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Factor sets in a number field and the
norm residue symbol.

By Tomio KUBOTA

(Received Nov. 13, 1958)

Let £ be an algebraic number field of finite degree and K be an abelian
extension over £ with Galois group A=g(K/2).” Then, in the multiplicative
group £* of non-zero elements of £ as a trivial A-module, we can consider
a factor set ¢ of A consisting of roots of unity. The first problem treated
in this paper is an explicit determination of the p-invariants vy({) of { as a
factor set of A in K/2, where p is a place of £. We obtain the following
result. Let «, # be two non-zero elements of the p-adic completion £, of 2
and o, 7 be elements of A canonically corresponding to «, g, respectively, by
the reciprocity mapping of the local class field theory. Then, using the norm
residue symbol of certain degree e we can determine the p-invariant v,({)
(mod 1) by

(ﬁ’!@_)e-up(c) ZQ’L

b /e (oo

whenever p is a prime ideal of £ prime to the order of A and £, contains
sufficiently many roots of unity (§1).

Now, let G be a finite group containing in the center a cyclic group Z
such that G/Z= A. If £ contains sufficiently many roots of unity and Z is
identified with a subgroup of £, then the factor set ¢ determined by A in
Z is identified with a factor set { of A in K/ and it is easily seen that K
is the subfield corresponding to Z in the sence of Galois theory of a normal
extension K over £ with Galois group G if and only if ¢ splits as a factor
set of A in K/&, i.e., all the p-invariants of { are equal to 0. This fact,
composed with the formula above, is naturally applicable to the problem of
determining whether an abelian extension K/2 with Galois group A is embed-
dable in a normal extension K/ with Galois group G. In fact, we see in
§2 that a necessary and sufficient condition for certain types of K to be
embeddable is expressed by some bilinear congruences concerning a homomor-
phism #, attached to K by means of class field theory, of the idele class
group of £ into A. ‘

1) Galois groups will be denoted by this notation.
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In the last § 3, we consider as examples dihedral and quaternion exten-
sions over the rational number field P and we have, among others, the
following result. Let A be an abelian group of the type (2, 2) and p,,--, p:
be prime numbers congruent to 1 mod 4. Suppose an extension K over P
with Galois group A to be unramified at every rational prime number except
P b Then K is determined in a definite way by rational integers xi, vy,
Xo Voot X ¥, and K is embeddable in a dihedral (and equivalently in a
quaternion) extension over P if and only if x,y satisfy the simultaneous
bilinear congruences f;(x,y) =0 (mod 2), where f,(i=1,---,1) is defined by

filx, y) = E 7%7{1— ( ﬁ;’_)}(x,yﬁxjyz)
j=1

and we set (g%):l. From this fact we see also that the number of the

dihedral or the quaternion extensions over P unramified at every rational
prime number except p,,---, p, is determined by # and by the number of solu-
tions of f;(x, ) =0 (mod 2).

§1. Determination of p-invariants.

1. At the beginning we introduce the notion of G-extension over a field.
Let 2% be an algebraic number field of finite degree and G be a finite group.
Then we understand by a G-extension over £ a homomorphism x into G of
the Galois group of the algebraic closure over £. Of course a quite similar
definition is possible for an arbitrary basic field. A G-extension & over £
determines by Galois theory an algebraic extension K, of finite degree over
2. We call K, the corresponding field of . For the sake of convenience we
regard properties of K, as those of «, e.g.,, we say & is ramified at a prime
ideal p of £ whenever K, is ramified at . In the case where G=A is an
abelian group, the class field theory implies that & may be considered a
homomorphism into A of the idéle class (or idéle) group of 2. Furthermore,
restricting in this case £ to the p-components of ideles for a place p of £,
we get in a natural way an A-extension x, over the p-adic field £,, which we
call the p-component of «.

Now, in the multiplicative group £*, under trivial operation of A, of
non-zero elements of £2, we consider a factor set { of A consisting of roots
of unity. For such a (, the factor set relation &, &z = &, 068, turns out
Coyc0lep="Cor,0ls-. Let £ be an A-extension over £ with its corresponding
field K, Since then & maps the Galois group g,=g(K,/2) into A, we can

2) We observe in the sequel one and the same number field Q.
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attach to every « a factor set {* of g, in K,/2 by setting (% .=, en for
every o, 7< g. We call {* the induced factor set. We now propose to observe
the p-invariant v,({, ) of {* Since the p-component x, of £ determines in a
maximal abelian extension over £, the corresponding field K,* with the Galois
group g = g(K,*/2y) and with the induced factor set (", it suffices for us
only to determine the p-invariant of (*. Furthermore, we may assume
without any loss of generality that the order of A is a power of a prime
number / and { consists of roots of unity whose orders are powers of 7
From now on, if no confusion is possible, we write K* for K., g® for

g =g(K»/2,) and {, . for Crylo),mp(® =C:f’,, where o, r mean elements of g
Besides, we settle the assumption that p is prime to / and £, contains a
primitive ec-th root of unity, where ¢ is the ramification order of £ at p and
¢ is determined by roots of unity appearing in ¢ as the highest of their
orders.

Under the assumption, if 7% is the inertia field of K*/2,, then g(T%/2y) is
cyclic of order fF=(T?:2,) and g(K*/T?) is cyclic of order e. Now, denoting
by =, a definite generator of the prime ideal of 2,, we fix a Frobenius auto-

Ty f;”/v(f?») of K*/9, Next, setting K*= K»{/z,) and denoting

by ¢, a definite root of unity in £, such that the order of {, is the highest

morphism ¢ = (

possible power of /, we fix another automorphism & :(@%L/“—(Ji’-) of Kv/0,.

The restriction » to K* of & is a generator of g(K*/7T% and we have ¥/m%

={,/m, with a definite primitive e-th root ¢, of unity. We have also for
every ccg® a unique decomposition o =040, with c,=¢* (0=i<f) and og,&
{w}.®

2. After these preliminaries, we can arrive at an exposition of the p-
invariant vy({) =vy((, k) of {*». We proceed quite similarly to Artin [1, Chap.
6, 4. Set {»="{u,1{w,0""Co,ue-1. Then, under the assumption in 1, there is
Z,=8, such that ¢,=C.% Hence, if we set a; ={3Y, ay = Lo,0 (ot for
$474

i>1 and a,=1 for o« {w}, then the factor set (= C,;,r'ga = fills
gT
1) 1 i+]< e . .
Coiyoi = for O=1j<e),
: Co i+j=e
and, if further we set b,i = {-(+@++0'h) — 7=i and p, =1 for o {w}, then, for
the factor set (& ={%- Z"b’ , we have (i, =1. Moreover, if we, using the
o7
decomposition o¢=g40, for c=g? at the last part of 1, set ¢,=¢&®,, and

o‘w,a‘¢

3) The symbol { } stands for the group generated by the element in it.
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@ @, et W (3 — Q@ ( (2) (2 —
gﬂ,f - CU,T' Cov ’ then € have Co'a),,o'w - Co‘u),,o'q; a'2) 1(1 R a') o T 1 Cuﬂ T Cwb T -r(p
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coze{w}. Therefore we see that {§), is an e-th root of unity and that there
is @, K* such that we have C;%:G); @ Moreover, we may assume that @,
O 0,
Q)UT ’
then A, is the lift to K*/£2, of a factor set of 7%/2, and its p-invariant is
determined whenever the p-exponent #(8y) of Bo= f¢,18¢,0'" Be,er-1 is known.
Denoting by a parenthesis a principal ideal, we have

depends only on o, and that we have @, =1. If we set here ;.= (%%

8 =10 (¢ (D“’f’i“—”) (00 o) =@

On the other hand, since K* is obtained by adjunction to 7% of an element
of the form </m,-, where ¢, is a root of unity in K* such that the order

of {, is a power of /, and since & operates trivially on such a root of unity,

we may take as @, the element (¥/z,- ()", where m is determined by (§, =
;™ Therefore we have finally

ney= e = 1

=7 p (mod 1).

Since, from the definition, {® and { are mutually cohomologous as cocycles
of g* in the multiplicative group £, of non-zero elements of £, and since

(3)
we have 4232,:5"1,&, we have Cf,f‘”mzﬂ. Thus m is directly computed by
! Ct(ﬁ”(/? ’ Cw 4
m_gm,(ﬂ
(e a Cw,a) )

3. Let us continue the observation of the same subject. The norm
residue symbol (5&;—”> is defined as Hasse [2, §117, by /7,2 ——(C”’ Ty > X/ .

This, compared with the definition of {, in 1, yields ¢ ”:<§£’pﬂip>e and there-
Gy, Ty > _Coe

P /e C<p, )

TueoreMm 1. Let A be an abelian group whose order is a power of a prime
number [, £ be an A-extension over 2, be a factor set of A in the multiplicative
group 0%, as a trivial A-group, of non-zero elements of 2 and (* be the induced
Ffactor set. Assume that, for a prime ideal v of £ prime to [, the b-completion
L, contains a primitive ec-th voot of unity, where e is the vamification orvder of
k at D and c is the highest order of roots of wunity appeaving in (. Let further
Ky be the p-component of k, m, be a generator of the prime ideal of £y and {, be
a root of unmity in 82y such that the order of {y is the highest possible power of I.

fore we have ( Thus we obtain
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Then (%) is a primitive e-th voot of uwity in 2, and the v-invariant vy(C, £)

of ¢ is determined by

(¢, £) = % (mod 1),

whenever m is chosen so that we have

()= e

with ¢ = ky(my), @ = £,({y).

If we define for every pair o, v of elements of A a function (s, 7) = _gﬂ'f ,

7,0
then we have A(o0’, 7) = A(0, )A(0¢’, 1), A(0, t7') = A(0, T)A(0, ©/). We call the func-
tion A the bi-character attached to .

Since ¢y, 7, in theorem 1, together with the kernel of k, generates the
whole multiplicative group £, of non-zero elements of £,, it follows from
the property of A(s, r) as a bi-character that we have

CoroLrary. Notations and assumptlions being as in theorem 1, let «, f be

any two of non-zero element of 2, and write {;’g for Coplad,mp@)e  Then we have

(- &

where m is a rational integer with vy, k)= »fzi (mod 1).

§2. Applications to certain non-abelian extensions.

4. Let Z be a finite cyclic group,Y A be a finite abelian group and G
be an extension of Z by A such that Z is in the center of G. Then, a G-
extension £ over £ corresponds by the mapping G—G/Z= A to an A-extension
£ over £, which we call the A-part of £. The corresponding field K, of the:
A-part £ of a G-extension © over £ is a subfield of the corresponding field
K; of E. If two G-extensions £, £, over £ have the same A-part x, =&,
then, setting #,7'%,(c) = £,(0)"'%,(0) for every element o of the Galois group of
‘the algebraic closure £ over £, §,7'k, is a Z-extension over £.. Conversely,
if £ is a G-extension over £ and if we set £x,(0) = £(0)x,(0) with any Z-exten-
sion &, over £, then £k, is a G-extension over £ which has the same A-part
as k.

Let, for 2 moment, G be an arbitrary finite group and consider any G-

4) That Z is cyclic is not necessary here, but added for the sake of later obser-
vations.
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extension £ over £ and any finitely algebraic extension L over £. Then the
restriction x£/L of £ to the Galois group g(2/L) is a G-extension over £ and
the corresponding field of x/L is the composite field K,L. In particular, if
G = A is abelian, then, by a theorem of class field theory, we have &/L(a) =
k(N ea) for any idele a of L, where we regard A-extensions as homomor-
phisms of idéle groups.

Now, taking again a special type of group G with G/Z=A as above,
consider two G-extensions £, £, over £ with the same A-part & and set
£, 'Ey=£k, Then, we have £,/K,=#,/K;-£,/K, and therefore, regarding &,/K,
#,/K. as homomorphisms of the idéle group of K, and x, a homomorphism
of the idéle group of 2, we have £,/K.(a) =&,;/Ky(a)-£(Ng soa).

5. Let A, G and Z be as in 4, & be the factor set of A=G/Z in Z and
assume that there is a definite isomorphism § of Z into the group of roots
of unity in £. Then we can formulate as follows an elementary result con-
cerning existence of certain meta-abelian extensions over 2.

Lemma 1. In order that an A-extension & over £ is the A-part of a G-
extension £ over 8, it is necessary and sufficient that the induced factor set £0F
of K./82 splits as a factor set of g(K./R2) in the multiplicative g(K./R2)-group

X

K.* of non-zervo elements of K.
Proor. Suppose that £°% splits. Then we have &%= -ﬁlgﬂ—’ with gekK,,

0,7=g(K,./2). Denoting by ¢ the order of Z, we have (£%)°=1, whence
Bs¢=7'"" with reK,. Now, consider the field K.(¥7), set &(o)={,,0"" for
the automorphism p with ¥/7°={,¥/r of K.(¥/7)/K, and set (&) = ue( for
the prolongation &, with /7%= 8,7, of occg(K,/2) to K.¥7)/2, where u
means a system of representatives of G/Z corresponding to the factor set &.
Then we have '

(V7 )7F = Bab= N =8 =y wr) VT

and consequently £(677167) = &x(o),x(r) fOT 0, 7= g(K,/82). Therefore, if we set
generally 7(ap) = E(&E(o) for every c=g(K,/R2) and for every p=g(K (V71 )/Ky),
then £ is a G-extension over £ with the A-part £ and with the corresponding
field Kz = K.(~/r). Conversely, if £ is a G-extension over £ with A-part «
and with the corresponding field K then we have K;= K,(¥r) with rek..
We may assume that we have </r?=#(0)?-¥/r for every automorphism p of
K,(/7)/K,. We can also find an element #,=K, such that we have 8,7 = y!1=°.
Denoting by & a prolongation, with /7%= 8,47, of any ceg(K,/Q) to Kz/2,
we have

Wy s = B 7 — earR@RON-/r
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for o, reg(K,/2). Since the set of elements £(67)"£(5)i(?) is a factor set of
w(g(K,/2)) in Z equivalent with the restriction of £ to r(g(K,/2)), &% splits
as a factor set of g(K,/2) in the g(K./f2)-group K.*. g

6. Now we deal arithmetically with the existence of G-extensions £ over
£ such that £ has an A-extension « as the A-part. Since A is nilpotent, it
suffices to consider the case where the order of G is a power of a prime
number /. We assume that there is a definite isomorphism of Z into the
group of roots of unity in £ and that £ contains a primitive #n,-th root of
unity, where 7, is the exponent, i. e, the largest element order of A. Further-
more, denoting by S= {p,p,,---} the set of all ramification places of £, we
assume that every p; is a principal prime ideal of £ prime to / and that the
p;-completion £, contains a primitive m,c-th root of unity, where ¢ is the
order of Z.

Let now {,, be a definite primitive #,-th root of unity and, denoting by
7; an element of £ which generates the prime ideal p,, fix a root {; of unity

in 2y, such that we have (—Cﬁ&) ={,, and that the order of {; is a power

of /. Such a {; is then a root of unity in £, whose order is the largest
possible power of /. Since m; is a unit in £,; ({+#j), we can choose m,;; such
that =; is the product of the power {;”™4 by a unit of £2,, which is a n,-th
power residue mod p;,. We set formally m,;;=0. The congruence class m;;
mod #n, is thus uniquely determined. Next, decomposing A into a direct
product {s,} X {6,} X -+ of cyclic groups, we define x; by setting £,({;) = o,"itg%e..-,
where «; is the p;-component of £. Moreover, denoting by ( the image by
the definite isomorphism of a factor set of A=G/Z in Z, we set (o, 0,) =
Loon
CUU,O'L

Let now v; be the p,-invariant of the induced factor set {*. Then, since
the ramification order of x at p; divides #, it follows from and
from a property of the norm residue symbol that we have {7 = A(x;({)),
x;(r;)). Hence, by the product relation ITx,(m;)=1 and by the property of 2

J

= ¢, This ¢, is unique mod #n,.

as a bi-character, we have
A ($3), k() = Arey(Cy), ﬂl;[i) £i(m) ) = l;[ A (85), k()i

= TI (o, 6,)"%" 5 = Cmﬁ Myl
Jre,0

Therefore it is necessary and sufficient for the induced factor set {* to spiit
that we have

Fx)= 3 mycoXuxp=0  (mod #n,)

7,60

for every i.



136 T. KuBoTaA

Thus the existence of a G-extension £ which has « as its A-part rests
upon the restriction x#y of & to the unit idéle group U of 2. Moreover the
condition for the existence does not depend on the factor set ¢ itself, but
only on the bi-character A.

§3. Examples.

7. We now propose to observe, as examples, normal extensions of degree
8 over the rational number field P. There are two non-abelian groups of
order 8: the dihedral group G, and the quaternion group G, These two
groups are extensions of a cyclic group Z of order 2 by the group A con-
sisting of 1, o, 0, and o; = 0,0,. Identifying Z with the group of =1, factor
set £, ED of G,/Z, G,/Z are as follows.

The dihedral group The quaternion group

N T T

;gil 1 o0, o0y o0, . 1 o, o, o4
1 1 1 1 1 1 1 1 1 1

R P

04 1 -1 1~1 o 1 -1 1-1
0, 1 -1 1-1 o, 1-1-1 1
o |1 1 1 1 o, | 1 1 —1-1

These two factor sets have one and the same bi-character

T
1 o o0, o0y
g

1 1 1 1 1

o ESx
T o |1 11
02 1 _‘1 1 '—1
o | 1 —-1-1 1

Ao, 0) =

Now, let S= {p,,-,p.} be a set of positive rational prime numbers with
$:;=1 (mod 4). Denote by {; a root of unity in the p,-completion P,, such
that the order of {; is the largest possible power of 2. Since the rational
number field P is of class number 1, a homomorphism « of the idéle class
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group of P is determined by its restriction &y to the unit ideéle group U of
P. On the other hand, since —1 is a square in P,, it is easily seen that
every mapping «y of U into the cyclic group Z of order 2 is the restriction
to U of a Z-extension over P whenever the p-component of £, is trivial for
every place g&S of P. Taking A, ={1,0,} or A,={1,0,} instead of Z, we
come to a similar conclusion. Therefore we have

Lemma 2. Let S={p,,--, p;} be a set of prime numbers with p,=1 (mod 4),
Z be a cyclic group of order 2 and A be a non-cyclic group of order 4. Then
the number of all Z-resp. A-extensions over P unramified at every place q<S is
equal to 2! resp. 4%

Now, p; is a generator of the prime ideal of P,, and we have <~%;&—->:—1.
: _1 b . . o
Furthermore, setting m,; ——2—{1—( b, )}, pi 1s a square in 82, (i+)) if and

—Z—)=1 and, if & isan

A-extension with p,-component k,, we set x,({,) = 0,%0,%. Moreover, setting
Ao, 0,)=(—1)w, we have c¢;;=c¢y3=0, ¢c;,=cqy; =1. Therefore, if we denote
by v,(x) the p,-invariant of the induced factor set £®* then it follows from
6 that v,(x) is also equal to the p;-invariant of £®* and that we have

only if m;;=0. On the other hand we set formally (

t
200 =15, ) = )5 {1=(55) Mtz (mod 2).
j=1

Suppose now that £ is an A-extension unramified at every place g<S.
Then EM* gplits if and only if we have 2.v,(r) =f;(x,y) =0 (mod 2) for every
i. If this is the case, then we can find a G,-extension £ over P such that
r is the A-part of £, Let Kzw be the corresponding field of £¥ and take
7K, such that K;w = K,(Vr). Then, since 77 is a square in K for every
ccg(K,/P), we see that the P-exponent of the principal ideal (y) is congruent
mod. 2 to the P’-exponent of (7) for every prime ideal P of K, and therefore
there is a rational number such that the P-exponent of (r,r) is even when-
ever 3 is prime to all the p,. Consider the Z-extension x, over P whose
corresponding field is P(V7,). Then, since the product of #V/K, by x,/K,
has the corresponding field K.(V7rr,), it follows from 4 that £V, is a G-
extension over P with the A-part # and with the corresponding field Kzw,, =
K.(V717r,). We see also that the ramification prime ideals of K;w,,/K, must
divide either p;, or 2. If in particular all p, are =1 (mod 8), then 2 decom-
poses completely in K, and therefore either K.(Vy,r)/K: or KV —71,r)/Kx
is unramified at prime factors of 2. Thus, in this case we can choose a
G,-extension over P which has A-part ¢ and is unramified at every prime
number g&S. . At the same time, it follows from 4, especially from the last
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formula in 4, that the number of all such G,-extensions over P is equal to
the number of all Z-extensions over P unramified at every place g<S. The
number of these Z-extensions is, by equal to 2¢. Since the situation
is exactly the same for G,-extensions over P, we have

TueoreM 2. Let S={p,,---,p,} be a set of positive rational prime numbers
with p, =1 (mod 8). Consider t bilinear forms

filx, ) = E %—{1 — (%) AR

j=1

of variables x;, y; (1=1=1t), where we set <—§L> =1. Denote by G,, G, the dihedral
and the quaternion group vespectively. Then the number of all Gi-extensions over
the vational number field P which are unvamified at every prime number q&S is
equal to the number of all Gyextensions over P with the same property, and the
number is equal to 2'-times the number of solutions mod. 2 of the simultaneous

bi-linear congruences fi(x, y) =0 (mod 2) 1=i=9).

If we have (%): 1 for every i, 7, then all the forms f;(x, ») in theorem
i
2 vanish identically mod. 2 and, again by there are 4° A-extensions

over P unramified at every place g&S. Therefore we have
CoroLLaRrRY. Using same notations as in theorem 2, suppose that we have

(%L):l for every i,j. Then, there are 8" G,-extensions over P which are un-
i

vamified at every prime number q<S, and there ave the same wnumber of Gg-
extensions over P with the same property.

Considering from a slightly different point of view, we have

Tueorem 3. Let K be a non-cyclic abelian biquadratic field over the vational
number field P and let S= {p,,---,p,} be the set of prime numbers at which K is
ramified. Assume that we have p,=1 (mod 4) for every p,. Then the existence
of an overfield of K which is a dihedral extension over P implies the existence
of an overfield of K which is a quaternion extension over P, and vice versa.
Furthermore, the existence is certainly the case whenever we have additionally

D\ _ ..
(pj )_1 for every i, ]. . -
Mathematical Institute,

Nagoya University.
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