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Perturbation of continuous spectra by
unbounded operators, I.

By Shige Toshi KURODA

(Received March 14, 1959)

\S 1. Introduction and theorems.

1. Introduction. Recently Kato proved in [5], among others, that the
absolutely continuous part of the spectrum of a self-adjoint operator $H_{0}$ is
stable under the addition of a bounded self-adjoint perturbation $V$ with finite
trac $e$ norm. So far as we impose the assumption on $V$ irrespective of $H_{0}$ ,
this theorem was shown to be the best possible one in the sense that “ trace
norm “ can not be replaced by any other “ cross norm “ for bounded operators
(Kuroda [9]). The main purpose of the present paper is to generalize the
above mentioned theorem of Kato in another direction so as to include those
unbounded perturbations which are relatively small with respect to $H_{0}$ . In
this generalized form we can apply it to some problems of differential
operators, especially to the Schrodinger operator of quantum mechanics.

On the other hand, the stability of the continuous spectra is closely
connected with the asymptotic properties of the family of unitary operators
$\{\exp(itH)\exp(-itH_{0})\},$ $wher^{t}eH$ is the perturbed operator, in other words,
with the existence of the so-called wave and scattering operators in quantum
mechanics. The relations between these two seemingly different concepts
are given, for example, in the previous paper of the writer (see Kuroda [10]

and the references given in [10]). According to it, the stability of ” con-
tinuous spectra” is established if we prove the existence of the wave opera-
tors, the definition of which will be given in the next paragraph. We shall
study the problem from this point of view. The application of our theorem
gives an existence proof of these operators in some problems of quantum
mechanics.

2. Unitary equivalence and the wave operator. Let $\mathfrak{H}$ be a Hilbert space
and $H_{0}$ and $H$ self-adjoint operators in $\mathfrak{H}$ ; let $\mathfrak{M}_{0}$ and $\mathfrak{M}$ be the absolutely
continuous subspaces of $\mathfrak{H}$ with respect to $H_{0}$ and $H^{1)}$ ; and let $P_{0}$ and $P$ be

1) For the definition of the absolutely continuous subspace, see $e$ . $g$ . Kato [4],
Kuroda [10]. We agree that a “ subspace ” always means a closed subspace.
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(orthogonal) projections on $\mathfrak{M}_{0}$ and $\mathfrak{M}$, respectively.2) Put

(1.1) $U_{t}=U_{t}(H, H_{0})=\exp(itH)\exp(-itH_{0}),$ $-\infty<t<+\infty$ .
The generalized wave operator $W_{\pm}$ is then defined $by^{3)}$

(1.2) $W_{\pm}=W_{\pm}(H, H_{0})=s-\lim_{t\rightarrow\pm\infty}U_{t}(H, H_{0})P_{0}$ ,

whenever the respective limit on the right-hand side exists. When both $W_{+}$

and $W_{-}$ exist the generalized scattering operator is defined $by^{8)}$

(1.3) $S=W_{+^{*}}W_{-}=W_{+}(H, H_{0})^{*}W_{-}(H, H_{0})$ .
Some of the fundamental properties of $W_{\pm}$ and $S$ were investigated in Ku-
roda [10] and the following lemma summarizes those results of [10] which
will be used frequently in the sequel.

LEMMA 1.1. i) If $W_{+}=W_{+}(H, H_{0})$ exists, $W_{+}is$ a partially isometric operator
with the initial set $\mathfrak{M}_{0}$ and the final set contained in M. Furthermore, $W_{+}$

satisfies the relations

(1.4) $\exp(itH)W_{+}=W_{+}\exp(itH_{0}),$ $-\infty<t<+\infty,$ $HPW_{+}=W_{+}H_{0}P_{0}$ .
ii) If $W_{+}(H, H_{0})$ and $W_{+}(H_{0}, H)$ exist, then $W_{+}\mathfrak{H}=\mathfrak{M}$ and the parts of $H_{0}$

and $H$ in $\mathfrak{M}_{0}$ and $\mathfrak{M}$ are unitarily equivalent. Furthermore, we have

(1.5) $W_{+}(H, H_{0})^{*}=W_{+}(H_{0}, H)$ .
iii) If $W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$ all exist, then the scattering operator $S$ is

a partially isometric operator with the initial and the final sets both idenlical
with $\mathfrak{M}_{0}$ ; the part of $S$ in $\mathfrak{H}\ominus \mathfrak{M}_{0}$ is equal to zero and that in $\mathfrak{M}_{0}$ is unitary.

iv) If both $W_{+}(H_{1}, H_{0})$ and $W_{+}(H_{2}, H_{1})$ exist, ihen $W_{+}(H_{2}, H_{0})$ also exists
and we have

(1.6) $W_{+}(H_{2}, H_{0})=W_{+}(H_{2}, H_{1})W_{+}(H_{1}, H_{0})$ .
The same assertions as i), ii) and iii) hold true for W-in place of $W_{+}$ .
By virtue of ii) of this lemma we see that, in order to prove the unitary

equivalence of the absolutely continuous parts of $H_{0}$ and $H$, it suffices to
prove the exi.stence of $W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$ . In the following, therefore,
we shall be mainly concerned with the problem of finding the sufficient
condition for the existence of $W_{\pm}$ (Theorem 1). We shall also examine the
continuity properties of $W_{\pm}(H, H_{0})$ with respect to $H$ and $H_{0}$ (Theorem 2).

We shall first state those notations and concepts which are needed in the
sequel.

2) We agree in the following that $\mathfrak{M}_{0},$ $\mathfrak{M},$ $P_{0}$ and $P$ have the same meaning as
defined above and we use these notations without any comment.

3) Kuroda [10, \S 3.1].
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3. Schmidt and trace class. Let $B$ be the set of all bounded linear
operators on $\mathfrak{H}$ to $\mathfrak{H}$ We denote by $\Vert A\Vert,$ $\Vert A\Vert_{2}$ and $\Vert A\Vert_{1}$ the ordinary norm, the
Schmidt norm and the trace norm of an operator $A\in B,$ respectively More
precisely, $\Vert A\Vert,$ $\Vert A\Vert_{2}$ and $\Vert A\Vert_{1}$ are given respectively by $\Vert A\Vert=\sup\Vert A\varphi\Vert/\Vert\varphi\Vert$ ,

(1.7) $\Vert A\Vert_{2}=(\sum_{\nu} I A\varphi_{\nu}\Vert^{2})^{1/2}$ ,

where $\{\varphi_{\nu}\}$ is an arbitrary complete orthonormal set of $\mathfrak{H}$, and

(1.8) $\Vert A\Vert_{1}=\Vert|A|^{1/2}\Vert_{2}^{2}$ , where $|A|=(A^{*}A)^{1/2}$ .
The fundamental relations between these norms are as follows:

(1.9) $\left\{\begin{array}{l}||A\Vert\leqq\Vert A||_{2}\leqq||A||_{1},\\||AB||_{i}\leqq||A||\Vert B\Vert_{i}, \Vert AB\Vert_{i}\leqq\Vert A\Vert_{i}||B\Vert,\\||AB||_{1}\leqq||A||_{2}||B\Vert_{2},\\||A^{*}||=||A\Vert, ||A^{*}\Vert_{i}=\Vert A||_{i}, i=l,2.\end{array}\right.$

$i=1,2$ ,

The sets of all $A\in B$ with finite $\Vert A\Vert_{2}$ and with finite $\Vert A\Vert_{1}$ are calIed the
Schmidt class and the trace class and denoted by $S$ and $T$, respectively.
Clearly $T\subset S\subset B$ and $S,$ $T$ form two sided ideals of B. $S$ consists solely of
completely continuous operators. By (1.8) $A\in T$ if and only if $|A|^{1/2}\in S$. We
denote by $T_{s}$ the set of all self-adjoint elements of $T$. Let $A\in T_{s}$ and let
$\lambda_{1},$ $\lambda_{2},\cdots$ be the sequence of all non-zero eigenvalues of $A$ (degenerate eigen-
values being repeated). Then $\Vert A\Vert_{1}$ is given by

(1.10) $\Vert A\Vert_{1}=\sum_{k=1}^{\infty}|\lambda_{k}|$ .

4. Theorems.
THEOREM 1. Let $H_{0}$ be a self-adjoint operator in $\mathfrak{H}$ and let $V$ be a symmetric

operator in $\mathfrak{H}$ such that

(1.11) $\{$ $\mathfrak{D}\equiv \mathfrak{D}(H_{0})\subset \mathfrak{D}(V)^{5)}and\Vert Vu\Vert\leqq a||H_{0}u\Vert+b\Vert u\Vert$

for any $u\in \mathfrak{D}$ ,

where $a$ and $b$ are constants such that $0\leqq a<1$ and $0\leqq b$ . Then $H=H_{0}+V$ is
self-adjoint. If in addition

(1.12) $|V|^{1/2}(H_{0}-\zeta_{0})^{-1}\in S$

for some number $\zeta_{0}\in\Lambda(H_{0})^{5)}$ , then $W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$ exist.
THEOREM 2. Let $H_{0}$ be a fixed self-adjoint operator and let $V$ and $V_{n},$ $n=$

$ 1,2,\cdots$ , be symmetric operators satisfying the conditions (1.11) and (1.12) with

4) For details about the Schmidt and the trace norm, see $e$ . $g$ . Schatten [13].
5) $\mathfrak{D}(H)$ and $\Lambda(H)$ denote the domain and the resolvent set of the operator $H$
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constants $a$ and $b$ independent of $n$ . Furthermore, let $V_{n^{\prime}}=V-V_{n}$ and

(1.13) $|V_{n^{\prime}}|^{1/2}(H_{0}-\zeta_{0})^{-1}\in S$, $ n=1,2,\cdots$ ,

(1.14) $\lim_{n\rightarrow\infty}\Vert|V_{n^{\prime}}|^{1/2}(H_{0}-\zeta_{0})^{-1}\Vert_{2}=0$

for some $\zeta_{0}\in\Lambda(H_{0})$ . Put $H=H_{0}+V,$ $H_{n}=H_{0}+V_{n}$ and $S(H)=W_{+}(H,H_{0})^{*}W_{-}(H, H_{0})^{\backslash _{\circ-}}$

Then we have
(1.15) s-$\lim_{n\rightarrow\infty}W_{\pm}(H_{n}, H_{0})=W_{\pm}(H, H_{0})$ ,

(1.16) $w-\lim_{n\rightarrow\infty}W_{\pm}(H_{0}, H_{n})=W_{\pm}(H_{0}, H)$ ,

(1.17) $s-\lim_{n\rightarrow\infty}S(H_{n})=S(H)$ .

REMARK. When $V\in T_{s},$ $Vs$atisfies the assumptions of Theorem 1, irre-
spective of $H_{0}$ . In fact, (1.11) is obvious because $V\in B;V\in T_{s}$ means $|V|^{1/2}$

$\in S$, which implies (1.12) in view of (1.9). Thus Theorem 1 includes Kato’s
theorem mentioned in \S 1 as a special case. When $V\in T_{s},$ $V_{n}\in T_{s}$ and (1.14)

is replaced by a stronger condition $\lim\Vert V_{n}^{\prime}\Vert_{1}=0$ , then Theorem 2 is essen-
tially identical with Theorem 2 of Kato [5].

Theorem 1 can be proved by a limiting process based on the special case
of $V\in T_{s}$ already proved by Kato. According to Kato [5], however, this
special cas $e$ is further reduced to the case of $V$ of finite rank. The proof
of such a case was originally given in Kato [4] and afterwards simplified
in Kato [6]. Since the simplified proof was only given in Japanese, we shall
restat $e$ it in \S 3 with his permission. Then in \S 4 we shall prove Theorem 1
by reducing it directly to the case of $V$ of finite rank.

5. Application. In the previous paper of the writer6) we considered an
application of Theorems 1 and 2 to a partial differential operators of Schro-
dinger type in connection with the scattering theory of quantum mechanics.
Let $E_{m}$ be m-dimensional Euclidean space with $m\leqq 3,$ $\mathfrak{H}=L^{2}(E_{m})$ and $V(x)$ is
a real-valued measurable function belonging to $L^{2}(E_{m})\cap L^{1}(E_{m})$ . Consider a
partial differential operator $(H_{0}u)(x)=-(\Delta u)(x),$ $\Delta=\sum_{i=1}^{m}\partial^{2}/\partial x_{i^{2}}$ , and a multi-

plicative operator $(Vu)(x)=V(x)u(x)$ both properly defined in $L^{2}(E.)$ . Then
according to the previous results, $H_{0}$ and $V$ satisfy all the assumptions of
Theorem 1 and hence we conclude by Lemma 1.1 and Theorem 1 that the
absolutely continuous parts of the differential operators $-\Delta+V(x)$ and $-\Delta$

in $L^{2}(E_{m}),$ $m\leqq 3$ , are unitarily equivalent. We can also apply Theorem 2 to
this problem.6)

6) Kuroda [10, \S 5].
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\S 2. Some lemmas.

In this section we collect several lemmas which will be of frequent use
in the following.

LEMMA $2.1^{7)}$ . Let $H=\int\lambda dE(\lambda)$ be a self-adjoint operator and let $u\in \mathfrak{M}$ satisfy

(2.1) $d\Vert E(\lambda)u\Vert^{2}/d\lambda=d(E(\lambda)u, u)/d\lambda\leqq m^{2}$ $a$. $e$ .
for some constant $m^{2}\geqq 0$ (for the meaning of $\mathfrak{M}$ see footnote 2)). Then we
have for any $A\in S$

(2.2) $\int_{-\infty}^{\infty}\Vert$ A $\exp(-itH)u\Vert^{2}dt\leqq 2\pi m^{2}\Vert A\Vert_{2}^{2}$ .

LEMMA 2.2. Let $H$ and $u$ be as in Lemma 2.1; let $A_{n}\in S,$ $n=1,2,\cdots,$ $A\in S$ ;
and let $\Vert A_{n}-A\Vert_{2}\rightarrow 0,$ $ n\rightarrow\infty$ . Then we have for every $s$ and $t,$ $-\infty\leqq s,$ $ t\leqq+\infty$ ,

(2.3) $\lim_{n\rightarrow\infty}\int_{s}^{t}\Vert A_{n}\exp(-itH)u\Vert^{2}dt=\int_{s}^{t}\Vert$ A $\exp(-itH)u\Vert^{2}dt$ .

PROOF. By the preceeding lemma, the functions $ f_{n}(t)=\Vert A_{n}\exp(-itH)u\Vert$

and $ f(t)=\Vert A\exp(-itH)u\Vert$ belong to $L^{2}(-\infty, +\infty)$ and, a fortiori, to $L^{2}(s, t)$ .
By virtue of the triangle inequalities and (2.2) we then obtain

$\int_{s}^{t}|f(t)-f_{n}(t)|^{2}dt\leqq\int_{s}^{t}\Vert(A_{n}-A)\exp(-itH)u\Vert^{2}dt$

$\leqq 2\pi m^{2}\Vert A_{n}-A\Vert_{2}^{2}\rightarrow 0$ , $ n\rightarrow\infty$ ,

which means that $f_{n}\rightarrow f$ in $L^{2}(s, t)$ . Then (2.3) follows immediately from the
continuity of the norm in $L^{2}(s, t)$ . $q$ . $e$ . $d$ .

As is mentioned in Kato $[5, 6]$ the set of such $u$ as stated in Lemma 2.1
is dense in $\mathfrak{M}$ if the number $m^{2}$ is varied over all positive numbers. We
need a somewhat stronger result.

LEMMA 2.3. Let $H$ and $E(\lambda)$ be as above and let $f(\lambda)$ be an H-measurable
function defined almost everywhere with respect to $H$ (Stone [14, Definition 6.3]).

Let $\mathfrak{L}$ be the set of all elements $u\in \mathfrak{M}\cap \mathfrak{D}(f(H))$ such that $d\Vert E(\lambda)f(H)u\Vert\lrcorner)/d\lambda\leqq m^{2}$

$a$. $e$ . and $\{E(l)-E(-l)\}u=u$ for some positive numbers $m^{2}$ and $l$ (both depending
on $u$). Then $\mathfrak{L}$ is dense in M.

PROOF. Since $\mathfrak{D}(f(H))$ is dense in $\mathfrak{H}$ by hypothesis (see Stone [14,

Theorem 6.4]), $\mathfrak{M}\cap \mathfrak{D}(f(H))=P\mathfrak{D}(f(H))$ is dense in $\mathfrak{M}$ . Let $u\in \mathfrak{M}\cap \mathfrak{D}(f(H))$

and let $\chi_{n}(\text{{\it \‘{A}}})(n=1,2,\cdots)$ be the function which is equal to 1 if $|\lambda|<n$ and
$d\Vert E(\lambda)f(H)u\Vert^{2}/d\lambda\leqq m^{2}$ are satisfied and vanishes otherwise. Then, as is
easily seen, $u_{n}=\chi_{n}(H)u\in \mathfrak{L}$ and $u_{n}\rightarrow u,$ $ n\rightarrow\infty$ . This means that $\mathfrak{L}$ is dense in

7) Rosenblum [12], Kato [5].
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$\mathfrak{M}\cap \mathfrak{D}(f(H))$ and consequently in M. $q$ . $e$ . $d$ .
Next we state several inequalities which play fundamental r\^oles in the

proof of Theorems 1 and 2. We begin with auxiliary propositions.
$p_{ROPOSITION}2.1$ . Let $H$ and $H^{\prime}$ be closed operators such that $\mathfrak{D}(H)\supset \mathfrak{D}(H^{\prime})$ .

Then $(H-\zeta)(H^{\prime}-\zeta^{\prime})^{-1}\in B$ for any complex number $\zeta$ and any number $\zeta^{\prime}$ which
belongs to the resolvent set of $H^{\prime}$ .

PROOF. By hypothesis $(H-\zeta)(H^{\prime}-\zeta^{\prime})^{-1}$ is defined everywhere in $\mathfrak{H}$ . It is
closed because $ H-\zeta$ is closed and $(H^{\prime}-\zeta^{\prime})^{-1}\in B$. Hence we hav$e(H-\zeta)(H^{\prime}$ –

$\zeta^{\prime})^{-1}\in B$ by virtue of Banach’s theorem. $q$ . $e$ . $d$ .
PROPOSITION 2.2. Let $H_{0},$ $V$ and $H$ be as in Theorem 1. Then we have

$|V|^{1/2}(H_{0}-\zeta)^{-1}\in S$ for every $\zeta\in\Lambda(H_{0})$ and ( $V[1/2(H-\zeta)^{-1}\in S$ for every $\zeta\in\Lambda(H)$ .
PROOF. Since $\mathfrak{D}(H)=\mathfrak{D}(H_{0})$ we have

$|V|^{1/2}(H-\zeta)^{-1}=|V|^{1/2}(H_{0}-\zeta_{0})^{-1}(H_{0}-\zeta_{0})(H-\zeta)^{-1}$ .
On the right-hand side $|V|^{1/2}(H_{0}-\zeta_{0})^{-1}\in S$ by (1.12) and $(H_{0}-\zeta_{0})(H-\zeta)^{-1}\in B$

by Proposition 2.1. Hence their product $|V|^{1/2}(H-\zeta)^{-1}$ belongs to $S$ (see \S 1,
3). $|V|^{1/2}(H_{0}-\zeta)^{-1}$ can be treated similarly.

LEMMA 2.4. i) Let $H_{0},$ $V$ and $H$ be as in Theorem 1 and in addition we
assume that $V$ is self-adjoint. Let $\mathfrak{L}$ be the set of all $u\in \mathfrak{M}_{0}\cap \mathfrak{D}$ which satisfies
(2.4) $d\Vert E_{0}(\lambda)(H_{0}-i)u\Vert^{2}/d\lambda\leqq m^{2}$ $a.\ovalbox{\tt\small REJECT}$. and

(2.5) $\{E_{0}(l)-E_{0}(-l)\}u=u$ .
for some constant $m^{2}\geqq 0$ and $l\geqq 0$ (both depending on $u$). Then, if $W_{+}=$

$W_{+}(H, H_{0})$ exists, we have for any $u\in \mathfrak{L}$

(2.6) $\Vert(U_{t}-U_{s})u\Vert\leqq C\{\eta(t ; u)+\eta(s ; u)\}$ ,

where $C$ and $\eta$ is given by

(2.7) $C=(8\pi m^{2}\Vert|V|^{1/2}(H_{0}-i)^{-1}\Vert_{2}^{2}\Vert(H_{0}-i)(H-i)^{-1}\Vert^{2})^{1/4}$ ,

(2.8) $\eta(t;u)=[\int_{t}^{\infty}\Vert|V|^{1/2}\exp(-itH_{0})u\Vert^{2}dt]^{1/4},$ $-\infty<t<+\infty$ .

(Note that $\eta(t;u)=[\int_{t^{\infty}}\Vert|V|^{1/2}(H_{0}-i)^{-1}\exp(-itH_{0})(H_{0}-i)u\Vert^{\underline{o}}dt]^{1/4}$ is finite by

virtue of Proposition 2.2 and Lemma 2.1.) Conversely, if there holds for any $u\in \mathfrak{L}$

the inequality (2.6) with some constant $C$ independent of $t$ and $s$, then $W_{+}$ exists,

ii) Let, in particular, $V\in T_{s}$ and $\mathfrak{L}^{\prime}$ be the set defined as $\mathfrak{L}$ with (2.4)

replaced by

(2.9) $d\Vert E_{0}(\lambda)u\Vert^{2}/d\lambda\leqq m^{2}$ $a$ . $e$. .
Then the same assertions as in i) hold even if $\mathfrak{L}$ is replaced by $\mathfrak{L}^{\prime}$ and (2.7) by

(2.7) $C=(8\pi m^{2}\Vert V\Vert_{1})^{1/48)}$

8) The results stated in ii) were previously given by Kato [5].



Perturbation of continuous spectra by unbounded operators, $I$. 253

The similar assertions as i) and ii) hold for W-in place of $W_{+}$ .
PROOF. i) Let $u\in \mathfrak{D}$ . Then, by integrating the relation $(d/dt)U_{t}u=$

$i\exp(itH)V\exp(-itH_{0})u$ , we have

(2.10) $(U_{t}-U_{s})u=i\int_{s}^{t}exp(itH)V\exp(-itH_{0})udt$

(note that by (1.11) the integrand is strongly continuous in $t$). Now assume
that $W_{+}$ exists. Then we hav $e$ for any $u\in \mathfrak{M}_{0}\cap \mathfrak{D}$

(2.11) $\Vert(W_{+}-U_{s})u\Vert^{2}\leqq 2[\int_{s}^{\infty}\Vert|V|^{1/2}exp(-itH_{0})u\Vert^{2}dt]^{1/2}$

$\times[\int_{s}^{\infty}\Vert|V|^{1/2}W_{+}\exp(-itH_{0})u\Vert^{2}dt]^{1/2}$

This is derived from (2.10) by the same method as the one used in Kato [5]

to derive the inequality (2.6) of [5] from (2.2) of [5]. We have only to note
that the factor $W^{*}=signV$ on the right-hand side of (2.6) of [5] can be re-
moved because $W^{*}$ commutes with $|V|^{1/2}$ and $\Vert W^{*}\Vert\leqq 1$ . Now the integrand
of the second integral on the right-hand side of (2.11) can be transformed into
$\Vert|V|^{1/2}(H_{0}-i)^{-1}(H_{0}-i)(H-i)^{-1}W_{+}\exp(-itH_{0})(H_{0}-i)u\Vert^{2}$ , where we use (1.4). Then
by virtue of Lemma 2.1, Propositions 2.1 and 2.2 and the relation (1.9) we
have for any $u\in \mathfrak{L}$

(2.12) $\Vert(W_{+}-U_{s})u\Vert$

$\leqq$ $(8\pi m^{2}\Vert|V|^{1/2}(H_{0}-i)^{-} \Vert_{2^{2}}\Vert(H_{0}-i)(H-i)^{-} \Vert^{2})^{1/4}\eta(s;u)$ .
From (2.12) and the similar inequality with $U_{s}$ replaced by $U_{t}$ we finally
obtain (2.6). Conversely, assume that (2.6) holds for every $u\in \mathfrak{L}$ with some
constant $C$. Sinc $e$ the integrals in $\eta(t;u)$ and $\eta(s;u)$ are convergent, the
right-hand side of (2.6) tends to zero as $s$ . $ t\rightarrow+\infty$ . This implies that $U_{t}u$

has a limit as $ t\rightarrow+\infty$ provided that $u\in \mathfrak{L}$ . Since $\mathfrak{L}$ is dense in $\mathfrak{M}_{0}$ by Lemma
2.3 and $\Vert U_{t}\Vert=1$ , we see that s- $\lim U_{t}P_{0}=W_{+}$ exists. $W_{-}$ can be treated
similarly.

The proof of ii) is much the same as that of i) with simplification due
to the fact that $V\in T_{s}$ . We shall not go into details.

\S 3. Perturbation of rank 1.

In this section we prove the following special case of Theorem 1. As is
mentioned in \S 1, the proof is due to Kato [6].

LEMMA 3.1. Let $H_{0}$ and $V$ be self-adjoint and let $V$ be of rank 1. Then
$W_{\pm}=W_{\pm}(H, H_{0}),$ $H=H_{0}+V$, exisl.

$CoROLLARY$ . If $V$ is self-adjoint and of finite rank, $W_{\pm}(H, H_{0})$ exist.
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PROOF. We begin with the special case in which $\mathfrak{M}_{0}$ can be represented
by the function space $L^{2}(-\infty, \infty)$ in such a way that the part $H_{0a}$ of $H_{0}$ in
$\mathfrak{M}_{0}$ is represented by a multiplicative operator: $(H_{0a}u)(x)=xu(x)$ . As a self-
adjoint operator of rank 1, $V$ is expressible in the form $ V=c(\cdot, \varphi)\varphi$ , where
$\Vert\varphi\Vert=1$ and $c$ is a real number. For the moment we assume that $f=P_{0}\varphi\in \mathfrak{M}_{0}$

can be represented by a smooth function9) $f(x)$ of $L^{2}(-\infty, \infty)$ . We now prove
the existence of $W_{\pm}$ under these assumptions.

By virtue of (2.10) we see that, if the integral

(3.1) $\int_{-\infty}^{\infty}\Vert Vexp(-itH_{0})u\Vert dt$

is finite, then $\lim U_{t}u,$ $ t\rightarrow\pm\infty$ , exist. By reference to the expression $V=$

$ c(\cdot, \varphi)\varphi$ , we have for any $u\in \mathfrak{M}_{0}\Vert V\exp(-itH_{0})u\Vert=|c||(\exp(-itH_{0})u, \varphi)|=$

$|c||(\exp(-itH_{0})P_{0}u, \varphi)|=|c||(\exp(-itH_{0})u,f)|$ . Hence, in terms of the repre-
sentation of $\mathfrak{M}_{0}$ as $L^{2}(-\infty, \infty)$ , the integral (3.1) is written in the form

(3.2) $|c|\int_{-\infty}^{\infty}dt|\int^{\infty}-\infty\exp(-itx)u(x)\overline{f(x)}dx|$ , $u\in \mathfrak{M}_{0}$ .

If $u(x)$ is smooth, so is $u(x)\overline{f(x)}$ because $f(x)$ is assumed to be smooth. Then
the Fourier transform of $u(x)\overline{f(x)}$ tends sufficiently rapidly to zero at infinity
and hence (3.2) is finite. Thus we see that $\lim U_{t}u,$ $ t\rightarrow\pm\infty$ , exist for every
$u\in \mathfrak{M}_{0}$ which can be represented by a smooth function of $L^{2}$ . Since the set
of such $u$ is dense in $\mathfrak{M}_{0}$ , it follows that s- $\lim U_{t}P_{0}=W_{\pm}$ exist.

When $ f=P_{0}\varphi$ can not be represented by a smooth function, we proceed
as follows. Let $f_{n}(x)$ be a sequence of smooth functions such that $f_{n}\rightarrow f$ in
$L^{2}$ and $\Vert f_{n}\Vert=\Vert f\Vert$ (the existence of such a sequence is well-known). Put
$\varphi_{n}=f_{n}+(I-P_{0})\varphi$ and $V_{n}=c(\cdot, \varphi_{n})\varphi_{n}$ . Then $\varphi_{n}\rightarrow\varphi$ and $\Vert\varphi_{n}\Vert=\Vert\varphi\Vert$ . We first
prove that
(3.3) $\lim_{n\rightarrow\infty}\Vert|V|^{1/2}-|V_{n}|^{1/2}\Vert_{2}=0$ .
To this end we first observe that $|V|^{1/2}$ is expressible in the form $|V|^{1/2}=$

$|c|^{1/2}(\cdot, \varphi)\varphi$ and similarly for $|V_{n}|^{1/2}$ . Now let $\psi_{n}$ be a linear combination of
$\varphi$ and $\varphi_{n}$ such that $\Vert\psi_{n}\Vert=1$ and $(\psi_{n}, \varphi)=0^{10)}$ Then, if $u$ is orthogonal to
both $\varphi$ and $\psi_{n}$ , we have $(|V|^{1/2}-|V_{n}|^{1/2})u=0$ . By (1.7) we then obtain I $|V|^{\iota/2}$

$-|V_{n}|^{1/2}\Vert_{2}^{2}=\Vert(|V|^{1/2}-|V_{n}|^{1/2})\varphi\Vert^{2}+\Vert(|V|^{1/2}-|V_{n}|^{1/2})\psi_{n}\Vert^{2}=|c|\Vert\varphi-(\varphi, \varphi_{n})\varphi_{n}\Vert^{2}+$

$|c||(\psi_{n}, \varphi_{n})|^{2}$ . Since $\varphi_{n}\rightarrow\varphi$ and $(\psi_{n}, \varphi)=0$ , the right-hand side tends to zero
as $ n\rightarrow\infty$ . Thus (3.3) is proved.

9) We agree for brevity that ” smooth ” means ” sufficiently smooth and tending
sufficiently rapidly to $0$ as $|x|\rightarrow\infty$ ”.

10) Such a $\psi_{n}$ surely exists for every $n$ . In fact, since we are considering the
case in which $ f=P_{0}\varphi$ can not be represented by a smooth function, $f_{n}$ can not be
proportional to $f$ and consequently $\oint n$ to $\varphi$ .
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Remembering that $P_{0}\varphi_{n}=f_{n}$ is smooth, we see by virtue of the already
established part of the lemma that $W_{+}(H_{0}+V_{n}, H_{0})$ exist. According to ii) of
Lemma 2.4 we then have for any $u\in \mathfrak{L}^{\prime}$ the inequality similar to (2.6) with
$U_{t},$ $U_{s},$ $C$ and $\eta$ replaced by $U_{t}^{(n)},$ $U_{s}^{(n)},$ $C_{n}$ and $\eta_{n}$ respectively, where $C_{n}$ and

$\eta_{n}$ are defined by $(2.7^{\prime})$ and (2.8) witb $V$ replaced by $V_{n}$ and $U_{c^{()}}n=\exp(it(H_{0}+$

$V_{n}))\exp(-itH_{0})$ . In $C_{n}$ we can replace $\Vert V_{n}\Vert_{1}$ by $\Vert V\Vert_{1}$ because $\Vert V_{n}\Vert_{1}=|c|=$

$\Vert V\Vert_{1}$ . Then take limit as $ n\rightarrow\infty$ on both sides. By virtue of Lemma 2.2 it
follows from (3.3) that $\eta_{n}$ converges to $\eta$ . Since $\Vert U_{\iota^{()}}n-U_{t}\Vert\rightarrow 0^{11)}$ , the left-
hand side converges to that of (2.6). Thus we finally obtain the inequality
(2.6) itself. The converse assertion of Lemma 2.4 then ensures the existenc $e$

of $W_{+}(H, H_{0})$ . $W_{-}$ can be treated similarly.
Suppose now that the function $f(x)$ used above vanishes outside of a

Borel set $S$ of real numbers and let $\mathfrak{M}_{0^{\prime}}$ be the subspace of $\mathfrak{M}_{0}=L^{2}(-\infty, \infty)$

comprising all functions in $L^{2}$ which vanish outside of S. Put $\mathfrak{H}^{\prime}=\mathfrak{M}_{0}^{\prime}\oplus \mathfrak{R}_{0}$

( $\mathfrak{R}_{0}$ is by definition the singular subspace of $\mathfrak{H}$ with respect to $H_{0}$). Evidently,
$\mathfrak{H}^{\prime}$ is invariant by both $H_{0}$ and $V$ and hence by $H$, too. Let $H_{0^{\prime}}$ and $H^{\prime}$ be
the parts of $H_{0}$ and $H$ in $\mathfrak{H}^{\prime}$ respectively. Then, as is easily seen, the exist-
ence of $W_{\pm}(H, H_{0})$ proved above implies the existence of $W_{\pm}(H^{\prime}, H_{0}^{\prime})$ . Since
the restriction of $f(x)$ on $S$ can be varied over all functions of $L^{2}(S)$ , we have
the following result: If $\mathfrak{M}_{0}$ is represented by $L^{2}(S)$ in such a way that
the part $H_{0a}$ of $H_{0}$ in $\mathfrak{M}_{0}$ is given by a multiplicative operator: $(H_{0a}u)(x)=$

$xu(x)$ , then $W_{\pm}(H, H_{0})$ exist.
Finally we proceed to the general case. As above, let $ V=c(\cdot, \varphi)\varphi$ . Let

$\mathfrak{H}_{0}$ be the smallest subspac $e$ of $\mathfrak{H}$ containing $\varphi$ and reducing $H_{0}$ . Then $\mathfrak{H}_{0}$

reduces $V$ and hence $H$ and $U_{t}$, too. Moreover, the part of $U_{t}$ in $\mathfrak{H}\ominus \mathfrak{H}_{0}$ is
equal to the identity operator because $V$ is equal to $0$ in $\mathfrak{H}\ominus \mathfrak{H}_{0}$ . Thus in
order to prove the lemma it suffices to prove the existenc $e$ of $W_{\pm}(H^{\prime}, H_{0}^{\prime})$ ,
where $H^{\prime}$ and $H_{0^{\prime}}$ are the parts of $H$ and $H_{0}$ in $\mathfrak{H}_{0}$ From the definition of
$\mathfrak{H}_{0}$ , however, it follows that $H_{0^{\prime}}$ and, a fortiori, the absolutely continuous
part $H_{0a}^{\prime}$ of $H_{0^{\prime}}$ have simple spectra (Stone [14, Chap. VII]). Denote by $S$

the spectrum of $H_{0a^{\prime}}$ . Then, as is well known, $H_{oa}^{\prime}$ is represented by a
multiplicative operator in $L^{2}(S)$ : $(H_{0a^{\prime}}u)(x)=xu(x)$ . Thus the general case
is reduced to the case already dealt with. $q$ . $e$ . $d$ .

PROOF OF $C_{oROLLARY}$ . As a self-adjoint operator of finite rank, $V$ is ex-
pressible in the form $V=\sum_{k=1}^{\gamma}c_{k}(\cdot, \varphi_{k})\varphi_{k}$ , where $r$ is the rank of $V,$ $(\varphi_{k}, \varphi_{j})=\delta_{kj}$

11) In fact, $\varphi_{n}\rightarrow\varphi$ implies 1 $V-V_{n}\Vert\rightarrow 0$ . Then $\Vert U_{t}^{(n)}-U_{t}\Vert\rightarrow 0$ is a direct conse-

quence of the relation $\exp(-itH_{n})\exp(itH)-1=i\int_{0}^{t}\exp(-itH_{n})(V-V_{n})\exp(itH)dt$ , which

is obtained in the same way as (2.10).
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and $c_{k}$ are real numbers different from $0$ . Put $H_{n}=H_{0}+\sum_{k=1}^{n}c_{k}(\cdot, \varphi_{k})\varphi_{k},$ $n=1,\cdots,$ $r$.
Then $H_{n}-H_{n-1}=c_{n}(\cdot, \varphi_{n})\varphi_{n}$ is self-adjoint and of rank 1. Henc $e$ it follows
from Lemma 3.1 that $W_{\pm}(H_{n}, H_{n-1}),$ $n=1,\cdots,$ $r$, exist. From this we conclude
by virtue of (1.6) that $W_{\pm}(H, H_{0})=W_{\pm}(H_{r}, H_{r-1})W_{\pm}(H_{r-1}, H_{r-2})\cdots W_{\pm}(H_{1}, H_{0})$ exist.

\S 4. Proof of the theorems.

1. As was shown by several authors (see $e$ . $g$ . Rellich [11], Kato [7]) the
first statement of Theorem 1 that $H$ is self-adjoint is a consequence of the
condition (1.11). Therefore we have only to prove the existence of $W_{\pm}$ . We
first prove the following

$p_{ROPOSITION}4.1$ . If Theorem 1 holds true under the additional assumption
that $V$ is self-adjoint, then Theorem 1 holds true.

PROOF. Let $H_{0},$ $V$ and $H$ be as in Theorem 1. Consider the Hilbert space
$\hat{\mathfrak{H}}=\mathfrak{H}_{1}\oplus \mathfrak{H}_{2},$

$\mathfrak{H}_{1}=\mathfrak{H}_{2}=\mathfrak{H}$ and denote the norm in $\hat{\mathfrak{H}}$ by $\Vert|\Vert|$ . Every $u\in\hat{\mathfrak{H}}$ is
uniquely expressible in the form $u=u_{1}+u_{2},$ $u_{1}\in \mathfrak{H}_{1}$ and $u_{2}\in \mathfrak{H}_{2}$ . Then $\Vert|u\Vert|^{2}$

$=\Vert u_{1}\Vert^{2}+\Vert u_{2}\Vert^{2}$ . Let $A$ and $B$ be operators in $\mathfrak{H}$ and let $A\oplus B$ denote the
operator in $\hat{\mathfrak{H}}$ defined as follows: $u\in \mathfrak{D}(A\oplus B)$ if and only if $u_{1}\in \mathfrak{D}(A)\subset \mathfrak{H}_{1}$

and $u_{2}\in \mathfrak{D}(B)\subset \mathfrak{H}_{2}$ , and $(A\oplus B)u=Au_{1}+Bu_{2}$ for such a $u$ . Obviously $\mathfrak{H}_{1}$ and
$\mathfrak{H}_{2}$ reduce $A\oplus B$ and the parts of $A\oplus B$ in $\mathfrak{H}_{1}$ and $\mathfrak{H}_{2}$ are identical with $A$

and $B$ respectively. Let now $\hat{H}_{0}=H_{0}\oplus H_{0}$ and $\hat{V}=V\oplus(-V)$ . Then, as is
easily seen, $\hat{H}_{0}$ is self-adjoint, $\hat{V}$ is $s$ymmetric and $\hat{H}=\hat{H}_{0}+\hat{V}=(H_{0}+V)\oplus$

$(H_{0}-V)$ is self-adjoint. Furthermore, we see that the part of $U_{t}(\hat{H},\hat{H}_{0})$ in $\mathfrak{H}_{1}$

is identical with $U_{t}(H, H_{0})$ . Thus we finally see that $W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$

exist if $W_{\pm}(\hat{H},\hat{H}_{0})$ and $W_{\pm}(\hat{H}_{0},\hat{H})$ exist. On the other hand, $\hat{V}$ has the deficien-
cy index $(m, m),$ $ m=0,1,\cdots$ or $\infty^{12)}$ and hence $\hat{V}$ has a self-adjoint extension

$\hat{V}^{\prime}$ . We shall prove that all the assumptions of Theorem 1 are satisfied for
$\hat{H}_{0}$ and $\hat{V}^{\prime}$ in place of $H_{0}$ and $V$ ; then we see by hypothesis that $W_{\pm}(\hat{H}_{0}+$

$\hat{V}^{\prime},\hat{H}_{0})=W_{\pm}(\hat{H},\hat{H}_{0})$ and $W_{\pm}(\hat{H}_{0},\hat{H}_{0}+\hat{V}^{\prime})=W_{\pm}(\hat{H}_{0},\hat{H})$ exist (note that $\hat{H}_{0}+\hat{V}^{\prime}=$

$\hat{H}_{0}+\hat{V}=\hat{H}$ because $\mathfrak{D}(\hat{V})\supset \mathfrak{D}(\hat{H}_{0})$ and $\hat{V}^{\prime}\supset\hat{V}$ ) and we complete the proof of
the proposition. Let now $u\in \mathfrak{D}(\hat{H}_{0})$ and $u=u_{1}+u_{2},$ $u_{1}\in \mathfrak{H}_{1}$ and $u_{2}\in \mathfrak{H}_{2}$ Then
a simple calculation gives $\Vert|\hat{V}^{\prime}u\Vert|^{2}=\Vert|\hat{V}u\Vert|^{2}=\Vert Vu_{1}\Vert^{2}+\Vert Vu_{2}\Vert^{2}\leqq(a\Vert|\hat{H}_{0}u\Vert|+$

$b\Vert|u\Vert|)^{2}$ , which implies that $\hat{H}_{0}$ and $\hat{V}^{\prime}s$atisfy (1.11). Since $H_{0}$ and $V$ satisfy
(1.12), we $e$asily obtain $|\hat{V}|^{1/2}(\hat{H}_{0}-\zeta_{0})^{-1}\in S$. On the other hand, $\hat{V}^{\prime}\supset\hat{V}$ implies
that $\mathfrak{D}(|\hat{V}^{\prime}|)\supset \mathfrak{D}(|\hat{V}|)$ and $\Vert||\hat{V}^{\prime}|u\Vert|=\Vert||\hat{V}|u\Vert|$ for each $u\in \mathfrak{D}(|\hat{V}|)^{13)}$ From
this it follows that $\mathfrak{D}(|\hat{V}^{\prime}|^{1/2})\supset \mathfrak{D}(|\hat{V}|^{1/2})$ and $\Vert||\hat{V}^{\prime}|^{1/2}u\Vert|\leqq\Vert||\hat{V}|^{1/2}u\Vert|^{14)}$ Thus
we see that $|\hat{V}^{\prime}|^{1/2}(\hat{H}_{0}-\zeta_{0})^{-1}\in S$, which shows that $\hat{H}_{0}$ and $\hat{V}^{\prime}$ satisfy (1.12).

12) Achieser and Glasmann [1, Anhang I].
13) von Neumann [15].
14) Heinz [2], Kato [8].
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2. We now assume that $V$ is self-adjoint and prove Theorem 1 under
this additional assumption. To simplify the description we assume through-
out subsections 2–4 that $H_{0},$ $V$ and $H$ satisfy all the assumptions of Theorem
1 and in addition $V$ is self-adjoint. Furthermore we put $\Vert|V|^{1/2}(H_{0}-i)^{-1}\Vert_{2}=K$,
which is finite by virtue of Proposition 2.2.

PROPOSITION 4.2. There exist non-negative constants $a^{\prime}$ and $b^{\prime}$ such that
(4.1) $\Vert$ Vu $\Vert\leqq a^{\prime}\Vert Hu\Vert+b^{\prime}\Vert u\Vert$ for each $u\in \mathfrak{D}$ .
If $0\leqq a<1/2,$ $a^{\prime}$ can be taken as $0\leqq a^{\prime}<1$ .

PROOF. It follows from (1.11) that $\Vert$ Vu $\Vert\leqq a$ ( $\Vert Hu\Vert+\Vert$ Vu $\Vert$ ) $+b\Vert u\Vert$ . Re-
membering $0\leqq a<1$ , we then obtain $\Vert Vu\Vert\leqq a(1-a)^{-}$ $\Vert Hu\Vert+b(1-a)^{-1}\Vert u\Vert$ .
Hence we have only to put $a^{\prime}=a(1-a)^{-1}$ and $b^{\prime}=b(1-a)^{-1}$ .

PROPOSITION 4.3. Let $V\geqq 0$ or $V\leqq 0$ . Then there exists a sequence $\{V_{n}\}$

of self-adjoint operators of finite rank having the following properties:

(4.2) $\Vert|V_{n}|^{1/2}(H_{0}-i)^{-1}\Vert_{2}\leqq K$ ;

(4.3) $\Vert(H_{0}-i)(H_{n}-i)^{-\iota}\Vert\leqq(1+b)(1-a)^{-1}+1\equiv M$ ,

where $H_{n}=H_{0}+V_{n}$ ;

(4.4) $s-\lim_{n\rightarrow\infty}\exp(itH_{n})=\exp(itH)$ ;

(4.5) $\lim_{n\rightarrow\infty}\sup\int_{s}^{\infty}\Vert|V_{n}|^{1/2}\exp(-itH_{0})u\Vert^{2}dt$

$\leqq\int_{s^{\infty}}\Vert|V|^{1/2}\exp(-itH_{0})u\Vert^{2}dt$ , $u\in \mathfrak{L}^{15)}$ .

PROOF. For brevity we assume that $V\geqq 0$ . The other case can be treat$ed$

similarly. Put

(4.6) $A_{n}=V^{1/2}(1-in^{-1}H_{0})^{-1}=inV^{1/2}(H_{0}+in)^{-1}$ , $ n=1,2,\cdots$ ,

(4.7) $V_{n}^{\prime}=A_{n^{*}}A_{n}=(1+in^{-1}H_{0})^{-1}V(1-in^{-1}H_{0})^{-1}$ .
Since $A_{n}\in S$ by Proposition 2.2, we hav $e$ $V_{n^{\prime}}\in T_{s}$ (see \S 1, 3). Moreover, $V_{n^{\prime}}$

is evidently positive definite. Hence $V_{n^{\prime}}$ is expressible in the form $V_{n^{\prime}}=$

$\sum_{k=1}^{\infty}\lambda_{k}^{(n)}(\cdot, \varphi_{k}^{()}n)\varphi_{k}^{()}n$ where $\{\lambda_{k}^{()}n\}$ is a sequence of positive eigenvalues of $V_{n^{\prime}}$

(degenerate eigenvalues being repeated) and $\{\varphi_{k}^{()}n\}$ is a sequence of corre-
sponding eigenvectors. By (1.10) we have $\sum_{k}\lambda_{k}^{(n)}<\infty$ . We now choose for

each $n$ a natural number $r_{n}$ such that $\tilde{\sum_{k=r_{n}+1}}\lambda_{k}^{()}n<n^{-1}$ and put

(4.8) $V_{n}=\sum_{k=1}^{r_{n}}\lambda_{k}^{(n)}(\cdot, \varphi_{k}^{(n)})\varphi_{k}^{(n)}$ .

15) A detailed consideration shows that $\lim\sup$ can be replaced by $\lim$ . Never-
theless, we confine ourselves to verifying (4.5) which is sufficient for later purpose.
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Then $V_{n}$ is self-adjoint and of finite rank. We shall prove that $V_{n}$ thus
defined satisfies $(4.2)-(4.5)$ . To this end we first note the following relations
which are direct consequences of (4.7) and (4.8):

(4.9) $\Vert V_{n}u\Vert\leqq\Vert V_{n^{\prime}}u\Vert$ , $\Vert V_{n}-V_{n}^{\prime}\Vert\leqq\Vert V_{n}-V_{n}^{\prime}\Vert_{1}<n^{-1}$ ,

(4.10) $\Vert V_{n}^{1/2}u\Vert^{2}\leqq\Vert V_{n}^{\prime 1/2}u\Vert^{2}=(V_{n^{\prime}}u, u)=(A_{n^{*}}A_{n}u, u)=\Vert A_{n}u\Vert^{2}$ .
By virtue of (4.10), (1.7) and (1.9) we now obtain

$\Vert V_{n^{1/2}}(H_{0}-i)^{-1}\Vert_{2}\leqq\Vert V_{n}^{\prime 1/2}(H_{0}-i)^{-1}\Vert_{2}=\Vert A_{n}(H_{0}-i)^{-1}\Vert_{2}$

$=\Vert V^{1/2}(H_{0}-i)^{-1}(1-in^{-1}H_{0})^{-1}\Vert_{2}\leqq\Vert V^{1/2}(H_{0}-i)^{-1}\Vert_{2}=K$ ,

where we used the inequality $\Vert(1-in^{-1}H_{0})^{-1}\Vert\leqq 1$ . This proves (4.2). By (4.9)

and (1.11) we have for any $u\in \mathfrak{D}$

$\Vert V_{n}u\Vert\leqq\Vert V_{n^{\prime}}u\Vert=\Vert(1+in^{-l}H_{0})^{-1}V(1-in^{-1}H_{0})^{-1}u\Vert\leqq\Vert V(1-in^{-1}H_{0})^{-1}u\Vert$

$\leqq a\Vert H_{0}(1-in^{-1}H_{0})^{-1}u\Vert+b\Vert(1-in^{-1}H_{0})^{-1}u\Vert\leqq a\Vert H_{0}u\Vert+b\Vert u\Vert$ .
Hence, by using the relations $H_{0}=H_{n}-V_{n},$ $\Vert(H_{n}-i)^{-1}\Vert\leqq 1$ and $\Vert H_{n}(H_{n}-i)^{-1}\Vert$

$\leqq 1$ , we have $\Vert H_{0}(H_{n}-i)^{-1}u\Vert\leqq\Vert H_{n}(H_{n}-i)^{-1}u\Vert+\Vert V_{n}(H_{n}-i)^{-1}u\Vert\leqq a\Vert H_{0}(H_{n}-i)^{-1}u\Vert$

$+(1+b)$ I $ u\Vert$ . Remembering that $0\leqq a<1$ , we finally obtain $\Vert H_{0}(H_{n}-i)^{-1}u\Vert\leqq$

$(1+b)(1-a)^{-1}\Vert u\Vert$ , from which (4.3) follows immediately.
In order to prove (4.4) we show that $\lim V_{n}u=Vu$ for each $u\in \mathfrak{D}$ . By (4.7)

and (4.9) we have for any $u\in \mathfrak{D}$

$\Vert V_{n}u-Vu\Vert\leqq\Vert(V_{n}-V_{n}^{\prime})u\Vert+\Vert(V_{n}^{\prime}-V)u\Vert$

$\leqq n^{-1}\Vert u\Vert+\Vert(1+in^{-1}H_{0})^{-1}V\{(1-in^{-1}H_{0})^{-1}-1\}u\Vert$

$+\Vert\{(1+in^{-1}H_{0})^{-1}-1\}$ Vu $\Vert$ .
The first and the third terms on the right-hand side tend to zero as $ n\rightarrow\infty$ ,

because $s-\lim(1+in^{-1}H_{0})^{-1}=1$ . Since $u\in \mathfrak{D}$ , we see by (1.11) that the second
term is majorized by $\Vert V\{(1-in^{-1}H_{0})^{-1}-1\}u\Vert\leqq a\Vert\{(1-in^{-1}H_{0})^{-}-1\}H_{0}u\Vert+$

$ b\Vert\{(1-in^{-1}H_{0})^{-1}-1\}u\Vert$ , which also tends to zero for the $s$ame reason as above.
Thus we obtain $\lim V_{n}u=Vu$ for each $u\in \mathfrak{D}$ . From this we have for any $u\in \mathfrak{H}$

and any non-real $\zeta\{(H_{n}-\zeta)^{-1}-(H-\zeta)^{-1}\}u=(H_{n}-\zeta)^{-1}(V-V_{n})(H-\zeta)^{-l}u\rightarrow 0,$ $ n\rightarrow$

$\infty,$
$i$ . $e$ . $s-\lim(H_{n}-\zeta)^{-1}=(H-\zeta)^{-}$ . According to the general theory of semi-

groups of operators in a Banach space, this strong convergence of the re-
solvent implies (4.4). This can be proved by the same method as given in
the proof of Theorem 15.4.1 of Hille [3].

In order to prove (4.5) it suffices to prove the relation

(4.11) $\lim_{n\rightarrow\infty}\int_{s^{\infty}}\Vert V_{n}^{\prime J/2}\exp(-itH_{0})u\Vert^{2}dt=\int_{s^{\infty}}\Vert V^{1/2}\exp(-itH_{0})u\Vert^{2}dt$ ,

$u\in \mathfrak{L}$ , because $\Vert V_{n^{1/2}}u\Vert\leqq\Vert V_{n^{\prime 1/2}}u\Vert$ by (4.10). Since $u\in \mathfrak{L}$ we see, on putting
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$F(l)=E_{0}(l)-E_{0}(-l)$ , that there exists $l>0$ such that $F(l)u=u$ or equivalently
$u\in F(l)\mathfrak{H}$. Let $H_{0^{\prime}}$ be the part of $H_{0}$ in $F(l)\mathfrak{H}$ Then $u\in F(l)\mathfrak{H}$ implies that
$v=exp(-itH_{0})(H_{0}-i)u\in F(l)\mathfrak{H}$ and $(1-in^{-1}H_{0})^{-1}v=(1-in^{-1}H_{0^{\prime}})^{-1}v$ . By (4.10) and
(4.6) we therefore obtain

(4.12) $\int_{s^{\infty}}\Vert V_{n}^{\prime 1/2}\exp(-itH_{0})u\Vert^{2}dt=\int_{s}^{\infty}\Vert A_{n}\exp(-itH_{0})u\Vert^{2}dt$

$=\int_{s}^{\infty}\Vert V^{1/2}(H_{0}-i)^{-1}(1-in^{-1}H_{0}^{\prime})^{-1}\exp(-itH_{0})(H_{0}-i)u\Vert^{2}dt$ .

Since $H_{0}^{\prime}$ is bounded by definition, we hav$ep_{n}=\Vert(1-in^{-1}H_{0}^{\prime})^{-1}-1\Vert\rightarrow 0,$ $ n\rightarrow\infty$ ,
$a_{\sim}^{\tau}1d$ consequently

(4.13) $\lim_{n\rightarrow\infty}\Vert V^{1/2}(H_{0}-i)^{-1}(1-in^{-1}H_{0^{\prime}})^{-1}-V^{1/2}(H_{0}-i)^{-1}\Vert_{2}$

$\leqq\lim_{n\rightarrow\infty}p_{n}1V^{1/2}(H_{0}-i)^{-1}\Vert_{2}=0$ .

On the other hand $u\in \mathfrak{L}$ implies $d\Vert E_{0}(\lambda)(H_{0}-i)u\Vert/d\lambda\leqq m^{2}$ (see (2.4)). Hence,
by taking account of (4.13), we can apply Lemma 2.2 to the integral on the
right-hand side of (4.12), with the result

$\lim_{n\rightarrow\infty}\int_{s}^{\infty}\Vert V_{n^{\gamma l/2}}exp(-itH_{0})u\Vert^{2}dt=\int_{s^{\infty}}\Vert V^{1/2}(H_{0}-i)^{-1}\exp(-itH_{0})(H_{0}-i)u\Vert^{2}dt$

$=\int_{s^{\infty}}\Vert V^{1\gamma 2}\exp(-itH_{0})u\Vert^{2}dt$ ,

which proves (4.5). $q$ . $e$ . $d$ .
3. The case $0\leqq a<1/2$ .
PROPOSITION 4.4. Let $V\geqq 0$ or $V\leqq 0$ . Then $W_{\pm}(H, H_{0})$ exist.
PROOF. By hypothesis there exists such a sequence $\{V_{n}\}$ as described in

Proposition 4.3. Since $V_{n}$ is self-adjoint and of finite rank, we see by Corol-
lary to Lemma 3.1 that $W_{+}(H_{n}, H_{0})$ exists for every $n$ . Hence, by virtue of
i) of Lemma 2.4 we obtain for any $u\in \mathfrak{L}$ the inequality similar to (2.6) with
$U_{t},$ $U_{s},$ $C$ and $\eta$ replaced by $U_{t}^{()}nU_{s}^{()}nC_{n}$ and $\eta_{n}$ respectively, where $U_{t}^{(n)}=$

$\exp(itH_{n})\exp(-itH_{0})$ , and $C_{n}$ and $\eta_{n}$ are defined by (2.7) and (2.8) with $V$ and
$H$ replaced by $V_{n}$ and $H_{n}$ . By virtue of (4.2) and (4.3), however, we can
replace in this inequality $C_{n}$ by $(8\pi m^{2}K^{2}M^{2})^{1/4}$ . Then by taking superior
limit as $ n\rightarrow\infty$ on both sides and considering (4.4) and (4.5) we obtain for
any $u\in \mathfrak{L}$ the inequality (2.6) with $C=(8\pi m^{2}K^{2}1\psi^{2})^{1/4}$ . Then the converse
assertion in i) of Lemma 2.4 proves the existence of $W_{+}(H, H_{0})$ . $W_{-}$ can be
treated similarly. $q$ . $e$ . $d$ .

PROPOSITION 4.5. If to the assumption of Theorem 1 we add the assumptions
that $V$ is self-adjoint and $0\leqq a<1/2$, then $W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$ exist.

PROOF. For the moment we assume that $V\geqq 0$ or $V\leqq 0$ . Then the ex-
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istence of $W_{\pm}(H, H_{0})$ is ensured by the preceeding proposition. On the other
hand, since $0\leqq a<1/2$ by hypothesis, we have the inequality (4.1) with con-
stant $a^{\prime}$ such that $0\leqq a^{\prime}<1$ . From this and Proposition 2.2 it follows by
virtue of Proposition 4.4 that $W_{\pm}(H_{0}, H)=W_{\pm}(H-V, H)$ also exist.

To treat the general case we decompose $V$ in the form $V=V_{+}-V_{-}$ ,
where $V_{\pm}have$ the properties $V_{\pm}\geqq 0$ and

(4.14) $\left\{\begin{array}{l}\mathfrak{D}(V_{\pm})\supset \mathfrak{D}(V),\mathfrak{D}(V_{\pm}^{1/2})\supset \mathfrak{D}(|V|^{1/2}),\\||V_{\pm}u||\leqq\Vert Vu\Vert, forevery u\in \mathfrak{D}(V),\\||V_{\neq}^{\iota/2}u\Vert\leqq\Vert|V|^{1/2}u||, forevery u\in \mathfrak{D}(|V|^{I/2}).\end{array}\right.$

From this it follows that (1.11) and (1.12) hold true for $V_{\pm}$ in place of $V$

Since $0\leqq a<1/2$ , we then see by the part of the proposition already proved
that $W_{\pm}(H_{0}+V_{+}, H_{0})$ and $W_{\pm}(H_{0}, H_{0}+V_{+})$ exist. Next we prove the existenc $e$

of $W_{\pm}(H, H_{0}+V_{+})$ and $W_{\pm}(H_{0}+V_{+}, H)$ . If this is done, we can see by (1.6)

that $W_{\pm}(H, H_{0})=W_{\pm}(H, H_{0}+V_{+})W_{\pm}(H_{0}+V_{+}, H_{0})$ and $W_{\pm}(H_{0}, H)=W_{\pm}(H_{0},$ $H_{0}+$

$V_{+})W_{\pm}(H_{0}+V_{+}, H)$ all exist and the proof of the proposition is complete.
Now by (4.14), Propositions 4.2 and 2.2 we have $\Vert V_{-}u\Vert\leqq\Vert Vu\Vert\leqq a^{\prime}\Vert Hu\Vert+$

$b^{\prime}\Vert u\Vert,$ $0\leqq a^{\prime}<1$ , and $V_{-}^{1/2}(H-i)^{-1}\in S$. Proposition 4.4 therefore ensures the
existence of $W_{;\mathbb{E}}(H_{0}+V_{+}, H)=W_{\pm}(H+V_{-}, H)$ . In order to prove the existence
of $W_{\pm}(H, H_{0}+V_{+})=W_{\pm}(H_{0}+V_{+}-V_{-}, H_{0}+V_{+})$ we first note that

(4.15) $V_{-}^{1/2}(H_{0}+V_{+}-i)^{-1}=V_{-}^{1/2}(H_{0}-i)^{-1}(H_{0}-i)(H_{0}+V_{+}-i)^{-}$ $\in S$ .
Furthermore, from (1.11) with $V$ replaced by $V_{+}$ it follows that $\Vert(H_{0}+V_{+})u\Vert$

$\geqq\Vert H_{0}u\Vert-\Vert V_{+}u\Vert\geqq(1-a)\Vert H_{0}u\Vert-b\Vert u\Vert,$ $u\in \mathfrak{D}$ , and consequently $\Vert H_{0}u\Vert\leqq(1-$

$ a)^{-1}\Vert(H_{0}+V_{+})u\Vert+b(1-a)^{-1}\Vert u\Vert$ . Hence by (4.14) and (1.11) we obtain for any
$u\in \mathfrak{D}$

(4.16) $\Vert V_{-}u\Vert\leqq\Vert$ Vu $\Vert\leqq a(1-a)^{-1}\Vert(H_{0}+V_{+})u\Vert+\{ab(1-a)^{-1}+b\}\Vert u\Vert$ .
Sinc$e0\leqq a<1/2$ is assumed, we have $0\leqq a(1-a)^{-1}<1$ . By referring onc $e$

more to Proposition 4.4, we therefore see from (4.15) and (4.16) that $W_{\pm}(H_{0}+$

$V_{+}-V_{-},$ $H_{0}+V_{+}$) exist, as we wished to prove. q. e. $d$ .
4. We shall next remove the additional assumption $0\leqq a<1/2$ . To this

end put $\alpha_{n}=2^{n}(2^{n}+1)^{-1},$ $ n=0,1,\cdots$ . Then $1/2=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{n}<\cdots<1$ and
$\alpha_{n}\rightarrow 1,$ $ n\rightarrow\infty$ . Proposition 4.5 shows that $W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$ exist if
$0\leqq a<1/2=\alpha_{0}$ . Moreover, since $0\leqq a<1$ by hypothesis there exists an $n$

such that $a<\alpha_{n}$ . In order to prove the existence of $W_{\neq}$ it therefore suffices
to prove the following

PROPOSITION 4.6. Let $n$ be an arbitrarily fixed non-negative integer and
assume that $W_{\pm}(H, H_{0})$ and $W_{\pm}(H_{0}, H)$ exist if $0\leqq a<\alpha_{n}$ . Then $W_{\pm}(H, H_{0})$ and
$W_{\pm}(H_{0}, H)$ exist if $0\leqq a<\alpha_{n+1}$ .
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PROOF. Let $0\leqq a<\alpha_{n+1}$ and let $H^{\prime}=H_{0}+(1/2)V$. From (1.11) and (1.12)

we get

(4.17) $\Vert(1/2)$ Vu $\Vert\leqq(a/2)\Vert H_{0}u\Vert+(b/2)\Vert u\Vert$ , $u\in \mathfrak{D}$ ,

(4.18) $|(1/2)V|^{1/2}(H_{0}-i)^{-1}\in S$ .
Since $a/2<1/2\leqq\alpha_{n}$ , it then follows by the assumption of the proposition
that $W_{\pm}(H^{\prime}, H_{0})$ and $W_{\pm}(H_{0}, H^{\prime})$ exist. On the other hand, in the same way
as in the proof of Propositions 4.2 and 2.2, wc obtain from (4.17) and (4.18)

that $\Vert(1/2)$ Vu $\Vert\leqq a(2-a)^{-1}\Vert H^{\prime}u\Vert+b^{\prime}\Vert u\Vert,$ $u\in \mathfrak{D}$ , and $|(1/2)V|^{1/2}(H^{\prime}-i)^{-1}\in S$.
Since $0\leqq a<\alpha_{n+1}$ by hypothesis, we easily obtain $0\leqq a(2-a)^{-1}<\alpha_{n}$ . Again,
by virtue of the assumption of the proposition, we then see that $W_{\pm}(H^{\prime}+$

$(1/2)V,$ $H^{\prime}$ ) $=W_{\pm}(H, H^{\prime})$ and $W_{\pm}(H^{\prime}, H)$ exist. Thus, by virtue of (1.6) we
finally see that $W_{\pm}(HH_{0})=W_{\pm}(H, H^{\prime})W_{\pm}(H^{\prime}, H_{0})$ and $W_{\pm}(H_{0}, H)=W_{\pm}(H_{0}, H^{\prime})$

$W_{\pm}(H^{\prime}, H)$ exist. $q$ . $e$ . $d$ .
Thus we proved Theorem 1 under the additional assumption that $V$ is

self-adjoint. Then by virtue of Proposition 4.1 the proof of Theorem 1 is
complete.

5. Proof of Theorem 2. In the first place, we note that (1.16) and (1.17)

are consequences of (1.15). This is seen as follows. By virtue of (1.5), (1.16)

follows immediately from (1.15). It then follows from (1.15) and (1.16) that
$S(H_{n})$ converge weakly to $S(H)$ . Since $S(H_{n})$ is equal to zero in $\mathfrak{H}\ominus \mathfrak{M}_{0}$ and
unitary in $\mathfrak{M}_{0}$ (see Lemma 1.1), this weak convergence implies the strong
convergence of $S(H_{n})$ , that is (1.17). Thus we have only to prove (1.15).

Since $W_{\pm}(H_{n}, H_{0})$ and $W_{\pm}(H_{0}, H)$ exist by hypothesis, we see by (1.6) that
$W_{\pm}(H_{n}, H)$ exist. Moreover we have $W_{\pm}(H_{n}, H_{0})=W_{\pm}(H_{n}, H)W_{\pm}(H, H_{0})$ . This
implies that, in order to prove (1.15), it suffices to prove

(4.19) s-$\lim_{n\rightarrow\infty}W_{\pm}(H_{n}, H)=P$ .
Now by the similar argument as in the proof of Proposition 4.1 we easily
see that, in order to prove Theorem 2, it suffices to prove (4.19) under the
additional assumption that $V_{n}^{\prime}$ has a self-adjoint extension $\tilde{V}_{n^{\prime}}$ . Let now $\mathfrak{L}$

be befined as in Lemma 2.4 with $H_{0}$ replaced by $H$ and let $W_{\pm}^{()}n=W_{\pm}(H_{n}, H)$ .
Then, as in the proof of that lemma, we hav $e$ for any $u\in \mathfrak{L}$ the inequality
similar to (2.12) with $H_{0},$ $H$ and $W_{\pm}$ replaced by $H,$ $H_{n}$ and $W_{\pm}^{()}n$ Then, by
estimating $\eta(s;u)$ in the same way as we obtain (2.12) and putting $s=0$, we
have for any $u\in \mathfrak{L}$

(4.20) $\Vert W_{+}^{()}nu-u\Vert\leqq(4\pi m^{2}\Vert|\tilde{V}_{n^{\prime}}|^{1/2}(H-i)^{-1}\Vert_{2^{2}}\Vert(H-i)(H_{n}-i)^{-1}\Vert)^{1/2}$ .
By hypothesis, however, there exist constants $a,$

$b$ such that $0\leqq a<1,0\leqq b$

and $\Vert V_{n}u\Vert\leqq a\Vert H_{0}u\Vert+b\Vert u\Vert,$ $u\in \mathfrak{D},$ $ n=1,2,\cdots$ . Hence by means of the similar
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calculations as in the proof of (4.3) we have $\Vert(H_{0}-i)(H_{n}-i)^{-1}\Vert\leqq(1+b)(1-a)^{-1}$

$+1$ . This implies that $\Vert(H-i)(H_{n}-i)^{-1}\Vert=\Vert(H-i)(H_{0}-i)^{-1}(H_{0}-i)(H_{n}-i)^{-1}\Vert$ are
bounded in $n$ . Moreover, we have as in the proof of Proposition 4.1
$\Vert|\tilde{V}_{n^{\prime}}|^{1/2}(H_{0}-\zeta_{0})^{-1}\Vert_{2}\leqq\Vert|V_{n^{\prime}}|^{1/2}(H_{0}-\zeta_{0})^{-}$

$\Vert_{2}$ . Hence by (1.14) we have $\Vert|V_{n^{\prime}}|^{1/2}(H$

$-i)^{-1}\Vert_{2}\leqq\Vert|V_{n^{\prime}}|^{1/2}(H_{0}-\zeta_{0})^{-1}\Vert_{2}\Vert(H_{0}-\zeta_{0})(H-i)^{-1}\Vert\rightarrow 0,$ $ n\rightarrow\infty$ . Thus we see by
(4.20) that s- $\lim W_{+}^{()}nu=u$ for $u\in \mathfrak{L}$ . Since $\mathfrak{L}$ is dense inMand $\Vert W_{+}^{()}nP\Vert\leqq 1$ ,
we finally see that s- $\lim W_{+}^{()}n=s-\lim W_{+}^{()}nP=P$. $W_{-}$ can be treat$ed$ similarly.

Department of Physics,
University of Tokyo.
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