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1. Introduction

The use of a fixed point theorem in the study of systems of inequalities
originated with von Neumann’s works $[21, 22]$ on his minimax theorem.
Since then, problems of similar line have attracted broad attention, and
remarkable progress has been made in the generalization of the results as
well as the improvement of the methods of proof.

The method of von Neumann in [22] was simplified and reformulated a
few years later as Kakutani’s fixed point theorem [12] which is very useful
and frequently used in dealing with many similar problems. The development
of topological devices in the direction initiated by Kakutani now culminates
in the results of Eilenberg-Montgomery [6] and Begle [2] which extend the
noted Lefschetz’s trace formula $[16, 17]$ to set-valued mappings. On the
other hand improvement has also been made in the effort to treat the pro-
blems with a minimum amount of topology. Numerous proofs1) based on the
separation of a convex set by a hyperplane, $i$ . $e$ . those appealing to several
types of Hahn-Banach’s theorem have appeared to meet the most elementary
cases of the minimax theorem or its variants, since the first such simplifica-
tion was made by von Neumann himself [23]. Beside this line of simplifica-
tion, this writer, following and pushing over the idea in Nash’s result [20],

showed that Brouwer’s fixed point theorem can, with the aid of a kind of
Kuratowski map technique, directly apply to general minimax or equilibrium
point theorems that cannot be handled in the standard way as established by
Kakutani because of the lack of the continuity of relevant functions. Our
way of reducing the resolution of a problem to a fixed point problem is, we
believe, of interest, in that it utilizes the potentiality possessed by the fixed
point theorem concerned more fully than that in the standard line does.

Meanwhile, since the von Neumann’s initial work attention had mainly
been confined to some game problems or their variants, and no attack had
ever been made against relevant conjectures in the orthodox mathematical
economics until in recent times Arrow-Debreu [1], McKenzie [18], Gale [10]

1) Without claim for completeness we cite a few examples [7, 8, 11, 14, 15, 27].
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and this writer [26] independently and almost simultaneously gave reformu-
lations and proofs to the most basic conjecture in the theory of general
economic equilibrium as founded by L. Walras around the end of the last
century. Here as in the theory of games fixed point theorems or their
equivalent propositions proved to be very powerful. It is interesting as well
as significant that the minimax problems and those of economic equilibrium
have some intersection in common and reveal a certain similarity between
them.

The present paper offers a theorem on the existence of solutions for
some system of inequalities with the intention to generalize and to give a
unified treatment to the results of Gale and this writer regarding the exist-
ence of economic equilibrium on one hand, and the theorems in game problems
including this writer’s previous results on the other. The theorem will be
stated and proved in section 4. It needs a certain knowledge of Vietoris
homology theory for compact Hausdorff spaces in its statement and proof.
Section 2 is preliminary in nature and provides with some of basic results in
the Vietoris homology theory which will be used later on. The proof of the
main theorem will be done by further improving the method in the previous
papers $[24, 25]$ and relating the problem to a special case of Eilenberg-
Montgomery-Begle’s coincidence theorem $[2, 6]$ . In view of the much ele-
mentary nature of this special coincidence theorem, a simple alternative
proof will be given to it by establishing an analogue of Sperner’s lemma.

Section 5 will be devoted to a reformulation of a part of the main results
in locally convex topological linear spaces in the hope to bring a duality
relation behind the theorem into relief.

Finally it is acknowledged that we are greatly indebted to Prof. S. Seki
for his invaluable comment and suggestions.

2. Vietoris cycles.

In this section basic concepts and elementary results in the Vietoris
homology theory will be recalled and enumerated for subsequent use. Unless
otherwise stated, coefficients are always elements of a fixed field $F$.

2.1. V-cycles. In the sequel a covering always means a finite covering
by open sets. Let $M,$ $ N,\cdots$ be coverings of a compact Hausdorff space S. For
two coverings $M$ and $N$ of $S,$ $M>N$ means, by definition, that $M$ refines $N$.
Thus the totality of all coverings of $S$ is thought of as being directed by
means of this partial order.

An oriented n-simplex $\sigma$ in $S$, by definition, is simply an ordered collec-
tion of $n+1$ points $x_{0},$ $x_{1},\cdots,$ $x_{n}$ , of $S$ up to their even permutations; these
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points are called the vertices of $\sigma$ . We write $\sigma=x_{0}x_{1}\cdots x_{n}$ whereas by $[\sigma]$ is
meant the point set of all the vertices of $\sigma$ . For a covering $M$, we denote
by $K(l\psi)$ the simplicial complex formed by all oriented simplexes $\sigma$ of $S$

such that $[\sigma]$ is included in some member of $M$. Whenever preferable, these
simplexes will be called M-simplexes. Therefore, if $M>N,$ $K(M)$ is a sub-
complex of $K(N)$ . We always use finite chains in $K(M)$ over a field $F$. For
a chain $c=\Sigma\alpha_{J^{O_{j}}}$ in $K(M),$ $[c]$ stands for the union of $[\sigma_{j}]$ for all $\sigma_{j}$ with
$\alpha_{j}\neq 0$ in $c$.

An n-dimensional Vietoris cycle $z^{n}=\{z^{n}(M)\}$ , an n-V-cycle in short, is a
collection of n-cycles of $S$, each $z^{n}(1\psi)$ being an n-cycle in $K(M)$ , such that
$M>N$ implies $z^{n}(M)\sim z^{n}(N)$ in $K(N)$ . Two n-V-cycles $z_{1}^{n}=\{z_{1}^{n}(1\psi)\}$ and
$z_{2}^{n}=\{z_{2}^{n}(M)\}$ add up to an n-V-cycle $z^{n}=\{z^{n}(1\psi)\}$ by the formula $z^{n}(M)=$

$z_{1}^{n}(M)+z_{2}^{n}(M)$ . With this addition the totality of all n-V-cycles becomes a
vector space $Z^{n}(S)$ over $F$, the group of n-V-cycles. An n- V-cycle $z^{n}=\{z^{n}(M)\}$

is said to bound, or to be homologous to zero, $z^{n}\sim 0$ in symbol, whenever
each $z^{n}(M)\sim 0$ in $K(M)$ . All these n-V-cycles form a vector subspace $B^{n}(S)$

of $Z^{n}(S)$ , the group of all bounding n-V-cycles. The factor group $H^{n}(S)=$

$Z^{n}(S)/B^{n}(S)$ is, by definition, the n-dimensional Vietoris homology group.
Incidentally, we adopt augumented homology groups so that O-V-cycles are
restricted to those whose coordinates cycles $z^{0}(M)$ have the Kronecker index $0$ .

It is known (see [3, pp. 536-7]) that $H^{n}(S)$ is isomorphic to the n-dimen-
sionaI $\text{\v{C}}_{ech}$ homology group defined by means of the nerves of coverings.

2.2. Some theorems.
A compact Hausdorff space is called acyclic, if all its homology groups

vanish. Contractible spaces are well-known acyclic spaces; convex sets are
much special cases of the contractible spaces. The following important
theorem due to Vietoris is most basic throughout this paper as in those of
Eilenberg-Montgomery [6] and Begle [2].

THEOREM 1 (Vietoris [31], Begle [3]).

Let $S$ and $T$ be two compact Hausdorff spaces, and $f:S\rightarrow T$ a continuous
map onto $T$ such that the inverse image $f^{-1}(q)$ of each $q\in T$ is acyclic. (We call
such a map a Vietoris map.) Under these circumstances $f$ induces isomorphisms
onto, between $H^{n}(S)$ and $H^{n}(T)$ , for any dimensions.

For its proof the well-exploring Begle’s paper [3] may be consulted.
Also the following results are important to the discussion in subsequent

sections.
THEOREM 2. Let $S$ be a compact Hausdorff space which is acyclic. Then

for any covering $N$ there is a refinement $M$ such that every n-cycle $\gamma$ in $K(M)$

bounds a chain in $K(N)$ .
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A proof is given to this result by Begle [3] based on the relationships
between V-cycles and $\check{C}ech$ cycles and on a proposition regarding essential
elements in an inverse system of finite-dimensional vector spaces (Lefschetz

[17, p. 79, (27. 12) and (27. 13)]). It is also noted that the restriction of the
group of coefficients to a field is made only in connection to Theorem 2.

This theorem can be put in a more useful form. To this end we consider
relations of coverings of a space to those of its subspaces. Let $S$ be a
Hausdorff space and $T$ a closed subspace of $S$. For a covering $N$ of $S$ let
$K(T, N)$ stand for the subcomplex of $K(N)$ , formed by all $\sigma$ with $[\sigma]\subset T$.
In contrast with this notation, $K_{T}(N^{\prime})$ will be used to designate the complex
formed by all $N^{\prime}$ -simplexes in $T$, where $N^{\prime}$ is a covering of $T$. A covering
$N$ of $S$ induces a covering $N^{\prime}$ of $T$ in the natural fashion. Coversely, a
covering $N^{\prime}$ of $T$ may be thought of as induced by some covering $N$ of $S$,
since $T$ is closed in S. Now assume that $T$ is compact and acyclic. Given
any covering $N$ of $S$, then $K_{T}(N^{\prime})=K(T, N)$ , where $N^{\prime}$ is the covering induced
by $N$ in $T$. By Theorem 2 there is a refinement $j\psi^{\prime}$ of $N^{\prime}$ such that every
n-cycle in $K_{T}(M^{\prime})$ bounds a chain in $K_{T}(N^{\prime})$ . Let $M$ be one covering of $S$

that induces $M^{\prime}$ in $T$, and take a common refinement $L$ of $M$ and $N$. Then,
as $L$ induces a covering in $T$ finer than $M^{\prime}$ , every n-cycle in $K(T, L)$ bounds
a chain in $K(T, N)$ .

We state this result in a more general way as follows:
$CoROLLARY$ . Let $S$ be a Hausdorff space and $T_{i}$ compact acyclic subsets of

$S$, finite in number. Given any covering $NofS$, then there is a refinement $L$ of
$N$ such that for each $i$ every n-cycle in $K(T_{i}, L)$ bounds a chain in $K(T_{i}, N)$ .

PROOF. In view of the above discussion, for each $i$ choose one covering
$L_{i}$ which has the desired property just for $T_{i}$ . A covering $L$ sought for
will be obtained by taking a common refinement of all $L_{i}$ .

3. An analogue of Sperner’s lemma.

3.1. Let $S$ be a compact, Hausdorff space and $Y$ an n-dimensional Eu-
clidean simplex whose vertices are $a_{i}(i=0,1,\cdots, n)$ . Let furthermore $f$ be a
continuous onto-map: $S\rightarrow Y$. Whenever a k-dimensional face $a_{i}$ , $a_{i_{1}}\cdots a_{i_{k}}$ of $Y$

is viewed as a point set, it will be denoted by $|a_{i_{0}}a_{i}.\cdots a_{i_{k}}|$ . The inverse
image $f^{-1}(|a_{i_{0}}a_{i_{1}}\cdots a_{i_{k}}|)$ of a h-dimensional face $|a_{i_{0}}a_{i_{1}}\cdots a_{i_{k}}|$ of $Y$ will be called
a k-face of S. For any point $p\in S$ there obviously exists one and only one
face of the lowest $k$ which we call the carrier of $p$ .

Let $L$ stand for the simplicial complex formed by all faces of Y. $K(N)$

has the same meaning as in the foregoing section. All chains appearing are
finite chains over a field $F$. Suppose that there be given a chain homomor-
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phism $\tau$ which fulfills the following conditions:
(1) $\tau(c^{k})$ is a k-chain in $K(N)$ for each k-chain $c^{k}$ in $L$ .
(2) $\tau$ commutes with the boundary operator $\partial$ .
(3) $[\tau(a_{i}.a_{i_{1}}\cdots a_{t_{k}})]\subset f^{-1}(|a_{i_{0}}a_{i_{1}}\cdots a_{i_{k}}|)$ for any face $a_{\iota_{0}}a_{i_{1}}\cdots a_{t_{k}}$ of $Y$.
(4) $\tau(a_{i})$ is a single vertex for each vertex $a_{i}$ .
It will later be shown that $\tau$ can actually be given under certain condi-

tions.
Furthermore suppose that there be given a vertex assignment $p\rightarrow\omega(p)$

which assigns to each vertex $p$ of $K(M)$ a vertex of $L$ in such a way that
if $f^{-1}(|a_{i_{0}}a_{i_{1}}\cdots a_{\iota_{k}}|)$ is the carrier of $p$ , then $\omega(p)$ is a vertex of $a_{i_{0}}a_{i_{1}}\cdots a_{i_{k}}$ .

We next define a sign $\epsilon(\sigma^{n})$ of an n-simplex $\sigma^{n}$ in $K(M)$ . $\omega$ is clearly a
simplicial map and induces a chain homomorphism which we also denote by
$\omega$ . $\epsilon(\sigma^{n})$ is defined as follows:

$\epsilon(\sigma^{n})=\left\{\begin{array}{l}1 if \omega(\sigma^{n})=a_{0}a_{1}\cdots a_{n}\\-1 if \omega(\sigma^{n})=-a_{0}a_{1}\cdots a_{n}\\0 otherwise.\end{array}\right.$

If $\epsilon(\sigma^{n})\neq 0,$ $\sigma^{n}$ will be called regular. With this setup in mind, we shall
prove

LEMMA 1. Let $\tau(a_{0}a_{1}\cdots a_{n})=\Sigma\alpha_{j}\sigma_{j^{n}}$ , where $\tau$ is a chain homomorphism as
expounded above. Then we have $\sum\alpha_{j}\epsilon(\sigma_{j}^{n})\neq 0$ . This implies, in particular, the
exestence of at least one regular n-simplex.

PROOF. The proof will be done by induction over $n$ as in the classical
lemma of Sperner. We carry the definition of $\epsilon$ to $(n-1)$-simplexes in $K(N)$

in the following natural way.

$\epsilon(\sigma^{n-1})=\left\{\begin{array}{l}1 if \omega(\sigma^{n-I})=a_{1}a_{2}\cdots a_{n}\\-1 if \omega(\sigma^{n-1})=-a_{1}a_{2}\cdots a_{n}\\0 otherwise.\end{array}\right.$

An $(n-1)$-dimensional face $\sigma^{n-1}$ of an n-simplex $\sigma^{n}$ in $K(N)$ will be called a
regular face, if $\epsilon(\sigma^{n-1})\neq 0$ . Put $\xi(0^{n})=\Sigma_{k}[\sigma_{k}^{n-1} : 0^{n}]\epsilon(\sigma_{k}^{n-1})$ , where [:] stands
for the incidence number. Then it is immediate that

$\Sigma_{j}\alpha_{j}\xi(\sigma_{j^{n}})=\Sigma_{k}e(\sigma_{k}^{n-1})\Sigma_{j}\alpha_{j}[\sigma_{k}^{n-1} : \sigma_{j^{n}}]$ .
Also in view of the assumptions on $\tau$ we immediately get2)

$\partial\tau(a_{0}a_{1}\cdots a_{n})=\Sigma_{i}(-1)^{i}\tau(a_{0}\cdots\hat{a}_{t}\cdots a_{n})$ ,

$\partial\tau(a_{0}a_{1}\cdots a_{n})=\Sigma_{k}\Sigma_{j}\alpha_{j}[\sigma_{k}^{n-1} : \sigma_{j}^{n}]\sigma_{k}^{n-1}$ .

2) In the sequel a circumfiex over a letter will be used to mean that this letter
does not appear in the formula concerned.
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Now let $\tau(a_{1}a_{2}\cdots a_{n})=\Sigma_{k}\beta_{k}\sigma_{k^{n-1}}$ . It will be shown by making use of these
relations that

$\Sigma_{j}\alpha_{j}\epsilon(\sigma_{j}^{n})=\Sigma_{k}\beta_{k}\epsilon(\sigma_{k}^{n-1})$ .

First, if $\epsilon(\sigma_{k}^{n-1})=0$ , clearly $\beta_{k}\epsilon(\sigma_{k}^{n-1})=\epsilon(\sigma_{k}^{n-1})\Sigma_{j}\alpha_{j}[\sigma_{k}^{n-1} : \sigma_{J}^{n}]$ . Next suppose
$\epsilon(\sigma_{k}^{n-1})\neq 0$ . In this case, from the definition of $\epsilon$ it follows by (3) that $\sigma_{k}^{n-I}$

appears in no chains $\tau(a_{0}\cdots\hat{a}_{i}\cdots a_{n})(i\neq 0)$ . Hence its coefficient $\Sigma_{j}\alpha_{j}[\sigma_{k}^{n-1} : \sigma_{j^{n}}]$

in $\partial\tau(a_{0}a_{1}\cdots a_{n})$ must equal $\beta_{k}$ with which it appears in $\tau(a_{1}a_{2}\cdots a_{n})$ . We ac-
cordingly have $\beta_{k}\epsilon(\sigma_{k}^{n-1})=\epsilon(\sigma_{k}^{n-1})\Sigma_{j}\alpha_{j}[\sigma_{k}^{n-1}:\sigma_{j^{n}}]$ in any case. It is noted
that the above argument was done regardless of whether $\beta_{k}=0$ or not. We
have thereby proved $\Sigma_{j}\alpha_{j}\xi(\sigma_{j}^{n})=\Sigma_{k}\beta_{k}\epsilon(\sigma_{k}^{n-1})$ . It remains to show that $\xi(\sigma_{j^{n}})$

$=\epsilon(\sigma_{j^{n}})$ . First we consider the case where $\sigma_{j^{n}}$ is regular. In this case
we have $\omega(\sigma_{j}^{n})=\epsilon(\sigma_{j}^{n})a_{0}a_{1}\cdots a_{n}$ . Let $\sigma_{j}^{n}=p_{0}p_{1}\cdots p_{n}$ . Then $\sigma_{j}^{n}=\epsilon(\sigma_{J^{n}})p_{i_{0}}p_{i_{1}}\cdots p_{i_{n}}$

where $\omega(p_{t_{\nu}})=a_{\nu}$ . $\sigma_{j}^{n}$ clearly has just one regular face $\sigma_{k}^{n-1}$ so that $\sigma_{k}^{n-1}=$

$\epsilon(\sigma_{k}^{n-1})p_{i}$ , $p_{is}\cdots p_{i_{n}}$ . Hence $\xi(\sigma_{j}^{n})=[\epsilon(\sigma_{k}^{n-1})p_{i},p_{i_{2}}\cdots p_{i_{n}} : \epsilon(\sigma_{j}^{n})p_{i_{0}}p_{i_{1}}\cdot\cdot p_{t_{n}}]\epsilon(\sigma_{k}^{n-1})=$

$\epsilon(\sigma_{j}^{n})$ . Next suppose that $\sigma_{j^{n}}$ is not regular. For an obvious reason we
have only to discuss the case where $\sigma_{j^{n}}$ has regular faces. Let $\sigma_{j^{n}}=$

$\gamma\cdot p_{0}p_{1}\cdots p_{n},$ $\gamma=\pm 1,$ $\omega(p_{i})=a_{i}(1\leqq i\leqq n),$ $\omega(p_{0})=a_{\nu}$ for some $\nu$ with $1\leqq\nu\leqq n$.
There are just two regular faces, $\sigma_{\iota^{n-1}}$ and $\sigma_{k}^{n-1}$ . They may be written as
$\sigma_{\iota^{n-1}}=\epsilon(\sigma_{\iota^{n-1}})p_{1}p_{2}\cdots p_{n},$

$\sigma_{k}^{n-1}=(-1)^{\nu-1}\epsilon(\sigma_{k}^{n-1})p_{0}p_{1}\cdots\hat{p}_{\nu}\cdots p_{n}$ . Accordingly, $\xi(\sigma_{j}^{n})=$

$[\epsilon(\sigma_{\iota^{n-1}})p_{1}p_{2}\cdots p_{n} ; \gamma p_{0}p_{1}\cdots p_{n}]\epsilon(\sigma_{l^{n-1}})+[(-1)^{\nu-1}\epsilon(\sigma_{k}^{n-1})p_{0}p_{1}\cdots\hat{p}_{\nu}\cdots p_{n} ; \gamma p_{0}p_{1}\cdots p_{n}]$

$\epsilon(\sigma_{k}^{n-1})=\gamma(1-1)=0=\epsilon(\sigma_{J^{n}})$ . Therefore always $\xi(\sigma_{j}^{n})=\epsilon(\sigma_{j^{n}})$ . We have thereby
showed that

$\Sigma_{j}\alpha_{j}\epsilon(\sigma_{j}^{n})=\Sigma_{k}\beta_{k}\epsilon(\sigma_{k}^{n-1})$ .
The lemma is clearly true for $n=0$ . Suppose that it is true for $n-1$ . Then,
on confining $f$ to $f^{-1}(|a_{1}a_{2}\cdots a_{n}|)$ and $\tau$ to $a_{1}a_{2}\cdots a_{n}$ , we can therefore see that
$\Sigma_{j}\alpha_{j}\epsilon(\sigma_{j^{n}})=\Sigma_{k}\beta_{k}\epsilon(\sigma_{k}^{n-1})\neq 0$ , which proves the lemma for $n$ .

3.2. Construction of $\tau$ .
Here the actual construction of $\tau$ will be made under certain assumptions

by following the procedure of Eilenberg and Montgomery [6, p. 218] for
compacta, and adapting it to the present formulation.

We henceforth assume that $f:S\rightarrow Y$ is a Vietoris map. As $Y$ is acyclic,
so is $S$ by Theorem 1. Also, from the acyclicity of faces of $Y$ it follows that
any k-face $T(i_{0}, i_{1},\cdots, i_{k})=f^{-1}(|a_{i_{0}}a_{i}, a_{i_{k}}|)$ are acyclic $(k=0,1,\cdots, n)$ .

LEMMA 2. If $f$ is a Vietoris map, for any covering $N$ there is a $\tau$, with
prescribed $\tau(a_{i})$ , that satisfies (1) $-(4)$ in 3.1.

PROOF. By a repeated application of the corollary to Theorem 2, we can
take a sequence of coverings $M_{0}>M_{1}>\cdots>M_{n-1}>M_{n}=N$ such that for each
$(k+1)$-face $T(i_{0}, i_{I},\cdots, i_{k+1})$ every k-cycle in $K(T(i_{0}, i_{I},\cdots, i_{k+1}), M_{k})$ bounds a chain
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in $K(T(i_{0}, i_{1},\cdots, i_{k+1}), M_{k+1}),$ $(k=0,1,\cdots, n-1)$ . First, we construct $\tau$ for all 0-
chains in $L$ , by linearly extending the prescribed values $\tau(a_{i})\in f^{-1}(a_{i})$ onto
all O-chains. Suppose that the construction has been carried out up to k-
dimension in such a way that $\tau(\sigma^{m})$ is an m-chain in $K(f^{-1}(|\sigma^{m}|), M_{m})$ for any
m-simplex $\sigma^{m}$ of $L,$ $m\leqq k$ . Take any $(k+1)$ -simplex $\sigma^{k+1}=a_{i_{0}}a_{i_{1}}\cdots a_{i_{k+1}}$ . Then
$\tau(\partial\sigma^{k+1})$ is a well-defined k-chain in $K(f^{-1}(|\sigma^{k+1}|), M_{k})$ . But $\partial\tau(\partial\sigma^{k+1})=\tau(\partial\partial\sigma^{k+1})$

$=0$ so that $\tau(\partial\sigma^{k+1})$ is a k-cycle in $K(f^{-1}(|\sigma^{k+1}|), M_{k})$ . In view of the relation-
ship between $M_{k}$ and $M_{k+1},$ $\tau(\partial 0^{k+1})$ bounds a $(k+1)$-chain in $K(\Gamma^{1}(|\sigma^{k+1}|), M_{k+1})$ ,
which will be taken to be $\tau(\sigma^{k+1})$ . The construction for dimension $k+1$ will
be completed by linearly extending $\tau(\sigma^{k+1})$ onto all $(k+1)$-chains in $L$ .

3.3. Existence of coincidence.
An immediate consequence of the results obtained above is the following

coincidence theorem, which, though a special case of Eilenberg-Montgomery-
Begle’s theorem $[2, 6]$ , will be given here a simple direct proof, in that we
need only this special type of coincidence in the subsequent discussion.

THEOREM 3. Let $S$ be a compact Hausdorff space and $Y$ a finite-dimensional
compact convex set. Suppose that there be two given continuous maps $f,$ $\theta:S\rightarrow Y$

one of which, say $f$, is a Vietoris map. Then at some point $\overline{p}\in S$ coincidence
occurs, $i.e.,$ $f(\overline{p})=\theta(\overline{p})$ .

PROOF. Since $Y$ is a finite-dimensional compact convex set, it may be
assumed to be a Euclidean n-simplex. Let $f_{i}(p),$ $\theta_{\dot{i}}(p)$ respectively stand for
the i-th barycentric coordinates of $f(p),$ $\theta(p)$ . Define $n+1$ closed subsets $F_{i}$

$of^{r}S$ by $F_{i}=\{p|p\in S, f_{i}(p)\geqq\theta_{i}(p)\}$ . As in the classical Knaster-Kuratowski-
Mazurkiewicz’s proof of Brouwer’s theorem [13], it is immediate to see that

$f^{-1}(|a_{i_{0}}a_{i_{1}}\cdots a_{i_{k}}|)\subset\bigcup_{\nu=0}^{k}F_{i_{\nu}}$ for any face $a_{i_{0}}a_{i_{1}}\cdots a_{t_{k}}$ of $Y$. If $f^{-1}(|a_{i*}a_{i_{1}}\cdots a_{i_{k}}|)$ is

the carrier of a point $p\in S,$ $p$ is contained in at least one $F_{i_{\nu}}$ . We thus put
$\omega(p)=a_{i_{\nu}}$ . Let $N$ be any covering of $S$, and $\tau$ a chain homomorphism dis-
cussed in the foregoing sections. On applying Lemma 1 to these $N,$ $\tau,$

$\omega$, we
see the existence of at least one regular n-simplex $\sigma$ in $K(N)$ , which implies
that at least one member of $N$ intersects all $F_{i}(i=0,1,\cdots, n)$ . Suppose that

$\bigcap_{i\Rightarrow 0}^{n}F_{i}$ were empty. Then the totality of complements $F_{i}^{c}$ of $F_{i}$ gives rise to

a covering $N$ of $S$ so that at least one $F_{i^{C}}$ intersects all $F_{j}(j=0,1,\cdots, n)$ .
This yields a contradiction $ F_{i}\cap F_{i^{C}}\neq\phi$ . Accordingly $\bigcap_{i=0}^{n}F_{i}$ must be nonempty.

Finally it is readily seen that $f(p)=\theta(p)$ if and only if $p\in\bigcap_{i=0}^{n}F_{i}$ .
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4. Main theorem.

It is the purpose of this section to state and prove a general theorem
which contains as special cases all the results in [1, 10, 18, 19, 20, 21, 22, 23, 24,
25, 26]. Before proceeding to the major part of discussion, it will be preceded
by preliminary remarks on set-valued maps.

4.1. Upper semi-continuity and closedness.
Let $S$ and $X$ be two Hausdorff spaces and $\varphi:S\rightarrow 2^{X}$ be a set-valued map.

Unless otherwise stated, all the set-valued maps are those whose image sets
$\varphi(p)$ of individual points $p$ are nonempty.

(1) $\varphi$ is said to be upper semi-continuous (abbr. $u.s$ . $c.$), whenever for
each $p\in S$ and each neighborhood $U(\varphi(p))$ there is a neighborhood $V(p)$

such as $\varphi(q)\subset U(\varphi(p))$ for any $q\in V(p)$ .
(2) $\varphi$ is said to be closed, whenever the graph $G=\{(p, x)|x\in\varphi(p)\}$ is

closed in the cartesian product $S\times X$. These two definitions are not neces-
sarily equivalent. But under some additional assumptions they can be made
interrelated. Assume now that $S$ be compact. Then we have

LEMMA 3. The following two conditions on $\varphi$ are equivalent.
a) Each image set $\varphi(p)$ is compact, and $\varphi$ is $u$ . $s$ . $c$ .
b) There is a compact subset $T$ of $X$ such that $T$ includes all the image

sets $\varphi(p)$ , and $\varphi$ : $S\rightarrow 2^{T}$ is closed.
PROOF. Let $T=\bigcup_{p\in S}\varphi(p)$ , then it can be shown, similarly to the case of

single-valued maps, that $T$ is compact. We shall next show that $\varphi:S\rightarrow 2^{T}$

is closed. Suppose that $(p, x)\in\overline{G}$ . If $\varphi(p)*x$, there would exist two neigh-
borhoods $U(\varphi(p))$ and $W(x)$ in $X$ such that $ U(\varphi(p))\cap W(x)=\phi$ . By upper
semi-continuity there is a neighborhood $V(p)$ such that $\varphi(q)\subset U(\varphi(p))$ for all
$q\in V(p)$ . That $(p, x)\in\overline{G}$ implies the existence of $(q,y)$ with $y\in\varphi(q),$ $ q\in V(p\rangle$,
$y\in W(x)$ . But this yields a contradiction $y\in U(\varphi(p))\cap W(x)$ . Therefore
$x\in\varphi(p),$ $i$ . $e.,$ $(p, x)\in G$ , which proves that $G$ is closed in $S\times T$.

Conversely, if b) is fulfilled, any image set $\varphi(p)$ is compact. To see this,
suppose that $x\in\overline{\varphi(p}$) in $T$. Then clearly $(p, x)\in\overline{G}=G$ , which implies $x\in\varphi(p)$ .
Thus $\varphi(p)$ is closed in $T$. Hence follows the compactness of $\varphi(p)$ . Now let
$U(\varphi(p))$ be a neighborhood of $\varphi(p)$ in $X$. Let $T(V(p))=\overline{\bigcup_{q\in V(p)}\varphi(q)}$ for a neigh-

borhood $V(p)$ of $p$, the closure being taken in $T$. Then from the closedness
of $\varphi$ follows that $\varphi(p)=\cap T(V(p))$ over all $V(p)$ , that is, $U(\varphi(p))\supset\cap T(V(p))$ .
Since each $T(V(p))$ is closed in $T$, in view of the compactness of $T$ we see
that $U(\varphi(p))\supset T(V(p))$ for some individual $V(p)$ . This completes the proof.

In the sequel the term semi-continuity will be used also in the following
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sense. A real single-valued function $g(p)$ on $S$ is called upper semi-continuous,
if the set $\{p|g(p)<\lambda\}$ is open in $S$ for every real $\lambda$ . It is called lower semi-
continuous, if $\{p|g(p)>\lambda\}$ is open in $S$ for every real $\lambda$ . This concept of
semi-continuity should not be confused to that used in connection with a
set-vaftued map.

4.2. Main theorem.
A real-valued function $h(y)$ on a convex set $Y$ is said to be quasi-convex,

whenever $\{y|h(y)\leqq\lambda\}$ is a convex subset in $Y$ for every real $\lambda$ . $h(y)$ is
called quasi-concave, if $-h(y)$ is quasi-convex.

In the following all the statements concerning homological concepts like
acyclicity or Vietoris maps will be made with regard to a certain fixed field.

THEOREM 4. (i) Let $S,$ $X$ and $Y_{i}(i=1,2,\cdots, m)$ be Hausdorff spaces. Fur-
thermore, $S$ is compact, and each $Y_{i}$ is a compact convex set in which the convex
linear combination of finitely many points depends continuously on its coefficients.

(ii) For each $i=1,2,\cdots,$ $m$ there is a real-valued function $h_{i}(x, y_{i})$ on $X\times Y_{i}$

which is continuous on $X$ for every fixed $y_{i}\in Y_{i}$ and quasi-convex on $Y_{i}$ for
every fixed $x\in X$

(iii) There is a Vietoris map $f:S\rightarrow Y=Y_{1}\times Y_{2}\times\cdots\times Y_{7’ b}$ .
(iv) $\varphi:S\rightarrow 2^{X}$ is an $u$ . $sc$ . set-valued map whose image sets $\varphi(p)$ are compact

and acyclic.
(v) $g(p)$ is a lower semi-continuous real-valued function on S.

(vi) $\sum_{i=1}^{m}h_{i}(x,f_{i}(p))\geqq g(p)$ for any $p,$ $x$ such as $x\in\varphi(p)$ , where $f_{i}(p)$ stands for
the projection of $f(p)$ on $Y_{i}$ .

If conditions $(i)-(vi)$ are fulfilled, then at some point $\overline{p}\in S$ the corresponding

image $\varphi(\overline{p})$ confains a point $\overline{x}$ such lhat $\sum_{i=1}^{m}h_{i}(\overline{x},y_{i})\geqq g(\overline{p})$ for all $y_{i}\in Y_{i}(i=1,2$ ,

..., $m$).

PROOF. The proof will be done by relating the problem to coincidence
points of certain maps in a similar, but more prudent fashion than in the
writer’s previous results $[24, 25]$ . We first deal with the case of single-valued
$\varphi$ . The general case can easily be reduced to this special case in virtue of
Theorem 1 due to Vietoris.

(I) Case of single-valued $\varphi$ . In this case $\varphi$ is simply a continuous map
from $S$ into $X$. Let $A_{i}\subset Y_{i}$ be any finite subsets $(i=1,2,\cdots, m)$ , and put

$\xi_{i}(p)=\min_{y_{i}\in A_{i}}h_{i}(\varphi(p),y_{i})$
,

$\xi(p)=\sum_{i=1}^{m}\xi_{i}(p)$ .

These functions are obviously continuous. With this setup we shall prove
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that at some $p\in S$ the inequality $\xi(p)\geqq g(p)$ holds. To this end, suppose that
the contrary were valid. Then the lower semi-continuous $g(p)-\xi(p)$ takes on
a positive minimum $ m\epsilon$ on the compact set $S$. Let $\lambda_{i}(p)=\xi_{i}(p)+\epsilon(i=1,2,\cdots$ ,
$m)$ . Then,

$(*)$ $\sum_{i=1}^{m}\lambda_{i}(p)\leqq g(p)$

identically on S. Also, we have $\xi_{i}(p)<\lambda_{i}(p)$ identically on $S$, which implies
that for each $p\in S$ there is a point $y_{i}\in A_{i}$ with $h_{i}(\varphi(p), y_{i})<\text{{\it \‘{A}}}_{i}(p)(i=1,2,\cdots, m)$ .
Let $C(A_{i})$ stand for the convex hull of $A_{i}$ in $Y_{i}$ . We now define the continu-

ous map $\theta:S\rightarrow\prod_{i=1}^{m}C(A_{i})$ by the formulae:

$\theta_{\iota^{y_{i}}}(p)=\max(\lambda_{i}(p)-h_{i}(\varphi(p), y_{i}),$ $0$)

$\theta_{i}(p)_{\Sigma}=^{y}y_{i^{\in A}}^{\underline{i}^{\in A_{\frac{i\theta_{i}}{i\theta_{i}}\frac{(p)y_{i}}{i(p)}}}}\sum_{y}y_{i}$

$\theta(p)=(\theta_{1}(p), \theta_{2}(p),\cdots,$ $\theta_{m}(p))$ .
$\prod_{i=1}^{m}C(A_{i})$ is obviously finite-dimensional. Therefore, by Theorem 3 for $J^{\backslash },$

$\theta$ on

$f^{-1}(\prod_{i=1}^{n}C(A_{i}))$ , coincidence occurs at some $\overline{p}\in f^{-1}(\prod_{i=1}^{m}C(A_{i}))$ so that $f(\overline{p})=\theta(\overline{p})$ ,

$i$ . $e.,f_{i}(\overline{p})=\theta_{i}(\overline{p})(i=1,2,\cdots, m)$ . Let $B_{i}=\{y_{i}|y_{i}\in A_{i}, \theta_{i^{y_{i}}}(\overline{p})>0\}$ and $\delta_{i}=\min\theta_{i}^{v\iota}(\overline{p})$

for $y_{i}\in B_{i}$ . Then $f_{i}(\overline{p})\in C(B_{i})$ and $h_{i}(\varphi(\overline{p}), y_{i})\leqq\lambda_{i}(\overline{p})-\delta_{i}$ for all $y_{i}\in B_{i}$ . Hence,
by quasi-convexity, $h_{i}(\varphi(\overline{p}), f_{i}(\overline{p}))\leqq\lambda_{i}(\overline{p})-\delta_{\dot{t}}<\lambda_{t}(\overline{p})$ . Summing up for all $i$

and appealing to $(*)$ give $\sum_{i=1}^{m}h_{i}(\varphi(\overline{p}),f_{i}(\overline{p}))<g(\overline{p})$ , which contradicts assump-

tion (vi). Accordingly, there is a point $p\in s$ with $\xi(p)\geqq g(p)$ , which implies

the closed set $F(A_{1}, A_{2},\cdots, A_{m})=\{p|p\in S,\sum_{i=1}^{m}h_{i}(\varphi(p), y_{i})\geqq g(p)$ for $y_{i}\in A_{\dot{v}}(i=$

$1,2,\cdots,$ $m$)} is nonempty for every m-tuple of finite sets $A_{i}\subset Y_{i}$ ; in other
words, the family of all these sets $F(A_{1}, A_{2},\cdots, A_{m})$ admits finite intersection
property. Thus, in virtue of the compactness of $S$ we $have\cap F(A_{1}, A_{2},\cdots, A_{m})$

$\neq\phi$ . This proves the assertion.
(II) General case. By Lemma 3 there is a compact set $T\subset X$ such that

$U\varphi(p)\subset T$, and $\varphi:S\rightarrow 2^{T}$ is closed. As the graph $G$ is closed in $S\times T$ which
$p\in S$

is compact, $G$ is also compact. Now let $\tilde{S}=G$ , and replace $S$ by $\tilde{S}$. A point
$\tilde{p}\in\tilde{S}$ is of the form $\tilde{p}=(p, x)$ with $x\in\varphi(p)$ . In view of this fact we shall
define: $\tilde{\varphi}(\tilde{p})=x,\tilde{f}(\tilde{p})=f(p),\tilde{g}(\tilde{p})=g(p)$ . Except for condition (iii) all the
conditions $(i)-(vi)$ are easily seen to be met by this new system. It there-
fore remains to check on condition (iii). First, $f$ obviously maps $\tilde{S}$ onto $Y$.
For any $y$ the two inverse images $\tilde{f}^{-1}(y)$ and $f^{-1}(y)$ are interrelated in the
following way. The projection $\pi(p, x)\rightarrow p$ continuously maps $f^{-1}(y)$ onto $f^{-1}(y)$ ,
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and $\pi^{-1}(p)=\{p\}\times\varphi(p)$ for any $p\in f^{-1}(y)$ . Since $\varphi(p)$ is acyclic for any $p,$ $\pi:\tilde{f}^{-1}(y\rangle$

$\rightarrow f^{-1}(y)$ is a Vietoris map. By Theorem 1, the homology groups for these
two spaces are isomorphic. As $f^{-1}(y)$ is acyclic by assumption, so is $\tilde{f}^{-1}(y)$,
as was to be shown. Therefore $f;\tilde{S}\rightarrow Y$ is a Vietoris map, and condition (iii)

is also fulfilled. Thus, case (II) reduces to case (I) for $\tilde{\varphi}$ .

4.3. Relation to the previous results.
It will be noted here that Theorem 4 involves and generalizes the results

on economic equilibrium by Arrow-Debreu [1], Gale [10], McKenzie [18] and
the writer [26] as well as the results on game problems by von Neumann
[21, 22, 23], Nash $[19, 20]$ , the writer $[24, 25]$ and others.

In the following as in Theorem 4 wheneyer we say that a certain set is
compact and convex, it is always assumed that the convex linear combination
of any finite number of its points depends continuously on its coefficients
with respect to the given Hausdorff topology.

a) Existence of economic equilibrium.
Walras (1834-1910) was the first to generally formulate economic equili-

brium in terms of supply and demand functions and to conjecture its exist-
ence for his model [32]. This conjecture had remained unproved, however,
for a long time, until recently several authors including this writer, as named
before, solved the problem. Most of their results in this line can be reduced
to the following type of proposition as given by Gale [10] and this writer
[26].

Let $E^{k}$ be a real k-space and $S^{k}$ the set of all points $p\in E^{k}$ whose co-
ordinates are nonnegative and add up to unity; the j-th coordinate $x_{j}$ of a
point $x\in E^{k}$ represents a certain amount of the j-th good, while the j-th
coordinate of $p$ designates the price of the j-th good. The inner product in
$E^{k}$ will be denoted by $(, )$ . $(p, x)$ therefore represents the value of a bundle
$x$ of goods at a price system $p$ . To each given $p\in S^{k}$ correspond some set
of scheduled bundles $x$ of goods supplied and some set of those demanded,
therefore the excess $\varphi(p)$ of supply over demand. A price system $\overline{p}\in S^{k}$ is
said to be an equilibrium price system, if $\varphi(\overline{p})$ contains a bundle $\overline{x}$ of goods
whose coordinates are all nonnegative.

COROLLARY 1. Let the set-valued map $\varphi:S^{K}\rightarrow 2^{E^{k}}$ fulfill the following condi-
tions:

(1) $\varphi$ is $u$ . $s$ . $c$. and each image set $\varphi(p)$ is compact, convex (more generally,
acyclic).

(2) The Walras law holds true, $i.e.,$ $(p, x)\geqq 0$ identically for any $x\in\varphi(p)$,
$p\in s^{k}$.

Then there is at least one equilibrium price system.
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This result is a much special case of Theorem 4 where $m=1,$ $S=Y=Y_{I}$

$=S^{k},$ $X=E^{k},$ $f(p)=p,$ $g(p)=0,$ $h_{1}(x, y)=(x,y)$ and $\varphi:S^{k}\rightarrow 2^{E^{k}}$. The Walras law
insures condition (vi). Therefore, by Theorem 4, at some $\overline{p}$ the image set
$\varphi(\overline{p})$ contains a point $\overline{x}$ such that $(p,\overline{x})\geqq 0$ for all $p\in S^{k}$ . This implies,.
however, that all the coordinates of $\overline{x}$ are nonnegative.

b) Equilibrium points for noncooperative games ([19, 20, 25]).

Let $X$ be a compact convex set, called the i-th player’s strategy space,
for $i=l,$ $2,\cdots,$ $m$ .

There is given a real-valued function $K_{i}(x_{1},\cdots, x_{i},\cdots, x_{m})$ on the cartesian
product $i=11^{m_{IX_{i}}}$ , called the i-th player’s payoff, for $i=1,2,\cdots,$ $m$ .

Also the following assumptions will be made on each $K_{i}$ .
$(\alpha)$ For each fixed $x_{i}\in X_{i},$ $K_{i}$ is continuous with respect to the $(m-1)-$

tuple $(x_{1},\cdots, x_{i-1}, x_{i+1},\cdots, x_{m})$ of the remaining variables.
$(\beta)$ $K_{i}$ is quasi-concave on $X_{i}$ for each fixed $(m-1)$ -tuple $(x_{1},\cdots,$ $x_{i-1},$ $x_{i+1}$ ,

..., $x_{m}$).

$(\gamma)$ The sum of payoffs $\sum_{i=1}^{m}K_{i}(x_{1},\cdots, x_{\dot{t}},\cdots, x_{m})$ is upper semi-continuous on

$\prod_{\mathfrak{i}=1}^{m}X_{i}$ .

We define: $(\overline{x}_{1},\cdots\overline{x}_{i},\cdots,\overline{x}_{m})\in\prod_{i=1}^{m}X$ is called an equilibrium point, if $K_{i}(\overline{x}_{1},$.
$\overline{x}_{i-1},$ $y_{i},\overline{x}_{i+1},\cdots,\overline{x}_{m}$) assumes its maximum on $X_{i}$ at $y_{i}=\overline{x}_{i}$ for each $i$.

COROLLARY 2. Under the assumptions made above there is at least one
equilibrium point.

This result is more general than that in [25], because some of assump-
tions are relaxed, that is, the concavity of payoffs is replaced by their
quasi-concavity and the continuity of $\sum_{i=1}^{m}K_{i}$ by its upper semi-continuity.

To show that Theorem 4 implies Corollary 2 attention will be paid to the
following simple fact as given before (Lemma 3.1 in [25]): In order for
$(\overline{x}_{1},\cdots,\overline{x}_{i},\cdots,\overline{x}_{m})$ to be an equilibrium point, it is necessary and sufficient that

$(**)$ $\sum_{i=1}^{m}K_{i}(\overline{x}_{1},\cdots,\overline{x}_{i-1}, y_{i},\overline{x}_{i+1},\cdots,\overline{x}_{m})\leqq\sum_{i=1}^{m}\kappa(\overline{x}_{1},\cdots,\overline{x}_{i-1},\overline{x}_{\dot{l}},\overline{x}_{i+1},\cdots,\overline{x}_{m})$

for any $y_{i}\in X_{t}(i=1,2,\cdots, m)$ .
Now let $S=X=\prod_{i=1}^{m}X_{i},$ $Y_{i}=X(i=1,2,\cdots, m)$ . Also $\varphi(x)=f(x)=x:X\rightarrow X$

(identity map), $g(x)=-\sum_{i=1}^{m}K_{i}(x_{1},\cdots, x_{i},\cdots, x_{m}),$ $h_{i}(x, y_{i})=-Ki(x_{1},\cdots, x_{i-1}, y_{i}, x_{i+1},\cdots, x_{m})$

$(i=1,2,\cdots, m)$ . Then all the assumptions of Theorem 4 are fulfilled, in par-
ticular, condition (vi) becomes an equality relation, and its assertion implies
the existence of a point $\overline{x}=(\overline{x}_{1},\cdots,\overline{x}_{i},\cdots,\overline{x}_{m})$ satisfying $(**)$ .
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c) Minimax theorem ([21, 22, 23, 24]).

Let $K(x, y)$ be a real-valued function on the cartesian product $X\times Y$ of two
compact convex sets $X$ and Y. If $K(x, y)$ is continuous, quasi-concave on $X$ for
fixed $y\in Y$ and continuous, quasi-convex on $Y$ for fixed $x\in X$, then there is a
saddle point $(\vec{x},\overline{y})$ such that $K(x,\overline{y})\leqq K(\overline{x},\overline{y})\leqq K(\overline{x}, y)$ for any $x\in X,$ $y\in Y$.

This result is a special case of b), in which $m=2,$ $X_{1}=X,$ $X_{2}=Y,$ $K_{1}=K$,
$K_{2}=-K$.

In a recent paper [30] Sion succeeded in dropping the continuity of the
payoff and replacing it by its semi-continuity for this minimax theorem; his
method of proof is to more directly appeal to the classical Knaster-Kuratowski-
Mazurkiewicz’s lemma. He also emphasizes that the minimax theorem under
this relaxed assumption can not be handled by the fixed point method of the
writer as developed in $[24, 25]$ . It will be shown below, however, that a
minor modification of the map technique in [24] suffices to meet the Sion’s
result to the effect that if in c), $K$ is upper semi-continuous in $x$ and lower
semi-continuous in $y$ for each fixed value of the olher variable, there is also a
saddle point.

In virtue of semi-continuity, the function $\inf_{y\in Y}K(x, y)$ is upper semi-con-
tinuous on $X$ so that it takes on a maximum $\lambda(-\infty<\lambda<+\infty)$ . Likewise
$\sup_{x\in X}K(x,y)$ takes on a minimum $\mu(-\infty<\mu<+\infty)$ . The assertion will be

proved if it is shown that $\lambda\geqq\mu$ . Suppose the contrary $\lambda<\mu$ were true, and
take an $\eta$ with \‘A<\eta <u. $\max_{x\in X}\inf_{y\in Y}K(x, y)=\lambda<\eta$ implies that for each $x\in X$

there is a $y\in Y$ with $ K(x, y)<\eta$ . Hence, by the upper semi-continuity of $K$

in $x$ and the compactness of $X$, we can choose a finite set $B=\{b_{j}|j=1,2,\cdots, t\}$

$\subset Y$ such that for each $x\in X$ there is a $y\in B$ with $ K(x, y)<\eta$ . Similarly we
can choose a finite set $A=\{a_{i}|i=1,2,\cdots, s\}\subset X$ such that for each $y\in Y$ there
is an $x\in A$ with $ K(x, y)>\eta$ .

Let $L_{i}=\{y|y\in C(B), K(a_{i}, y)\leqq\eta\}(i=1,2,\cdots, s),$ $M_{j}=\{x|x\in C(A), K(x, b_{j})\geqq\eta\}$

$(j=1,2,\cdots, t)$ . By semi-continuity, these sets are closed in $C(A)$ and $C(B)$ ,
respectively. As $C(A)$ and $C(B)$ are homeomorphic to some compact convex
sets in Euclidean spaces, their topologies may be assumed to be given by
some distance functions. Define the nonnegative continuous functions $\sigma_{i}(y)$

on $C(B)$ and $\tau_{j}(x)$ on $C(A)$ as follows:

$\sigma_{i}(y)=\{di_{S(y,L_{i})}^{1}$

in case $ L_{i}\neq\phi$

$(i=1,2,\cdots, s)$ ,
in case $ L_{i}=\phi$

$\tau_{j}(x)=\left\{\begin{array}{l}1 incase\\dis(x,M_{j}) incase\end{array}\right.$ $ M_{j}^{j}\neq\phi M=\phi$ $(j=1,2,\cdots, t)$ .
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Since $\bigcap_{i=1}^{l}L_{t}=\bigcap_{j=1}^{t}M_{j}=\phi$ by construction, we have $\Sigma\sigma_{i}(y)>0$ on $C(B)$ and
$\Sigma\tau_{j}(x)>0$ on $C(A)$ . This enables us to define the continuous map $\theta:C(A)\times$

$C(B)\rightarrow C(A)\times C(B)$ ,

$\theta(x, y)=[\frac{\Sigma\sigma_{i}}{\Sigma\sigma}(y)a_{\underline{i}}i(y)$ $\frac{\Sigma\tau_{j}(x)b_{j}}{\Sigma\tau_{f}(x)}]$ .

By Brouwer’s theorem (more generally, Theorem 3) there is a xed point
$(\overline{x},\overline{y})$ with $(\overline{x},\overline{y})=\theta(\overline{x},\overline{y})$ . But $\sigma_{i}(\overline{y})>0$ if and only if $\overline{y}\in\in L_{\dot{t}},$

$i$ . $\Theta.,$ $ K(a_{i},\overline{y})>\eta$ .
Likewise $\tau_{j}(\overline{x})>0$ if and only if $ K(\overline{x}, b_{j})<\eta$ . Hence by appealing to quasi-
concavity and quasi-convexity, as in Theorem 4 as well as in $[24, 25]$ we
arrive at a contradiction $K(\overline{x},\overline{y})<\eta<K(\overline{x},\overline{y}),$ $q$ . $e$ . $d$ .

Though any weakening of assumption as given by Sion is of $\ln\pm erest$ and
desirable, the writer does not as yet know whether a similar refaxation is
possible in general cases as formulated in Theorem 4.

5. Existence of equilibrium in linear spaces.

In this section Corollary 1 to Theorem 4 will be reviewed and put in a
more general form to reveal a certain duality relation behind it. This line
of extension was first given in [28] for a special case in normeo spaces and
then in a more general context in [5] for Euclidean spaces and in [29] for
normed spaces. The present formulation will be made in $1\mathbb{O}cally$ convex
topological linear spaces.

5.1. Let $E$ be a locally convex topological linear space over the field of
real numbers; it therefore has a complete system of neigllborhoods $U$ of $0$

which are convex. Moreover, for an obvious reason, these $U$ may be assumed
to be symmetric in the sense that $-U=U$. This originalRy given linear
topology will be referred to as the strong topology. The totaflity of all
continuous linear functionals forms the dual space $E^{*}$ of $Ei$ ; its topology is
given by adopting all the sets { $p|p\in E^{*},$ $|p(x)|<\epsilon$ for $ x\in\Gamma$ } as neighbor-
hoods of $0$ , where $\Gamma$ is a symmetric bounded subset in $E$. Let $(x,p)=p(x)$

for $x\in E,$ $p\in E^{*}$ . The weakest linear topology of $E$ in which $(x,p)$ is con-
tinuous on $E$ for each fixed $p$ will be called the weak topology of $E$. The
corresponding topology in $E^{*}$ will be called the $w^{*}$-topologv.

As is well-known, any semi-order $x\geqq y$ in $E$ which is compatible with
the linear topological structure completely corresponds to some (strongly)

closed convex cone $P$ in $E$ (see, $e$ . $g$ . Bourbaki [4]). With each cQosed convex
cone $P$ in $E$ is paired its dual convex cone $P^{*}=$ { $p|p\in E^{*},$ $(x,p)\geqq \mathbb{O}$ for $x\in P$ }.

For a locally convex $E$ the following lemmas are well-known.



368 H. NIKAID\^o

LEMMA 4. $Fo\parallel each$ closed convex cone $P$ not coincidi $’\iota g$ with $E$ the corre-
sponding $P^{*}$ contains points other than $0$ .

LEMMA 5. Let $P$ be a convex cone in E. In order that a point $x\in E$ belong
to $\overline{P}$ (the closure of $P$ in the strong topology), it is necessary and sufficient that
$(x,p)\geqq 0$ for any $p\in P^{*}$.

LEMMA 6. Let $u$ be an interior point of a convex cone $P$ in E. Then $(n,p)$

$>0$ for any non-zero $p\in P^{*}$ .
As to their proof the standard literature of Bourbaki [4] is recom-

mended.
DEFINITION. A convex cone either in $E$ or in $E^{*}$ is said to be pointed,

if it contains no $x$ together with $-x$ except for $0$ . For a convex cone $P$ in
$E$ let $\langle P^{*}\rangle$ stand for the set of all non-zero $p\in P^{*}$.

LEMMA 7. If the interior of a convex cone $P$ in $E$ is not empty, then $P^{*}$ is
pointed

PROOF. Let $p\in P^{*}$ , and $p\neq 0$ . Take an interior point $u\in P$. Then, by
Lemma 6, $(u, -p)<0$ so that $-p\in EP^{*}$ , proving the pointedness of $P^{*}$ .

LEMMA 8. If the interior of a convex cone $P$ in $E$ is not empty and does
not coincide with $E$, then $\langle P^{*}\rangle$ is not empty and convex.

PROOF. In view of the fact that $P$ and $\overline{P}$ have the same interior, Lem-
mas 4, 5 imply that $\langle P^{*}\rangle$ is nonempty. Now let $p,$ $ q\in\langle P^{*}\rangle$ . As $p,$ $q\in P^{*}$ ,
$(1-\lambda)p+\lambda q\in P^{*}$ for $0\leqq\lambda\leqq 1$ . Take an interior point $u$ . Then, by Lemma 6,
$(u, p)>C,$ $(u, q)>0$ so that also $(u, (1-\lambda)p+\lambda q)>0$ . This implies $(1-\lambda)p+\lambda q\neq 0$ ,
and therefore $(1-\lambda)p+\lambda q\in\langle P^{*}\rangle$ .

Let now $P$ be a strongly closed convex cone in $E$ such $that-P\cap P\neq P$ ;
this simply means that $P$ is not a linear subspace of $E$. If $P$ has the
nonempty interior, this condition is equivalent to saying that $P\neq E$. We
shall show below that any general such $P$ can be approximated by convex
cones having the nonempty interiors and not coinciding with $E$. In fact
choose an arbitrary $u$ such that $-P_{\cap}P\exists\ni u\in P$. We take a fixed convex
neighborhood $U$ of $0$ such that $(-u+U)\cap P=\emptyset$ . For any convex, symmetric
neighborhood of $0,$ $V\subset U$, let $Q(V)$ be the convex cone spanned by $u+V$. We
put $P(V)=\overline{P+Q(V})$ . $P(V)$ is a closed convex cone, and contains interior
points, because $P(V)\supset Q(V)\supset u+V$. Now we shall prove

LEMMA 9.
(i) $P(V)\ni\ni-u$ for any $V\subset U$ .
(ii) $P=\cap P(V)$ for all $V\subset U$ .

PROOF $CF(i)$ . Suppose $-u\in P(V)$ . Then we $have-u=x+\lambda(u+e)+a$ , for

some $x\in P,$ $\lambda\geqq 0,$
$e,$ $a\in V$. Hence, $-u=\frac{x}{1+\lambda}+\frac{\lambda}{1+\lambda}e+\frac{a}{1+\lambda}$ , with $\frac{x}{1+\lambda}\in P$.
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Moreover, $\frac{\lambda}{I+}e+\frac{a}{1+\lambda}\in\overline{\lambda}V$ by convexity. This implies $(-u+V)\cap P\neq\phi$ ,

yielding a contradiction $(-u+U)_{\cap}P\neq\phi$ .
PROOF OF (ii). Suppose $y\in P(V)$ for $aI1$ symmetric convex $V\subset U$, but

$y\not\in P$. The first supposition implies that $y=x_{V}+\lambda_{V}(u+e_{V})+a_{V}$ for some $ x_{V}\in$

$P,$ $e_{V},$ $a_{V}\in V_{1}\lambda_{V}\geqq 0$ . From this relation follows $y-(x_{V}+\lambda_{V}u)=\lambda_{V}e_{V}+a_{V}\equiv b_{r}$

with $x_{V}+\lambda_{i^{r}}u\in P$. In view of $y\not\in P$ we choose a symmetric, convex neigh-
borhood $W$ of $0$ such that $W\subset U$ and $(y+W)_{\cap}P=\phi$ . Thus clearly $b_{V}=$

$\lambda_{V}e_{V}+a_{V}\not\in W$

$\backslash \eta_{e}^{\tau}$ first prove that $\lim_{V\rightarrow 0}\lambda_{V}=+\infty$ . To this end, it suffices to show that

$\lambda_{V}>n-1$ for any $V\subset\frac{1}{n}W$ In fact, since $e_{V}$ and $a_{V}$ belong to the convex
set $V$.

$\frac{b_{r}}{1+\lambda_{V}}=\frac{\lambda}{1+}r_{\overline{\lambda_{V}}}e_{V}+\frac{1}{1+\lambda_{V}}a_{V}\in V\subset\frac{1}{n}W$ ,

that is, $b_{V}\in\frac{1+\lambda_{V}}{n}W$ However, as $b_{V}\not\in W$, we must have that $\frac{1+\lambda_{V}}{n}>1$ ,
$i$ . $e.,$ $\lambda_{\gamma}>n-1$ .

Finally, $b_{V}\in(1+\lambda_{V})V$ implies that $b_{V}/\lambda_{V}\in(1+1/\lambda_{V})V$, which entails, in
view of the definition of $b_{V},$ $u+x_{V}/\lambda_{\gamma}\in y/\lambda_{V}-(1+1/\lambda_{V})V$. This result together
with $\lim\lambda_{V}=+\infty$ yields a contradiction $-u\in\overline{P}=P$. Therefore, $\cap P(V)\subset P$.
In view of $P(V)\supset P$, we have thereby proved (ii).

5.2. Existence of equilibrium.

Here we formulate and prove a general version of Corollary 1 in section 4
in a locally convex topological linear space $E$. Let $P$ be a strongly closed
convex cone in $E$ such that $-P_{\cap}P\neq P$.

THEOREM 5. Assume that a set-valued map $\varphi$ : $\langle P^{*}\rangle\rightarrow 2^{E}$ satisfies the $ fol\rightarrow$

lowing conditions;

(1) Each image $\varphi(p)$ is nonempty, weakty compact and acyclic.
(2) $\varphi$ is upper semi-continuous as a map: $\langle P^{*}\rangle\cap L\rightarrow 2^{E}$, for every finite-

dimensional convex subcone $L$ of $P^{*}$ , where the domain and range are viewed in
the $w^{*}$ -topology of $E^{*}$ and in the weak topology of $E$, respectively.

(3)
$\bigcup_{p\in\langle P^{*}>}\varphi(p)$ , that is, the whole image set of $\langle P^{*}\rangle$ under $\varphi$ is weakly

compact.
(4) The Walras $taw$ prevails, i.e., $(x,p)\geqq 0$ for $x\in\varphi(p)$ at each $ p\in\langle P^{*}\rangle$ .

These assumptions together suffice to insure the existence of a $\overline{p}\in\langle P^{*}\rangle$ such
that $\varphi(\overline{p})\cap P\neq\phi$ .

PROOF. This theorem is not directly incIuded in Theorem 4 and will be



370 H. NIKAID\^o

proved below through approximation with the aid of the latter.
Take the $P(V)$ in Lemma 9 obtained by slightly inflating $P$. Since $ P(V)\supset$

$P$, we have $P(V)^{*}\subset P^{*}$ for their dual cones. As was noted, all $P(V)$ contain
an interior point $u$ in common, but none of them contains $-u$ . By Lemma 8,
$\langle P(V)^{*}\rangle$ is nonempty and convex. Choose any finite subset $F$ of $\langle P(V)^{*}\rangle$ ,
then the convex hull $C(F)$ is entirely included in $\langle P(V)^{*}\rangle$ . We appeal to
Theorem 4 with $m=1,$ $S=Y_{1}=C(F),$ $X=E,$ $h_{1}(x,p)=(x,p)$ for $x\in \mathcal{F}_{-p}p\in Y_{1}$ ,
$g(p)=0$ for $p\in S$. By this theorem, at some $\overline{p}\in C(F)$ and for some $\overline{x}\in\varphi(\overline{p})$

we have $(\overline{x},p)\geqq 0$ for any $p\in C(F)$ . This result implies that the weakly
closed convex cone $P(V, F)=$ { $x|x\in E,$ $(x,p)\geqq 0$ for all $p\in F$ } intersects $\Delta=$

$U_{p\in\langle P^{*\rangle}}\varphi(p)$ for every finite subset $F$ of $\langle P(V)^{*}\rangle$ . Since $\Delta$ is assu med to
be weakly compact, and as $\bigcap_{F}P(V, F)=P(V)$ by Lemma 5, this enta.$i$ ls that
$ P(V)\cap\Delta\neq\phi$ for any $V$. Every $P(V)$ is also weakly closed by Le,mma 5.
Hence once more appealing to the compactness of $\Delta$ , in the light of Lemma
9, (ii), we arrive at the result $ P_{\cap}\Delta\neq\phi$ , as was to be shown.

In the above theorem the assumption: $-P\cap P\neq P$ is $indispensat$)[ $e$ . This
can be checked by means of several simple examples. Here we glve one of
them. Let $E=E^{3},$ $P$ a plane passing through $0$ . Then $P^{*}$ is the straight
line passing through $0$ and perpendicular to P. $\langle P^{*}\rangle$ is the union of two
open half straight lines $l_{1}$ and $l_{2}$ . Choose a point $x_{1}\in l_{1}$ and a point $x_{2}\in l_{2}$ .
We define: $\varphi(p)=x_{1}$ for any $p\in l_{1}$ and $\varphi(p)=x_{2}$ for any $p\in l_{\underline{o}}$ . Thougll this
map fulfills all the conditions of the theorem, $\varphi(\langle P^{*}\rangle)$ does no $tint_{\Theta L}\cdot sectP$.

5.3. Applications.
In this section the implication of Theorem 5 will be noted for several

remarkable cases.
a) If $E$ is finite-dimensional, assumption (3) can be dropped so that the

remaining assumptions are sufficient for the assertion. To see this, we define
another map $\psi:\langle P^{*}\rangle\rightarrow 2^{E}$ by the formula $\psi(p)=\varphi(p/\Vert p\Vert)$ for $ p\in\langle P^{*}\rangle$ ,

where I $\Vert$ stands for a norm in $E$. The image of $\langle P^{*}\rangle$ under $\psi$ is nothing
but that of the intersection of $P^{*}$ with the unit sphere so that this image
is compact. The remaining assumptions (1), (2) and (4) are also ulet by $\psi$ .
Accordingly, by Theorem 5, at some $\overline{p}\in\langle P^{*}\rangle,$ $\varphi(\overline{p}/\Vert\overline{p}\Vert)$ intersects $P_{\Phi}$ This
completes the proof, since $\overline{p}/\Vert\overline{p}\Vert\in\langle P^{*}\rangle$ .

b) Suppose that $E$ is a normed space. $\Vert\Vert$ will designate the norm in
$E$ as in a). Suppose, furthermore, that $P$ contains interior points. In this
case, if $\varphi$ satisfies assumptions (1) and (4) together with a more stringent
assumption $(2^{\prime})$ (than (2)): $\varphi:\langle P^{*}\rangle\rightarrow 2^{E}$ is $u$ . $s$ . $c$ . throughout $\langle P^{*}\rangle$ in the
$w^{*}$ -topology, the assertion is also valid in spite of (3) being dropped,

To prove this we shall proceed in a similar way as in a). Take an
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$interi_{\Theta f}$ point $u\in P$ and let $C_{u}=\{p|p\in P^{*}, p(u)=1\}$ . $C_{u}$ is convex and $w^{*}-$

$clo\sec\sim J$ in $E^{*}$ . If e-ball $U(u, \epsilon)=\{x|x\in E, \Vert x-u\Vert\leqq\epsilon\}$ is included in $P$, then
$ p(u)^{\backslash }=\epsilon\Vert p\Vert$ for any $p\in P^{*}$ . In fact, for any $e\in E$ with $\Vert e\Vert\leqq 1$ we have
$u-\epsilon e\in P$ so that $0\leqq p(u-\epsilon e)=p(u)-\epsilon p(e)$ . This implies that $\epsilon\Vert p\Vert=\epsilon$ .
$\sup_{||e||\leqq\rfloor}p(e)\leqq p(u)$ . Therefore, $C_{u}$ is also bounded. Accordingly $C_{u}$ is $w^{*}-$

compact. Define now $\psi(p)=\varphi(p/p(u))$ for $ p\in\langle P^{*}\rangle$ in view of the fact
that $p(u)>0$ for any $ p\in\langle P^{*}\rangle$ either by Lemma 6 or by $ p(u)\geqq\epsilon\Vert p\Vert$ as
given above. For a reason similar to that in a) this fulfills assumption (3)

as well as the remaining ones. It is also noted that the contracted map
$\psi:C_{u}\rightarrow 2^{E}$ can be directly handled by Theorem 4.

c) Fenchel’s theorem ([9]). It is finally noted that a special case of a)

implies Fenchel’s result on the convex hull of a compact connected set in a
Euclidean space $E^{k}$ ; the theorem reads as follows.

Let $A$ be a compact connected set in $E^{k}$ . If a point $x$ in $E^{k}$ belongs to the
convex hull $C(A)$ of $A,$ $x$ can be written as a convex linear combination of at
most $k$ points of $A$ .

PROOF. It is well-known that any point belonging to the convex hull of
an arbitrary set in $E^{k}$ is representable as a convex linear combination of at
most $k+1$ points of this set. Now suppose that $x$ be a positive convex-linear
$comb\dot{x}natio\ddagger 1$ of exactly $k+1$ points $a_{0},$ $a_{1},\cdots,$ $a_{k}$ of $A$ such that they together
span a non-degenerate simplex. Needless to say, only this case deserves
consideration. Without loss of generality we may assume $x$ to be $0$ . For
any non-zero $p\in E^{k}=(E^{k})^{*}$, we denote by $\pi(p)$ the linear subspace $\{x|x\in E^{k}$,
$(x,p)=0\}$ . At each nonzero $p$, on the both sides of $\pi(p)$ lie some of $a_{i}$ , be-
cause $0$ is an interior point of the simplex. The connectedness of $A$ then
implies that $\pi(p)\cap A\neq\phi$ for every nonzero $p$ . Denote by $\varphi(p)=C(\pi(p)\cap A)$

the convex hull of $\pi(p)\cap A$ for $p\neq 0$ . Let $P$ be the convex cone generated
by the point $-a_{0}$ . $P$ is obviously closed and fulfills $-P\cap P\neq P$. Then the
set-valued map $\varphi:\langle P^{*}\rangle\rightarrow 2^{E^{k}}$ satisfies conditions (1), (2), (3) together with
a stronger condition than (4): $(x,p)=0$ for $x\in\varphi(p)$ . By Theorem 5 there
exists one $\overline{p}\in\langle P^{*}\rangle$ such that $\overline{x}\in P$ for some $\overline{x}\in\varphi(\overline{p})$ ; to be more explicit,
$\overline{x}=-\lambda a_{0},$ $\lambda\geqq 0$ . If $\lambda=0$ , we have $0=\overline{x}\in\varphi(\overline{p})$ . If $\lambda>0$ , from $0=(\overline{x},\overline{p})=$

$-\lambda(a_{0},\overline{p})$ follows $(a_{0},\overline{p})=0$ so that $a_{0}\in\pi(\overline{p})\cap A\subset\varphi(\overline{p})$ . Hence, also $0=$

$\frac{1}{1+\lambda}\overline{x}1\mp^{\lambda}\lambda a_{0}\in\varphi(\overline{p})$ . As $\pi(\overline{p})$ is a $(k-1)$-space, $0$ can be written as a

convex linear combination of at most $k$ points of $\pi(\overline{p})\cap A$ .

The Institute of Social and Economic
Research, Osaka University.
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