.

Let us study some properties about the dimension-kernel just
defined. In the following propositions $R$ is always a non-empty para-
compact Hausdorff space with $\dim R=n<\infty$ .

A) $kR$ is a non-empty closed subset of $R$.
PROOF. $kR$ is evidently closed. If $kR$ is empty, $R$ is covered by

open sets $U$ with $\dim U<n$ and hence by [11] $\dim R<n$ , which is a
contradiction.

B) $\dim kR=n$ .
PROOF. Let $\mathfrak{U}=\{U_{j}\}$ be an arbitrary finite open covering of $R$.

If $\dim kR<n$ , there would exist a same-indexed open covering $\mathfrak{V}=\{V_{i}\}$

of $kR$ such that $V_{i}\subset U_{j}\cap kR$ for every $i$ and that the order of $\mathfrak{V}$ is
at most $n$. Since $kR$ is closed, there would exist a same-indexed open
collection $\mathfrak{W}=\{W_{j}\}$ of $R$ with $W_{i}\subset U_{j}$ and $W_{j}\cap kR\subset V_{i}$ such that the
order of $\mathfrak{W}$ is at most $n$ . Let $G$ be an open set with $kR\subset G\subset\overline{G}\subset\bigcup_{W\in \mathfrak{W}}W$.
Then $R-G$ is closed and hence paracompact. Therefore $\dim(R-G)$

$<n$ by [11]. Then by [7, Theorem 2.2] $\mathfrak{U}$ can be refined by an open
covering of $R$ whose order is at most $n$ , which proves $\dim R<n$ .
This is a contradiction.

C) $kkR=kRi$. $e$. $kR$ is cov-homogeneous.
PROOF. If not, there would exist a point $p\in kR-kkR$. Then

there would exist a closed neighborhood $F$ (in $R$) of $p$ with $F\cap kkR$

$=\emptyset$ and $\dim(F\cap kR)$ . Since $F$ is closed in $R$ by A) and hence para-
compact, the analogous arguments used above can be applied and we
can conclude $\dim F<n$ , which contradicts $p\in kR$.

D) $R=kR$ implies $\beta R=k\beta R$, where $\beta R$ is the Cech-Stone-compacli-
fication of $R$.

PROOF. It is to be noted that $\dim R=\dim\beta R$ [ $6$ , Theorem 8]. If
$\beta R\neq k\beta R$, there would exist a point $p\in\beta R-k\beta R$ and its closed neigh-
borhood $F$ (in $\beta R$) with $ F\cap k\beta R=\phi$ and $\dim F<n$ . Then $F\cap R$ is a
non-empty closed neighborhood (in $R$) of some point $q\in R$. Since
$\overline{F\cap R}$ is contained in $F$ and is essentially the same with $\beta(F\cap R)$ ,
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$\dim(F\cap R)=\dim\overline{F\cap R}\leqq\dim F<n$ . Hence $q\in R-kR$, which is a con-
tradiction.

E) $\beta kR$ is essentially $lhe$ same as $k\beta R$.
PROOF. By the analogous arguments used above it holds that

$\overline{kR}\supset k\beta R\supset k\beta kR$. On the other hand $\beta kR=k\beta kR$ by C) and D). Since
$\overline{kR}$ is essentially the same as $\beta kR,$ $\beta kR$ is essentially the same as
$k\beta R$.

It is to be noted that when $R$ is hereditarily paracompact,
$\dim(R-kR)<n$, but when $R$ is not so, this is not the case as the
following example shows.

Let $A$ be an ordered space consists of all ordinals $\leqq\omega(=the$

first ordinal of the second class). Let $B$ be an ordered space consists
of all ordinals $\leqq\Omega$ ( $=the$ first ordinal of the third class). Let $C$ be
a space consists of all limit ordinals $<\Omega$ . Let $D$ be a space $B\cup\{\alpha+2$

$+x;\alpha\in C,$ $0\leqq x\leqq 1$ } with the usual order topology. Then $R=A\times D$

is a paracompact Hausdorff space and not hereditarily paracompact,
with $\dim R=1$ . On the other hand $R-kR$ is homeomorphic to $A\times B$

$-(\omega, \Omega)$ and $\dim(A\times B-(\omega, \Omega))>0$ [ $2$ , p. 155].
When “ $\dim$ “, “ paracompact Hausdorff “ and “ $kR$ ’ in the preced-

ing propositions are replaced respectively with “ $Ind$ ”, “ hereditarily
paracompact Hausdorff” and “ $KR’$ , all propositions thus obtained
also hold.

Addendum. After the manuscript of this paper was completed, I have learnt that
there appeared two papers on the same subject as ours: C. H. Dowker: Local dimension
of normal spaces, Quart. J. math., 6 (1955), 101-120 and K. Morita: On closed mappings
and dimension, Proc. Japan Acad., 52 (1956), 161-165. In paticular, the paper of Prof.
Morita covers the content of \S 2 of our present paper (with different proofs). Prof.
Morita was kind enough to inform me that he also obtained independently these results.

Ehime University.
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