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On Hilbert’s modular group.

By Tsuneo TAMAGAWA

(Received Feb. 25, 1959)

In the following lines, we will determine a fundamental domain of Hilbert’s
modular group. This problem was first treated by $0$ . Blumenthal [1], how-
ever his argument was not correct, as was indicated by H. Maass, in the
case where the class number of the basic field is $>1$ . Correct answers were
given by H. Maass, then by $0$ . Herrmann in more explicit form, by using
the invariant Riemannian metric in the hyperabelian space. In this note we
would like to give another answer to this problem. Our method is arith-
metical, and the author expects that similar methods might be applied to
investigate related groups, $e$ . $g$ . unimodular groups and modular groups of
higher degree in algebraic number fields. For the convenience of readers,
we will not omit the proofs of some lemmata appearing in [1], [2] and [3].

Let $C^{(.\int}$ be the product of $d$ copies of the complex number field $C$ whose
elements will be denoted in the form $\tau=(\tau^{(1)},\cdots, \tau^{()}a)$ . Let $k$ be a totally real
algebraic number field of degree $d$ and $\alpha\rightarrow\alpha^{(1)},\cdots,$ $\alpha\rightarrow\alpha^{()}a$ distinct isomor-
phisms of $k$ into $C$. By the mapping $\alpha\rightarrow$ ( $\alpha^{(1)},\cdots$ , a $(d)$ ) we identify $k$ with a
subfield of $C^{cl}$ . We define the following notations for $\tau=(\tau^{()}1\ldots, \tau^{()}d)$ ;

$N\tau=\tau^{()}\cdots\tau^{()}1d$

$s_{\tau=\tau^{(1)}+\cdots+\tau^{(tl}})$

$|\tau|=(|\tau^{(1)}|,\cdots, |\tau^{()}a|)$ ,

${\rm Re}\tau=({\rm Re}\tau^{(1)},\cdots, {\rm Re}\tau^{()}a)$ ,

${\rm Im}\tau=({\rm Im}\tau^{(1)},\cdots, {\rm Im}\tau^{()}a)$ ,

where ${\rm Re}\tau^{()}\nu$ and ${\rm Im}\tau^{()}\nu$ denote the real and imaginary parts of $\tau^{(^{\nu})}$ respec-
tively. If every component of $y\in C^{a}$ is real and positive we call $y$ totally
positive and write $y>0$ . $P$ denotes the domain of all $\tau\in C^{a}$ with ${\rm Im}\tau>0$

and $R^{a}$ denotes the subring of all $x\in C^{a}$ with ${\rm Im} x=0$ . If $\overline{M}=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)$ is a
non-singular matrix in $k$ , we denote the corresponding linear fractional
transformation

$\tau\rightarrow\frac{\alpha\tau+\beta}{\gamma\tau+\delta}=(\frac{\alpha^{(1)}\tau^{(1)}+\beta^{(1)}}{\gamma^{(1)}\tau^{(1)}+\delta^{(1)}},$

$\cdots,$
$\frac{\alpha^{()}a\tau^{()}a+\beta^{()}a}{\gamma^{()}a\tau^{(d)}+\delta^{(d)}})$

by $J\downarrow I$. If $\overline{M}^{\prime}$ is another matrix, then the linear transformation corresponding
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to $\overline{M}^{\prime}\cdot\overline{M}$ is equal to $M^{\prime}M$. If the determinant $|\overline{M}|$ of $\overline{M}$ is totally positive,
then $M$ is defined at every point on $P$ and maps $P$ onto itself. Let $\overline{\Gamma}$ be the

group of all matrices $\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)$ with $\alpha,$ $\beta,$
$\gamma,$

$\delta\in 0$ and $\alpha\delta-\beta\gamma=1$ where $0$ is the

integral domain of all algebraic integers in $k$ , and $\Gamma$ the corresponding group
of transformations of $P$. This group $\Gamma$ is called Hilbert’s modular group in
$k$ . It is wellknown that $\Gamma$ is a properly discontinuous transformation group
of $P$, and our aim is to determine a fundamental domain of $\Gamma$ .

First we study general lattice groups. Let $V$ be a euclidian vector space
of dimension $d,$ $(x, y)$ the inner product defined on $V$ and $\Vert x\Vert=(x, x)^{\xi}$ the
length of a vector $x\in V$. A lattice $\Lambda$ in $V$ is a subgroup of all linear combi-
nations of linearly independent vectors $\alpha_{1},\cdots,$ $\alpha_{a}$ , with integral coefficients.
We call $d^{\prime}$ the rank of $A_{1}$ and the square root of the determinant $|(\alpha_{i}, \alpha_{j})|$

the determinant of $\Lambda$ . The determinant of $\Lambda$ is equal to the volume of a
fundamental parallelotope of $\Lambda$ if the rank of $\Lambda$ is equal to $d$. Let $W$ be
the $d^{\prime}$ -dimensional subspace spanned by vectors in $\Lambda$ . A vector $x\in V$ is
called $\Lambda$ -reduced if $\Vert x+\alpha\Vert\geqq\Vert x\Vert$ for all $\alpha\in\Lambda$ . The set of all $\Lambda$ -reduced
vectors will be denoted by $\Pi_{\Lambda}$ . The following lemma is wellknown.

LEMMA 1. $\Pi_{A}$ is a convex set defined by a finite number of linear inequali-
ties

$\pm 2(x, \gamma_{\nu})\leqq(\gamma_{\nu}, \gamma_{\nu})$ $(\nu=1,\cdots, s)$

where $\gamma_{1},\cdots,$ $\gamma_{s}$ are suitable vectors in $\Lambda$ , and is a fundamental domain of the
translation group $\{x\rightarrow x+\alpha;\alpha\in\Lambda\}$ . Furthermore the set $\Pi_{\Lambda}\cap W$ is compact and
$x\in V$ is contained in $\Pi_{\Lambda}$ if and only if $x$ is the sum $x_{1}+x_{2}$ with $x_{1}\in\Pi_{A\cap}W$ and
a vector $x_{2}$ orthogonal to $W$.

Let $E$ be the group of all units in $k$ . Let $Y$ be the set of all $y>0$ and
$Y_{1}$ the subset of $Y$ of all $y$ with $Ny=1$ . For $y=(y^{(1)},\cdots,y^{()}a)$ we put $\log y=$

$(\log y^{(1)},\cdots, \log y^{()}a)$ . The mapping $y\rightarrow\log y$ maps $Y$ onto $R^{d}$ . Let $\Lambda$ be the
set of all $\log|\epsilon|$ with $\epsilon\in E$. It is wellknown that $\Lambda$ is a lattice of rank $d-1$

in $R^{a}$ , and spans a hyperplane $H=\{x;Sx=0\}$ . Now we introduce a positive
definite inner product $S(xy)$ defined on $R^{!J}$, and consider $R^{a}$ a euclidian vector
space. A vector $x$ is orthogonal to $H$ if and only if $x$ is a scalar multiple
of the vector $1=(1,\cdots, 1)$ . A vector $y\in Y$ will be called strongly reduced if
$\log y$ is $\Lambda$ -reduced. Let $K$ be the set of all strongly reduced $y$ , and put
$K_{1}=K\cap Y_{1}$ . From Lemma 1 we have

LEMMA 2. $K$ is bounded by a finite number of analylic hypersurfaces in $Y$,

and $K_{1}$ is compact. For every $y\in Y$ there exists $|\epsilon|,$ $\epsilon\in E$, uniquely determined in
general, such that $|\epsilon|y\in K$.

REMARK. The words “ uniquely determined in general ‘’ mean that if $|\epsilon|y$

and $|\epsilon^{\prime}|y$ are in $K$ with $|\epsilon|\neq|\epsilon^{\prime}$ , then both lie on the boundary of $K$. In
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the sequel, we use this expression in the similar meaning.
$CoROLLARY$ . If $y=(y^{(1)},\cdots, y^{()}a)$ is strongly reduced, then there exists a con-

stant $c_{1}>1$ depending only on $k$ such that

$c_{1}^{-1}Ny^{a}\leqq y^{()}\nu\leqq c_{1}Ny^{a}11$
$(\nu=1,\cdots, d)$ .

We will call $y\in Y$ reduced if $y^{1}z=(y^{(1)},\cdots,y^{()^{\frac{1}{2}}})\not\in a$ is strongly reduced. The
set of all reduced $y$ is $K^{2}=\{y^{2} ; y\in K\}$ , and for $y\in Y$ there exists an $\epsilon^{2}$ deter-
mined uniquely in general, such that $\epsilon^{2}y\in K^{2}$ . If $y$ is reduced, then we have

$c_{1}^{-2}Ny^{a}\leqq y^{()}\nu\leqq c_{1}^{2}Ny^{a}1L$

Let $\mathfrak{a}$ be an ideal of $k$ , then $\mathfrak{a}$ is a lattice in $R^{a}$ of rank $d$. $\Pi_{\mathfrak{a}}$ denotes
the set of all a-reduced $x$ , namely the set of all $x$ such that $S(x+\alpha)^{2}\geqq Sx^{2}$

for every $\alpha\in \mathfrak{a}$ . From Lemma 1, we see that $\Pi_{a}$ is a compact convex poly-
hedron, symmetric with respect to $0$ , and for every $x\in R^{a}$, there exists an
$\alpha\in \mathfrak{a}$, determined uniquely in general, such that $x+\alpha\in\Pi_{a}$ .

Let $A(\mathfrak{a})$ be the group of all affine transformations $\tau\rightarrow\epsilon^{2}\tau+\alpha$ with $\epsilon\in E$

and $\alpha\in()$ . Matrices corresponding to these transformations are of the form

$\left(\begin{array}{ll}\epsilon & \alpha\\ 0 & \epsilon^{-1}\end{array}\right)$ $\epsilon\in E$, $\alpha\in \mathfrak{a}$ ,

so $A(\mathfrak{a})$ is a subgroup of $\Gamma$ if $\mathfrak{a}\subset \mathfrak{o}$ . We will call $\tau\in P$ a-reduced if ${\rm Im}\tau$ is
reduced and ${\rm Re}\tau$ is $\mathfrak{a}$-reduced. $G(\mathfrak{a})$ denotes the set of all $\mathfrak{a}$-reduced $\tau$ , then
we see that $G(\mathfrak{a})$ is a fundamental domain of $A((\ddagger)$ , bounded by a finite num-
ber of analytic surfaces in $P$.

Now we consider pairs $(\gamma, \delta)\neq(0,0)$ of elements $\gamma,$
$\delta\in k$. Two pairs $(\gamma, \delta)$

and $(\gamma^{\prime}, \delta^{\prime})$ are called associated if there exists $\epsilon\in E$ with $\epsilon\gamma=\gamma^{\prime}$ and $\epsilon\delta=\delta^{\prime}$ .
LEMMA 3. Let $a$ and $b$ be ideals of $k$ , and $\tau$ a point $\in P$. For every $c>0$ ,

there exist only a finite number of non-associated pairs $(\gamma, \delta)$ with $\gamma\in \mathfrak{a}$ and
$\delta\in \mathfrak{b}$ such that

$N|\gamma\tau+\delta|<c$ .
PROOF. Let $(\gamma, \delta)$ be a pair satisfying our assumptions. We choose $\epsilon\in E$

so that $|\gamma\epsilon\tau+\delta\epsilon|$ is strongly reduced. From the Coroliary of Lemma 2, we
have

$|\gamma^{\prime}\nu\tau\nu+\delta^{\prime()}\nu|<c_{1}c^{1}a$
$(\nu=1,\cdots, d)$ (1)

for $(\gamma^{\prime}, \delta^{\prime})=(\gamma e, \delta\epsilon)$ . From Imr $>0$ , the set $\{\gamma\tau+\delta;\gamma\in \mathfrak{a}, \delta\in 6\}$ forms a lattice
in $C^{a}$ and the domain defined by $|\tau^{()}\nu|<c_{1}c\#$ is obviously bounded. Hence
there exist only a finite number of pairs $(\gamma^{\prime}, \delta^{\prime})$ satisfying the inequalities
(1).

LEMMA 4. Let $a$ be an ideal of $k$ . There exists a constant $c_{2}>0$ , depending
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only on $k$ , such that for every $\tau\in PwithN{\rm Im}\tau<c_{2}$ there exists a pair $(\gamma, \delta)$ with
$\gamma\in a$ and $\delta\in a^{-1}$ such that

$N|\gamma\tau+\delta|<1$ .
PROOF. The quadratic form $S|\omega|^{2}$ defines a euclidian metric on $C^{d}$ . If

$\tau$ is a point on $P$, then the set $\{\gamma\tau+\delta;\gamma\in \mathfrak{a}, \delta\in \mathfrak{a}^{-1}\}$ forms a lattice in $C^{a}$ of
rank $2d$ whose determinant is equal to N ${\rm Im}\tau\cdot\Delta$ where $\Delta$ is the absolute value
of the discriminant of $k$ . Now the set $\{\omega;S|\omega|\leqq d\}$ is convex, compact and
symmetric with respect to $0$ . Let $c_{3}$ be the volume of the set, then from
Minkowski’s theorem, we have a pair $(\gamma, \delta)$ with $\gamma\in(\ddagger$ and $\delta\in \mathfrak{a}^{-1}$ such that
$S|\gamma\tau+\delta|<d$ if $c_{3}(N{\rm Im}\tau\Delta)^{-1}>2^{2a}$ . Since $N|\gamma\tau+\delta|\leqq S|\gamma\tau+\delta|d^{-1},$ $c_{2}=c_{3}2^{-\circ a}’\Delta^{-1}$

has the required property.
Let $\mathfrak{a}_{1},\cdots,$ $\mathfrak{a}_{h}$ be a set of representatives of ideal classes of $k$ such that i)

each $\mathfrak{a}_{i}$ is integral, ii) $a_{i}$ has minimum norm among integral ideals in its
class. We assume $a_{1}$ represents the principal class, then obviously we have
$\mathfrak{a}_{1}=\mathfrak{o}$ .

Let $F_{i}$ be the set of all $\tau\in P$ such that
1) $\tau$ is $\mathfrak{a}_{i^{-2}}$ reduced,
2) $N|\gamma\tau+\delta|\geqq 1$ for all pairs $(\gamma, \delta)$ with $\gamma\in a_{i}$ and $\delta\in \mathfrak{a}_{t^{-1}}$ .

Note that $F_{i}$ is not empty. In fact assume that $y>0$ is reduced and $Ny>1$ ,

then $\sqrt{-1}y=\tau$ is contained in $F_{i}$ . For if $\gamma\in \mathfrak{a}_{i}$ and $\delta\in \mathfrak{a}_{i}^{-1}$ , then we have
$N|\gamma\sqrt{-1}y+\delta|\geqq N|\gamma|Ny>1$ provided $\gamma\neq 0$ . If $\gamma=0$ , from the assumption ii)

on $\mathfrak{a}_{i}$ , we have $N|\delta|\geqq 1$ because we have $\delta \mathfrak{a}_{i}\sim \mathfrak{a}_{i}$ and $N(\delta \mathfrak{a}_{i})\geqq N(\mathfrak{a}_{i})$ .
LEMMA 5. There exist only a finite number of non-associated pairs $(\gamma, \delta)$

with $\gamma\in \mathfrak{a}_{i}$ and $\delta\in \mathfrak{a}_{i^{-1}}$ such that $N|\gamma\tau+\delta|=1$ for some $\tau\in F_{t}$ .
PROOF. From Lemma 4, we have N ${\rm Im}\tau\geqq c_{2}$ , hence $N|\gamma|$ is not greater

than $c_{2}^{-1}$ . Since $\gamma\in \mathfrak{a}_{i}$ , there exist only a finite number of non-associated $\gamma$

with $N|\gamma|\leqq c_{2}^{-1}$ . Let $\gamma_{0}=0,$ $\gamma_{1},\cdots,$ $\gamma_{\mu}$ be representatives of such $\gamma’ s$ . We
have oniy to prove that there exist only a finite number of rc $\in\gamma_{J^{-1}}\mathfrak{a}_{i^{-I}}$ such
that $N|\tau+\kappa|\leqq N|\gamma_{j}|^{-}$ with $\tau\in F_{f}$ for $j=1,\cdots,$ $\mu$ . Since $\tau$ is $\mathfrak{a}_{i^{-2}}$ -reduced, there
exists a constant $c’>0$ with $|{\rm Re}\tau^{()}\nu|<c^{\prime}$ . Since $|\tau^{()}\nu+\kappa^{()}\nu|\geqq c_{2^{d-2}}^{\iota_{C_{1}}}$ , we have,
for a suitable constant $c_{4}>0$ ,

$|\tau^{()}\nu+\kappa^{()}\nu|<c_{4}N|\gamma_{j}|^{-1}$ .
It follows that $|\kappa^{()}\nu|<c_{4}N|\gamma_{j}|^{-1}+c^{\prime}$ , hence there exist only a finite number
of such $\kappa$ .

From Lemma 5, we see that infinitely many inequalities 2) defining $F_{i}$

may be replaced by a finite number among them. Therefore $F_{i}$ is bounded
by a finite number of analytic surfaces in $P$.

Let $\gamma_{i},$
$\delta_{i}$ be integers generating $a_{i}$ . Then there exist $\alpha_{i},$ $\beta_{i}\in \mathfrak{a}_{i}^{-1}$ such

that $\alpha_{i}\delta_{i}-\beta_{i}\gamma_{i}=1$ . $A_{i}$ denotes the transformation $\tau\rightarrow(\alpha_{i}\tau+\beta_{i})/(\gamma_{i}\tau+\delta_{\iota})$ . For
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$\iota=1$ , we put $A_{i}=I$ (identity transformation). Now we will prove our main
theorem.

THEOREM. The set
$F=F_{1}UA_{2}^{-1}F_{2}U\cdots UA_{k^{-1}}F_{h}$

is a fundamental domain of the group $\Gamma$ .
PROOF. Let $\tau$ be a point on $P$. From Lemma 3, there exists a pair $(\gamma, \delta)$

of integers such that $N|\gamma\tau+\delta|\leqq N|\gamma^{\prime}\tau+\delta^{\prime}|$ for all $\gamma^{\prime}\in 0,$ $\delta^{\prime}\in 0,$ $(\gamma^{\prime}, \delta^{\prime})\neq(0,0)$ .
If $N|\gamma\tau+\delta|\geqq 1$ , then we can find a unit $\epsilon$ and an integer $\alpha$ such that $\epsilon^{2}\tau+$

$\alpha\in G(\mathfrak{o})$ . Then $\tau^{\prime}=\epsilon^{2}\tau+\alpha$ is equivalent to $\tau$ with respect to $\Gamma$ and $\tau^{\prime}$ is a
point on $F_{1}$ . Assume that $N|\gamma\tau\cdot+\delta|<1$ . Let $a$ be the ideal generated by $\gamma$

and $\delta$ and $\mathfrak{a}_{i}$ the representative of its class. Then there exists an element
$\kappa\in \mathfrak{a}_{i^{-1}}$ with $\mathfrak{a}=\kappa \mathfrak{a}_{i}$ . We have $\kappa^{-1}\gamma,$ $\kappa^{-1}\delta\in a_{i}$ and

$N|\kappa^{-1}\gamma\tau+\kappa^{-1}\delta|=N|\kappa|^{-1}N|\gamma\tau+\delta|$ .

From the assumption on $\gamma,$

$\delta$ we have $N|\kappa|\leqq 1$ . On the other hand we have
$N/c\geqq 1$ from the assumption on $\mathfrak{a}_{i}$ , hence we have $N|\kappa|=1$ . Taking $\kappa^{-1}\gamma$ and
$\kappa^{-1}\delta$ instead of $\gamma$ and $\delta$ , we may assume that $\gamma$ and $\delta$ generate one of $a_{i}’ s$ .
Let $\overline{M}$ be a matrix in $\overline{\Gamma}$ such that

$(\gamma_{i}, \delta_{i})\overline{M}=(\gamma, \delta)$

and put $\tau_{1}=M\tau$ and $\tau_{2}=A_{i}\tau_{1}$ . We have
$N|\gamma_{i}\tau_{1}+\delta_{i}|\leqq N|\gamma^{\prime}\tau_{1}+\delta^{\prime}|$

for every pair of integers $(\gamma^{\prime}, \delta^{\prime})$ , and for every $(\mu, \nu)$ with $\mu\in \mathfrak{a}_{i}$ and $\nu\in a_{i^{-1}}$ ,
we have

$\mu\tau_{2}+\nu=(\rho l(\alpha_{i}\tau_{1}+\beta_{i})+\nu(\gamma_{i}\tau_{1}+\delta_{1}))(\gamma_{i}\tau_{1}+\delta_{i})^{-1}$

$=(\mu^{\prime}\tau_{1}+\nu^{\prime})(\gamma_{i}\tau_{1}+\delta_{i})^{-1}$

with $\mu^{\prime}=\alpha_{i}\mu+\gamma_{i}\nu,$ $\nu^{\prime}=\beta_{i}\mu+\delta_{i}\nu\in 0$ . Hence we have
$N|\mu\tau_{2}+\nu|\geqq 1$ .

Let $L$ be a transformation in $A(a_{i^{-2}})$ such that $L\tau_{2}\in G(\mathfrak{a}_{t^{-2}})$ . Then we have
$L\tau_{2}\in F_{i}$ and $A_{i}^{-1}LA_{i}M\tau\in A_{i^{-}}F_{i}$ . Since $ A_{i^{-1}}A(a_{i}^{-2})A_{i}\subset\Gamma$ we have $ A_{\iota^{-1}}LA_{i}M\in\Gamma$ .

Next thing we have to prove is that if there exists an $M\neq I$ mapping a
point $\tau\in F$ on a point $\tau^{\prime}\in F$, then both $\tau$ and $\tau^{\prime}$ lie on the boundary of $F$.
First we assume that both $\tau$ and $\tau^{\prime}$ lie on $A_{i^{-1}}F_{i}$ . Put $\tau_{i}=A_{i}\tau$ and $\tau_{1}^{\prime}=A_{\iota^{T^{\prime}}}$ .
Put

$A_{t}MA_{i}^{-1}=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)$ .

Then we have $\alpha,$ $\delta\in \mathfrak{o},$ $\gamma\in \mathfrak{a}_{i^{2}}$ and $\beta\in a_{i}^{-2}$ . If $\gamma=0$ , then $\alpha$ is a unit in $k$ , and
both $\tau_{1}$ and $\tau_{1}^{\prime}=\alpha^{2}\tau_{1}+\alpha\beta$ lie on $F_{i}$ , hence they lie on the boundary on $F_{i}$ .
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Hence $\tau$ and $\tau^{\prime}$ lie on the boundary of $A_{i^{-1}}F_{i}$ . Assume that $\gamma\neq 0$ . Then we
have

N ${\rm Im}\tau_{1}^{\prime}=N{\rm Im}\tau_{1}(N|\gamma\tau_{1}+\delta|)^{-2}\leqq N{\rm Im}\tau_{1}$

from $\tau_{1}\in F_{i},$ $\gamma\in \mathfrak{a}_{i}$ and $\delta\in 0$ . Similarly we have

N ${\rm Im}\tau_{1}=N{\rm Im}\tau_{1}^{\prime}(N|-\gamma\tau_{1}^{\prime}+\alpha|)^{-2}\leqq N{\rm Im}\tau_{1}^{\prime}$ .
Therefore we have $N|\gamma\tau_{1}+\delta|=N|-\gamma\tau_{1}^{\prime}+\alpha|=1$ , so we see that both $\tau_{1}$ and
$\tau_{1}^{\prime}$ lie on the boundary of $A_{i^{-1}}F_{i}$ .

Next we assume that $\tau\in A_{i^{-1}}F_{i}$ and $\tau^{\prime}\in A_{j^{-1}}F_{j}$ with $i\neq j$. Put $\tau_{1}=A_{i}\tau$ ,
$\tau_{1}^{\prime}=A_{j}\tau^{\prime}$ and

$\overline{A}_{j}\overline{M}\overline{A}_{\iota^{-1}}=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)$ .
Then we have $\alpha\in \mathfrak{a}_{i}a_{j^{-1}},$ $\beta\in a_{i^{-1}}\mathfrak{a}_{j^{-1}},$

$\gamma\in \mathfrak{a}_{i}\mathfrak{a}_{j}$ and $\delta\in \mathfrak{a}_{i^{-1}}\mathfrak{a}_{j}$ . Furthermore we have
$\alpha\delta-\beta\gamma=1$ . By the same method as above, we have

$N|\gamma\tau_{1}+\delta|=N|-\gamma\tau_{1}+\alpha|=1$ .
If $\gamma\neq 0$ , then $\tau_{1}$ and $\tau_{1}^{\prime}$ lie on the boundaries of F. and $F_{j}$ respectively.
Assume that $\gamma=0$ , then we have $\alpha\delta=1$ with $\alpha\in \mathfrak{a}_{i}\mathfrak{a}_{j^{-1}}$ and $\delta\in \mathfrak{a}_{j}\mathfrak{a}_{i^{-1}}$ . It fol-
lows that $\mathfrak{a}_{i}\sim \mathfrak{a}_{j}$ . This contradicts the assumption $i\neq j$. Hence we have
proved all of our assertion.

University of Tokyo.
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