Norm of units of quadratic fields.

By Yoshiomi Furuta

(Received Nov. 13, 1958)
Let P be the rational number field and $\Omega=P(\sqrt{d})$ a real quadratic field, where d is a positive square free integer, different from 2 . We denote by ε_{0} a fundamental unit of Ω; by ε an arbitrary unit of Ω; by N the absolute norm; and by small Roman letters a, b, \cdots, m, \cdots rational integers.

In this paper, we shall be concerned with the following problem:
" For what pair of integers d, m does there exist in Ω a ring unit ${ }^{1} \varepsilon \bmod$. m with a negative norm: $N \varepsilon=-1$?"

Dirichlet gave some criteria on the question by means of power residue symbols. More recently it was investigated by A. Scholz, L. Rédei and others. In particular, Rédei [6], [7] etc. ${ }^{2}$, discussed it in detail by using the quadratic residue symbol and the fourth power residue symbol of Dirichlet, and finally Rédei [9] solved it completely as a problem related to the ideal class group of quadratic fields. On the other hand, Kuroda [5] and Furuta [1], [2] used the power residue symbol of Dirichlet and a generalized symbol to express the decomposition law of primes in some meta-abelian extensions, and also Tsunekawa [10] proved an interesting result concerning our problem. In the present paper, we shall give relationships between the norm of units of real quadratic fields and meta-abelian extensions, from which various results on our problem, in particular some of Rédei's results and Tsunekawa's theorem in a stronger from, can be deduced.

§ 1. Restricted power residue symbol.

Let Δ be an algebraic number field of finite degree, \mathfrak{p} a prime ideal of Δ prime to 2 and α a number of Δ, prime to \mathfrak{p}. Then for a non-negative rational integer n the restricted 2^{n}-th power residue symbol $[\alpha / \mathfrak{p}]_{n}$ is defined as follows ${ }^{3}$. For $n=0$ we set always $[\alpha / \mathfrak{p}]_{n}=1$. For $n \geqq 1[\alpha / \mathfrak{p}]_{n}$ is defined only when we have $[\alpha / \mathfrak{p}]_{n-1}=1$, and if this is really the case we set $[\alpha / p]_{n}$ $=(-1)^{x}$, where $\alpha^{\left(N p^{h}-1\right) / 2^{n}} \equiv(-1)^{x}$ (mod. \mathfrak{p}), h being the smallest natural number with $2^{n} \mid N \mathfrak{p}^{h}-1$. For an ideal \mathfrak{m} of Δ prime to both α and 2 with the

[^0]prime ideal decomposition $\mathfrak{m}=\mathfrak{p}_{1}{ }^{e_{1} \ldots p_{t}}{ }^{e_{t}}$ we set $[\alpha / \mathfrak{m}]_{n}=\left[\alpha / \mathfrak{p}_{1}\right]_{n}{ }^{e_{1} \ldots} \ldots\left[\alpha / \mathfrak{p}_{l}\right]_{n}{ }^{{ }_{t}}$, when each $\left[\alpha / p_{i}\right]_{n}(i=1, \cdots, t)$ is defined. From the definition follows the following lemma in an analogous manner ${ }^{4}$) as in the case of the ordinary power residue symbol

Lemma 1. If $2^{n} \mid N \mathfrak{p}-1$ and $[\alpha / \mathfrak{p}]_{n}=1$, then $\alpha \underset{[n]}{\equiv} 1(\bmod . \mathfrak{p})^{5}$.
Furthermore, we can prove
Lemma 2. If $\left.2^{r} \| N \mathfrak{p}-1^{6}\right)$ and $[\alpha / \mathfrak{p}]_{r}=1$, then $[\alpha / \mathfrak{p}]_{n}=1$ for all n.
Proof. For $n \leqq r$ we have trivially $[\alpha / p]_{n}=1$ by the definition. Let $n>r$ and $2^{n} \mid N p^{h}-1, h$ being as before. Let $\left(N p^{h}-1\right) / 2^{n}=k(N p-1) / 2^{r}$, where k is an integer. Then, since $\alpha^{(N p-1) / 2^{r}} \equiv 1$ (mod. p) by assumption, we have $\boldsymbol{\alpha}^{\left(N p^{h}-1\right) / 2^{n}} \equiv \boldsymbol{\alpha}^{k(N p-1) / 2^{r}} \equiv 1$ (mod. p).

The next two lemmas follow immediately from Lemma 2 and the definition.

Lemma 3. If both $[\alpha / \mathfrak{p}]_{n}$ and $[\beta / \mathfrak{p}]_{n}$ are defined, then $[\alpha \beta / \mathfrak{p}]_{n}$ is also defined, and we have $[\alpha / \mathfrak{p}]_{n}[\beta / p]_{n}=[\alpha \beta / p]_{n}$.

Lemma 4. If $\left[\alpha^{k} / p\right]_{n}$ is defined for some odd rational integer k, then $[\alpha / \mathfrak{p}]_{n}$ is also defined, and we have $\left[\alpha^{k} / \mathfrak{p}\right]_{n}=[\alpha / \mathfrak{p}]_{n}{ }^{k}=[\alpha / \mathfrak{p}]_{n}$.

Lemma 5. For any prime ideal p prime to 2 and for any natural number s, the next two relations $\alpha \equiv 1$ (mod. p) and $\alpha \equiv 1$ (mod. $\left.\mathfrak{p}^{s}\right)$ are equivalent.

Proof. If $\alpha \underset{[n]}{\equiv} 1$ (mod. p^{s}), then trivially $\alpha \underset{[n]}{\equiv} 1$ (mod. p). Conversely suppose that $\alpha \equiv 1$ (mod. \mathfrak{p}), namely $\alpha=\beta^{2^{n}} \gamma, \gamma \equiv 1$ (mod. \mathfrak{p}) for some $\beta, \gamma \in \Delta$. Denoting by $S\left(p^{s}\right)$ the group of all $x \in \Delta$ such that $x \equiv 1$ (mod. p^{s}), we see that the order of the factor group $S(p) / S\left(p^{s}\right)$ is equal to $\varphi\left(p^{s}\right) / \varphi(p)=p^{k}$ where $k=$ $f(s-1), N p=p^{f}$. Therefore $\gamma^{p^{k}} \equiv 1$ (mod. p^{s}), whence $\alpha^{p^{k}} \equiv 1$ (mod. $\left.p^{s}\right)$. Since p is odd, we have $\alpha \underset{[n]}{\equiv} 1$ (mod. p^{s}).

Now we have the following
Lemma 6. We have $[\alpha / p]_{n}=1$ for all ${ }^{7}$) n if and only if we have $\alpha^{k} \equiv 1$ (mod. p^{s}) for a natural number s and for an odd rational integer k.

Proof. From $\alpha^{k} \equiv 1\left(\bmod . p^{s}\right)$ follows $\alpha^{k} \equiv 1(\bmod . p)$, hence $\left[\alpha^{k} / \mathfrak{p}\right]_{n}=1$ for all n, and by Lemma 4 we have $[\alpha / p]_{n}=1$ for all n since k is odd. Conversely, suppose that $[\alpha / p]_{n}=1$ for all n. If $2^{r} \| N p-1$, then by Lemma 1 $\alpha \equiv 1\left(\bmod . p^{s}\right)$, i. e. $\alpha=\beta^{\beta^{r}} \gamma, \gamma \equiv 1\left(\bmod . p^{s}\right)$ for some $\beta, \gamma \in \Delta$. If we set $k=$ $\varphi\left(p^{s}\right) / 2^{r}$, then k is odd and we see that $\beta^{k 2^{2} r}=\beta^{\varphi\left(p^{s}\right)} \equiv 1\left(\bmod . p^{s}\right)$. Hence we

[^1]have $\alpha^{k} \equiv 1\left(\bmod . p^{s}\right)$ for an odd k.

§ 2. Norm of ring units of real quadratic fields.

We denote hereafter by small Greek letters α, β, \cdots integers of the quadratic field Ω, and by $\alpha^{\prime}, \beta^{\prime}, \cdots$ their conjugates with regard to Ω / P. Let $d=q_{1} \cdots q_{t}$ be the prime number decomposition of d in P, and q_{1}, \cdots, q_{t} be all the prime divisors of q_{1}, \cdots, q_{t} in Ω respectively. Further, assume hereafter that m is odd.

Lemma 7. Let $m=\prod_{i=1}^{s} \mathfrak{p}_{i}{ }_{i} \prod_{j=1}^{t} \mathfrak{q}_{j}{ }_{j}$ be the prime ideal decomposition of m in Ω where $\left(\mathfrak{p}_{i}, d\right)=1,1 \leqq e_{i}$ and $0 \leqq e_{j}$. Then α is contained in the ring class mod. m of Ω if and only if

$$
\left\{\begin{array}{lll}
\alpha \equiv \alpha^{\prime} & \left(\bmod . \mathfrak{p}_{i}{ }^{\left.{ }_{i}\right)}\right. & i=1, \cdots, s, \\
\alpha \equiv \alpha^{\prime} & \left(\bmod . \mathfrak{q}_{j}{ }^{2 e^{j+1}}\right) & j=1, \cdots, t .
\end{array}\right.
$$

Proof. Since we have $\alpha-\alpha^{\prime}=b \sqrt{d}$ or $\alpha-\alpha^{\prime}=2 b \sqrt{d}$ with some b according as $d \equiv 1$ (mod. 4) or $d \equiv 2,3(\bmod .4)$, the lemma is clear.

Theorem 1. In order that $N \varepsilon_{0}=1$ resp. -1 it is necessary and sufficient that $\left[\varepsilon_{0}{ }^{2} / q\right]_{n}=1$ resp. $\left[-\varepsilon_{0}{ }^{2} / q\right]_{n}=1$ for all n^{7} and for one of the prime divisors q prime to 2 of d.

Proof. i) Since $\varepsilon_{0} \equiv \varepsilon_{0}{ }^{\prime}(\bmod . \sqrt{d})$, we have $N \varepsilon_{0} \equiv \varepsilon_{0}{ }^{2}(\bmod . \sqrt{d})$, namely $\varepsilon_{0}{ }^{2} \equiv 1$ or $-1(\bmod . \sqrt{ } \bar{d})$ according as $N \varepsilon_{0}=1$ or -1 . Hence, it follows from Lemma 6 that we have $\left[\varepsilon_{0}{ }^{2} / q\right]_{n}=1$ or $\left[-\varepsilon_{0}{ }^{2} / q\right]_{n}=1$ for all q prime to 2 according as $N \varepsilon_{0}=1$ or -1 .
ii) Suppose that $\left[-\varepsilon_{0}{ }^{2} / q\right]_{n}=1$ for one of $\mathfrak{q} \mid d$ prime to 2 and for all n. Then by Lemma 6 we have $\varepsilon_{0}^{2 k} \equiv-1(\bmod . q)$ for some odd k, hence $\left(N \varepsilon_{0}\right)^{k} \equiv$ -1 (mod. q), owing to $N \varepsilon_{0} \equiv \varepsilon_{0}{ }^{2}$ (mod. q). Since k is odd, we have $N \varepsilon_{0} \equiv-1$ (mod. \mathfrak{q}), which means that $N \varepsilon_{0}=-1$, because \mathfrak{q} is prime to 2 .

Now we prove the following ${ }^{8}$)
Theorem 2^{9}) In order that there exists in Ω a ring unit ε mod. m such that $N \varepsilon=-1$, it is necessary and sufficient that we have $\left[-\varepsilon_{0}{ }^{2} / q\right]_{n}=1$ for all n^{7}) and for one of the prime divisors \mathfrak{q}, prime to 2 , of d and $\left[-\varepsilon_{0}{ }^{2} / p\right]_{n}=1$ for all n^{7}) and for all prime divisors \mathfrak{p} of m.

[^2]Proof. $N \varepsilon=-1$ if and only if $N \varepsilon_{0}=-1$ and $\varepsilon=\varepsilon_{0}{ }^{k}$ for some odd k. On the other hand, by Lemma $7, \varepsilon$ is a ring unit mod. m if and only if $N \varepsilon \equiv \varepsilon^{2}$ (mod. $\mathfrak{p}_{i}{ }^{e_{i}}$ and $\left.\mathfrak{q}_{j}{ }^{2 e_{j+1}}\right)(i=1, \cdots, s ; j=1, \cdots, t)$. Hence it is necessary and sufficient for ε to be a ring unit mod. m that we have $N \varepsilon_{0}=-1$ and $\left(-\varepsilon_{0}{ }^{2}\right)^{k} \equiv 1$ (mod. $\boldsymbol{p}_{i}{ }^{e_{i}}$ and $\mathfrak{q}_{j}{ }^{2 e_{j+1}}$) for some odd $k(i=1, \cdots, s ; j=1, \cdots, t)$. The theorem follows immediately from Lemma 6 and Theorem 1 .

§ 3. Fields $\Omega\left(\sqrt{\varepsilon_{0}}\right)$.

Lemma 8. We have $N \varepsilon_{0}=1$ if and only if $\Omega\left(\sqrt{\varepsilon_{0}}\right) / P$ is a non-cyclic extension of degree 4.

We have $N \varepsilon_{0}=-1$ if and only if $\Omega\left(\sqrt{\sqrt{d} \varepsilon_{0}}\right) / P$ is a cyclic extension of degree 4.

Proof. Let ω be equal to ε_{0} or $\sqrt{d} \varepsilon_{0}$ according as $N \varepsilon_{0}=1$ or -1 , and put $K=\Omega(\sqrt{\omega})$. Let σ and τ be the non-unit element of the Galois group of Ω / k and of K / Ω respectively, and let U_{σ} be a representative of σ in the Galois group of K / P. Since $\varepsilon_{0}{ }^{\sigma}=\varepsilon_{0}{ }^{-1}$ or $\left(\sqrt{d} \varepsilon_{0}\right)^{\sigma}=\sqrt{d} \varepsilon_{0} \cdot \varepsilon_{0}{ }^{-2}$ according as $N \varepsilon_{0}=1$ or $-1, K / P$ is a normal extension. On the other hand we have $\sqrt{\omega}{ }^{\tau}=-\sqrt{\omega}, \sqrt{\omega}^{\omega_{\rho}}=\sqrt{\omega} \gamma$ for some $\gamma \in \Omega$, hence $\sqrt{\omega}^{U^{2}}=\sqrt{\omega} N r$. First, let $N \varepsilon_{0}=1$. Then $\omega=\varepsilon_{0},\left(\sqrt{\omega}^{\omega_{\sigma}}\right)^{2}=\varepsilon_{0}{ }^{\sigma}=\varepsilon_{0}{ }^{-1}$ and $\left(\sqrt{\omega}{ }^{U_{\sigma}}\right)^{2}=(\sqrt{\omega} \gamma)=\varepsilon_{0} \cdot \gamma^{2}$. Therefore we have $\gamma= \pm \varepsilon_{0}, N_{\gamma}=N \varepsilon_{0}=1$, hence $U_{\sigma}{ }^{2}=1$, which means that K / P is a non-cyclic extension. Next, let $N \varepsilon_{0}=-1$. Then $\omega=\sqrt{d} \varepsilon_{0},\left(\sqrt{\omega}{ }^{U_{\sigma}}\right)^{2}=\left(\sqrt{d} \varepsilon_{0}\right)^{\sigma}$ $=\sqrt{d} \varepsilon_{0}{ }^{-1}$ and $\left(\sqrt{\omega}^{\sigma_{\sigma}}\right)^{2}=(\sqrt{\omega} \gamma)^{2}=\sqrt{d} \varepsilon_{0} \cdot \gamma^{2}$. Therefore we have $\gamma= \pm \varepsilon_{0}{ }^{-1}, N \gamma$ $=N \varepsilon_{0}{ }^{-1}=-1$, hence $U_{\sigma}{ }^{2}=\tau$, which means that K / P is a cyclic extension.

Now, for a while, suppose that $N \varepsilon_{0}=-1$. Let $d=q_{1} \cdots q_{t}$ be, as before, the prime number decomposition of d in P. Then we see necessarily that $q_{i}=2$ or $q_{i} \equiv 1(\bmod .4)(i=1, \cdots, t)$. Let $K_{i}(i=1, \cdots, t)$ be a cyclic subfield of degree 4 of the 2^{n}-th cyclotomic extensions over $P(n \geqq 4)$ or the cyclic subfield of degree 4 of the ray class field mod. q over P according as $q_{i}=2$ or not. Moreover, let χ_{i} be a generating character of the Galois group of K_{i} / P $(i=1, \cdots, t)$. For $a \in P$ we put $\chi_{i}(a)=\chi_{i}\left(\left(\frac{K / P}{(a)}\right)\right)$ where $\left(\frac{K / P}{(a)}\right)$ is the Artin symbol. We set

$$
\begin{equation*}
\chi=\chi_{1}^{n_{1} \cdots \chi_{t}^{n_{t}}, n_{i}=1,3 \quad(i=1, \cdots, t) . ~ . ~} \tag{*}
\end{equation*}
$$

Then Ω is the field corresponding to χ^{2}. Denote by A the field corresponding to χ. Then all the divisors of d and only these are completely ramified in A / P, and conversely a cyclic extension A over P of degree 4 with this property corresponds to a character χ defined by (*).

In the rational number field the symbol $[a / p]_{n}$ is defined for $p=2$ as
follows ${ }^{10}$: $[a / 2]_{n}$ is defined only when $a \equiv 1\left(\bmod .2^{n+1}\right)$ and if this is really the case $[a / 2]_{n}$ is equal to 1 or -1 according as $a \equiv 1\left(\bmod .2^{n+2}\right)$ or not.

Now we have
Theorem 3. If $N \varepsilon_{0}=-1$, then $\Omega\left(\sqrt{-1}, \sqrt{\varepsilon_{0}}\right) / P$ is a non-abelian extension, and, for some χ defined by (*) and for any rational prime p with $p \equiv 1$ (mod. 4) and $(d / p)=1^{11)}$, we have

$$
\left(\varepsilon_{0} / p\right)=\chi(p)[d / p]_{2}
$$

where \mathfrak{p} is a prime divisor of p in Ω, and $\left(\varepsilon_{0} / \mathfrak{p}\right)$ is the quadratic residue symbol in $\Omega(\sqrt{-1})$.

Proof. If we put $K=\Omega\left(\sqrt{\sqrt{d} \varepsilon_{0}}\right)$ and $K^{\prime}=\Omega\left(\sqrt{-\sqrt{d} \varepsilon_{0}}\right)$, then by Lemma $8 K$ and K^{\prime} are both cyclic extension over P of degree 4, in which all divisors of d are completely ramified. If we can show that at least in one of them only the divisors of d are ramified, then by what we have remarked above we see that $\left(\sqrt{d} \varepsilon_{0} / \mathfrak{p}\right)=\chi(\mathfrak{p})$, and therefore ${ }^{12)}\left(\varepsilon_{0} / \mathfrak{p}\right)=\chi(p)[d / p]_{2}$, for some χ defined by ($*$) and for any rational prime p with $p \equiv 1(\bmod .4)$ and $(d / p)=1$. Hence to prove the theorem we have only to show that at least in one of K and K^{\prime} over P only the divisors of d are ramified. Since both in K and in K^{\prime} over P only divisors of $2 d$ can be ramified, it remains only to prove that if d is not even, then 2 is not ramified at least in one of K or K^{\prime} over P. Let d be odd, and suppose that 2 is ramified in K. Denote by A, as before, the field corresponding to χ, and B the quadratic subfield of $A K$ over Ω, distinct both from A and from K. Then, since A and K are both cyclic over P of degree 4, B is non-cyclic and biquadratic over P and only the divisors of 2 are ramified. Hence we have $B=\Omega(\sqrt{ } \bar{a})$ where $a=-1$ or 2 . But $a=2$ does not occur, because otherwise we would have $A=\Omega\left(\sqrt{2 \sqrt{d} \varepsilon_{0}}\right)$, contrary to the fact that 2 is not ramified in A / P. Therefore we have $A=K^{\prime}$, and our assertion is proved.

Corollary. If we assume in Theorem 2 moreover that $\left(p / q_{i}\right)=1$ for all $q_{i} \mid d$, then we have

$$
\left(\varepsilon_{0} / p\right)=[p / d]_{2}[d / p]_{2} .
$$

Proof. If $\left(p / q_{i}\right)=1$, then we have $\chi_{i}(p)=\left[p / q_{i}\right]_{2}$. Thus, our assertion follows from the theorem at once.

§ 4. Applications.

If Pell's equation $x^{2}-f y^{2}=-1$ is solvable, we call f admissible. Suppose
10) cf. Furuta [1, p. 50].
11) (d / p) is the quadratic residue symbol in P.
12) cf. Furuta [2, Lemma 1 and Lemma 2].
that $d(\neq 2)$ is squarefree and let $f=m^{2} d$. Then f is admissible if and only if there exists in $P(\sqrt{d})$ a ring unit ε mod. m such that $N \varepsilon=-1$. By Theorem 2 and Corollary to Theorem 3 the following result is easily obtained:
a) Suppose that d is admissible and that m is divisible only by primes p with $p \equiv 5$ (mod. 8) and $(p / q)=1$ for all $q \mid d$. Then $m^{2} d$ is addmissible if and only if we have $[p / d]_{2}[d / p]_{2}=-1$ for all $p \mid m$.
b) ${ }^{13)}$ Let d_{1} and d_{2} be two positive odd integers and put $d=d_{1} d_{2}, \Omega_{1}=$ $P\left(\sqrt{d_{1}}\right), \Omega_{2}=P\left(\sqrt{d_{2}}\right), \Omega_{3}=P(\sqrt{d})$. Moreover, let ε_{i} be a fundamental unit of Ω_{i} and suppose that $N \varepsilon_{i}=-1(i=1,2,3)$. Then $\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}$ is contained in $\Lambda=$ $P\left(\sqrt{-1}, \sqrt{q_{1}}, \cdots, \sqrt{q_{t}}\right)$ where q_{1}, \cdots, q_{t} are all divisors of d.

Proof. Let p be any rational prime which decomposes completely in Λ, i. e., $(p / q)=1$ for all $q \mid d$, and $\mathfrak{P}, \mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3}$ be prime divisors of p in $\Lambda, \Omega_{1}, \Omega_{2}$, Ω_{3} respectively. Then by Corollary to Theorem $3\left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} / \mathfrak{P}\right)=\left(\varepsilon_{1} / \mathfrak{p}_{1}\right)\left(\varepsilon_{2} / \mathfrak{p}_{2}\right)\left(\varepsilon_{3} / \mathfrak{p}_{3}\right)$ $=\left[p / d_{1}\right]_{2}\left[d_{1} / p\right]_{2}\left[p / d_{2}\right]_{2}\left[d_{2} / p\right]_{2}[p / d]_{2}[d / p]_{2}=1$. Hence p also decomposes completely in $\Lambda\left(\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}\right)$, i. e. $\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}} \in \Lambda$.
c) ${ }^{14)}$ Let d_{1} and d_{2} be two admissible odd integers prime to each other, and put $d=d_{1} d_{2}$. If $\left[p / d_{2}\right]_{2}\left[d_{2} / p\right]_{2}=-1$ for one of the prime divisors p of d_{1}, then d is non-admissible.

Proof. Notations being as in b), we have $N \varepsilon_{1}=N \varepsilon_{2}=-1$ by the assumption for d_{1} and d_{2}. We now assume that $N \varepsilon_{3}=-1$. Then by \mathbf{b}) the product $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ is a square number in Λ. Hence we have $\left(\varepsilon_{3} / \mathfrak{p}_{3}\right)=\left(\varepsilon_{1} / \mathfrak{p}_{1}\right)\left(\varepsilon_{2} / \mathfrak{p}_{2}\right)$ and by Theorem 1] $\left[-\varepsilon_{1}{ }^{2} / \mathfrak{p}_{1}\right]_{2}=[-1 / p]_{2}\left(\varepsilon_{1} / \mathfrak{p}_{1}\right)=1$. Therefore, we see by Corollary to Theorem 3 that $\left(\varepsilon_{3} / \mathfrak{p}_{3}\right)=\left[-1 / \mathfrak{p}_{1}\right]_{2}\left(\varepsilon_{2} / \mathfrak{p}_{2}\right)=\left[-1 / \mathfrak{p}_{1}\right]_{2}\left[p / d_{2}\right]_{2}\left[d_{2} / p\right]_{2}$, whence $\left(\varepsilon_{3} / \mathfrak{p}_{3}\right)$ $=-\left[-1 / p_{1}\right]_{2}=-[-1 / p]_{2}$ by the assumption. On the other hand, we have $\left[-\varepsilon_{3}{ }^{2} / \mathfrak{p}_{3}\right]_{2}=[-1 / p]_{2}\left(\varepsilon_{3} / \mathfrak{p}_{3}\right)=1$ by Theorem 1, whence $\left(\varepsilon_{3} / \mathfrak{p}_{3}\right)=[-1 / p]_{2}$, which is a contradiction. Thus our assertion is proved.

Mathematical Institute,
Nagoya University.

References

[1] Y. Furuta, A reciprocity law of the power residue symbol, J. Math. Soc. Japan, 10 (1958), 46-54.
[2] Y. Furuta, On meta-abelian fields of a certain type, Nagoya Math. J., 14 (1959), 193-199.
[3] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65-85.
13) cf. Kuroda [4, Satz 11] and Kubota [3, Satz 1].
14) This criterion \mathbf{c}) is somewhat different from that of Rédei [7].
[4] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo, Sec., I, 4 (1943), 383-406.
[5] S. Kuroda, Über die Zerlegung rationaler Primzahlen in gewissen nicht-abelschen galoischen Körpern. J. Math. Soc. Japan, 3 (1951), 148-156.
[6] L. Rédei, Über die Grundeinheit und die durch 8 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math., 171 (1934), 131-148.
[7] L. Rédei, Über die Pellsche Gleichung $t^{2}-d u^{2}=-1$, J. Reine Angew. Math., 173 (1935), 193-211.
[8] L. Rédei, Bedingtes Artinsches Symbol mit Anwendung in der Klassenkörpertheorie, Acta Math. Acad. Sci. Hung., 4 (1953), 1-30.
[9] L. Rédei, Die 2-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie den Pellschen Gleichung, ibid., 31-85.
[10] M. Tsunekawa, On the multiple solutions of $x^{2}-d y^{2}=-1$, Bull. Nagoya Inst. Technology, 8 (1956), 1-7 (Japanese).

[^0]: 1) Namely, a unit ε such that ε is contained in the ring class mod. m.
 2) See Rédei [9], in which the history and literatures of the subject is stated.
 3) See Furuta [2]. If Δ containes all the l-th roots of unity for a fixed rational prime l, we shall have analogous results to this $\S 1$ by using l instead of 2 .
[^1]: 4) For instance, see Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper II (1926), p. 10.
 5) $\alpha \equiv 1$ (mod. \mathfrak{p}) means that $\alpha \equiv \beta^{2^{n}}$ (mod. \mathfrak{p}) for some $\beta \in \Delta$.
 6) $2^{r} \| N \mathfrak{p}-1$ means that $2^{r} \mid N \mathfrak{p}-1$ and $2^{r+1} \nmid N \mathfrak{p}-1$.
 7) By Lemma 2 we may write "for n such that $2^{n} \| N_{p}-1$ " instead of "for all n ".
[^2]: 8) Theorem 2 is a result stronger than that of Tsunekawa [10], i. e. we drop his assumption $N \varepsilon_{0}=-1$.
 9) In the excluding cases where $d=2$ or m is even, we can show easily the following facts: In case of $d=2$ we have $N \varepsilon_{0}=-1$. In case of m being even, if $d \equiv 1(\bmod .4)$ and $N \varepsilon_{0}=-1$ then $\varepsilon=\varepsilon_{0}{ }^{\varphi(2)}$ is a ring unit mod. 2 such that $N \varepsilon=-1$, where φ is Euler's function in Ω; if $2 \mid d$, then there is no ring unit ε mod. 2 such that $N \varepsilon=-1$; finally, if $d \neq 1(\bmod .4)$ and $2 \nmid d$, then always $N \varepsilon_{0}=-1$.
