
Journal of the Mathematical Society of Japan Vol. 11, No. 2, April, 1959

Norm of units of quadratic fields.

By Yoshiomi FURUTA

(Received Nov. 13, 1958)

Let $P$ be the rational number field and $\Omega=P(\sqrt{d})$ a real quadratic field,
where $d$ is a positive square free integer, different from 2. We denote by
$\epsilon_{0}$ a fundamental unit of S2; by $\epsilon$ an arbitrary unit of $f2$ ; by $N$ the absolute
norm; and by small Roman letters $a,$ $b,\cdots,$ $ m,\cdots$ rational integers.

In this paper, we shall be concerned with the following problem:
“ For what pair of integers $d,$ $m$ does there exist in $\Omega$ a ring unit1) $\epsilon mod$ .

$m$ with a negative norm: $N\epsilon=-1$ ¿’

Dirichlet gave some criteria on the question by means of power residue
symbols. More recently it was investigated by A. Scholz, L. R\’edei and others.
In particular, R\’edei [6], [7] etc.2) discussed it in detail by using the quadratic
residue symbol and the fourth power residue symbol of Dirichlet, and finally
R\’edei [9] solved it completely as a problem related to the ideal class group
of quadratic fields. On the other hand, Kuroda [5] and Furuta [1], [2] used
the power residue symbol of Dirichlet and a generalized symbol to express
the decomposition law of primes in some meta-abelian extensions, and also
Tsunekawa [10] proved an interesting result concerning our problem. In the
present paper, we shall give relationships between the norm of units of real
quadratic fields and meta-abelian extensions, from which various results on
our problem, in particular some of R\’edei’s results and Tsunekawa’s theorem
in a stronger from, can be deduced.

\S 1. Restricted power residue symbol.

Let $\Delta$ be an algebraic number field of finite degree, $\mathfrak{p}$ a prime ideal of
$\Delta$ prime to 2 and $\alpha$ a number of $\Delta$ , prime to $\downarrow$). Then for a non-negative
rational integer $n$ the restricted $2^{n}$-th power residue symbol $[\alpha/\mathfrak{p}]_{n}$ is defined as
follows8). For $n=0$ we set always $[\alpha/\mathfrak{p}]_{n}=1$ . For $n\geqq 1[\alpha/\mathfrak{p}]_{n}$ is defined
only when we have $[\alpha/\mathfrak{p}]_{n-1}=1$ , and if this is really the case we set $[\alpha/\mathfrak{p}]_{n}$

$=(-1)^{x}$ , where $\alpha^{(N\mathfrak{p}^{h}-1)/2^{n}}\equiv(-1)^{x}(mod. \mathfrak{p}),$ $h$ being the smallest natural num-
ber with $2^{n}|N\mathfrak{p}^{h}-1$ . For an ideal $\mathfrak{m}$ of $\Delta$ prime to both $\alpha$ and 2 with the

1) Namely, a unit $\epsilon$ such that $\epsilon$ is contained in the ring class $mod$ . $m$ .
2) See R\’edei [9], in which the history and literatures of the subject is stated.
3) See Furuta [2]. If $\Delta$ containes all the l-th roots of unity for a fixed rationak

prime $J$, we shall have analogous results to this \S 1 by using $l$ instead of 2.
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prime ideal decomposition $\mathfrak{m}=\mathfrak{p}_{1}^{e_{1}}\cdots \mathfrak{p}_{c^{e_{t}}}$ we set $[\alpha/\mathfrak{m}]_{n}=[\alpha/0_{1}]_{n}^{e_{1}}\cdots[\alpha/\mathfrak{p}_{\iota}]_{n}^{e_{t}}$ ,
when each $[\alpha/\mathfrak{p}_{i}]_{n}(i=1,\cdots, t)$ is defined. From the definition follows the
following lemma in an analogous manner4) as in the case of the ordinary
power residue symbol

LEMMA 1. If $2^{n}|N_{1)}-1$ and $[\alpha/\mathfrak{p}]_{n}=1$ , then $\alpha\equiv\lfloor nJ1(mod. \mathfrak{p})^{5)}$ .
Furthermore, we can prove
LEMMA 2. If $2^{r}\Vert N\mathfrak{p}-1^{6)}$ and $[\alpha/\mathfrak{p}]_{r}=1$ , then $[\alpha/\mathfrak{p}]_{n}=1$ for all $n$ .
PROOF. For $n\leqq r$ we have trivially $[\alpha/\mathfrak{p}]_{n}=1$ by the definition. Let $n>r$

and $2^{n}|N\mathfrak{p}^{\hslash}-1,$ $h$ being as before. Let $(N\mathfrak{p}^{h}-1)/2^{n}=k(N\mathfrak{p}-1)/2^{r}$ , where $k$ is
an integer. Then, since $\alpha^{(N\mathfrak{p}-1)/2^{\gamma}}\equiv 1$ (mod. p) by assumption, we have
$\alpha^{(N\mathfrak{p}^{h}-l)/2^{n}}\equiv\alpha^{k(N\mathfrak{p}-1)/2^{\gamma}}\equiv 1(mod. \mathfrak{p})$ .

The next two lemmas follow immediately from Lemma 2 and the defini-
tion.

LEMMA 3. If both $[\alpha/\mathfrak{p}]_{n}$ and $[\beta/\mathfrak{p}]_{n}$ are defined, then $[\alpha\beta/\mathfrak{p}]_{n}$ is also
defined, and we have $[\alpha/\mathfrak{p}]_{n}[\beta/\mathfrak{p}]_{n}=[\alpha\beta/\mathfrak{p}]_{n}$ .

LEMMA 4. If $[\alpha^{k}/\mathfrak{p}]_{n}$ is defined for some odd rational integer $k$ , then $[\alpha/\mathfrak{p}]_{n}$

is also defined, and we have $[\alpha^{k}/\mathfrak{p}]_{n}=[\alpha/\mathfrak{p}]_{n^{k}}=[\alpha/\mathfrak{p}]_{n}$ .
LEMMA 5. For any prime ideal $\mathfrak{p}$ prime to 2 and for any natural number $s$,

the next two relations $\alpha\equiv[n]1(mod. \mathfrak{p})$ and $\alpha\equiv_{J}In1(mod. \mathfrak{p}^{s})$ are equivalent.

PROOF. If $\alpha\equiv 1[n](mod. \mathfrak{p}^{s})$ , then trivially $\alpha\equiv 1\lfloor nJ(mod. \mathfrak{p})$ . Conversely sup-

pose that $\alpha\equiv[n]1(mod. \mathfrak{p})$ , namely $\alpha=\beta^{2^{n}}\gamma,$ $\gamma\equiv 1(mod. \mathfrak{p})$ for some $\beta,$ $\gamma\in\Delta$ .
Denoting by $S(\mathfrak{p}^{s})$ the group of all $ x\in\Delta$ such that $x\equiv 1(mod. p^{s})$ , we see that
the order of the factor group $S(P)/S(p^{s})$ is equal to $\varphi(\mathfrak{p}^{s})/\varphi(\mathfrak{p})=p^{k}$ where $k=$

$f(s-1),$ $N\mathfrak{p}=p^{f}$ . Therefore $\gamma^{p^{k}}\equiv 1(mod.p^{s})$ , whence $\alpha^{p^{k}}\equiv \mathfrak{c}n\rfloor 1(mod. \mathfrak{p}^{s})$ . Since
$p$ is odd, we have $\alpha\equiv 1(mod. \mathfrak{p}^{s})$ .

$[n]$

Now we have the foilowing
LEMMA 6. We have $[\alpha/\mathfrak{p}]_{n}=1$ for all7) $n$ if and only if we have $\alpha^{k}\equiv 1$

$(mod. \mathfrak{p}^{s})$ for a natural number $s$ and for an odd rational integer $k_{\Phi}$

PROOF. From $\alpha^{k}\equiv 1(mod. \mathfrak{p}^{s})$ follows $\alpha^{k}\equiv 1(mod.p)$ , hence $[\alpha^{k}/\mathfrak{p}]_{n}=1$

for all $n$ , and by Lemma 4 we have $[\alpha/\mathfrak{p}]_{n}=1$ for all $n$ since $k$ is odd. Con-
versely, suppose that $[\alpha/\mathfrak{p}]_{n}=1$ for all $n$ . If $2^{r}\Vert N\mathfrak{p}-1$ , then by Lemma 1
$\alpha\equiv lr11(mod. \mathfrak{p}^{s}),$

$i$ . $e$ . $\alpha=\beta^{r}\underline{\prime}\gamma,$ $\gamma\equiv 1(mod. \mathfrak{p}^{s})$ for some $\beta,$ $\gamma\in\Delta$ . If we set $k=$

$\varphi(\mathfrak{p}^{s})/2^{r}$ , then $k$ is odd and we see that $\beta^{k2^{\gamma}}=\beta^{\varphi(\phi^{S})}\equiv 1(mod. \mathfrak{p}^{s})$ . Hence we

4) For instance, see Hasse, Bericht \"uber neuere Untersuchungen und Probleme
aus der Theorie der algebraischen Zahlkorper II (1926), p. 10.

5)
$\alpha\equiv 1[n](mod. \mathfrak{p})$ means that $\alpha\equiv\beta^{2}n(mod. \mathfrak{p})$ for some $\beta\in\Delta$ .

6) $2^{r}\Vert N\mathfrak{p}-1$ means that $2^{r}|N\mathfrak{p}-1$ and $2^{r+1}\mathcal{X}N\mathfrak{p}-1$ .
7) By Lemma 2 we may write ‘ for $n$ such that $2^{n}\Vert N\mathfrak{p}-1$

“ instead of “ for all $n$ .
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have $\alpha^{k}\equiv 1(mod. \mathfrak{p}^{s})$ for an odd $k$ .

\S 2. Norm of ring units of real quadratic fields.

We denote hereafter by small Greek letters $\alpha,$ $\beta,\cdots$ integers of the qua-
dratic field $\Omega$ , and by $\alpha^{\prime},$ $\beta^{\prime},\cdots$ their conjugates with regard to $\Omega/P$. Let
$d=q_{1}\cdots q_{t}$ be the prime number decomposition of $d$ in $P$, and $q_{1},\cdots,$ $q_{t}$ be all
the prime divisors of $q_{1},\cdots,$ $q_{t}$ in $\Omega$ respectively. Further, assume hereafter
that $m$ is odd.

LEMMA 7. Let $m=\prod_{i=1}^{l}\mathfrak{p}_{\iota^{e_{i}}}\prod_{j=1}^{t}q_{j}^{e_{j}}$ be the prime ideal decomposition of $m$

in $\Omega$ where $(\mathfrak{p}_{i}, d)=1,1\leqq e_{i}$ and $0\leqq e_{j}$ . Then $\alpha$ is contained in the ring class
$mod$ . $m$ of $\Omega$ if and only if

$\left\{\begin{array}{l}\alpha\equiv\alpha^{\prime} (mod.\mathfrak{p}_{i}^{e_{i}}) i=1,\cdots,s,\\\alpha\equiv\alpha^{\prime} (mod.q_{j}^{2e_{j}+1}) j=1,\cdots,t.\end{array}\right.$

PROOF. Since we have $\alpha-\alpha^{\prime}=b\sqrt{d}$ or $\alpha-\alpha^{\prime}=2b\sqrt{d}$ with some $b$ ac-
cording as $d\equiv 1(mod. 4)$ or $d\equiv 2,3(mod. 4)$ , the lemma is clear.

THEOREM 1. In order that $N\epsilon_{0}=1$ resp. $-1$ it is necessary and sufficient
that $[\epsilon_{0}^{2}/q]_{n}=1$ resp. $[-\epsilon_{0}^{2}/q]_{n}=1$ for all $n^{7)}$ and for one of the prime divisors
$q$ prime to 2 of $d$.

PROOF. i) Since $\epsilon_{0}\equiv\epsilon_{0}^{\prime}(mod. \sqrt{d})$ , we have $N\epsilon_{0}\equiv\epsilon_{0}^{2}(mod. /\overline{d})$ , namely
$\epsilon_{0}^{2}\equiv 1$ or $-1(mod. \sqrt{d})$ according as $N\epsilon_{0}=1$ or $-1$ . Hence, it follows from
Lemma 6 that we have $[e_{0}^{2}/q].=1$ or $[-\epsilon_{0}^{2}/q]_{n}=1$ for all $q$ prime to 2 ac-
cording as $N\epsilon_{0}=1$ or $-1$ .

ii) Suppose that $[-\epsilon_{0}^{2}/q]_{n}=1$ for one of $q|d$ prime to 2 and for all $n$ .
Then by Lemma 6 we have $\epsilon_{0}^{2k}\equiv-1(mod. q)$ for some odd $k$ , hence $(N\epsilon_{0})^{k}\equiv$

$-1(mod. q)$ , owing to $N\epsilon_{0}\equiv\epsilon_{0}^{2}(mod. q)$ . Since $k$ is odd, we have $N\epsilon_{0}\equiv-1$

$(mod. q)$ , which means that $N\epsilon_{0}=-1$ , because $q$ is prime to 2.
Now we prove the following8)

THEOREM $2^{9)}$ In order that there exists in $\Omega$ a ring unit $\epsilon$ mod. $m$ such that
$N\epsilon=-1$ , it is necessary and sufficient that we have $[-\epsilon_{0}^{2}/q]_{n}=1$ for all $n^{7)}$ and
for one of the prime divisors $q$ , prime to 2, of $d$ and $[-\epsilon_{0^{2}}/p].=1$ for all $n^{7)}$

and for all prime divisors $\mathfrak{p}$ of $m$ .
8) Theorem 2 is a result stronger than that of Tsunekawa [10], $i$ . $e$ . we drop his

assumption $N\epsilon_{0}=-1$ .
9) In the excluding cases where $d=2$ or $m$ is even, we can show easily the

following facts : In case of $d=2$ we have $N\epsilon_{0}=-1$ . In case of $m$ being even, if
$d\equiv 1(mod. 4)$ and $Ne_{0}=-1$ then $\epsilon=\epsilon_{0^{\varphi(2)}}$ is a ring unit $mod$ . $2$ such that $N_{6}=-1$ ,
where $\varphi$ is Euler’s function in $\Omega$ ; if 2 $|d$, then there is no ring unit $\epsilon mod$ . $2$ such
that $N\epsilon=-1$ ; finally, if $d\not\equiv 1(mod. 4)$ and $24^{\prime}d$, then always $N\epsilon_{0}=-1$ .
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PROOF. $Ne=-1$ if and only if $N\epsilon_{0}=-1$ and $\epsilon=\epsilon_{0}^{k}$ for some odd $k$ . On
the other hand, by Lemma 7, $\epsilon$ is a ring unit $mod$ . $m$ if and only if $N\epsilon\equiv\epsilon^{2}$

($mod$ . $p_{i}^{e_{i}}$ and $q_{j^{2e_{j}+1}}$ ) $(i=1,\cdots, s;j=1,\cdots, t)$ . Hence it is necessary and sufficient
for $\epsilon$ to be a ring unit $mod$ . $m$ that we have $N\epsilon_{0}=-1$ and $(-\epsilon_{0}^{2})^{k}\equiv 1(mod$ . $\mathfrak{p}_{\iota^{e_{i}}}$

and $q_{j^{2e_{j}+1}}$ ) for some odd $k(i=1,\cdots, s;j=1,\cdots, t)$ . The theorem follows im-
mediately from Lemma 6 and Theorem 1.

\S 3. Fields $\Omega(\sqrt{\epsilon_{0}})$ .

LEMMA 8. We have $N\epsilon_{0}=1$ if and only if $\Omega(\sqrt{\epsilon_{0}})/P$ is a non-cyclic exten-
sion of degree 4.

We have $Ne_{0}=-1$ if and only if $\Omega(\sqrt{\sqrt{d}\epsilon})/P$ is a cyclic extension of
degree 4.

PROOF. Let $\omega$ be equal to $\epsilon_{0}$ or $\sqrt{d}\epsilon_{0}$ according as $N\epsilon_{0}=1$ or $-1$ , and
put $K=\Omega(\sqrt{\omega})$ . Let a and $\tau$ be the non-unit element of the Galois group
of $\Omega/k$ and of $ K/\Omega$ respectively, and let $U_{\sigma}$ be a representative of $\sigma$ in the
Galois group of $K/P$. Since $\epsilon_{0}^{\sigma}=\epsilon_{0}^{-1}$ or $(\sqrt{d}\epsilon_{0})^{\sigma}=\sqrt{d}\epsilon_{0}\cdot\epsilon_{0}^{-2}$ according as
$N\epsilon_{0}=1$ or $-1,$ $K/P$ is a normal extension. On the other hand we have
$\sqrt{\omega}^{r}=-\sqrt{\omega},$ $\sqrt{\omega}^{U_{\sigma}}=\sqrt{\omega}\gamma$ for some $\gamma\in\Omega$ , hence $\sqrt{\omega}^{U_{\sigma}^{2}}=\sqrt{\omega}N\gamma$ . First, let
$N\epsilon_{0}=1$ . Then $\omega=\epsilon_{0},$

$(\sqrt{\omega}^{U_{\sigma}})^{2}=\epsilon_{0^{\sigma}}=\epsilon_{0}^{-1}$ and $(\sqrt{\omega}^{U_{\sigma}})^{2}=(\sqrt{\omega}\gamma)=\epsilon_{0}\cdot\gamma^{2}$ . There-
fore we have $\gamma=\pm\epsilon_{0},$ $N\gamma=N\epsilon_{0}=1$ , hence $U_{\sigma^{2}}=1$ , which means that $K/P$ is
a non-cyclic extension. Next, let $N\epsilon_{0}=-1$ . Then $\omega=\sqrt{d}e_{0},$ $(\sqrt{\omega}^{U_{\sigma}})^{2}=(\sqrt{d}e_{0})^{\sigma}$

$=\sqrt{d}\epsilon_{0}^{-1}$ and $(\sqrt{\omega}^{U_{\sigma}})^{2}=(\sqrt{\omega}\gamma)^{2}=f\overline{d}\epsilon_{0}\cdot\gamma^{2}$ . Therefore we have $\gamma=\pm\epsilon_{0}^{-1},$ $ N\gamma$

$=N\epsilon_{0}^{-1}=-1$ , hence $ U_{\sigma^{2}}=\tau$ , which means that $K/P$ is a cyclic extension.
Now, for a while, suppose that $N\epsilon_{0}=-1$ . Let $d=q_{I}\cdots q_{t}$ be, as before,

the prime number decomposition of $d$ in $P$. Then we see necessarily that
$q_{i}=2$ or $q_{i}\equiv 1(mod. 4)(i=1,\cdots, t)$ . Let $K_{i}(i=1,\cdots, t)$ be a cyclic subfield of
degree 4 of the $2^{n}$-th cyclotomic extensions over $P(n\geqq 4)$ or the cyclic sub-
field of degree 4 of the ray class field $mod$ . $q$ over $P$ according as $q_{i}=2$ or
not. Moreover, let $\chi_{i}$ be a generating character of the Galois group of $K_{i}/P$

$(i=1,\cdots, t)$ . For $a\in P$ we put $\chi_{t}(a)=\chi_{i}(\left(\begin{array}{l}K/P\\---\\(a)\end{array}\right))$ where $(\frac{K/P}{(a)})$ is the Artin

symbol. We set
$(*)$ $\chi=\chi_{1}^{n_{1}}\cdots\chi_{\iota^{n_{t}}},$ $n_{i}=1,3$ $(i=1,\cdots, t)$ .
Then 2 is the field corresponding to $\chi^{2}$ . Denote by $A$ the field corresponding
to $\chi$ . Then all the divisors of $d$ and only these are completely ramified in
$A/P$, and conversely a cyclic extension $A$ over $P$ of degree 4 with this pro-
perty corresponds to a character $\chi$ defined by $(*)$ .

In the rational number field the symbol $[a/p]_{n}$ is defined for $p=2$ as
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follows : $[a/2]_{n}$ is defined only when $a\equiv 1(mod. 2^{n+1})$ and if this is really
the case $[a/2]_{n}$ is equal to 1 or $-1$ according as $a\equiv 1(mod. 2^{n+l})$ or not.

Now we have
THEOREM 3. If $N\epsilon_{0}=-1$ , then $\Omega(\sqrt{-1}, \sqrt{}^{-}6_{0})/P$ is a non-abelian extension,

and, for some $\chi$ defined by $(*)$ and for any rational prime $p$ with $p\equiv 1(mod. 4)$

and $(d/p)=1^{11)}$ , we have

$(\epsilon_{0}/\mathfrak{p})=\chi(p)[d/p]_{2}$

where $\mathfrak{p}$ is a prime divisor of $p$ in 2, and $(\epsilon_{0}/\mathfrak{p})$ is the quadratic residue symbol
in $\Omega(\sqrt{-1})$ .

PROOF. If we put $K=\Omega(\sim\sqrt{d}\epsilon_{0})$ and $K^{\prime}=\Omega(\sqrt{-\sqrt d\epsilon_{0}})$ , then by Lemma
8 $K$ and $K^{\prime}$ are both cyclic extension over $P$ of degree 4, in which all divisors
of $d$ are completely ramified. If we can show that at least in one of them
only the divisors of $d$ are ramified, then by what we have remarked above
we see that $(\sqrt{d}\epsilon_{0}/\mathfrak{p})=\chi(\mathfrak{p})$ , and therefore12) $(\epsilon_{0}/\mathfrak{p})=x(p)[d/p]_{2}$ , for some $\chi$

defined by $(*)$ and for any rational prime $p$ with $p\equiv 1(mod. 4)$ and $(d/p)=1$ .
Hence to prove the theorem we have only to show that at least in one of $K$

and $K^{\prime}$ over $P$ only the divisors of $d$ are ramified. Since both in $K$ and in
$K^{\prime}$ over $P$ only divisors of $2d$ can be ramified, it remains only to prove that
if $d$ is not even, then 2 is not ramified at least in one of $K$ or $K^{\prime}$ over $P$.
Let $d$ be odd, and suppose that 2 is ramified in $K$. Denote by $A$ , as before,
the field corresponding to $\chi$, and $B$ the quadratic subfield of $AK$ over $\Omega$,
distinct both from $A$ and from $K$. Then, since $A$ and $K$ are both cyclic over
$P$ of degree 4, $B$ is non-cyclic and biquadratic over $P$ and only the divisors
of 2 are ramified. Hence we have $B=\Omega(\sqrt{a})$ where $a=-1$ or 2. But $a=2$

does not occur, because otherwise we would have $A=\Omega(\sqrt{2\sqrt{d}\epsilon_{0}})$ , contrary
to the fact that 2 is not ramified in $A/P$. Therefore we have $A=K^{\prime}$ , and our
assertion is proved.

$CoROLLARY$ . If we assume in Theorem 2 moreover that $(p/q_{i})=1$ for all $q_{i}|d$,
then we have

$(e_{0}/\mathfrak{p})=[p/d]_{2}[d/p]_{2}$ .
PROOF. If $(p/q_{i})=1$ , then we have $x_{i}(p)=[p/q_{i}]_{2}$ . Thus, our assertion

follows from the theorem at once.

\S 4. Applications.

If Pell’s equation $x^{2}-fy^{2}=-1$ is solvable, we call $f$ admissible. Suppose

10) cf. Furuta [1, p. 50].
11) $(d/p)$ is the quadratic residue symbol in $P$.
12) cf. Furuta [2, Lemma 1 and Lemma 2].



144 Y. FURUTA

that $d(\neq 2)$ is squarefree and let $f=m^{2}d$. Then $f$ is admissible if and only if
there exists in $P(\sqrt{d})$ a ring unit $\epsilon mod$ . $m$ such that $N\epsilon=-1$ . By Theorem
2 and Corollary to Theorem 3 the following result is easily obtained:

a) $S$uppose that $d$ is admissible and that $m$ is divisible only by primes $p$

with $p\equiv 5(mod. 8)$ and $(p/q)=1$ for all $q|d$. Then $m^{2}d$ is addmissible if and
only if we have $[p/d]_{2}[d/p]_{2}=-1$ for all $p|m$ .

$b)^{13)}$ Let $d_{1}$ and $d_{2}$ be two positive odd integers and put $d=d_{1}d_{2},$ $\Omega_{1}=$

$P(\sqrt{d_{1}}),$ $\Omega_{2}=P(\sqrt{d_{2}}),$ $\Omega_{3}=P(\sqrt{d})$ . Moreover, let $\epsilon_{i}$ be a fundamental unit of
$S2_{i}$ and suppose that $Ne_{i}=-1(i=1,2,3)$ . Then $\sqrt{\epsilon_{1}\epsilon_{2}\epsilon_{3}}$ is contained in $\Lambda=$

$P(\sqrt{-1}, \sqrt{q_{1}},\cdots, \sqrt{q_{t}})$ where $q_{1},\cdots,$ $q_{t}$ are all divisors of $d$.
PROOF. Let $p$ be any rational prime which decomposes completely in $\Lambda$ ,

$i$ . $e.,$ $(p/q)=1$ for all $q|d$, and $\mathfrak{P},$ $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\mathfrak{p}_{3}$ be prime divisors of $p$ in $\Lambda,$ $\Omega_{1},$ $\Omega_{2}$ ,
$2_{3}$ respectively. Then by Corollary to Theorem 3 $(\mathcal{E}_{1}6_{2}6_{3}/\mathfrak{P})=(\epsilon_{1}/\mathfrak{p}_{1})(6_{2}/\mathfrak{p}_{2})(\epsilon_{3}/\mathfrak{p}_{3})$

$=[p/d_{1}]_{2}[d_{1}/p]_{2}[p/d_{2}]_{2}[d_{2}/p]_{2}[p/d]_{2}[d/p]_{2}=1$ . Hence $p$ also decomposes
completely in $\Lambda(\sqrt{\epsilon_{1}\epsilon_{2}\epsilon_{8}}),$ $i$ . $e$ . $\sqrt{\epsilon_{1}\epsilon_{2}\epsilon_{3}}\in\Lambda$ .

$c)^{14)}$ Let $d_{1}$ and $d_{2}$ be two admissible odd integers prime to each other, and
put $d=d_{1}d_{2}$ . If $[p/d_{2}]_{2}[d_{2}/p]_{2}=-1$ for one of the prime divisors $p$ of $d_{1}$ , then
$d$ is non-admissible.

PROOF. Notations being as in b), we have $N_{6_{1}}=N\epsilon_{2}=-1$ by the assump-
tion for $d_{1}$ and $d_{2}$ . We now assume that $N\epsilon_{3}=-1$ . Then by b) the product
$\epsilon_{1}\epsilon_{2}\epsilon_{3}$ is a square number in $\Lambda$ . Hence we have $(\epsilon_{3}/\mathfrak{p}_{3})=(\epsilon_{1}/\mathfrak{p}_{1})(\epsilon_{2}/\mathfrak{p}_{2})$ and by
Theorem 1 $[-\epsilon_{1}^{2}/\mathfrak{p}_{1}]_{2}=[-1/p]_{2}(\epsilon_{1}/\mathfrak{p}_{1})=1$ . Therefore, we see by Corollary to
Theorem 3 that $(\epsilon_{3}/\mathfrak{p}_{3})=[-1/\mathfrak{p}_{I}]_{2}(\epsilon_{2}/\mathfrak{p}_{2})=[-1/\mathfrak{p}_{1}]_{2}[p/d_{2}]_{2}[d_{2}/p]_{2}$ , whence $(\epsilon_{3}/\mathfrak{p}_{3})$

$=-[-1/\mathfrak{p}_{1}]_{2}=-[-1/p]_{2}$ by the assumption. On the other hand, we have
$[-\epsilon_{3}^{2}/\mathfrak{p}_{3}]_{2}=[-1/p]_{2}(\epsilon_{3}/\mathfrak{p}_{3})=1$ by Theorem 1, whence $(\epsilon_{3}/\mathfrak{p}_{3})=[-1/p]_{2}$ , which
is a contradiction. Thus our assertion is proved.

Mathematical Institute,
Nagoya University.
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