On Witt ring of quadratic forms.

By Yoshio Nakamura

(Received Dec. 23, 1958)
(Revised June 22, 1959)
§ 1. Introduction. Witt has proved that the classes of 'ähnlich' forms over a field k, which has characteristic not 2, form a ring (Witt [2]). This ring will be called Witt ring over k, in this paper. We shall consider the structure of Witt ring. Our results will be shown in theorem 1 for a finite field, in theorem 2 for a complete field with respect to a discrete non-Archimedean valuation, whose residue class field is finite and of characteristic not equal to 2 , where Witt ring over that field is related to Witt ring over the residue class field, and in theorem 3 for an algebraic number field of finite degree over the rational number field.

I am quite indebted to Mr. A. Hattori, who has given kind help throughout.
§ 2. Preliminaries. In the first place, Eichler's formulation of Witt group in terms of metric spaces will be shown as follows (Eichler [1]):

Let k be a fixed commutative field of characteristic not 2, then a vector space R over k is made into a metric space by defining the (inner) product $\xi \eta$ of two vectors ξ, η, such that $\xi \eta$ is in k and

1. $\xi \eta=\eta \xi$,
2. $(\xi+\eta) \zeta=\xi \zeta+\eta \zeta$,
3. $(x \xi) \eta=x(\xi \eta), x \in k$.

We consider only finite dimensional metric spaces over k. If $\left\{\iota_{1}, \cdots, \iota_{n}\right\}$ is a basis of R over k (in this case we write $R=k\left(\iota_{1}, \cdots, \iota_{n}\right)$), the square ξ^{2} of $\xi=\sum_{i=1}^{n} x_{i} \ell_{i}, x_{i} \in k$, is a quadratic form

$$
f=\sum_{i, j=1}^{n} f_{i j} x_{i} x_{j}, \quad\left(f_{i j}=f_{j i} \in k\right)
$$

in x_{i}, where $f_{i j}=\iota_{i} \iota_{j} . f$ is called a fundamental form of R, and we denote this by $f \cdots R$. Conversely, every quadratic form f over k is a fundamental form of some space R.

Spaces R are always assumed to be semi-simple, namely for every vector $\xi \neq 0$ in R there is a vector η such that $\xi \eta \neq 0$, in other words, if $f \cdots R$, the determinant $\left|f_{i j}\right|$ of the matrix ($f_{i j}$) of coefficients of f is not zero.

Let $f \cdots R$ and $g \cdots S$, then, if R and S are isomorphic spaces over k, f and! g are called equivalent.

Vectors ξ and η are called orthogonal to each other, if $\xi \eta=0$, and spaces. R and S are orthogonal to each other, if vectors of R are orthogonal to. those of S. If there is a vector $\xi \neq 0$ in a space R such that $\xi^{2}=0$, then $\boldsymbol{\xi}$ and R are called isotropic.

A semi-simple metric space R over k can be decomposed into an orthogonal sum

$$
R=R_{0} \oplus N_{1} \oplus N_{2} \oplus \cdots
$$

of subspaces $R_{0}, N_{1}, N_{2}, \cdots$, namely a direct sum of subspaces which are mutually orthogonal, where R_{0} is non-isotropic or the zero space and all the N_{i} are isomorphic to the space $N=k\left(\iota_{1}, \iota_{2}\right)$ for which $c_{1}{ }^{2}=\iota_{2}{ }^{2}=0, c_{1} \iota_{2}=1$. R_{0} is uniquely determined by R up to an isomorphism and is called the kernel of R. A form $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ over k is called definite, if $f=0$ or if $f\left(x_{1}, \cdots, x_{n}\right)=0$ has a unique solution $x_{1}=x_{2}=\cdots=x_{n}=0$ in k. Then a fundamental form of a kernel is definite.

Those spaces over k which have isomorphic kernels are grouped into a class, which is called a type over k. A type \Re, which has a representativespace R, will be denoted by $\Re=$ Type R. For two quadratic forms f and f^{\prime} such that $f \cdots R$ and $f^{\prime} \cdots R^{\prime}$, we denote $f \sim f^{\prime}$ if both forms are of the same type (or 'ähnlich'), i. e. Type $R=$ Type R^{\prime}.

The types over k form an abelian group, when we define the sum of two types \mathfrak{R} and \subseteq as $\operatorname{Type}(R \oplus S)$, where $R \in \mathfrak{R}$ and $S \in \subseteq$. This abelian group is known generally as Witt group over k.

We define the product $\mathfrak{\Re \subseteq}$ of types \mathfrak{R} and \subseteq as Type $(R \otimes S)$, where $R \in \Re, S \in \mathbb{S}$ and $R \otimes S$ is the Kronecker product of two vector spaces R and S over k with the metric such that for any r, r^{\prime} in R and for any s, s^{\prime} in S

$$
(r \otimes s)\left(r^{\prime} \otimes s^{\prime}\right)=r r^{\prime} \cdot s s^{\prime}
$$

Now, the set of the types over k forms a commutative ring, which we shall call Witt ring over k.
§ 3. Witt rings over complete fields with respect to discrete valuations. Let now k be a complete field with respect to a discrete non-Archimedean valutation ||, whose residue class field \bar{k} is finite and has characteristic not 2. We denote by π a fixed prime element in k with respect to the valuation. Further, we denote by W and \bar{W} Witt rings over k and \bar{k}, respectively.

Theorem 1. If -1 is a square in \bar{k}, then \bar{W} is the two-dimensional algebra over $Z / 2 Z$ with basiselements $\mathfrak{F}, \mathfrak{u}\left(\mathfrak{E}^{2}=\mathfrak{u}^{2}=\mathfrak{F}, \mathfrak{F} \mathfrak{l}=\mathfrak{l}\right)$, and if -1 is not a square in \bar{k}, then $\bar{W} \cong Z / 4 Z$, where \mathfrak{F} and \mathfrak{u} are types over \bar{k} of forms x^{2} and
$\varepsilon x^{2}, \varepsilon$ being a fixed non-square in \bar{k}, respectively.
Proof. If -1 is a square in \bar{k}, then forms

$$
0, \quad x^{2}, \quad \varepsilon x^{2}, \quad x^{2}+\varepsilon y^{2}
$$

constitute a complete set of representatives of the equivalence classes of definite forms in \bar{k}. So we can see easily the first half of the assertion of the theorem. Further, if -1 is not a square in \bar{k}, then we can take the following four forms as a complete set of non-equivalent definite forms:

$$
0, x^{2},-x^{2}, x^{2}+y^{2} .
$$

In fact, any form with more than two variables over a finite field is indefinite. So $x_{1}{ }^{2}+\cdots+x_{4}{ }^{2}$ is equivalent to a form $x_{1}{ }^{2}-x_{2}{ }^{2}+f\left(x_{3}, x_{4}\right)$, and comparing the determinants of the both forms, $f\left(x_{3}, x_{4}\right)$ can be written as $f\left(x_{3}, x_{4}\right)=$ $x_{3}{ }^{2}-x_{4}{ }^{2}$. Hence

$$
\begin{aligned}
& x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+x_{4}{ }^{2} \sim 0, \\
& x_{1}{ }^{2}+x_{2}{ }^{2} \sim-x_{1}{ }^{2}-x_{2}{ }^{2} .
\end{aligned}
$$

We can also see easily the isomorphism of \bar{W} to $Z / 4 Z$.
Lemma. The equivalence classes of the definite forms of the form

$$
\begin{equation*}
a_{1} x_{1}{ }^{2}+\cdots+a_{r} x_{r}{ }^{2}, \tag{1}
\end{equation*}
$$

where a_{1}, \cdots, a_{r} are units of k, together with 0 , form a subring V of W isomor phic to \bar{W}.

Proof. We know that if a unit in k is a square then it is also a square modulo the prime ideal (π) and conversely, and that the multiplicative group of units in k is divided into two cosets modulo squares.

Let f be a definite form (1) and \bar{f} be the form f with the coefficients considered modulo (π), then \bar{f} is a definite form over \bar{k}.

Now we correspond to f the form \bar{f}, then the isomorphism between V and \bar{W} will be naturally induced.

Theorem 2. W is isomorphic to the algebra of dimension 2 over the ring: \bar{W} with basis elements $\mathfrak{F}, \mathfrak{F}$, where $\mathfrak{F}^{2}=\mathfrak{B}^{2}=\mathfrak{F}, \mathfrak{F} \mathfrak{F}=\mathfrak{P}$.

Proof. Every definite form f over k is equivalent to a form such as

$$
a_{1} x_{1}^{2}+\cdots+a_{r} x_{r}^{2}+\pi\left(a_{r+1} x_{r+1}^{2}+\cdots+a_{n} x_{n}^{2}\right),
$$

where a_{1}, \cdots, a_{n} are units in k, and $f_{1}=a_{1} x_{1}^{2}+\cdots+a_{r} x_{r}^{2}, f_{2}=a_{r+1} x_{r+1}^{2}+\cdots$ $+a_{n} x_{n}{ }^{2}$ are definite. So we can write the type \mathfrak{R} defined by f as follows:

$$
\mathfrak{\Re}=\Re_{1}+\mathfrak{F} \Re_{2},
$$

where $\mathfrak{R}_{1}, \mathfrak{R}_{2}$ and \mathfrak{F} are types of f_{1}, f_{2} and πx^{2}, respectively. This representation of \Re is unique, for if $\mathfrak{R}_{1}+\mathfrak{P \Re _ { 2 } = 0 \text { , then }}$

$$
a_{1} x_{1}^{2}+\cdots+a_{r} x_{r}^{2} \sim-\pi\left(a_{r+1} x_{r+1}^{2}+\cdots+a_{n} x_{n}^{2}\right),
$$

so by the above lemma only possible case would be that

$$
\begin{equation*}
a_{1} x_{1}{ }^{2}+a_{2} x_{2}{ }^{2} \sim-\pi\left(a_{3} x_{3}{ }^{2}+a_{4} x_{4}{ }^{2}\right) \tag{2}
\end{equation*}
$$

for two definite forms $a_{1} x_{1}{ }^{2}+a_{2} x_{2}{ }^{2}$ and $a_{3} x_{3}{ }^{2}+a_{4} x_{4}{ }^{2}$. But $\left|a_{1} x_{1}{ }^{2}+a_{2} x_{2}{ }^{2}\right|$ and $\left|a_{3} x_{3}{ }^{2}+a_{4} x_{4}{ }^{2}\right|$ are even powers of $|\pi|$ for any x_{1}, \cdots, x_{4} in k. Hence both forms of (2) are never equivalent, which is a contradiction.

Thus W is decomposed, as an additive group, into the direct sum

$$
W=V+\mathfrak{P} \cdot V,
$$

and the subring V is isomorphic to \bar{W} by the lemma, so this implies the assertion of our theorem.

Remark. In this proof, if f_{1} and f_{2} are considered modulo (π), then they are equivalent to the residue class forms of f, which are defined implicitly by T. A. Springer (Springer [3]).
§ 4. Witt rings over algebraic number fields. In this section, we denote by k an algebraic number field of finite degree over the rational number field. If \mathfrak{p} is a place of k, finite or infinite, then we denote by $k_{\mathfrak{p}}$ the \mathfrak{p}-adic extension of k, and for a type $\mathfrak{R}=$ Type (R) over k, where $R=k\left(\iota_{1}, \cdots, \iota_{k}\right)$, we put $R_{p}=k_{p}\left(\iota_{1}, \cdots, \iota_{n}\right)$ and $\Re_{p}=$ Type $\left(R_{p}\right)$, a type over k_{p}.

Let G be the ring of rational integers, $G_{r}{ }^{\prime}$ be the direct sum $G+\cdots+G$ of r copies of G, and G_{r} be the subring of $G_{r}{ }^{\prime}$, consisting of the elements $\left(g_{1}, \cdots, g_{r}\right)$ of $G_{r}{ }^{\prime}$ such that $g_{i} \equiv g_{j} \bmod 2$ for every i, j, specifically $G_{1}=G$. For $r=0$, we put $G_{0}=Z / 2 Z$.

Every type \Re over the field of real numbers is represented by such a form

$$
f_{r}=x_{1}{ }^{2}+\cdots+x_{r}{ }^{2} \text { or } f_{-s}=-x_{1}{ }^{2}-\cdots-x_{s}{ }^{2} .
$$

(The zero type is represented by $f_{0}=0$.) r or $-s$ is called the signature of the type \mathfrak{R}, and denoted by $\sigma(\mathfrak{R})=r$ or $=-s$. Witt ring over the field of real numbers is isomorphic to the ring of rational integers, if we correspond to a type \Re its signature $\sigma(\Re)$.

Theorem 3. Let the infinite real places of k be $\infty_{i}(i=1, \cdots, r)$, and R be the radical of Witt ring W over k, then, if $r=0, R$ is composed of the types of even-dimensional spaces, and if $r>0$,

$$
R=\left\{\Re ; \sigma\left(\Re_{\alpha_{i}}\right)=0, \text { for } i=1, \cdots, r\right\},
$$

and

$$
W / R \cong G_{r} .
$$

Proof. First, let $r>0$. If $\sigma\left(\Re_{\infty_{i}}\right)=0$ for each i, then \Re is of even dimension, and at every finite place \mathfrak{p} of $k, \Re_{p}{ }^{3}=0$ from the fact that in k_{p} a four-dimensional type is determined uniquely (Eichler [1] Satz 7.3). Thus $\left(\Re^{3}\right)_{\mathfrak{p}}=\mathfrak{R}_{\mathfrak{p}}{ }^{3}=0$ for every finite or infinite place \mathfrak{p}. A type over k, which is
zero over every \mathfrak{p}-adic extension k_{p} of k, is the zero type (Hasse's theorem (Witt [2]; Satz 20)). Hence $\Re^{3}=0$. If $\sigma\left(\Re_{\propto_{i}}\right) \neq 0$ for some i, then $\Re^{n} \neq 0$ for every $n \neq 0$. Therefore the types \Re with $\sigma\left(\Re_{\infty_{i}}\right)=0(i=1, \cdots, r)$ form the radical of W.

By the theory of algebraic numbers there is always a number in k whose \pm signs in $k_{\infty_{i}}$ coincide with any given system of signs for each ∞_{i}. Accordingly, for an element (g_{1}, \cdots, g_{r}) of G_{r} we can build a (diagonal) form f which defines a space S with $\sigma\left(S_{\infty_{i}}\right)=g_{i}$ for every i. Finally, let's put $g_{i}=\sigma\left(\Re_{\propto_{i}}\right),(i=1, \cdots, r)$ for $\Re \in W$, then by the map

$$
\mathfrak{\Re \rightarrow (g _ { 1 } , \cdots , g _ { r }) \in G _ { r } , ~}
$$

the isomorphism between W / R and G_{r} is easily verified.
Now the assertion for the case of $r=0$ is almost trivial by the beginning part of this proof.

Remark. If k is an algebraic function field of one variable over a finite field, then $W / R \cong G_{0}=Z / 2 Z$, since k has no archimedean places.

References

[1] M. Eichler, Quadratische Formen und orthogonale Gruppen, Berlin, 1952.
[2] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, C. J., 176 (1937), 31-44.
[3] T.A. Springer, Quadratic forms over fields with a discrete valuation I, Proc. Acad. Amsterdam, 58 (1955), 352-362.

