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\S 1. Introduction. Witt has proved that the classes of ’ \"ahnlich’ forms
over a field $k$ , which has characteristic not 2, form a ring (Witt [2]). This
ring will be called Witt ring over $k$ , in this paper. We shall consider the
structure of Witt ring. Our results will be shown in theorem 1 for a
finite field, in theorem 2 for a complete field with respect to a discrete
non-Archimedean valuation, whose residue class field is finite and of char-
acteristic not equal to 2, where Witt ring over that field is related to Witt
ring over the residue class field, and in theorem 3 for an algebraic number
field of finite degree over the rational number field.

I am quite indebted to Mr. A. Hattori, who has given kind help through-
out.

\S 2. Preliminaries. In the first place, Eichler’s formulation of Witt
group in terms of metric spaces will be shown as follows (Eichler [1]):

Let $k$ be a fixed commutative field of characteristic not 2, then a vector
space $R$ over $k$ is made into a metric space by defining the (inner) producf
$\xi\eta$ of two vectors $\xi,$

$\eta$ , such that $\xi\eta$ is in $k$ and

1. $\xi\eta=\eta\xi$ ,
2. $(\xi+\eta)\zeta=\xi\zeta+\eta\zeta$ ,
3. $(x\xi)\eta=x(\xi\eta),$ $x\in k$ .
We consider only finite dimensional metric spaces over $k$ . If $\{f_{1}\cdots , f_{n}\}$

is a basis of $R$ over $k$ (in this case we write $R=k$ ( $\ell_{1},$
$\cdots$ , $f_{n}$)), the square $\xi^{2}$

of $\xi=\sum_{i=1}^{n}X_{i}C_{i},$ $X_{i}\in k$ , is a quadratic form

$f=\sum_{i.j=1}^{n}f_{ij}x_{i}x_{j}$ , $(f_{ij}=f_{ji}\in k)$

in $x_{i}$ , where $f_{ij}=\ell_{i}\ell_{j}$ . $f$ is called a fundamental form of $R$, and we denote
this by $f\cdots R$. Conversely, every quadratic form $f$ over $h$ is a fundamental
form of some space $R$.

Spaces $R$ are always assumed to be semi-simple, namely for every vector
$\xi\neq 0$ in $R$ there is a vector $\eta$ such that $\xi\eta\neq 0$ , in other words, $iff\cdots R$, the
determinant $|f_{ij}|$ of the matrix $(f_{ij})$ of coefficients of $f$ is not zero.
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Let $f\cdots R$ and g...S, then, if $R$ and $S$ are isomorphic spaces over $k,$ $f$ and1
$g$ are called equivalent.

Vectors $\xi$ and $\eta$ are called orthogonal to each other, if $\xi\eta=0$ , and spaces
$R$ and $S$ are orthogonal to each other, if vectors of $R$ are orthogonal $to$

those of $S$. If there is a vector $\xi\neq 0$ in a space $R$ such that $\xi^{2}=0$ , then $\xi$

and $R$ are called isotropic.
A semi-simple metric space $R$ over $k$ can be decomposed into an ortho-

gonal sum
$ R=R_{0}\oplus N_{1}\oplus N_{2}\oplus\cdots$

of subspaces $R_{0},$ $N_{1},$ $N_{2},$ $\cdots$ , namely a direct sum of subspaces which are
mutualIy orthogonal, where $R_{0}$ is non-isotropic or the zero space and all
the $N_{i}$ are isomorphic to the space $N=k(c_{1}, \iota_{2})$ for which $\ell_{1^{2}}=f_{2}^{2}=0,$ $\ell_{12}=1$ .
$R_{0}$ is uniquely determined by $R$ up to an isomorphism and is called the $\cdot$

kernel of $R$ . A form $f(x_{1}, x_{2}, \cdot.. , x_{n})$ over $k$ is called definite, if $f=0$ or if
$f(x_{1}, \cdots , x_{n})=0$ has a unique solution $x_{1}=x_{2}=\ldots=x_{n}=0$ in $k$ . Then a
fundamental form of a kernel is definite.

Those spaces over $k$ which have isomorphic kernels are grouped into a
class, which is called a type over $k$ . A type $\mathfrak{R}$ , which has a representative
space $R$, will be denoted by $\mathfrak{R}=TypeR$ . For two quadratic forms $f$ and $f^{\prime}$

such that $f\cdots R$ and $f^{\prime}\cdots R^{\prime}$ , we denote $f\sim f^{\prime}$ if both forms are of the same
type (or ‘ \"ahnlich’), $i$ . $e$ . Type $R=TypeR^{\prime}$ .

The types over $k$ form an abelian group, when we define the sum of
two types $\mathfrak{R}$ and $\mathfrak{S}$ as Type $(R\oplus S)$ , where $R\in \mathfrak{R}$ and $S\in \mathfrak{S}$ . This abelian
group is known generally as Wilt group over $k$ .

We define the product $\mathfrak{R}\mathfrak{S}$ of types $\mathfrak{R}$ and $\mathfrak{S}$ as Type$(R\otimes S)$ , where
$R\in \mathfrak{R},$ $S\in \mathfrak{S}$ and $R\otimes S$ is the Kronecker product of two vector spaces $R$

and $S$ over $k$ with the metric such that for any $r,$
$r^{\prime}$ in $R$ and for any $s,$

$s^{\prime}$

in $S$

$(r\otimes s)(r^{\prime}\otimes s^{\prime})=rr^{\prime}\cdot ss^{\prime}$ .
Now, the set of the types over $k$ forms a commutative ring, which we shall
call Witt ring over $k$ .

\S 3. Witt rings over complete fields with respect to discrete valuations.
Let now $k$ be a complete field with respect to a discrete non-Archimedean
valutation $||$ , whose residue class field $\overline{k}$ is finite and has characteristic not
2. We denote by $\pi$ a fixed prime element in $k$ with respect to the valuation.
Further, we denote by $W$ and $\overline{W}$ Witt rings over $k$ and $\overline{k}$, respectively.

THEOREM 1. If $-1$ is a square in $\overline{k}$, then $\overline{W}$ is the two-dimensional algebra
over $Z/2Z$ with basiselements $\mathfrak{E},$ $\mathfrak{U}(\mathfrak{E}^{2}=\mathfrak{U}^{2}=\mathfrak{E}, \mathfrak{E}\mathfrak{U}=U)$ , and if $-1$ is not a
square in $\overline{k}$, then $\overline{W}\cong Z/4Z$, where $\mathfrak{E}$ and $l1$ are types over $\overline{k}$ of forms $x^{2}$ and
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$\epsilon x^{2},$
$\epsilon$ being a fixed non-square in $\overline{k}$, respectively.
PROOF. If $-1$ is a square in $\overline{k}$, then forms

$0,$ $x^{2},$ $\epsilon x^{2},$ $x^{2}+\epsilon y^{2}$

constitute a complete set of representatives of the equivalence classes of
definite forms in $\overline{k}$ . So we can see easily the first half of the assertion of
the theorem. Further, if $-1$ is not a square in $\overline{k}$, then we can take the
following four forms as a complete set of non-equivalent definite forms:

$0,$ $x^{2}$ , $-x^{2},$ $x^{2}+y^{2}$ .
In fact, any form with more than two variables over a finite field is inde-
finite. So $x_{1}^{2}+\cdots+x_{4}^{2}$ is equivalent to a form $x_{1}^{2}-x_{2}^{2}+f(x_{3}, x_{4})$ , and comparing
the determinants of the both forms, $f(x_{3}, x_{4})$ can be written as $f(x_{3}, x_{4})=$

$x_{3}^{2}-x_{4}^{2}$ . Hence
$x_{1}^{2}+x_{2}^{2}+x_{3^{2}}+x_{4}^{2}\sim 0$ ,

$x_{1^{2}}+x_{2}^{2}\sim-x_{\perp}^{2}-x_{2}^{2}$ .
We can also see easily the isomorphism of $\overline{W}$ to $Z/4Z$.

LEMMA. The equivalence classes of the definite forms of the $for?n$

(1) $a_{1}x_{1^{2}}+\cdots+a_{r}x_{r}^{2}$ ,

$u’ herea_{J},$ $\cdots$ , $a_{r}$ are units of $k$ , together with $0$ , form a subring $V$ of $W$ isomor-
phic to $\overline{W}$.

PROOF. We know that if a unit in $k$ is a square then it is also a square
modulo the prime ideal (rr) and conversely, and that the multiplicative group
of units in $k$ is divided into two cosets modulo squares.

Let $f$ be a definite form (1) and $\overline{f}$ be the form $f$ with the coefficients
considered modulo $(\pi)$ , then $\overline{f}$ is a definite form over $\overline{k}$ .

Now we correspond to $f$ the form $\overline{f}$, then the isomorphism between $V$

and $\overline{W}$ will be naturally induced.
THEOREM 2. $W$ is isomorphic to the algebra of dimension 2 over the ring

$\overline{W}$ with basis elements $\mathfrak{E},$ $\mathfrak{P}$ , where $\mathfrak{E}^{2}=\mathfrak{P}^{2}=\mathfrak{E},$ $\mathfrak{E}\mathfrak{P}=\mathfrak{P}$ .
PROOF. Every definite form $f$ over $k$ is equivalent to a form such as

$a_{1}x_{1}^{2}+$ $\cdot$ .. $+a_{r}x_{r}^{2}+\pi(a_{r+1}x_{r+\downarrow+}^{2} ... +a_{n}x_{n}^{2})$ ,

where $a_{1},$ $\cdots$ , $a_{n}$ are units in $k$ , and $f_{1}=a_{1}x_{1^{2}}+\cdots+a_{r}x_{r}^{2},$ $f_{2}=a_{r+1}x_{r+1}^{2}+\cdot\cdot-$

$+a_{n}x_{n}^{2}$ are definite. So we can write the type $\mathfrak{R}$ defined by $f$ as follows:

$\Re=\mathfrak{R}_{1}+\mathfrak{P}\mathfrak{R}_{2}$ ,

where $\mathfrak{R}_{1},$ $\mathfrak{R}_{2}$ and $\mathfrak{P}$ are types of $f_{1},$ $f_{2}$ and $\pi x^{2}$ , respectively. This represen-
tation of $\Re$ is unique, for if $\mathfrak{R}_{1}+\mathfrak{P}\mathfrak{R}_{2}=0$ , then

$a_{1}x_{1}^{2}+\cdot..$ $+a_{r}x_{r}^{2}\sim-r_{\vee}(a_{r+1}x_{r+1}^{2}+\cdots+a_{n}x_{n}^{2})$ ,
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so by the above lemma only possible case would be that

(2) $a_{1}x_{1}^{2}+a_{2}x_{2^{2}}\sim-\pi(a_{3}x_{3}^{2}+a_{4}x_{4}^{2})$

for two definite forms $a_{1}x_{1^{2}}+a_{2}x_{2}^{2}$ and $a_{3}x_{3}^{2}+a_{4}x_{4}^{2}$ . But $|a_{1}x_{1}^{2}+a_{2}x_{2^{2}}|$ and
$|a_{3}x_{3^{2}}+a_{4}x_{4^{2}}|$ are even powers of $|\pi|$ for any $x_{1},$ $\cdots,$ $x_{4}$ in $k$ . Hence both forms
of (2) are never equivalent, which is a contradiction.

Thus $W$ is decomposed, as an additive group, into the direct sum
$W=V+\mathfrak{P}\cdot V$ ,

and the subring $V$ is isomorphic to $\overline{W}$ by the lemma, so this implies the
assertion of our theorem.

REMARK. In this proof, if $f_{1}$ and $f_{2}$ are considered modulo $(\pi)$ , then they
are equivalent to the residue class forms of $f$, which are defined implicitly
by T. A. Springer (Springer [3]).

\S 4. Witt rings over algebraic number fields. In this section, we denote
by $k$ an algebraic number field of finite degree over the rational number
field. If $\mathfrak{p}$ is a place of $k$ , finite or infinite, then we denote by $k_{\mathfrak{p}}$ the p-adic
extension of $k$ , and for a type $\mathfrak{R}=Type(R)$ over $k$ , where $R=k(f_{1}\cdots , f_{k})$ ,

we put $R_{\mathfrak{p}}=k_{\mathfrak{p}}(f_{1}\cdots, t_{n})$ and $\mathfrak{R}_{\mathfrak{p}}=Type(R_{\mathfrak{p}})$ , a type over $k_{\mathfrak{p}}$ .
Let $G$ be the ring of rational integers, $G_{r^{\prime}}$ be the direct sum $G+\cdots+G$

of $\gamma$ copies of $G$ , and $G_{r}$ be the subring of $G_{r^{\prime}}$ , consisting of the elements
$(g_{1}, \cdots , g_{r})$ of G.’ such that $g_{i}\equiv g_{j}mod 2$ for every $i,$ $j$ , specifically $G_{1}=G$ .
For $r=0$ , we put $G_{0}=Z/2Z$.

Every type $\mathfrak{R}$ over the field of real numbers is represented by such a
form

$f_{r}=x_{1}^{2}+\cdots+x_{r}^{2}$ or $f_{-s}=-x_{1}^{2}-\cdots-x_{\epsilon}^{2}$ .
(The zero type is represented by $f_{0}=0.$) $\gamma$ or $-s$ is called the signature of
the type $\Re$ , and denoted by $o(\mathfrak{R})=r$ or $=-s$ . Witt ring over the field of
real numbers is isomorphic to the ring of rational integers, if we correspond
to a type $\mathfrak{R}$ its signature $\sigma(\mathfrak{R})$ .

THEOREM 3. Let the infinite real places of $k$ be $\infty_{i}$ $(i=1, \cdot. , r)$ , and $R$ be
the radical of Witt ring $W$ over $k$ , then, if $r=0,$ $R$ is composed of the types of
even-dimensional spaces, and if $r>0$ ,

$R=$ { $\Re;\sigma(\mathfrak{R}_{\infty}i)=0$ , for $i=1,$ $\cdots,$ $r$ },
and

$W/R\cong G_{r}$ .
PROOF. First, let $\gamma>0$ . If $\sigma(\mathfrak{R}_{\infty_{i}})=0$ for each $i$, then $\mathfrak{R}$ is of even

dimension, and at every finite place $\mathfrak{p}$ of $k,$ $\mathfrak{R}_{\mathfrak{p}^{3}}=0$ from the fact that in $k_{\mathfrak{p}}$

a four-dimensional type is determined uniquely (Eichler [1] Satz 7.3). Thus
$(\mathfrak{R}^{3})_{\mathfrak{p}}=\mathfrak{R}_{\mathfrak{p}^{3}}=0$ for every finite or infinite place $\mathfrak{p}$ . A type over $k$ , which is
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zero over every $\mathfrak{p}$-adic extension $k_{\mathfrak{p}}$ of $k$, is the zero type (Hasse’s theorem
(Witt [2], Satz 20)). Hence $\mathfrak{R}^{3}=0$. If $\sigma(\mathfrak{R}_{\infty_{i}})\neq 0$ for some $i$, then $\Re^{n}\neq 0$ for
every $n\neq 0$ . Therefore the types $\mathfrak{R}$ with $\sigma(\mathfrak{R}_{\infty_{i}})=0(i=1, \cdots, r)$ form the
radical of $W$.

By the theory of algebraic numbers there is always a number in $k$

whose $\pm signs$ in $k_{\infty_{i}}$ coincide with any given system of signs for each $\infty_{i}$ .
Accordingly, for an element $(g_{1}, \cdots, g_{r})$ of $G_{r}$ we can build a (diagonal) form
$f$ which defines a space $S$ with $\sigma(S_{\infty_{i}})=g_{i}$ for every $i$ . Finally, let’s put
$g_{i}=\sigma(\mathfrak{R}_{\infty_{i}}),$ ($i=1,$ $\cdots$ , r) for $\mathfrak{R}\in W$, then by the map

$\Re\rightarrow(g_{1}, \cdots, g_{r})\in G_{r}$ ,

the isomorphism between $W/R$ and $G_{r}$ is easily verified.
Now the assertion for the case of $r=0$ is almost trivial by the beginning

part of this proof.
REMARK. If $k$ is an algebraic function field of one variable over a finite

field, then $W/R\cong G_{0}=Z/2Z$, since $k$ has no archimedean places.
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