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Some theorems in dimension theory for
non-separable spaces.
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This paper provides some theorems in dimension theory for non-
separable spaces. Let R be a topological space, dim R the covering
dimension of R, ind R the so-called ¢ small” inductive dimension of R
defined by means of boundaries of neighborhoods of points, and Ind R
the so-called “large ” inductive dimension of R defined by means of
boundaries of neighborhoods of closed sets. (Cf.[14]. In the notations
of [2], Appendix, p. 1563, we have ind R=d,(R), Ind R=d,(R).) It is
to be noted that when R is normal, dim R<# is equivalent to the
following condition: For any closed subset C of R and for any
mapping (=continuous transformation) f from C into an n-sphere there
exists a continuous extension g of f defined on the whole space R.

In §1 we shall give the sum theorem of covering dimension for
metric spaces which is a generalization of the known. In §2 we
shall study closed mappings which lower dimension and related pro-
blems. In §3 we shall give a new definition of dimension-kernel and
shall study some properties concerning it.

§1. Sum theorem of covering dimension.

Let R be a topological space and U={U,; a= A} be a collection
of subsets of R. Then UNS,S being a subset of R, stands for {U,N
S;ac= Al

LEMMA 1. Let S be a closed subset of a normal space R and
U={U,;ac A} be a finile open covering of S whose elements are F,.
Then there exists a finite open collection B={V,; a = A} of R whose
elements are ¥, such that the order of B is not greater than that of
U and V,NS=U, for every a = A.

LEMMA 2. An F.-subset of a normal space is also normal as a
relalive space.
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LEMMA 8. Let R be a normal space and F;i=1,2,..., be subseis
ot R. If ) F; is closed for every j<co, dim \J F, < S{;p dim F.,
i=1 i=1 i=1
ProOOF. It suffices only to prove the inequality for the case when

Slelop dim F;=»n <Cco and O F;=R by virtue of lemma 2. First we shall
i=1

i=1

show by the induction on m that dim@Fign for every mi<co.
i=1

Suppose that dim(njF,-gn. Let O={G,;ac= A} be a finite open

i=1

m+1 m
covering of \ / F,, Then dim\J F;<# asserts the existence of a finite
(=1

] i=1

open F,; covering U={U,;a= A} of @Fi such that the order of U

is not greater than n-+1 and U refines @ﬂ(@ F,). Then, by lemma

1, there exists a finite open F, collection B={V_; a = A} of "UF, such
7=1

that i) the order of 2L is not greater than n4-1, ii) V,,m(@ F)=U,
i=1

for every a A, iii) 2B refines &. Let G be an open set of MOIF- such

A i
i=1

that @F,-(:GCECUV,,6 and consider a finite open covering W=
i=1

a€A
BNF,.)UGNF,,,—G) of F,,. Then dimF,, <n asserts the
existence of a finite open covering D={(D,, D,;a=A} of F,, , such
that i) the order of ® is not greater than n-4-1, ii) D,c V, N F,

m+1

for every a= A, iii) D,cG,N (an—'a) for every a = A. It is almost
m+l

evident that E,=D,U(V,NG) is open in \J F, Hence C€={E,D,;«
i=1

m+1
& A} is a finite open covering of \ / ;. Moreover we can easily see

i=1
that € refines & and the order of € is not greater than »--1, which

completes the induction. Thus we have established the fact that
dim_(njF,-gn for every m <<c. Hence OF, is a countable sum of
closezgllsets whose dimension are at most nzzz:md we know, by the usual
sum theorem, that dimQFig n.

It is to be mnoted tl;;t when ¢ dim=covering dimension” in the
above lemma is replaced with ¢large inductive dimension”, the pro-
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position thus obtained also holds under some additional conditions: i)
R is completely normal, ii) F; are mutually disjoint. (Cf. [1})

LEMMA 4. Let R be a metric space and S be a subset of R. If
every point of S has a neighborhood V (in R) such that VNS is an F,
in R, then S is an F, in R.

This was proved in [5].

THEOREM 1. Let R be a metric space and F, subsets of R indexed

by all ordinals o less than some fixed ordinal . If \ ) Fy=H, is closed
p<a

for every a<<7, dim\ ) F,< supdim F,.

a<ly a<ly
Proor. It suffices only to prove the inequality for the case when

sup dim F,=n <o and R=\ F,. Moreover we can assume, by lemma
a<p a<y

3, with no loss of generality that » is a limit ordinal. Let o be a
metric on R which agrees with the preasigned topology of R. Set-
ting G,,={p;p(p, H,)<<1/i},i=1,2,.-, it can easily be seen that i)

Hw:fo\ G, i) G,;0G, ., iii) G,..CGy for every a<<fp<<n We set
i-1
G,;=¢. Then F,;=F,—G,; is a closed set with dim F,;<#n. Let D,;

=G, 1,;41— G, iy and then D,; is open and includes F,. Moreover

{D,;; a<<n} is as can easily be seen a mutually disjoint collection.

Therefore dim \ J F;<<n. Setting F,=\_/F,;, F; is, by lemma 4, an F,.
a<ly

a<y

oo

Since Fa,—H,,:O F,; and hence \ ) F,=\_ F,, we can see, by the usual
i=1

a<ly i=1
sum theorem, that dim R=<#n, which completes the proof.

§ 2. Mappings which lower dimension.

It is well known that
(A) dim R=ind R=Ind R

for every separable metric space. Recently M. Katétov [3] and K.
Morita [9] have succeeded independently in proving the validity of

B) dim R=Ind R

for every mnon-separable metric space. Moreover Morita has proved
the validity of (A) for every metric S,-space, where an S,-space is a
space which is the sum of a countable number of closed subsets with
the star-finite property.

Let ¢ be a mapping from a space R onto another space S. If
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¢ is a closed mapping, then the inequality
(0) dim R< sup dim ¢~!(y)+dim S
yES

holds when R and S are separable metric [2]. Our concern is to
establish the analogous inequalities to (C):

D) dim R<sup dim ¢~(3)+Ind S,
yeSs

(E) dim R< sup dim ¢~!(y) +ind S,
yeS

for some class of non-separable spaces. First we shall show the
validity of (D) for the case when R is paracompact Hausdorff and S
is hereditarily paracompact Hausdorfl (Theorem 2 below). By virtue
of the validity of (B) for metric spaces, we can know that (C) is
valid even if R and S are non-separable metric spaces
below). Moreover the validity of (E) will be shown for the case
when R is a normal S,-space below). This extends a
theorem due to Morita [7] which asserts the validity of (D) for the
case when R is compact Hausdorff. Two corollaries are deduced from
theorem 3: One is Morita’s theorem which asserts dim R<ind R for
every normal S, -space and another is a generalization of N. Vedenisoff’s
theorem concerning a continuous decomposition of a compact space
(Corollaries 8 and 4 below). Whether (E) holds for the case when R
and S are metric is an open problem. The method used in this paper
seems to be unable to apply to this case. If this question could be
answered in the affirmative, we could determine dim R<ind R for
every non-separable metric R; this is surely one of the most impor-
tant unsolved problems in the dimension theory.

We start from some preliminary lemmas.

LEMMA 5. Let R be a non-empty hereditarily paracompact Haus-
dorff space, i.e. a Hausdorff space any of whose subspace is paracompact.
Thern Ind R<n(<<co) if and only if for every open covering 11 there
exists a collection BL={V} of mutually disjoint open sets such thal i)
B=(V} refines 1, i) B is locally finite, iii)) R—yuV=y(V-V), iv)
Ind(R—-UV)y<n-—1. \

AN OUTLINE OF THE PROOF. Since if-part is evident, we shall
prove only-if-part. Since every paracompact Hausdorff space is
strongly screenable [18], [10], there exists an open covering W={W,;
ac\ ) A} and a closed covering F=(F,;ac _OIA,-} such that i) & is

1=1

i=1
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locally finite and refines 11, ii) for every ¢, {W,; = A;} is mutually
disjoint, iii) for every ac\ A, W,OF,. Setting F,=\JF, and W,
i=1

“EAZ

—=\J W,, there exists an open set G, with F,cG,cG,c W, and

aEA;
Ind (G,—G)<n—1. Since Ind(R—G,)<n, there exists a relatively

open set G, of R—G, with F,—G,cG,cG,c W,—G, and Ind(G,—G,)
<=n—1. Proceeding this procedure successively, we get for every 7 a
relatively open set G; of R—\JG, with F,—\J G,cG,cG,c W,—\J G;
J<i i< 7<i
and Ind(G,—G)<n-1. Setting for ac=A,V,=W,NG, and for
acA(i>1) V,=W,nG,—\JG, it is not so hard to see that {V,;
j<i
ac\J A;} satisfies the conditions i), ii), iii) in' the lemma. Since

1=1

U (deVw)zo (G,—G)), Ind (R—\J V,)<n—1 by the sum theorem

aSUA; aSUA;
of lérge inductive dimension [1], which shows B satisfies condition iv)
and the lemma is proved. ’

As a corollary of this lemma we get the decomposition theorem
for non-separable metric spaces which has recently proved by Katétov
[3] and Morita [9] independently.

COROLLARY 1. Let R be a metric space with Ind R<n<co. Then
R can be decomposed into the sum of n-+1 subsets’ R, with Ind R,<<0
for 1=1,-.,n+1.

PrROOF. When 7n=0, the assertion is trivial. Now let n=m>1
and put the induction assumption that the assertion is valid for z=
m—1. Let U; be a collection of mutually disjoint open sets such that

Ind(R— \J U)<m—1 and a diameter of each set of U, is less than
vel; :

1/i. This U, exists by lemma 5, since every metric space is para-

compact. Set Rlzﬁ \JU and we can show IndR, <0 as follows.
i=1 Uell;

Let F and G be respectively a closed and an open subsets of R, with
FcG. Let V; be the sum of sets U& 1, such that UNR,cG. Then

H=Rln(o V;) is evidently open in R, and Fc Hc G. Moreover H is
i=1

closed: Let p be a point of R, with pd-H. Let j be a positive

integer such that S, (p)NF=¢ where S, (p) denotes an open sphere

of radius 2/j with centre p. Then (\J V;)NS, (p)=¢. Since V;NR,
izj
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is closed in R, (\U V))NR, is closed in R,. Setting V(p)=S,,(p)N
i<j

(L VINR, V()N H=¢. Hence H is closed in R,. Thus H is open

i<j

and closed in R,, which proves Ind R, <0. Since the sum theorem of
large inductive dimension holds in metric spaces [1], and R—R, is the
sum of a countable number of closed subsets with large inductive
dimension <m—1, Ind(R—R)<m—1. Hence R—R, is the sum of
an m number of subsets R, t=2,---,m+1 with Ind R,<0. Thus R is
the sum of m+1 subsets R, i=1,---,m+1, and hence the induction is
completed.

LEMMA 6. Let H and F be closed subsets of a mnormal space R
and let f and g be mappings defined respectively on H and on F with
values in an n-spheve S,. Lel a subset A={x; f(x)=gx)}cHNF. If
dim A<n—1, then f can be extended continuously to the whole space R.

This will be verified by a quite analogous method used in in
view of [8, Theorem 6.3] and hence its proof is omitted.

LEMMA 7. Let C be a closed subset of a normal space R and f
be a mapping defined on C with values in S,. If for any open set G
with GOC there exists a closed subset F with CcFcG such that
dim (R—F)<mn, f can be extended continuonsly to the whole space R.

PrROOF. Since S, is a neighborhood-extensor for normal spaces,
there is a continuous extension g defined on some open set G with
Cc G. Then from the hypothesis-condition there exists a closed subset
F with CcFcG and dim (R—F)<wn. By [8], there is a continuous
extension 2 of g|F, defined on the whole space, which is the desired
extension.

THEOREM 2. Let ¢ be a closed mapping from a non-emply para-
compact Hausdorff space R onto a non-empty hereditarily paracompact
Hausdorff space S. Then

dim R< sup dim ¢~*(y)+Ind S.
yES

ProOF. When either sup dime!(y)=co or IndS=oco, the in-
yES

equality trivially holds. We treat the case when sug dim ¢~ !(y)=m<co
=

and Ind S=#<co and prove the theorem by theyinduction on n. Let

C be an arbitrary closed subset of R and f a mapping from C into

S,., For any point y=S there is, by lemma 7, a continuous exten-

sion f, of f, defined on CU¢~'(y). Since S, , is a neighborhood-

extensor for normal spaces, there is an open subset G,DCU¢ '(y)
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and a mapping g,:G,—S,., with g/|CU¢ '(»)=f,. Since ¢ is a

closed mapping, ¢(R—G,) is closed in S and does not contain y. Hence

V(y)=S—¢(R—G,) is an open neighborhood of y. Then by lemma 5

there exists a collection B={V,; a < A} of mutually disjoint open sets

of S such that i) ¥ refines {V(y);y<S), ii) (V,;a=A} is locally

finite, iil) S—\U V,=\U (V,—V,), iv) Ind(S—\U V,)<n-—1. Set T
a€A

aCA a€A
==\j(V;—-L2L
aSA

When #=0, we have T=¢. Hence {p~Y(V,); a A} is a mutually
disjoint open covering of R which refines {G,;y&S). For every
a= A, there exists G,, with ¢ '(V,)cG,,. Let g:R—-S, be a
mapping defined as follows: g|o~'(V,)=g,ul¢ '(V,). Then g is uni-
quely defined and continuous and g|C=f, which proves dim R<m.
Thus the theorem is valid for »=0.

We make the induction assumption that the theorem is valid

for n<<i, 1=>0. Now let n=:¢ and assume that A consists of all
ordinals less than some fixed ordinal 7. Let f,: o= (V)UC—S,,; be
g,mle (V)UC. Take an arbitrary ordinal @< and put the trans

finite induction assumption that there is a mapping fz:\J ¢ (Vs U
5<8
C—S, with fi=Ff5l\J ¢7(V) UC for any r<p<a. We construct
<r

fw:gWV;)UC_')SmH as fwlﬁ%gﬁ‘l(VE)UC:fa, A <<a. This f, is con-

and then B={x; g,,,(x)=F f,(x)} is an Fs-set with Bc o~ (T). ¢|e Y(T)
is a closed mapping from ¢~(7") onto 7. Since Ind T'<<i—1, dim ¢=Y(7T")
<m+i—1 by the induction assumption. Hence dimB<m-+i—1.
Therefore there exists a mapping f£,., :QJ 1gofl(V;;) UC—S,,; with

fori|\J 9 (V5) UC=F,. Thus we can construct a mapping f,:\J ¢~ (Vy)
0<a o<
UC—S,,.; for any a <y such that f,|\J ¢~ (V;) UC=f; for any f<<a.
o<B

I is continuous, since {p~'(V,); a < 7} is locally finite. Since dim ¢~(T)
<m+i—1 and \J o (V,)UC is closed, there exists by lemma 7 a

<y

mapping g:R—-S,,,; with g|\Ue YV, )UC=h. It is evident that
a<ly
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g| C=f, which proves dim R<<m--i. Thus the theorem is completely
proved.

Since Ind R=dim R for metric spaces, we get at once the follow-
ing

COROLLARY 2. Let R and S be non-empty metric spaces and ¢ be
a closed mapping from R onto S. Then

dim R< sup dim ¢~ ()4 dim S.
y&S

THEOREM 3. Lel ¢ be a closed mapping from a non-empty normal
Se-space R onto a non-empty space S. Then

dim R<C sup dim ¢~'(y) +ind S.
y€S§

PrOOF. First we remark that if we assume that the theorem is
valid for the case when R is a normal space with the star-finite
property, our theorem can be easily deduced from the assumption:

Let R:O R; where R; are closed subspaces with the star-finite pro-
i=t

perty. Let ¢,=¢|R; and ¢; is a closed mapping from R; onto ¢(R)).

Since ¢7'(¥), yS o(R), is a closed subset of ¢~ !(y), dime;i(y) <

dim ¢~'(y). Hence by the assumption and by the monotonicity of small

inductive dimension dim R, < sup dim ¢;!(y)+ind ¢(R;) < sug dim ¢~'(y)
S

ye (p(Ri)

+ind S. Since every R; is closed, dim R< S;lop dim R; and hence dim R

1=1
< sup dim ¢~ '(y)+ind S.
YES

Thus it suffices to prove the theorem for the case when R is a
normal space with the star-finite property and we shall treat R
having this property. It is to be noted that a regular space with the
star-finite property is always paracompact. When either sup dim ¢~!(y)

yeS

=co oOr indS=co, the theorem is evidently true. Hence we shall
prove the theorem for the case when sup dime-'(y)=m <o and
y&Ss

ind S=#n<Ccc and shall prove it by the induction on .

Let C be an arbitrary closed subset of R and f be an arbitrary
mapping from C into S,,,,. For every y& S, there exists a mapping
fie7'(MulC—-S,,, with f,|C=f. Then there exist an open set
G,D¢ () UC and a mapping g,:G,—S,., with g,]¢ '(»)UC=f,.
Since ¢ is a closed mapping, U(y)=S—¢(R—-G,) is an open neigh-
borhood of y. From the condition ind S=#n, there exists an open
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neighborhood V(y) of y with V(»)cU(y) and ind (V(y)— V() =n—1.

When #=0, V(y) is open and closed, and hence ¢~'(V(y)) is open
and closed and is contained in G,. Since B={p~'(V(¥)); y&S) is an
open covering of R, there exists a star-finite open covering W={W,;
ac=\J A} of R which refines ¥ such that |A4,|< W, for any ic4

ied
and W,N Wy=¢ for any a= A, and = A, where 23=p. TFor every
a=A, take ¢ Y(V(y,) such that ¢ '(V(y,)D>W,. Since A, consists
of at most a countable number of indices, we can construct, by the
successive process, a mapping f;:\J ¢7'(V(y,) —S, such that the

d’E[/lA

values of f; are identical with those of f on ( \J o' (Viy)))NC. Define
aE€A;
g:R—S,, as follows: g|\U W,=f;|\U W,. Then g is uniquely de-
C\’/GAA WEAA

fined and continuous on R. Moreover it is evident that g|C=f. Thus
the theorem is valid for »=0.

Next we treat the case when z»=:¢>0 and assume that the theorem
is valid for n<i—1. In this case ¢,=¢ | (V(y)—¢ '(V(¥) is a

closed mapping and hence by the induction assumption dim (¢~'(V())
—o (V) <m-+i—1. Then lemmas 6 and 7 can be applied and by
the analogous arguments used in the above and in the proof of
theorem 2 we can find a continuous extension g of f to the whole
spaec R. Thus the induction is completed and the theorem is proved.

When we consider ¢ as the identity mapping from R onto itself,
we get at once the following

COROLLARY 8. When R is a normal Ss-space, dim R< ind R.

COROLLARY 4. Let ¢ be a mapping from a locally compact para
compact Hausdorff space onto a space S. Then

dimR< sug dim ¢~'(y)+ind S.
ye
Proor. Let x be an arbitrary point of R and F(x) be a compact
neighborhood of x Then ¢,=¢|F(x) is a closed mapping from
F(x) onto ¢(F(x)). For every point yE o(F(x)), ¢;'(y) is a closed
subset of ¢~'(y) and hence dim ¢;!(y) << dim ¢~'(y). Therefore dim F(x)
< sup dim e '(y)+ind ¢(F(x)) < sug dim ¢ '(¥)+indS.  Since dim R

yEe(F(x)) ye
< sup dim F(x) [11], we get at once the desired inequality.
1ER

Finally let us consider the case when dim S=0.
THEOREM 4. Let ¢ be a closed mapping from a normal space R
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onto a paracompact Hausdorff space S with dim S=0. Then
dim R< sug dim o~'(¥) .
ye

PrROOF. When sup dim ¢~ !(y)=co, the theorem is evidently true.
Let us consider the case whén sup dim ¢~ '(y)=m <<co. Let U={U} be
an arbitrary finite open covering of R. Since dim ¢~!(y)<m, there
exists a finite open covering U, of ¢~'(y) whose order is at most m-1.
Then by lemma 1 there exists a collection B, of open sets of R whose
order is at most m -1 such that i) B, covers ¢~'(y), ii) T, refines U,
iii) (VN '(y); V& B,} refines U,. Let G,= %V and F,=R-G,.

Ve

Then W(y)=S—o(F,) is an open neighborhood of y. Since dim S=0,
there exists an open covering BW={W,; a = A} of S whose order is 1
such that T refines {W(y); y<S). Since {¢~(W,); a < A} is an open
covering of R and refines {G,; y=S}, we can choose, for every
W, =B, G,,, with G,,,D¢"'(W,). Then it can easily be seen that
(VN (W,); Ve B,,, a = A} is an open covering of R whose order
is at most m+1 which refines U. Thus the theorem is proved.

§3. A new definition of dimension-kernel.

It is well-known that the dimension-kernel of an #n-dimensional
separable metric space is of dimension >#—1 and that the equality
sign of this cannot be redundant [4, § 22]. It is to be noted that the
classical dimension-kernel is defined by means of boundaries of neigh-
borhoods of points. On the other hand our new dimension-kernel
given in this paper is defined by means of neighborhoods of points.
Then our dimension-kernel of an n-dimensional space becomes also an
n-dimensional closed subset for some class of spaces and is homo-
geneous in the sense of dimension. Our definition seems to be more
natural than the classical, because so-called small-inductive method
cannot be so useful for non-separable spaces and the covering dimen-
sion of a paracompact Hausdorff space or the so-called large inductive
dimension of a hereditarily paracompact Hausdorff space is respec-
tively completely determined by the local covering dimension or by
the local large inductive dimension [11]".

1) In [II] we were concerned with only the covering dimension but the analogous
statements about the large inductive dimension of a hereditarily paracompact Hausdorff
space can easily be obtained by use of the sum theorem of the large inductive dimension
for hereditarily paracompact Hausdorff spaces
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DEFINITIONS AND NOTATIONS. Let R be a non-empty space with
dim R=n or with Ind R=n,n<<cc. Let RR or KR be respectively
the aggregate of points which have no closed neighborhoods U with
dimU<n or IndU<n. kR or KR is called respectively the cov-
dimension-kernel or the Ind-dimension-kernel of R. When R=FEKR or
=KR, R is called respectively cov-homogeneous or Ind-homogeneous.

Let us study some properties about the dimension-kernel just
defined. In the following propositions R is always a non-empty para-
compact Hausdorff space with dim R=#n<co.

A) kR is a non-empty closed subset of R.

PrROOF. kR is evidently closed. If kR is empty, R is covered by
open sets U with dim U< and hence by [11] dim R< #», which is a
contradiction.

B) dim kR=n.

Proor. Let U={U;} be an arbitrary finite open covering of R.
If dim 2R < n, there would exist a same-indexed open covering V= {V}}
of kR such that V,cU;NkR for every i and that the order of DB is
at most n. Since kR is closed, there would exist a same-indexed open
collection W={W;} of R with W,cU,; and W;NkRcCV; such that the

z

order of 2 is at most . Let G be an open set with kERcGc G\ W.
weld

Then R—G is closed and hence paracompact. Therefore dim (R—G)
<n by [11]. Then by [7, Theorem 2.2] U1 can be refined by an open
covering of R whose order is at most », which proves dim R<n.
This is a contradiction.

C) kkR=ER i.e. kR is cov-homogeneous.

Proor. If not, there would exist a point pckR—kkR. Then
there would exist a closed neighborhood F' (in R) of p with FFNkkR
=¢ and dim (FNkR). Since F' is closed in R by A) and hence para-
compact, the analogous arguments used above can be applied and we
can conclude dim F <<n, which contradicts p < kR.

D) R=FER implies BR=EBR, where R is the Cech-Stone-compacti-
fication of R.

PrOOF. It is to be noted that dim R=dim SR [6, Theorem 8]. If
BR=FkBR, there would exist a point p= fR—ESR and its closed neigh-
borhood F (in AR) with FNkBR=¢ and dim FF<<#. Then FNR is a
non-empty closed neighborhood (in R) of some point g&=R. Since

FNR is contained in F and is essentially the same with A(FNR),
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dim (FNR)=dim FNR< dim F<<n. Hence ¢ <= R—ER, which is a con-
tradiction.

E) BEkR is essentially the same as kSR.

ProOOF. By the analogous arguments used above it holds that

EROERSROEBRR. On the other hand pkR=FEBER by C) and D). Since

kR is essentially the same as JER, kR is essentially the same as
kAR.

It is to be noted that when R is hereditarily paracompact,
dim (R—kER)<<n, but when R is not so, this is not the case as the
following example shows.

Let A be an ordered space consists of all ordinals < o (=the
first ordinal of the second class). Let B be an ordered space consists
of all ordinals << £ (=the first ordinal of the third class). Let C be
a space consists of all limit ordinals << 2. Let D be a space B {a+2
+x;a0=C,0<x<1} with the usual order topology. Then R=AXxD
is a paracompact Hausdorff space and not hereditarily paracompact,
with dim R=1. On the other hand R—ER is homeomorphic to AxB
—(w, 2) and dim (AxB— (0, 2))>0 [2, p. 155].

When “dim ”, “ paracompact Hausdorff ” and “ kR’ in the preced-
ing propositions are replaced respectively with ¢ Ind”, “ hereditarily
paracompact Hausdorff” and ¢ KR?”, all propositions thus obtained
also hold.

Addendum. After the manuscript of this paper was completed, I have learnt that
there appeared two papers on the same subject as ours: C.H. Dowker: Local dimension
of normal spaces, Quart. J. math,, § (1955), 101-120 and K. Morita: On closed mappings
and dimension, Proc. Japan Acad., 32 (1956), 161-165. In paticular, the paper of Prof.
Morita covers the content of §2 of our present paper (with different proofs). Prof.
Morita was kind enough to inform me that he also obtained independently these results.

Ehime University.
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