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Introduction.

As extensions of the o-operation and d-operation which appear in the
theory of usual Borel sets, operations S, and P, were already considered in
IT] [2] and [3] (cf. Def. 1). Especially in and [2] a condition under
which P,Sa(K) is included in S;Ps(K) for any class K of sets is obtained.
Referring to these results, we have attempted to study the conditions under
which some inequalities or equalities hold between P;S., P,SpPr, S,PpSr €tc.

In section 1 several definitions are given. We call the product of opera-
tions P, Sp etc. a monomial (cf. below Def. 1). In section 2 we shall give a
method by means of which the comparison of P;S. with other monomials is
fairly simplified and unified. This method is an extension of that used in
or [2] In section 3, a condition for the inequality S,PsSy= P5S. or
SaPsSr < SsP. is obtained. In section 4, we shall first study the condition for
the inequality P;S.=< P,SpP; and next the condition for the equality PsS.=
PoSpPr.

These results are obtained without the generalized continuum hypothesis,
but we have not succeeded to give without this hypothesis a condition under
which the inequality PsS.=<S,PsSr holds. Assuming this hypothesis, we shall
give a condition for the above inequality in section 5. A condition for the
equality P;S.=S,PpSr to hold is obtained without the hypothesis.

Throughout this note, the symbol =,(8) (cf. Def. 3) plays a main réle.
In section 6, we shall consider the behaviour of the value of 7,(f), especially
we shall give a conditions under which we have z(8) =8, 7, (8) =8-+1 or
7w (B) = B+2.

§1. Definitions.

1. The following definition of the operation S, (resp. P,) is given in

[1] [2] and [3] .
Derinition 1. Let K be any class of sets, and o an ordinal number. S,(K)
(resp. P(K)) is the class of all sets which are expressed as the unions (vesp.
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intersections) of less than R, sets contained in K; that is, a set X is contained
in S(K) (resp. P,(K)) if and only if, for a certain non-void set A of indices,

we have X = UAX,, (resp. X = ﬂAX,L), wheve X, €K and 0< Z:< R
ac a<

Thus we have operations S, and P, which operate on a class K of sets
and yield a class of sets, and so naturally we have their product operations
P,Sp, SuPpSy etc. defined by P,Sp(K) = P,(Sg(K)) etc. We call a product of
So's and Pg’s a monomial, and the number of its factors S, and Py the degree
of the monomial.

Now we introduce an order relation between these operations on classes.

DeriniTion 2. Let F and G be two opevations which operate on a class of
sets and vield a class of sets. We define

(@) F=G, if for any non-void class K of sets, we have F(K)C G(K),

(d) F=G, if we have F<G and GXF,

(c) F<G, if we have F< G but not G F.

2. We denote the identical operation on classes of sets by [; that is,
I(K)= K for any class K of sets. We say that an operation F is positive if
I=<F;F is increasing if KC H, where K and H are classes of sets, implies
FKYCF(H); and finally F is intrinsic, if for any class K of sets, the sets in.
F(K) are included in the union of all sets contained in K. Then obviously
any monomial is positive, increasing and intrinsic.

The following lemma and Theorem A is stated in [3].

Levmma 1. Let F, G and H be operations on classes.

@) F=G implies FH= GH.

(b) If H is increasing, F< G implies HF = HG.

(¢) If F is positive then G = FG.

(d) If F is positive and G is increasing then G=GPF.

Let cf(a) be the index of the least initial ordinal number which is cofinal
to w,.

Tueorem A. (@) If a<p, then S,<Sg and P, < Py.

(b) If B<«, then S,Sg=S, and P,Pg=P,.

(©) If a=cf(B), then S,Sp=3Sz and P,Pz= Pp.

(d) If cf(B) < a =< B+1, then S,Sg=Sp+ and P,Pp= Pgy,.

Remark According to (b), (¢c) and (d) of Theorem A, a condition under
which we have S,Sp=S; or P,Pg= P;isr=p+1 in the case cf(f) <a =F+1,
and 7 = max(«a, B) otherwise.

3. "Now we shall define a function z,(8) of two variables a« and g of
ordinal numbers, which takes an ordinal number as its value. We shall
describe in the sequel conditions under which an inequality or an equality
between two forms from =mong S;P., PsS.,P,SsPr etc. holds, in terms of
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comparison of the magnitudes of the indices «, 8,7 etc., the cofinal type
cf(a), and the function z,(3).

DeriniTion 3. 7 (8) denotes the least ovdinal number v such that for any

aggregate of carvdinal numbers my; asA, A being a set of indices, 0 < E< Re
and M, < Rp for any ac A imply Tl m, < Ry
a=4

In [1] and [2] a condition for the inequality P,S;=<S;P; was already
obtained as follows:

Tueorem B. For the inequality P,Sg=SyPs; to hold, it is mecessary and
sufficient that we have « <0 and n,(B)=r.

The most essential part in the proof of Theorem B is to prove the
mnecessity of the second inequality #,(8)<7r. By a slight modification of the
method used to prove it in [1] or [2], we obtain a universal method to
decide whether a monomial is greater than P;S. or not. We shall explain
this method in the next section.

§ 2. Discriminative systems.

1. The following definition is an extension of the definition of Hausdorff
operation mentioned in [4]

DeriniTion 4. An operation © by which a sequence (not necessavily coun-
table) {X,; A< u} of sets X, n being an ordinal number, corrvesponds to a set
X=0{X}} is called a Hausdorff operation if the corvespondence is as follows:
X=0{X;} =N \UZX,, where v is a subsequence of the sequence of ordinal

VEL AEY
numbeys A less than pn and 4 is an aggregate of such subsequences y.

Let § be an aggregate of Hausdorff operations and K be a class of sets.
Let H(K) denote the class of all sets X which can be expressed in the form
X=0{X,} where 0<% and X ;=K for any A. Thus § is regarded as an
operation by which a class of sets corresponds to a class of sets. We call
any aggregate of Hausdorff operations an infegral operation regarding it as
such an operation on classes.

Of course P,Sz is an integral operation, and by the well-known completely
distributive property between the operations of unions and intersections, it
is easily seen that any monomial is also an integral operation.

The following lemmas are easy to see, and so we omit the proofs.

Levmma 2. Any integral operation is positive, increasing and intrinsic.

Levmma 3. Let © be a Hausdorff operation, and Z be a given sel. Put
Y,=X;"Z for any A, then we have O{Y,;} = O{Xa} N Z.

LemMva 4. Let ) be an integral opevation, K a class of set and Z a given
set. Put H={Y ;Y =XnZ, XK}, then we have WH) = {U; U= VNZ, Veli(K)}.

Now we shall see
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Lemma 5. Let t and %) be integral operations. If Y E£Y), then there exists a
class H of sets and a non-void set E such that EcYH) but not E<H(H).

Proor. tE£Y implies the existence of a class H’ of sets and a set E’
such that £E/<¥(H’) but not E’€§(H’). If E’ is void, then put H= {X\U{¢};
XeH'} and E= {¢} where ¢ is an arbitrary element. By the provious lemma
we can easily see that H and E satisfy the condition of this lemma.

2. Derinition 5. Let A be any set with A< Ro and Y, an ordinal num-
ber, assigned to every a< A, such that V., < wg. The set ©= {yr,; ac A} is called
a discriminative system of P,Ss. Ee denotes the set of all functions ¢ which
map each index asA to an ordinal number ¢(a) less than .. Let V%, where
acA and n <y, be the set of all functions ¢ in Es with ¢@)=1n. Put A=
A~{a} and Vo y=V§,\IAs We denote Ke={¥a,y; acA, 1<V}

We assume that Eg has no element in common with A, which is not an
essential restriction.

The following two lemmas follow from the definition of discriminative
systems.

Lemma 6. If E€P,Sy(K), then we can find a discriminative system &=
{Va; ac A} of P,Sg such that E= N \J X, where X, ,€K.

a€4 9<dq
Lemma 7. If © is a discriminative system of P,Spthen we have E¢& P,Sy(Kg).

3. F<G, where F and G are operations on classes of sets, means that
for amy class K of sets, every set in F(K) is contained in G(K). But in the
case when F=P,S; and G is an integral operation, shows that
we can ascertain F< G by proving that a certain set in F(K) is contained in
G(K) for a certain kind of classes K of sets.

Tueorem 1. Let Y be any integral operation on classes of sets. The neces-
sary and sufficient condition for P,Sg=Y is that, for any discriminative system
© of P,Sa, the set Eg is contained in the class H(Ke).

Proor. By Lemma 7, the necessity of this condition is obvious. Now
assume that the condition is satisfied. If £ is a set contained in P,Sa(K),

where K is a class of sets, then by Lemma 6, we have £= " U X,,, where
a€d <¢q

XoqpeK and &= {y,;acA} is a discriminative system of P,Sz; By the

assumption, £g is contained in %K) and hence there exists a Hausdorff

operation @<=l and we have Eg=0{¥Tsw,»w} =N ZU Cowy,nw Where Yo,z
vE&4 Acy

€K, v is a subsequence of the sequence {1;A<u} of ordinal numbers
and 4 is an aggregate of such subsequences v. Now we shall show
E=N U Xow,yw-

VvE4 Gy
Since Eg contains no element b in A, for any element b in A there exists
a v(b)ed such that \J @,p,,» does not contain b. By the construction of
A€y (b)
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¥, a(d) is constantly equal to & for A=v(b). Since, for any ¢=FEg, there
exists one and only one 7 <, such that ¢e¥,,, we have {7(1);iev(®)} =
{n;n<+}. Now since {v(b); b A} C 4, we have

N U Xa, 20 C ﬂ U Xa(/l) ) = ﬂ U X, =F.

vEA A€ 4 7<¢p
On the other hand let ¢ be an element in FE, then for any e¢=A there
exists a 7 =¢(a) <Y, such that e=X, o). ¢ is a member of Eg and hence
for any ved there exists a A=y such that ¢e¥,,pn, but this implies
o(a(2)) =7n(2), and hence e=X, 5. Hence e N U Xow,n» and we have

yEA R
EcCnN U Xa, 7+

vE4d A

Thus we have proved E= N UXam 2 =P{X.»,»0}, and since O,

vEL A

we have E<j(K), completing the proof.

The necessity of the inequality z,(8) <7 in Theorem B is a direct corol-
lary of this theorem. Indeed, if P,Sz=<S;P; then for any discriminative
system & of P,Sp we have Eg=S;Ps(Ke), and hence Eg= U N Yo, 0>

vE4L AEAy

where ¥,n,n<EKe, 4 and 4, are sets of indices, and a1 <Ry and A,,<}<5
for any ved. Since N ¥aw,nn 1s included in Eg for any ve4, it contains
icd,

no element in common with A, and hence (1), where A4, must range over
all A. Hence [\ w‘aw . contains at most one function in Es, and hence the

power of 4 must be equal to or greater than that of Eg, which can be equatl
to or greater than any cardinal number less than Rgr,. From this the
necessity of z,(3) <7 in Theorem B follows immediately.

§3. S,P:S; < P;S. and S,P:S, < S,P,.

1. In this section we shall study the conditions under which the ine-
quality S,PsSy= P;S. or S, PgSrS SsP. holds.

DeriniTiOoN 6. Let F(Suy s Sup s Pauos Ps,) be a monomial, then the mono-
mial F(Pu,, Py, Spo»Sp,) 1S called the dual of the former. (For example,
P,Sg is the dual of S,Ps.) An equality F,= G, or an inequality F\ < G, is called
the dual of an equality Fy= G, or an inequality Fy < G, respectively, if F, is the
dual of F, and G, is the dual of G,.

Of course the dual of the dual of a monomial, an equality or an ine-
quality is the same as the original one. By the usual proof with the duality
principle we can see

Lemma 8. If an equality or an inequality holds between two monomials,
then the dual of it also holds.

Derinition 7. Let F(Su., s Soms Ppues Pe,) be a monomial. We say that
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the monomial F(Sy,, ) Sa,,; I,--+[), where I is the identical operation on classes
(see §1, 2), is the S-component of F, and the monomial F(I,--,I; Pa,, -, Pg,) is
the P-component of F.

Lemma 9. Let F and G be monomials. If F=G, then the S-component
(resp. the P-component) of G is greater than, or equal to, the S-component
(resp. P-component) of F.

Proor. Assume that the S-component of F(S.,:*s Saps Ppo» Pg,) is not
less than, nor equal to, the S-component of G(Sy,,-**,Sry; Py, Ps,). By the
successive application of the formulae in Theorem A, the S-components of
F and G are reduced to some single operations S, and S, respectively, where
the assumption implies £ >7. Let E be a set whose power is R, and let K
be the class of all sets each of which consists of a single element in E.
Then S¢(K) contains E, but S,(K) does not contain E. Since F is greater
than, or equal to, its S-component, £ is also contained in F(X). On the other
hand, we can easily prove that £ is not contained in the class G(Sy,,*, Sry}
Py, Py, I, [+, [)(K) <¢) by the induction with respect to the suffix i,
and then putting i=1¢ we can see that G(K) does not contain the set E, and
we have F£ G which proves the lemma.

We can discuss about the P-component similarly.

2. By [Lemma 8, the condition on the ordinal numbers of indices «, g,
for the inequality S,P;S; = P;S. is the same as the condition for the inequality
P,SpPy = SsP, to hold.

TueoreEM 2. A necessavy and sufficient condition for the inequality S,PgSy
= P;S, (or its dual P,SpPr = S;P.) is that we have

TfB)=0, @
and fcfn<a=r—+1 then v < ¢ )
2)

otherwise max(a,r)<c¢.

Proor. Since S,Pz = S,PsS;, the condition 7,(8) < d is necessary by Theo-
rem B, while (2) is the necessary and sufficient condition for the inequality
SeSr=S. (see Remark below Theorem A). If (2) holds, then we have S,Sr=
S., and by Lemma 1, we have P;S,S; = P;S,, while (1) implies S,P3= P,S,, and
hence we have S,PS; = P;S,Sr = P;S., which completes the proof.

3. In order to study the condition for the inequality S,PsS; =< S;P. we
shall prepare some preliminary lemmas.

Lemma 10. Let F be a monomial. We have F(K\J{¢})=F(K)JI{p}, where
K is a class of sets and {$} is the class which consists of only the void set ¢.

Proor. Since F is increasing and positive, we have F(K\J{¢}) D F(K)\J{¢},
while it is easy to see that we have P (K\J{¢}) C P(K)U{¢} and S(K\J{¢})
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C SK)V{#}. Hence by induction with respect to the degree of the monomial
F, we can see F(K\U{¢}) C F(K)\Y{¢} and the proof is completed.

We say that two classes K and H of sets are mutually independent if
any set in K has no element in common with any set in H.

Levmma 11, Let K and H be mutually independent classes of sets. Let X
denote the union of all sets in K, and let F be a monomial. Then E€F(K\JH)
implies En¥e F(K)\J{¢}.

Proor. Since {Y; Y=Xn¥, XK IH}=K\U{¢}, it follows from Lemma
4 that F(K\J{¢}) contains E~X. Hence EnX is contained in F(K)\{¢} by
previous lemma and the proof is completed.

Levma 12, Let F and G be monomials and let 0 be an infinite limit ordinal
number. If cf(0) <a and F£S,G for any 2 <9, then S,F £ S;G.

Proor. Let A be a cofinal subsequence of the seqcence of ordinal num-
bers less than 6 such that 4= Ret . By the assumption and Lemma 5, there
exist a class K; and a non-void set E; for any A< such that E;eF(K)) but
not E,€S,G(K,). Naturally we may assume that those classes K, are mutually

independent. Put K:/I\JAKA and Ezlk{l E,, then since A= Vet < Ry £ 18
S (=]
contained in\ SF(K). Suppose that E is contained in S;G(K), then E=\UJ X,

ac4d
where j< ¥ and X,=G(K). But since the sequence A is cofinal to g, there

exists a A€ such that A< R, Hence EcS,G(K). Let H be the class which
is the union of all classes K, (veA4) except K, then H and K, are mutually
independent and K= H\JK,. Let ¥ be the union of all sets in K, then ¥
is contained in S;G(K;)\V{¢} by Lemma 11. But since En¥ = E, and it is not
void, £, is contained in S;G(K;) which is a contradiction. Hence E&S;G(K)
and S,F £ S;G, which proves the lemma.

4. Tueorewm 3. For the inequality S,PpSr=S;P. (or its dual P,SgPr= P;S.)
to hold, it is necessary and sufficient that we have B =¢ and

if cl(mg(r) <a=ng(r)+1  then zg(r) <3,

otherwise max(me(r), ®) = 0.

&)

Proor. Condition (3) is necessary and sufficient for the inequality
S“Snﬁm <S; (see Remark below Theorem A). Hence under condition (3) we
have SaSﬂB(T)PegSaPE by Lemma 1 (a). By Theorem B, #=<¢ implies PgSr=
.S,,ﬁmPe and we have S,,,PBSrést,rﬁmPegsaPe which proves the sufficiency of
these conditions.

By Lemma 9, =¢ and a =0 are obviously necessary, and since P3S;=
SuPsSy = S;P., the condition 74(r) <6 is also necessary. Now we shall prove
that in the case when cf(zs(r)) < @, condition 7g(r) < 9 is also necessary.
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Assume a =0, cf(ma(r)) <a and 7ma(y) =0, then we have cf@d)<a=s.
Hence ¢ is an infinite limit number. If 2 <d=7m(r), then by Theorem B, we
have PS; £ S;P.. Hence, by we have S,PpS; £ S;P,, and the proof

is completed.

§4. P;S.= P,SgP; and P;S,= P,S:P;.

1. It is easily seen that the function z,(8) is continuous with respect to
the argument «; that is, when « is a limit number, we have lim 7;(8) = 7,(8).
Ale

But in general it is not continuous with respect to the argument p. For
Raen)

example, put 3(0) =10, Rsmen =2 for finite ordinal number # and WRg(w.)
= > WRuw)- Then according to Konig’s theorem and Ragms) > Raw), We have

u<wo

Rawo = 2 Raow < II Raomen < Rubwn), While since (Rgw)™ = Raw for

nlwo n<w,

0<% < w, we have n(@#n-+1))= &(xn+1) and hence liTm 7 (&(n)) = @(w,). There-

fore we have “13?1 )nl(,{) = liTm T (B(n) < 7 (B(w,)).

Derinition 8. We put Ins(e) =ns(e) if either ¢ is an isolated number or
e=0, and Irs(e) = llem ws(A) if € is an infinite limit number.

Lemma 13, Irs(e) is the least ordinal number n such that for any cardinal
numbers m and n, mM< R, and 1< R imply M < R,

Proor. The case when ¢ is an isolated number is trivial. When ¢ is an
infinite limit number, we have /Ir3e) < u if and only if 73(1) < ¢ for every
isolated number A1<e and from this our statement follows immediately.
When 6 =¢=0, then /z,(0)=r7,0) =0, and our statement is trivial. Now as-
sume that e=0 and 0<0. Ir3(0)=r;(0) is the least ordinal number 4 such
that for any set {n,; a=A} of finite cardinal numbers ng, A< R implies

IT 7, < R,. Letxn be any finite cardinal number. We may assume that n=#,
ac A

for any e A and Roéz since 0 <. Now we have nféﬂnaéxofé(nm)i
ac4

=y, Hence u is the least ordinal number such that n <R, and ;1_:< Rs
imply nA < R

2. Let K Dbe a class of sets, and let P(X) denote the class of all sets
which are represented as intersections of an arbitrary number of sets in K.
The operation P, as well as the products PS,, P,SgP etc., are integral opera-
tions, and we have P, <P for any ordinal number a.

Let A be a set. A family {A;;{<=E} of subsets A, of A is called a
covering of A, if sggAé———A. The power of the family Z is called the power

of this covering.
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LemMma 14. We have PsS. % P,SgP, if there is a discviminative system ©=
{Vo; ac A} of P;S., which satisfies the folowing condition.
(D) For any covering {As; E€E} of A with a power less than R, there
exists @ €5 such that TI V.= R
acAg
Proor. Since Es is contained in P;S.(Ks), it is sufficient to show that
Es is not contained in P,SgP(Ke). Assume on the contrary that Eg is con-
tained in P,SzP(Ks), then Eg =$ﬂgX5, where <R, and X,eS;P(Ke). Put
c 5
A:= A—X,, then, since Eg contains no element in A4, {4,; =&} is a covering

—

of A with a power less than R, Hence there exists a £ in & with I[ v,
aeAe

=W, Let Eg, be the set of all functions ¢ in Eg such that ¢(@)=1 for
any acA—A;, then TIV,=R; implies £s.=Rp Now X:= Y, where

_ acAg bEB
B <Ry and Y, are intersections of sets ¥, , in a subclasses of Ke. But
since ¥,,, and ¥, . intersect only when 7={, and Y, being a subset of X,
contains no element in A, all functions in Y,\Eg take a definite value for

each a=A,. Hence Y, contains at most one function in Eg,. Since 5< Ry
< Fe, X:=\UJ Y, can not contain FEe,. and hence Eg is not contained in X,
beB

which is a contradiction, and the proof is completed.

3. Turorem 4. For the inequality
PsS. = P,SgPy (ov its dual SsP. = S,PpSy) 4)

to hold, it is necessary and sufficient that ome of the following conditions (i),
(i1) and (iil) holds.

) 0=Za and e85,

(i1) =7y and wp(e) =B,

(iid) 0¥ <Ly, cfle)< a and Ins(e) £ 5,
where

0% =0 if either 6 is a limit number or 6 =0"+1 and a = cf(d’),

and % =10 if 6=0+1 and ci(d’) < «.

Remark. When a < 8, 6% is the least ordinal number with P; =< P,Ps (see
Remark below Theorem A).

Proor or Tueorem 4. First we shall show that these conditions are
sufficient. Condition (i) is trivial. If condition (ii) is satisfied, then we have
PyS. = P,PsS. < P,SpPy. Now assume that condition (iii) is satisfied. But if
Imss(e) = mea(€), then condition (iii) is reduced to condition (ii). Hence we may
assume that ¢ is an infinite limit number. Put A=cf(¢e)+41, then, since 1 is
an isolated number and 1< «, we have P,P,=P, Now we shall show that
the inequality PsS. =< P,SgPy holds. For this purpose, it is sufficient to show
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that for any discriminative system ©= {{r,; a= A} of PsS,, Es is contained
in P;SpPr(Kg). But if there exists an ordinal number x < e such that ¥, < o,
for any e= A, then & is a discriminative system of PuS,. Since ms(n) = Imse),
we have PuS, = SpP; < P,SpPr and hence Es=P,SpPr(Ke). If l.aue.la. Vo = @y,

then, since ¢ is an infinite limit number, we can take a strictly increasing
sequence {op; 0 < wei(y} of ordinal numbers o, cofinal to ¢. Put &5,= {a; V¥,

<C‘)ax}x EP: {d', wap§¢a<w0‘p+1} for 0<‘O<Q)Cf(g), and YP: Q \<.{/) Wa,m then
a€E g p<dgq

we have Eg= [\ Y, But since {y,;acE,} is a discriminative system of
0<0cf ()

P3sSsppy and ws(0p4) = Inpn(e) = f, we have PuS,,,, = SpPy and hence Y,=SpP(Ke).
Furthermore, since cf(¢) <2, we have Ege P;SpPy(Ke). Hence we have PpsS,
= P;SgPy, and so PjS. = P,PsS.= P,P;SgPr = P,SgPy by P,P;=P, and this
proves the sufficiency of condition (iii).

Next we shall prove the necessity of the conditions. First ¢e< $ is obvi-
ously necessary, and if a <, then 0% <y is also necessary. Indeed, if @« <d
and 7 < 6%, then, since both « and 7 are less than §, P;= P, P, implies 6 =7r+1
and cf(r) < a. But by the definition of ¢*, this implies §* =7 in contradiction
to the assumption 7 < &*.

Now we shall consider the case a <0, and split it into two cases (a)
a < 6% and (b) a = 6% < 0.

Case (a) a < 0*. Here we remark

I If 6*+0, then, for any ordinal number ¢’ less than 0% there exists
an ordinal number = such that ' = r < é* and «a = cf(z).

Indeed, if 6* is an isolated number, then put §*=r41. Since a < i*=
cf(6*), we have §=0* by the definition of 6% and hence we have «a = cf(7).
If 6* is a limit number, then let = be the next successor of max(z/, «) and
we have a < v=_ci(7).

Next we shall show

(ID) Ims(e) < B is necessary for (4).

Indeed, if 8* =0, then obviously we have Irs(e) =¢. Hence [rs(e) == f
is necessary. Assume 06*#0. B <lIms(e) implies the existence of cardinal
numbers m and n with m< R, n <R and m* =Ry Since 6* >0, we may
assume that n is not finite and hence n = R for some ordinal number 7/ < &*.
By previous remark (I), there exists an ordinal number r with 7/ =7 < 0¥
and a <cf(r). Let ¢ be an ordinal number whose power is equal to m and
put ¥, =1 for any ¢<A where A is a set with A=\, then since ¥, < w,
and 1< 0* <9, &= {V,; ac A} is a discriminative system of P;S.. Let {A:;
E=E} be a covering of A with a power less than R,, then since «a = cf(7),

there exists a {5 with _AT;: Rr Hence we have [[V,=m¥> Ry and the
acA

system & satisfies the condition (D) in Furthermore,
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(III) If a=cf(e), then mu(e) < B is necessary for (4).

Indeed, if B < ms(e), then we have either B <lrs(e) or Irsple) < B < male).
But in the former case we have already seen that (4) does not hold. Hence
we shall consider only the latter case and so let ¢ be an infinite limit num-
ber. B <msm(c) implies the existence of a set of cardinal numbers my,acA

such that Z< R My < R, for any a=A and [Tm, =Rp Here the set {m,;

acA
asA} of cardinal numbers is cofinal to W, or otherwise there would be a

cardinal number m < R, which is greater than m, for any z=A. Hence we
have }{B§mj which implies B </[ms(e) in contradiction to the assumption.
Hence the power of A is not finite and, putting A=R., we have cf(e) <"
< 0%, Now by the remark (I) above, there exists an ordinal number = with

=< 0% and a=cf(r). IIm,=NR; implies R = Rp.
acAd

Let {m;; A < wet(y} be a strictly increasing sequence of cardinal numbers:
my; less than R, and cofinal to R.. Let B be a set with Z?;:}\’,. Choose an:
ordinal number v, » whose power is equal to m; for any b= B and 2 < @ct(e)»
and put A= {0, A);b=B, A <wei(s)}, then by cf(e)<d* =<0 and 7 <o* =0, we
have A. <R3, and the system &= {Yq,pn; (b, )4} is a discriminative system:
of P;S.. We shall show that this system satisfies condition (D) in [Lemma 14

Let {4.;&=5} be any covering of A with §< R, Put Be,=1{b; b, )

edg}, de= {X;E,Azxr} and lé*zlju.b. A. Assume that 1.* < () for any
EJE

=X, then since a=cf(¢) and §< R, the set {i:%; = F} is not cofinal to
wet(s). Hence A* = ].u.;t’). ¥ < wetey. Put £=2%+1, then we have £ < wct)-
[

=

and E,K< R for any {5, Since B < Re = Ref(r), we have 5§~E"‘< R:=B.

But since {4,; &5} is a covering of 4, any (b, £) with b= B lies in some
A, and hence \J Bg,,=B which is a contradiction. Hence there exists a
el

EcE with A% = we(y, and the set 4 ={l;:§,1=}<r} is cofinal to wct(e)-
£ 3 g,

Hence we have X m;=R,, and for any A<4, there exist R. elements beB
/1645

such that (b, )4, Hence we have TI Vopn=(II m)¥=(3Z m)r=R:I
(b, D €4z TR P

=R, Hence the system & satisfies condition (D) in and inequality
(4) does not hold.

Now we have proved that in the case (a) a < % it is necessary for (4)
that either (ii) or (iii) is satisfied. Next we shall show that these conditions.
are also necessary for (4) in the case

(b) a=206*<0é.

In this case, by the definition of 6%, we have 6§ =0*+1=a«+1 and a >
cf(6*) = cf(a). Hence « is an infinite limit number. Let 1 be any ordinal
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number with cf(a) <A< a. First we shall show that, if neither (ii) nor (iii)
is satisfied, then the inequality PsS.=< P;SgP; does not hold.

Indeed, if we replace A for « in this theorem, &% will remain unaltered.
Condition (i) is independent of the value of « as far as &* is unaltered. If
condition (iii) &* <7, cf(e) < and Ins (e) = B, is satisfied, then since 1< «,
condition (iii) will be satisfied by «, in contradiction to our assumption.
Hence now neither condition (ii) nor (iii)’ is satisfied. Furthermore we have
2 < &* and hence we are taken back to case (a). Therefore P;S. £ P;SpPr for
any cf(a) <2 < a and so also for any 1 < a.

Hence by we have P,P;S.% P,SgPy. But since P,Ps= PP,y
= P, =P, we have P;S.%£ P,SgPr, and the whole proof of [Theorem 4 is
completed.

4. By the definitions of #,(8) and Iz,(8), we can easily see

Lemma 15, # (B) and Ir (B) are not less than max(«, ).

Next we shall show

Lemma 16. If B is a limit number and cf(B) < a, then w(B) = B-2.
Proor. Let {m;; 2 < wc(p} be a strictly increasing sequence of cardinal

numbers cofinal to R, According to Kénig’s theorem we have Rg= <2 m
: . A wcf(ﬁ)
< II my, while by the definition of 7,(8) we have II m; <Rz, . Hence
A(wcf(ﬁ) X(wcf(ﬁ)

we have 7,(8) = p+2.
Tueorem 5. For the equality

PsS. = PySpPr (or its dual S;P.= S,PSy) 5)

to hold, it is necessary and sufficient that one of the following conditions (i), (i)
and (iii) holds.

6)) a=20, f=c¢c and ng(r) <9,

(ii) B=¢ and a=208=cl(a)=rmngr),

(iii) a<f=r=0=c=mng(f)".

Proor. From Theorem A and B the sufficiency of these conditions fol-
lows immediately. Now we shall show the necessity of these conditions.
First comparing the S-components of the both sides of (5), we have e=45.
If further a =4, then according to Theorem 3, P,Sz = P,SzPr implies z4(r) < .
If especially #4(r) = «, then we have «a = cf(zy(r)) = 75(r) = «. Hence equality
(5) and the condition @ =0 lead to either (i) or (ii).

By the comparison of P-components of both sides of (5), we have a <.
If especially a <9, then we have 0*<yr, where 6% is the ordinal number
defined in Theorem 4. Further under the condition « < § the equality

1) The ordinal number g with 8 =z4(3) is a so-called strongly inaccessible number.
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P;sSp = P,SsPs (6)

implies ma(r) <38 by On the other hand, by and
(6) implies Inz;(B) = . Hence we have

=B =B =mp(r) = 0. (M

Assume §=0%+1, then by the definition of 6*, we have cf(d*) < a < o*.
Hence by (7), we have cf(0*)<o*=<p, and hence by we have
O*+2 < mp(0%) < mp(y) < 6 =0*+1 which is impossible. Hence if « <9, then
equality (6) implies 6 =0%, but d=0*<7y =7ng(r) and (7) lead to (ili) imme-
diately.

§5. P3S.<S,P:S; and P;S.= S,P;S:.

1. First we shall show a lemma which corresponds to for
inequality (4) or to of for the equality P,S;=S:Ps,
DeriniTion 9. [Kely denotes the class of subsets of Es (c¢f. Definition 5)
such that
(K) A subset X of Eg is contained in [ Ksly if and only if, for any element
a of A, the power of the set X(a)= {¢p(@); =X} is less than Ry
Lemma 17. The inequality

P;S. = SuPpSr (or its dual SsP, < P,SpPr) ©)

holds if and only if 0=p8 and for any discriminative sysiem © of P3S,, Es is
contained in S,([Kelr)-

Proor Since the expression Eg= \U X, §< Vo XoE[Ke]r implies Eg =
beB
unNn U ¥,, where ¥,,=Ks the sufficiency of this condition follows

bEB ac4 pEXy(a) i
from Theorem 1, and the necessity of § </ follows from Lemma 9.

Obviously EgeS,PsS1(Ke) implies Fg €S,PS;(Ks) where P is the operation
defined in §4,2. Now we shall show that if E¢ is contained in S,PS;(K¢) for
a discriminative system & of P;S,, then Fg is contained in S, ([Kslp).

E@:bUBX,, where X,=PSy(Ke) and §< R, Since Eg is disjoint with A,
e

no X, contains an element in A. Now we have X, = N Y, , where Y, .€S5;(Ks).
CEC’b

Let @ be any element in A, then since X; does not contain ¢, there exists an
element c¢(¢) in C, such that ¥, ., does not contain @ If we put X,/ =
ﬂAYb,c(G), then X’ DX, and Xy’n\A=¢. Hence \J X}/ =Fs. Now Y, .0 =
ac

beB
U Za,n@ Where Dy, <Ry and ¥, (g, 50y €Ke. Since Y, ., does not contain
&D.
bya

@,a(d) is constantly equal to @ for deD,, If we put xy(@)= {7(d); d=Ds,,},

then ys(a) is a subset of {7;7<v.} and 7,(@) < Xr. Since ¢(a)=7 for any
9ELEsN\YVa,p We have xya) = {¢@); ¢ Yy NEs} and Y, ) consists of all
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elements in A except a and functions ¢ in Eg such that ¢(a)< xy(a), and X,
consists of all functions ¢ in Eg such that ¢(a)< yy(@) for any a=A. There-
fore X,y e[Kelyr, and EseS,([Kelr), and the necessity of the condition is
proved.

The symbol z,(f) can be defined, as it is easily seen, as the least ordinal
number y with P,Sg=<S.P. Similarly there exists a least ordinal number «,
which we shall denote by ps,.(r), such that for any discriminative system &
of P5S., the set Eg is contained in S,([KeJr). If we use the symbol p;,(7),
then can be stated as follows.

Lemma 17, We have (8) if and only if 0= and ps,(r) = «.

It would be desirable to determine the value p;.(7r) in terms of m5(¢) and
cf(d) etc., but this seems to be a very difficult problem.

2. Now we shall discuss about several conditions which are sufficient
or necessary for inequality (8).

Lemma 18. It is sufficient for (8) that one of the following conditions (i),
(i1), (iii) or (iv) is satisfied:

1) 0B and e=r,

(ii) 0=ph and ms(e) =,

(iii) 0=pB, e=7r+1 and m(ci(+D = a,

(iv) 0=B,e=r+1l and 6=cf(r) <.

Proor. The sufficiency of (i), (ii) or (iii) is an immediate consequence
of Theorem A and Theorem B. For example, if (iii) is satisfied, then we
have

P(SSa = PBSTH = PBScf(Y)ﬂSr = Sna(cf(T)H)PéST = SwPBST' .

Now assume that condition (iv) is satisfied. Let &= {yr,; a=A} be a
discriminative system of P;S.. Rearranging the order of ordinal numbers.
less than v, we may assume that each v, is at most equal to the initial
ordinal number w;. Let 4= {u,;v<wsm} be a strictly increasing sequence
of ordinal numbers cofinal to w;. Let X; be the set of all functions ¢ in
Es such that ¢(e)<pu, for any e A, then X,e[Kglr. On the other hand,

since ¢(a) < wr for any ¢p=Eg and a=A, and since Z:< o= Res), the set
{p(a); ac A} of ordinal numbers is not cofinal to w;, and hence there exists
an ordinal number u,€4 with ¢(@) < u, for any e= A and hence ¢ is contained

in X,. Hence Eg= <U X, and since cf(y) < «, Eg is contained in S,([Kelr).
v<oct ()

Lemma 19. If r<e, then the following conditions (a), (b) aend (c) ave
necessary for (8):

(@) either e<, or e=7+1 and cf(y) < «,

(b) either ms(6) =«
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or wy(e) = (),
or wy(e) =ns(r)+1 and cf(zs()) < a,
() 0= «, and especially if 6 is an isolated number, then 0 < «.

Proor. The necessity of (a) is easily proved by comparing the S-com-
ponents of both sides of (8). Next we shall show the necessity of (b). If
max(a, 7;(7)) < ms(e), then there exists a discriminative system & of P;S, such
that E‘@gmax(}{w}{nam). If (8) holds, then by Lemma 17, we have Eg=

\U X, where §< R, and X;e[Kslr. By the definition of [Kslr, every set X

bEB
in [KsJr has a power less than Rr,q). Hence we have necessarily Eg = Ry

and B_é Ret(zy(n)s and this implies mg(e) =m5(r)+1 and cf(zs(r)) < «.
Next we shall show the necessity of (c). First let § be an isolated num-

ber and put 6=06"+1. Let A be a set with Z::}{g, and put V¥, = w; for any
asA. then ©= {y,; a= A} is a discriminative system of P;S.. Assume a <0

and vet Es=S,([Kely), then Es= U X, where B< R, and X,=[Kelr. Since
bEB

B is at most equal to jz}{g/, we can set up a one-to-one correspondence
f(b) =a between all elements b of B and elements ¢ of A. Now since the
power of the set X,(a)= {¢(a); ¢=X,} is less than the power R of ¥, an
ordinal number v(b) less than v,,), which is not contained in X,(f()), can
be selected for any b= B. Put 6(a)=v(®) if a=50) and 8(a) =1 if a=fb) for
any beB. Since f=Eg, § is contained in some X, but since the ordinal
number 6(f(b)) = v(b) is not contained in X»(f(b)), X, does not contain §, which
is a contradiction. Hence if § is an isolated number, then a =<4 implies
P;S. £S,P;Sr.

Next, let § be a limit number, and assume « < 0§, then as we have seen
above, P,.,S.£S,P:Sr. Since a+1< 9, we have P;S, £S5,P;Sy and the necessity
of (c) is proved.

3. There remains yet a gap between the necessary conditions and the
sufficient conditions for (8); we could not solve the problem of finding a
necessary and sufficient condition for (8), which is essentially the same as
that of determining the value p;.(r) as stated below Lemma 17

As A. Kozniewski and A. Lindenbaum noticed in [2], the value of 7, (8)
is completely determined under the generalized continuum hypothesis as
follows.

Lemma 20. Under the generalized continuum hypothesis,
7, (B =} if either f=4"+1 and a =cf(p’),
or B is a limit number and o < cf(f),
=f+1 if B=p"+1 and cf(fH)<a=p,
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= (42 if Bis a limit number and cf(f) <a <4,
=q if «is a limit number and [ < «,
=a+1 if «is an isolated number and < .

Hereafter, until we complete the proof of we assume the
generalized continuum hypothesis.

Lemma 21, If 7 <e and 2 <0, then (8) implies n3(2) = «.

Proor. If X< 8, then we have 73(1) =0 or z3(1) =06+41 according as o is
a limit number or § is an isolated number respectively. But, by Lemma 19
(), r <e and (8) imply 0=« or d <a according as 0 is a limit number or
d is an isolated number respectively. Hence in either case we have 7;(1) < a.

TueoreMm 6. We have (8) if and only if one of the following conditions (i),
(i1) and (iii) is satisfied:

6y 0=p and c=r,

(i1) O0=p, and ms(6) = «,

(iii) 0L B, e=7r+1 and max(é*, cf(r)+1) = «,
where 0t =06 if 0 is a limit number and 0" =0d0+1 if 0 is an isolated number.

Remark. By Lemma 20, it is easily seen that under the generalized
continuum hypothesis, condition (iii) above is equivalent to condition (ili) in
Lemma 18, and condition (iv) in Lemma 18 is a special case of this condition
(iii).

Proor or Tueorem 6. The sufficiency of these conditions (i), (ii) and (iii)
is already proved. The necessity of § =</ is obvious. Hereafter we assume
0=Ah,7v<eand a< ), and we shall show that inequality (8) implies (iii).

First, by Lemma 21, @ < 73(¢) implies d=¢ and by Lemma 19, (8 and
« < my(e) imply that we have

either 7€) = ms(r) 5
or w5(e) = ws(r)+1 and ci(z:()) < @ ®

Especiaily the latter case of (9) occurs only when z(r) is a limit num-
ber, or otherwise we have m3(7) = cf(ms(r)) < a < zs(e), and zmz(e) = my(r)-+1 is
impossible.

Next we shall show 0 <r. Indeed if y <9, then, by Lemma 21, we have
73(r) = a < 7s(e). Hence we are in the latter case of (9), and since z3(y) is a
limit number, we have zy(y) =0 = « where cf(d) <d=«. Now since ¢, we
have either 0=¢, 0+1=¢ or 0+2=¢ but in either case, by Lemma 20 and
cf(8) < 0, we have rs(c) = 6-+2 in contradiction to ms(e) = ms(r)+1.

Next we shall show e=7y+1. Indeed if y+2=<¢ then, by Lemma 19 (a),
we have ¢< a, and hence zy(r)=7+2<e<a <mylce). Hence we are in the
latter case of (9) and 7m3(y)=r-+2. But then zi(y) is not a limit number,
which is a contradiction.
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Now we have e=7r-+1. By (c) and 7 <¢, 6t <a is necessary.
If 6=<cf(y) then by [Lemma 20, we have a < m3(¢) =e and hence, by
19 (a), we have cf(y) <a. If cf(r) <9, then we have also cf(y)<d=<«, and
the whole proof of this theorem is completed.

4. In we assumed the generalized continuum hypothesis,
but in determining the condition for P;S.= S,Ps;Sr, we need not assume this

hypothesis.

Tueorem 7. For the equality PsS.=S,PpSr (or its dual S;P.= P,SgPr) to
hold, it is necessary and sufficient that one of the following conditiorns (i), (ii)
and (ii1) is satisfied:

0 0=8, =1, m,(8) =8 and a=ci(r),

(i1) r<a=f=0=¢c¢=ma),

(i11) cf<a=B=0=mn,(a) and e=71+1.

Proor. Sufficiency follows immediately from Theorem A and Theorem
B. 6= 7 is obviously necessary. Now by the comparison of S-components
of both sides of this equality, we have either (A) e=7 and a = cf(y), or (B)
r<a=¢ or (C) e=r+1and cf(y) <a=y. But by Theorem 2, we have
7, (8) =0, and hence (i) follows from (A). By Lemma 19 (c), we have ¢ < a.
Hence we have a <7, (3) < 0=/ =a, and hence (ii) or (iii) follows from (B)
or (C) respectively.

§6. The value of 7=,(3).
In this section we shall discuss about the value of the function z,(g)
and especially give the condition under which it is equal to g or f-1.

DeriniTion 10. Let m and n be cavdingl numbers. nﬂ denotes the least
cavdinal numbey ¥ such that m' <m implies nm' < 1.

Let a and [ be ordinal numbers. [jg denotes the ordinal number y with
R
Ry = REM-

The definition of nm is similar to the definition of the symbol n° = > o’
m’ <m

(cf. [3, Def. 47). Indeed, 1n° is the ledst cardinal number r such that m’'<m
implies n»" =<¢. Hence nm is equal to the next succeeding cardinal number

to 1" or equal to n° itself according as the family {n™;m’ <m} of cardinal
numbers has a maximum number in it or not respectively. Especially if

m= Ry, then 0 is greater than 1.
Levmma 22. = (B) is equal to either B or ,65.
Proor. By the definitions of z,(3) and fjﬁ, we have obviously 8=, (f)

gﬁﬁ. If p<=,(B), then there is a set {m,; e=A} of cardinal numbers with
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_;1:< Ra Me<Rg for any ecA and [Im,=Rg Let B be any set whose power

ac4
n is less than R, then the power of the set product Ax B is also less than

R, Put me,,y =m, for any (a,b)=Ax B, then we have Rz, >( )II M(q,p)
a,b)c4dx B

= (Tl m,)* = Rg" Here n is any cardinal number less than R, hence we
ac A

have ﬁﬁé r(B) and therefore ,Bﬁ:rca(ﬂ), completing the proof.

DeriniTion 11, Let f be an ordinal number. p(B) denotes the least ordinal
number v with RG5> R, (cf. [3, Def. 3]).

qa(B) demotes the least ordinal number v such that therve exists a cavdinal
number m less than Rg with m™ = Rg.

The symbol q(B) is closely related to p(8). For example, it is easily seen
that q(f-+1)=p(F) and when £ is an infinite limit number we have q(f) =
Lim p(y).

A8

Lemma 23, #wy(B)=pF if and only if a=min(cf(#), q(#)).

Proor. If cf(f) <a and B is a limit number, then we have B-+2 =7, (B)
by Lemma 16. If cf(8)<a and B is an isolated number, then cf(8) =74 and
obviously we have g < a=r,8). If q(f)<a, then there exists a cardinal
number m less than R, with m e® = R which implies 7,(8) > 8.

Now assume « < min(cf(p), q(B)). Let {mg,; a=A} be a family of cardinal
numbers such that j< R, and m, < Ry for any e=A. Then a = cf(8) implies
that the least upper bound m of the cardinal numbers m, is less than Rg.
Furthermore q(8) = « implies m:‘;< R Hence we have agma§mf< R and
hence 7,(B8) < B, completing the proof.

Lemma 24. I q(B) < a = p(B), then we have w,(f) = F+1.

Proor. By Lemma 23, q(f) < a implies g <n,(8), but a=p(8) implies
}{?w:}ig (see [3, Lemma 6]). Hence by Lemma 22 and the remark below
Definition 10, we have nw(ﬂ)zﬁZ:ﬂJrl.

Lemma 25, IFf max(p(B), a(B) < «, then B+2=r,(B).

Poor. q(B) < a implies 7, (B) = ﬁﬁ > . Furthermore, since a > p(B), we
have R§w> R:"(m = WRgs; Which impiies [13>ﬂ+1, completing the proof.

Lemma 26. If cf(B) < «, then m,(B)= F+2.

Proor. We have already seen in Lemma 16 that this statement is valid
when A is a limit number. If g is an isolated number and g = 4’41, then
T (p) = ,B’E'. Moreover, by A.=cf(f) <«a, we have }{Eﬁ > }{:,B: ZRB; Rt
Hence we have =, (8) > 8+1.

It is easily seen that @ and p satisfy one and only one of conditions
which appear in Lemma 23, 24, 25 and 26. Hence we have



[1]
[2]
£3]
[4]

On some relations concerning the operations P, and S,. 195

Turorem 8. 7w, (B) takes the following values.

T(B) = B, if and only if a = min(cf(8), q(8)),
— 55— g, if and only if q(f) <a=p(A),
- ﬁﬁ = fA+2, if and only if either > cf(f)

or a>max(p(B), a(B)) .
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