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\S 1. Introduction.

A ring $R$ with unit element is called “ left (right) semi-hereditary “ according
to [2] if any finitely generated left (right) ideal of $R$ is projective.

The purpose of this paper is to determine completely the structure of
commutative semi-hereditary rings. A. Hattori has recently given in [6] a
homological characterization of Pr\"ufer rings, $i$ . $e.$ , semi-hereditary integral
domains. This was generalized by M. Harada [5] to commutative rings whose
total quotient rings are regular. The results of this paper will include those
results of [5] and [6].

In \S 3 we shall give a necessary and sufficient condition for a ring to be
regular by using the quotient rings. Also we shall introduce a notion of quasi-
regular rings and show some properties of them.

In \S 4 we shall characterize semi-hereditary rings by using the quotient
rings as follows: A ring $R$ is semi-hereditary if and only if the total quotient
ring $K$ of $R$ is regular and the quotient ring $R_{\mathfrak{m}}$ of $R$ with respect to any
maximal ideal $\mathfrak{m}$ of $R$ is a valuation ring. Furthermore we shall introduce a
notion of algebraic extensions of regular rings and show that the integral
closure $R^{\prime}$ of a semi-hereditary ring $R$ in any algebraic extension $K^{\prime}$ of the
total quotient ring $K$ of $R$ is also semi-hereditary.

In \S 5, we shall first prove that a local ring $R$ is a valuation ring if and
only if $w$ . gl. $\dim R\leqq 1$ . Secondly we shall show, as a generalization of [6],

Theorem 2, that a ring $R$ with the total quotient ring $K$ is semi-hereditary if
and only if $w$ . gl. $\dim R\leqq 1$ and $w$ . gl. $\dim K=0$ , or if and only if any torsion-
free R-module is flat.

\S 2. Notations and terminologies.

Throughout this paper a ring will mean a commutativc ring with unit
element 1. Our notations and terminologies are, in general, the same as in [2]

but we shall make the following modifications.
A local ring will mean a (not always Noetherian) ring with only one
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maximal ideal and a regular ring $R$ wiil mean a ring such that for any $a\in R$

there is an element $b$ of $R$ with $aba=a$ (cf. von Neumann [10]).

Let $R$ be a ring, $M$ an R-module and $S$ a multiplicatively closed subset of
$R$. Then the quotient ring and module of $R,$ $M$ with respect to $S$ are defined
as in [2] and denoted by $R_{s},$ $\Lambda/I_{s}$ respectively. If $S$ is the complementary set
of a prime ideal $\mathfrak{p}$ in $R$, then we shall use $R_{\mathfrak{p}},$ $1\psi_{\mathfrak{p}}$ instead of $R_{s},$ $1\psi_{s}$ .

Let $R$ be a ring and $T$ be the set of all non zero divisors in $R$ . Then the
quotient ring $K$ of $R$ with respect to $T$ will be called the “ total quotient ring”
of $R$ . An element $u$ of an R-module llf will be called a “ torsion element” if
$Iu=0$ for some $t\in T$. If we denote by $t(M)$ the set of all torsion elements in
$M$, then $t(M)$ becomes an R-module and will be called a “ torsion submodule”
of $ j\psi$ If $t(M)=l\psi,$ $1M$ will be called a ” torsion module “, and on the other
hand, if $t(M)=0$ , it will be called a ” torsion-free “ module. Furthermore an
R-module $1M$ will be called a “ divisible” module if for any $t\in T,$ $u\in M$ there
is an element $v$ of $ j\psi$ with $u=tv$ .

\S 3. Regular rings and quasi-regular rings.

First we shall prove the followingi)

THEOREM 1. A ring $R$ is regular if and only if the quotient ring $R_{\dot{\mathfrak{m}}}$ of $R$

with respect to any maximal ideal $\mathfrak{m}$ of $R$ is a field.
PROOF. The only if part: If $R$ is regular, then any $R_{m}$ is obviously reg-

ular, hence we have only to show that if a local ring $R$ is regular, it is a
field. Let $\mathfrak{m}$ be a maximal ideal of a local ring $R$ . If there is a non-unit $a$

in $R$, then $a$ is contained in $\mathfrak{m}$ . Since $R$ is regular, we have $a^{2}b=a$ for a sui-
table element $b$ of $R$ , hence $(1-ab)a=0$ . Since $ab\in \mathfrak{m}$ , l–ab is a unit of $R$ .
Therefore $a=0$ . Thus $R$ must be a field.

The if part: Let $a$ be an element of $R$ and set $b=\{b;ba=0, b\in R\}$ .
Since any $R_{\mathfrak{n}\iota}$ is a field, $b$ is not contained in any maximal ideal $\mathfrak{m}$ containing
$a$ . Setting $c=(a, b),$ $c$ is not contained in any maximal ideal of $R$ and so we
have $R=(a, b)$ . Since $(a)b=0,$ $(a)$ is a direct summand of $R$ . Accordingly we
have $(a)=(e)$ for a suitable idempotent $e$ of $R$ and also have $b=(1-e)$ . Fur-
thermore, if we set $d=1-e+a$ , then $d$ is clearly a unit of $R$ and we have
$de=ae=a$ . So we obtain $ad^{-1}a=a$ . This proves that $R$ is regular.

COROLLARY 1. A ring $R$ is regular if and only if any element of $R$ is expres-
sible as a product of a unit and an idempotent in $R$ .

COROLLARY 2. Let $R$ be a regular ring and $\mathfrak{a}$ be a finitely generated ideal
of R. Then $a$ is generated by a single idempotent.

1) The contents of Theorem 1 and its corollary 1 were published in author’s
paper [3].
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PROOF. By Corollary 1 we may assume that $\mathfrak{a}$ is generated by a finite
rnumber of idempotents of $R$ . It suffices to show this in case $\mathfrak{a}=(e_{1}, e_{2})$ , where
$e_{1},$ $e_{2}$ are idempotents of $R$ . Setting $e=e_{1}+e_{2}-e_{1}e_{2}$ , we obtain easily $e^{2}=e$ and
$ee_{i}=e_{i}$ for $i=1,2$ . Therefore $\mathfrak{a}=(e)$ . Thus our proof is completed.

COROLLARY 3. Any regular ring is semi-hereditary.
A ring $R$ is called a “ quasi-regular“ ring if the total quotient ring $K$ cf

$R$ is regular.
PROPOSITION 1. Let $R$ be a quasi-regular ring and $K$ be the total quotient

ring of R. Let $a$ be an ideal of $R$ such that $\mathfrak{a}K_{\cap}R=\mathfrak{a}$ . Then $R/a$ is also a
quasi-regular ring and $K/\mathfrak{a}K$ can be regarded as the total quotient ring of $R/a$ .

PROOF. $R/a$ can be regarded as the subring of $K/\mathfrak{a}K$ by identifying
$R+\mathfrak{a}K/\mathfrak{a}K$ to $R/a$ . Then $K/\mathfrak{a}K$ is obviously contained in the total quotient
ring of $R/a$ . Since the homomorphic image of a regular ring is also regular,
$K/\mathfrak{a}K$ is regular. Then the total quotient ring of $R/a$ must coincide with
$K/\mathfrak{a}K$, for the total quotient ring of a regular ring is itself.

PROPOSITION 2. Let $R$ be a quasi-regular ring with the total quotient ring $K$

and $S$ be a multiplicatively closed subset of R. Then the quotient ring $R_{s}$ of $R$

with respect to $S$ is also a quasi-regular ring and the quotient ring $K_{s}$ of $K$ with
respect to $S$ is the total quotient ring of $R_{s}$ .

PROOF. Set $as=$ { $a;as=0$ for some $s\in S,$ $a\in R$ }. Let $a$ be an element
of $a_{s}K_{\cap}R$. Then we have $a=a_{1}\alpha_{1}+a_{2}\alpha_{2}+$ $+a_{t}\alpha_{t},$ $ a_{i}\in$ as, $\alpha_{i}\in K$. Let $s_{i}$

be an element of $S$ for each $i$ such that $s_{i}a_{i}=0$ , and set $s=\prod_{i=1}^{t}s_{i}$ . Then we
obtain $sa=0$, hence $a\in \mathfrak{a}_{s}$ . This shows $\mathfrak{a}_{S}=\mathfrak{c}ts^{K_{\cap}R}$ . So, by Proposition 1,
$R/\mathfrak{a}_{S}$ is a quasi-regular ring with the total quotient ring $K/t1_{S}K$ Since $K_{s}=$

$K/\mathfrak{a}_{s}K$ and $K_{s}\supset R_{s}\supset R/\mathfrak{a}_{s},$ $R_{s}$ is a quasi-regular ring with the total quotient
ring $K_{s}$.

PROPOSITION 3. Let $R$ be a quasi regular ring and $\mathfrak{a}$ be a finitely generated
ideal of R. Then the following statements are equivalent:

1) $\mathfrak{a}$ is projective.
2) For any maximal ideal $maR$. is zero or generated by a single non zero

divisor of $R_{\mathfrak{m}}$ .
3) $\mathfrak{a}^{-1}\mathfrak{a}$ is a direct summand of $R$ .
4) $a$ is a direct summand of an invertible ideal of $R$.
PROOF. The implications $1$ ) $\rightarrow 2$) and $4$) $\rightarrow 1$ ) are obvious.
The implication $2$) $\rightarrow 3$): If we set $\mathfrak{b}=\{b;b\mathfrak{a}=0, b\in R\}$ , then we have

$b$ cl $\iota \mathfrak{n}$ for any maximal ideal $\mathfrak{m}$ of $R$ such that $ttR_{\mathfrak{m}}=0$ . On the other hand,
in case $\mathfrak{a}R_{\mathfrak{m}}\neq 0,$ $\mathfrak{a}R_{\mathfrak{n}}$ is invertible in $R_{\mathfrak{m}}$ by our assumption. Setting $()=(a_{1}$ ,
... $a_{n}$) and $\overline{\mathfrak{a}}=\mathfrak{a}R_{\mathfrak{m}}$ , we have $\sum_{i=1}^{n}\overline{\alpha}_{i}\overline{a}_{i}=\overline{1},\overline{\alpha}_{i}\in\overline{\mathfrak{a}}^{-1}$ , where $\overline{1},\overline{a}_{i}$ are the residues
of 1, $a_{i}$ in $R_{11}$ respectively. Set $a$ . $=$ { $a$ ; $as=0$ for some $s\in R-\mathfrak{m},$ $a\in R$ }.
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Since $\overline{\alpha}_{i}\in \mathfrak{a}^{-1}$ , we have $\overline{\alpha}_{i}\overline{a}_{j}=\overline{t}_{\dot{t}j}/\overline{s}_{ij},\overline{s}_{ij}\in R/\mathfrak{a}_{\mathfrak{n}\iota}-\mathfrak{m}/\mathfrak{a}_{\mathfrak{m}},\overline{t}_{ij}\in R/\mathfrak{a}_{1\mathfrak{n}}$ for any $i$

and $j$ . If we set $\overline{s}=\prod_{i,j}\overline{s}_{?j}$
, we have $\overline{s}\overline{\alpha}_{i}\overline{a}_{j}\in R/a_{t\mathfrak{n}}$ . By Proposition 2 we can

now choose a representative $\alpha_{i}$ of $\overline{\alpha}_{i}$ in $K$ for any $i$ . Furthermore, by choos-
ing suitably an element $s^{\prime}$ of $ R-\mathfrak{n}\iota$ , we obtain $s^{\prime}s\alpha_{i}a_{j}\in R$ for any $i$ and $j$ ,

where $s$ is a representative of $\overline{s}$ in $R$ . So $s^{\prime}s\alpha_{i}\in a^{-1}$ for any $i$ . Now we have
$ss^{\prime}s^{\prime\prime}=\sum(ss^{\prime}s^{\prime/}\alpha_{i})a_{i}$ for $s^{\prime\prime}\in R-\mathfrak{m}$ . The left hand side of this formula is not
contained in $\mathfrak{m}$ but the right hand side is contained in $\mathfrak{a}^{-1}\mathfrak{a}$ . This shows that
if $aR$ . $\neq 0$ , then $\mathfrak{a}^{-\iota}\mathfrak{a}\in\in \mathfrak{m}$ . Hence, if we set $c=(b, a^{-1}\mathfrak{a}),$ $c$ is not contained in
any maximal ideal of $R$ , and so we have $R=(f)\mathfrak{a}^{-1}\mathfrak{a})$ . Since $\mathfrak{b}\mathfrak{a}^{-\iota}\mathfrak{a}=0,$ $\mathfrak{a}^{-1}\mathfrak{a}$

must be a direct summand of $R$ .
The implication $3$) $\rightarrow 4$). Suppose that $\mathfrak{a}^{-1}a$ is a direct summand of $R$ .

Then there is an idempotent $e$ of $R$ such that $\mathfrak{a}^{-1}\mathfrak{a}=(e)$ . If we set $\}_{j}=(1-e, \mathfrak{a})$ ,

then $b$ is invertible as $b^{-}$ $=(1-e, \mathfrak{a}^{-1}e)$ . Since $\mathfrak{a}$ is a direct summand of $b$ , this
proves our assertion.

PROPOSITION 4. Let $R$ be an integrally closed quasi-regular ring with the total
quotient ring $K$ and $a$ be an ideal of $R$ such that $\mathfrak{a}=\mathfrak{a}K_{\cap}R.$ Then $R/\mathfrak{a}$ is also
integrally closed.

PROOF. By Propositien 1 $K/aK$ is the total quotient ring of $R$ . Now let
$\overline{\alpha}$ be an element of $K/aK$ integral over $R/\mathfrak{a}$ . Then we have $\overline{\alpha}^{n}+\overline{a}_{1}\overline{\alpha}^{n-1}+\cdots+$

$\overline{a}_{n}=0,\overline{a}_{i}\in R/\mathfrak{a}$ . Denote by $a,$ $a_{i}$ representatives of $\overline{\alpha},\overline{a}_{i}$ in $K,$ $R$ , respectively.
Then $\alpha^{n}+a_{1}\alpha^{n-1}+\cdots+a_{n}=\beta\in \mathfrak{a}K$. Since $K$ is regular, we have $\beta=\gamma e$ for a
unit $\gamma$ and an idempotent $e$ of $K$, by Corollary 1 to Theorem 1. Then we
have $e\in R$, for $R$ is integrally closed. So $e\in \mathfrak{a}=\mathfrak{a}K_{\cap}R$ . From $(1-e)\beta=0$

we obtain $((1-e)\alpha)^{n}+a_{1}((1-e)\alpha)^{n-1}+\cdots+a_{n}(1-e)=0$ . Since $R$ is integrally
closed, we have $(1-e)\alpha\in R$ . As $\overline{(1-e)\alpha}=\overline{\alpha},\overline{\alpha}$ must be in $R/\mathfrak{a}$ .

PROPOSITION 5. Let $R$ be a quasi-regular ring. Then $R$ is integrally closed
if and only if the quotient ring $R_{\mathfrak{m}}$ of $R$ with respect to any maximal ideal $\mathfrak{m}$ of
$R$ is integrally closed. In general, if $R$ is integrally closed, the quotient ring $R_{s}$

of $R$ with respect to any multiplicatively closed subset $S$ of $R$ is inlegrally closed.
PROOF. The only if part is contained in the second part and also the

second part is easily obtained from Propositions 2 and 4. Hence we have only to
show the if part. Let $K$ be the total quotient ring of $R$ and $\alpha$ bs an element
of $K$ integral over $R$ . If we set $S=R-\mathfrak{m}$ for any maximal ideal $\mathfrak{m}$ of $R$, then
$K_{s}$ can be regarded as the total quotient ring of $R_{m}$ according to Proposition
2. The residue $\overline{\alpha}$ of a in $K_{s}$ is, then, integral over $R_{t\mathfrak{n}}$ , so, by our assumption,
we have $\overline{\alpha}\in R_{\mathfrak{n}\tau}$ . Hence we have $s\alpha\in R$ for some $ s\in$ S. If we set $c=\{c$ ;
$c\alpha\in R,$ $c\in R$ }, then we must have $c=R,$ $i$ . $e.,$ $\alpha\in R$ .

PROPOSITION 6. Let $R$ be a local quasi-regular ring. If $R$ is integrally closed,

then it is an integral domain.
PROOF. Let $K$ be the total quotient ring of $R$ . If $K$ is not a field, then
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there exists an idempotent $e$ of $K$ which is not a unit element by $Co\overline{\perp}\cdot ollary1$

to Theorem 1. Since $R$ is integrally closed, $e$ is contained in $R$ . Then $R$ is
expressible as a direct sum of $Re$ and $R(1-e)$ . Since $R$ is local, this is obvi-
ously a contradiction. Consequently $K$ is a field. Thus $R$ is an integral domain.

PROPOSITION 7. Let $R$ be a quasi-regular ring. Then an R-module $M$ is a
torsion-free module if and only if the quotienl module $M_{\mathfrak{m}}$ with respect to any
maximal ideal $\mathfrak{m}$ of $R$ is a torsion-free $R_{\mathfrak{m}}$ -module.

PROOF. The if part is evident, hence we have only to show the cnly if
part. Suppose that $M$ is a torsion-free R-module and that $au=0$ for a non
zero divisor $\overline{\alpha}$ of $R_{\uparrow n}$ and an element $\overline{u}$ of $M_{\mathfrak{m}}$ . Set $a_{\mathfrak{m}}=\{a$ ; $as=0$ for some
$s\in R-\mathfrak{m},$ $a\in R$ } and $M^{\prime}=$ { $u;su=0$ for some $s\in R-\mathfrak{n}\iota,$ $u\in M$ }. Then we
may assume $\overline{\alpha}\in R/a_{\mathfrak{m}}$ and $\overline{u}\in M/M^{\prime}$ by multiplying suitably elements of
$R/a_{\mathfrak{m}}-\iota \mathfrak{n}/\mathfrak{a}_{t\mathfrak{n}}$ to $\overline{\alpha},\overline{u}$ . Denote by $a$ a representative of $\overline{\alpha}$ in $R$ and by $u$ a
representative of $\overline{u}$ in $M$. Since $\overline{\alpha}$ is a non zero divisor of $R/a_{\mathfrak{m}}$ , an ideal
$c=(a, \mathfrak{a}_{\mathfrak{m}})$ of $R$ contains a non zero divisor $b$ of $R$ for $R$ is quasi-regular.
Setting $b=ra+a^{\prime},$ $\gamma\in R,$ $a^{\prime}\in \mathfrak{a}_{\mathfrak{m}}$ , we have $\overline{b}\overline{u}=\overline{r}\overline{a}\overline{u}=0$ . Hence, for a suitable
element $s$ of $R-\mathfrak{m}$ , we have $sbu=0$ . As $b$ is a non zero divisor, we obtain
$su=0$ . This shows $\overline{u}=0$ . Thus M. is a torsion-free $R_{\mathfrak{m}}$ -module.

\S 4. Characterization by quotient rings and algebraic extension.

Here we shall prove our main theorem.2)

THEOREM 2. A ring $R$ is semi-hereditary if and only if the total quotient
ring $K$ of $R$ is regular and the quotient ring $R_{1\mathfrak{n}}$ of $R$ with respect to any maximal
ideal $\mathfrak{m}$ of $R$ is a valuation ring.

PROOF. The only if part: Assume that $R$ is semi-hereditary. Then any
$R_{\mathfrak{n}t}$ is obviously semi-hereditary, hence it is a valuation ring as any finitely
generated projective ideal of a local ring is a principal ideal generated by a
single non zero divisor. Similarly $K$ is also semi-hereditary. Now suppose
that $K$ is not regular. Then, by Theorem 1, there exists a maximal ideal $\mathfrak{m}^{\prime}$

of $K$ such that $K_{\mathfrak{n})^{\prime}}$ is not a field but a valuation ring. If we set {$)^{\prime}=\{a^{\prime}$ ;
$a^{\prime}s^{\prime}=0$ fcr some $ s^{\prime}\in$ K–lll’, $a^{\prime}\in K$ }, $\mathfrak{p}^{\gamma}$ is a prime ideal of $K$ strictly contained
in $\mathfrak{m}^{\prime}$ . Let $a^{\prime}$ be an element of $\mathfrak{m}^{\prime}$ not contained in $\mathfrak{p}^{\prime}$ . Since $K$ is semi-heredi-
tary, a principal ideal $(a^{\prime})$ is projective over $K$. If we set $r_{j}=\{b^{\prime}$ ; $b^{\prime}a^{\prime}=0$ ,
$b^{\prime}\in K\}$ , then $b^{\prime}$ is a direct summand of $K$ and therefore we have $b^{\prime}=(e^{\prime})$ for
a suitable idempotent $e^{\prime}$ of $K$. Further set $c^{\prime}=e^{\prime}+a^{\prime}$ . Then $c^{\prime}$ is contained
in $\mathfrak{m}^{\prime}$ since $a^{\prime}\not\in \mathfrak{p}^{\gamma}$ , hence $C^{\prime}$ is a non unit. On the other hand, if $c^{\prime}d^{\prime}=0$ ,

2) Mr. M. Nagata reported to the author that there exists a ring $R$ such that $K$

is not regular but any $R_{t\eta}$ is a valuation ring. So we can not omit the condition that
$X$ is regular from the ccndition in our theorem.
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$d’\in K$, then $d^{\prime}e^{\prime}=d^{\prime}a^{\prime}=0$ . Since $d^{\prime}\in(e^{\prime})\cap(1-e^{\prime})$ , we obtain $d^{\prime}=C$ . Thus $c^{r}$

is a non zero divisor. Consequently $c^{\prime}$ is a non unit and a non zero divisor
of $K$. This contradicts the fact that $K$ is the total quotient ring of $R$.

The if part: Let $a$ be a finitely generated ideal of $R$. Since $R$ is quasi-
regular and any $R_{m}$ is a valuation ring, $\mathfrak{a}$ satisfies the condition 2) in Proposi-
tion 3. Hence $\mathfrak{a}$ is projective. This shows that $R$ is semi-hereditary.

COROLLARY 1. A ring $R$ is semi-hereditary if and only if any finitely genera-
ted ideal of $R$ is a direct summand of an invertible ideal of $R$ .

PROOF. It is obvious by Proposition 3 and Theorem 2.
COROLLARY 2. A semi-hereditary ring is integrally closed.
PROOF. This follows from Proposition 5 immediately.
Let $R$ be a valuation ring and $K$ be the quotient field of $R$ . Let $K^{\prime}$ be

an algebraic extension of $K$ and $R^{\prime}$ be the integral closure of $R$ in $K^{\prime}$ . It is
well known that the quotient ring $R^{t}.$ , of $R^{\prime}$ with respect to any maximal
ideal $\mathfrak{m}^{\prime}$ of $R^{\prime}$ is a valuation ring (cf. [9]). This fact shows, according $t\alpha$

Theorem 2, that $R^{\prime}$ is a Pr\"ufer ring. We shall give a generalization of this
to general semi-hereditary rings.

PROPOSITION 8. Let $R$ be a regular ring and $R^{\prime}$ be a subring of $R$ such that
$R$ is integral over $R^{\prime}$ . Then $R^{\prime}$ is also a regular ring.

PROOF. By Theorem 1 it suffices to prove that for any maximal ideal $\mathfrak{n}t^{\prime}$

of $R^{\prime}R_{\mathfrak{n}\iota^{\prime}}^{\prime}$ is a field. Now put $S^{\gamma}=R-\mathfrak{m}^{\prime}$ . Then $R_{s}$ is integral over $R_{\mathfrak{n}t}^{\prime},$ .
Therefore any maximal ideal $\mathfrak{m}$ of $R_{s}$, contains $\mathfrak{m}^{\prime}R_{s}$ . If we set $\mathfrak{n}=\cap \mathfrak{m}$ where
$\mathfrak{n}\iota$ runs over all maximal ideals of $R_{s},,$ $\mathfrak{n}$ contains $\mathfrak{m}^{\prime}R_{s},$ . Since $R_{s}$ , is regular,
we have $n=0$ , so $\mathfrak{m}^{\prime}R_{s},$ $=0$ . Consequently $\mathfrak{m}^{\prime}R_{\mathfrak{n}\iota}^{\prime},$ $=0$ . This shows that $R_{\iota \mathfrak{n}}^{\prime}$ ,

is a field.
Let $R,$ $R^{\prime}$ be regular rings with the common unit element such that

$R\subset R^{\prime}$ . Then $R^{\prime}$ is called an “ algebraic extension ” of $R$ if $R^{\prime}$ is integral
over $R$ .

THEOREM 3. Let $R$ be a semi-hereditary ring and $K$ be the total quotient
ring of R. Let $K^{\prime}$ be an algebraic extension of $K$ and $R^{\prime\prime}$ be any intermediate
ring between $R$ and $K^{\prime}$ . Then the integral closure $\overline{R}^{\prime\prime}$ of $R^{\prime\prime}$ in its total quotient
ring is also a semi-hereditary ring.

PROOF. Let $K^{\prime\prime}$ be the total quotient ring of $R^{\prime\prime}$ . Then, by Proposition 8,
$K^{\prime\prime}$ is regular. Hence we may assume $K^{\prime}=K^{\prime\prime}$ . Now let $R^{\prime}$ be the integral
closure of $R$ in $K^{\prime}$ . Then we have obviously $R^{\prime}\subset\overline{R}^{\prime\prime}$ . First we shall prove
that $R^{\prime}$ is semi-hereditary. By the definition of algebraic extension $K^{\prime}$ is the
total quotient ring of $R^{\prime}$ . Then, by Theorem 2, it suffices to show that the
quotient ring $R_{m}^{\prime}$ , of $R^{\prime}$ with respect to any maximal ideal $\mathfrak{m}^{\prime}$ of $R^{\prime}$ is a valu-
ation ring. Set $\mathfrak{m}=\mathfrak{m}^{\prime}\cap R$ and $S=R-\mathfrak{m}$ . Then $R_{S}^{\prime}$ is a quasi-regular ring
with the total quotient ring $K_{S}^{\prime}$ by Proposition 2. Since $R^{\prime}$ is integrally
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closed in $K^{\prime},$ $R_{S}^{\prime}$ is integrally closed in $K_{S}^{\prime}$ by Proposition 5. Also it is obvious
that $R_{S}^{\prime}$ is integral over $R_{m}$ . Hence $R_{S}^{\prime}$ is the integral closure of $R_{m}$ in $K_{S}^{\prime}$ .
Since we have $R_{m}^{\prime},$ $=(R_{S}^{\prime})_{\mathfrak{n}\iota’ R_{S}^{J}}$ , we can suppose that $R$ is a valuation ring. If
we set $0^{\prime}=$ { $a^{\prime}$ ; $a^{\prime}s^{\prime}=0$ , for some $s^{\prime}\in R^{\prime}-\mathfrak{m}^{\prime},$ $a^{\prime}\in R^{\prime}$ }, then $0^{\prime}$ is a prime ideal
of $R^{\prime}$ by Proposition 6. As is easily seen we can regard $K^{\prime}/\mathfrak{p}^{\prime}K^{\prime}\supset R^{\prime}/\mathfrak{p}^{\prime}\supset R$ .
Since $R^{\prime}$ is integrally closed, $R^{\prime}/0^{\prime}$ is also integrally closed in $K^{\prime}/\mathfrak{p}^{\prime}K^{\prime}$ by
Proposition 4. Since $K^{\prime}/\mathfrak{p}^{\prime}K^{\prime}$ is an algebraic $extens^{\gamma}i$on (in the ordinary sense)

of the quotient field $K$ of $R,$ $R^{\prime}/\mathfrak{p}^{\gamma}$ is a Pr\"ufer ring, as is well-known. Now
we have $R_{m}^{\prime},$ $=(R^{\prime}/\mathfrak{p}^{\gamma})_{1tt^{\prime}/\mathfrak{p}^{\prime}}$ . Hence $R_{m^{\prime}}^{\prime}$ must be a valuation ring. Thus $R^{\prime}$ is
semi-hereditary. From this we may assume $R=R^{\prime},$ $K=K^{\prime}$ and $R\subset\overline{R}^{\prime\prime}\subset K$.
Let $\overline{\mathfrak{m}}^{\prime\prime}$ be a maximal ideal of $\overline{R}^{\prime\prime}$ and set $\mathfrak{m}=\overline{\mathfrak{m}}^{\prime/}\cap R$ . Then $\mathfrak{m}$ is a prime
ideal of $R$ . If we set $S=R-\mathfrak{m}$ , we have $K_{S}\supset\overline{R}_{s}^{\prime\prime}\supset R_{m}$ . Since $R_{m}$ is a valua-
tion ring, $\overline{R}_{S}^{\prime\prime}$ is also a valuation ring. Accordingly $\overline{R}_{\overline{m}}^{\prime\prime}/’=\overline{R}_{s}$ . Again, by
Theorem 2, $\overline{R}^{t\prime}$ must be semi-hereditary.

\S 5. Homological characterization.

Now we refer to some well-known facts (cf. [2]).

(I) Let $R$ be a ring and $M$ be an R-module. Then $M$ is R-flat, $i$ . $e.$ ,
$w.\dim_{R}M=0$ if and only if for each relation $\sum_{i}a_{i}u_{i}=0,$

$a_{i}\in R,$ $u_{i}\in M$, there

exist elements $\gamma_{ij}\in R,$ $v_{j}\in M$, finite in number, such that $u_{i}=\sum_{j}r_{ij}v_{j},$ $\sum_{i}r_{ij}a_{i}=$
(}

(cf. [2, VI, Ex. 6]).
(II) Let $R$ be a ring, $M$ be an R-module and $S$ be a multiplicatively closed

subset of $R$ . Then from (I) it follows immediately that $R_{s}$ is R-flat as an
R-module and we have $M_{s}\cong R_{s}\otimes M$ as $R_{s}$-modules. For any R-modules $M,$ $N$

and any integer $n\geqq 0$ we have $(Tor_{n}^{R}(M, N))_{S}\cong Tor_{n}^{R_{S}}(M_{s}, N_{s})$ . If $M$ is an
$R_{S}$-module, then if we regard $M$ as an R-module, we have $M_{S}=M,$ $w$ . $\dim_{R}M=$
$w$ . $\dim_{R_{S}}M$. From these we obtain easily that for any R-module $M$ we have
$w$ . $\dim_{R}M=\sup_{m}$ . $w$ . $\dim_{R_{m}}M$ and $w$ . $g1.\dim R=\sup_{m}.w$ . $g1.\dim R_{\mathfrak{m}}$ , where $\mathfrak{m}$ runs
over all maximal ideals of $R$ (cf. [2, VII, Ex. 9, 10, 11]).

(III) Let $R$ be a ring with the total quotient ring $K$ and $M$ be an R-
module. Then, by (II) we have $w$ . $\dim_{R}K=0$ . If we set $\overline{K}=K/R$ , then we
have an exact sequence

$ 0\rightarrow Tor_{1}^{R}(M,\overline{K})\rightarrow M\rightarrow M\bigotimes_{R}K\rightarrow$

and $t(M)\cong Tor_{1}^{R}(M,\overline{K})$ . Therefore $M$ is torsion-free if and only if $Tor_{1}^{R}(M$,
$\overline{K})=0$ and is a torsion module if and only if $M\infty K=OR$ Again, by (II), for

any torsion-free divisible R-module $M$ we have $w.\dim_{R}M=w.\dim_{K}M$ since
$M$ can be regarded as a K-module. Conversely any K-module can be regarded
as a torsion-free divisible R-module (cf. [2, VII]).
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We shall begin with the following
PROPOSITION 9. If a ring $R$ is locaf, then any finite flat R-module $M$ is

always free.
PROOF. Suppose that $M$ is not free but flat. Denote by $n$ the minimum

number of elements generating $M$ and by $s$ the minimum number of non zero
elements $a_{i}$ of $R$ such that $\sum_{i=1}^{n}a_{i}u_{i}=0$ for not all $a_{\dot{7}}=0$ and a minimal base
$(u_{1}, u_{2}, -- , u_{n})$ of $M$. By our assumption there exists such a positive integer $s$ .
Now we may assume $\sum_{i=1}^{s}a_{i}u_{t}=0$ for all $a_{i}\neq 0$ and $M=$ $(u_{1}$ , $\cdot$ .. , $u_{s},$ $u_{s+1}$ , $\cdot$ . , $u_{n})$ .

Again, by applying (I), we obtain $u_{i}=\sum_{j=1}^{t}r_{ij}u_{j}^{\prime},\sum_{i=1}^{\epsilon}r_{ij}a_{i}=0$ , for $r_{ij}\in R,$ $u_{j}^{\prime}\in M$.

If we set $u_{j}^{\prime}=\sum_{k=1}^{n}r_{jk}^{\prime}u_{k},$ $\gamma_{jk}^{\prime}\in R$ , then we have $u_{i}=\sum_{j=1}^{t}\sum_{k=1}^{n}\gamma_{ij}\gamma_{jk}^{\prime}u_{k}$ . Since $(u_{1}$ , ,

$u_{n})$ is minimal, $\sum_{j=1}^{t}\gamma_{sj}\gamma_{js}^{\prime}$ is a unit of $R$ , and so at least one $r_{sj_{0}}$ of $r_{sj}’ s$ is a unit

of $R$ . If $s=1$ , then $a_{1}=0$ . This is a contradiction. If $s>1$ , then we have
$as=\sum_{i=1}^{s-1}b_{i}a_{i},$ $b_{i}\in R$ , as $\sum_{i=1}^{s}$rij.ai $=0$ . If we set $u_{i}^{\prime}=u_{i}+b_{i}u_{s}$ , for $1\leqq i\leqq s-1$ , then

we have $\sum_{i=1}^{s-1}a_{i}u_{i}^{\prime}=0$ and $M=$ $(u_{1}^{\prime}$ , $\cdot$ .. $u_{s-1}^{f},$ $u_{s}$ , $\cdot$ .. $u_{n})$ . This is also a contradic-

tion. Thus $M$ must be free.
THEOREM 4 A local ring $R$ is a valuation ring if and only if $w$ . gl. $\dim$

$R\leqq 1$ . Especially it is a field if and only if $w$ . gl. $\dim R=0$ .
PROOF. The only if part is well known (cf. [2, VI, 2.9]). Hence we have

only to show the if part. If $w$ . gl. $\dim R\leqq 1$ , then any ideal of $R$ is R-flat.
By Proposition 9 any finitely generated ideal of $R$ is free, hence it is generated
by a single non zero divisor. Thus $R$ is a valuation ring. Suppose that
$w$ . gl. $\dim R=0$ . If $R$ is not a field, there exists a non unit $a\neq 0$ of $R$ . Then
we have $w$ . $\dim_{R}R/(a)=0$ . Again, by Proposition 9, $R/(a)$ is free. This is
obviously a contradiction. Consequently $R$ must be a field.

The following proposition is a special case of [4, Theorem 5].

PROPOSITION 10. A ring $R$ is regular if and only if $w$ . gl. $\dim R=0$ .
PROOF. Obvious by Theorem 1, 4 and (II).

PROPOSITION 11. For any ringR we have $w$ . gl. $\dim R\leqq 1$ if and only if the
quotient ring $R_{\mathfrak{m}}$ of $R$ with respect to any maximal ideal $\mathfrak{m}$ of $R$ is a valuation
ring.

PROOF. This follows from Theorem 4 and (II).
We shall now give a characterization of semi-hereditary rings, which is a

generalization of Hattori’s result (cf. [5] and [6]).

THEOREM 5. For any ring $R$ with the total quotient ring $K$, the following

3) This theorem and Proposition 9 may be known. However, as these could not

be found in any papers, $th_{\vee}\cap$ proofs of these are given here.
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conditions are equivalent:
1) $R$ is a semi-hereditary ring.
2) $w$ . gl. $\dim R\leqq 1$ and $w$ . $g1$ . $\dim K=0$ .
3) For any torsion-free R-module $M$, we have $w$ . $\dim_{R}M=0$ .
PROOF.4) The equivalence of 1) and 2) follows from Theorem 2 and Propo-

sitions 11 and 12. Also the implication $3$ ) $\rightarrow 2$) is obvious by (III). Hence it
suffices to prove the implication $2$) $\rightarrow 3$ ). If $M$ is a torsion-free R-module, then
for any maximal ideal $\mathfrak{m}$ of R $M_{\mathfrak{n}\iota}$ is a torsion free $R_{m}$ -module by Proposition 7.
Since $R_{\uparrow \mathfrak{n}}$ is a valuation ring, any finite torsion-free $R_{\mathfrak{m}}$ -module is projective
(cf. [2, VII, 4.1]). Since Tor# commutes with direct limites, we obtain
$w$ . $\dim_{R_{m}}M_{\mathfrak{m}}=0$ . Then by applying (II) to $ltl$ we obtain $w$ . $\dim_{R}M=0$ .

It is shown in [2, VII, 4.1] that an integral domain $R$ is a Pr\"ufer ring if
and only if any finite torsion-free R-module is projective. However a finite
torsion-free module over a semi-hereditary ring which is not an integral domain
is not always projective.

$CoROLLARY$ . For any ring $R$ with the total quatient ring $K$, the following
statements are equivalent:

1) $R$ is a direct sum of a finite number of Prufer rings.
2) $w$ . gl. $\dim R\leqq 1$ and gl. $\dim K=0$ .
3) Any finite torsion-free R-module is proiective.
PROOF. The implications $1$ ) $\leftrightarrow 2$) $\rightarrow 3$) are obvious by Theorem 4. Hence

we have only to prove the implication $3$) $\rightarrow 2$). Assume that $R$ satisfies the con-
dition 3). Then, by Theorem 5, we have $w$ . gl. $\dim R\leqq 1$ and $w$ . gl. $\dim K=0$ .
Hence it suffices to show gl. $\dim K=0$ , that is, that $K$ is semi-simple. If we
set $\mathfrak{p}_{\mathfrak{m}}=$ { $a$ ; $as=0$ for some $s\in R-\mathfrak{m},$ $a\in R$ } for any maximal ideal $\mathfrak{m}$ of
$R$ , then $\mathfrak{p}_{11}$ is a prime ideal of $R$ . Since any $R/p$ . is a torsion-free R-module
generated by a single element, it is projective by our assumption, and so $\mathfrak{p}_{t12}$

is a direct summand of $R$ . Accordingly we have $\mathfrak{p}_{\mathfrak{n}}=(e_{\mathfrak{m}})$ for a suitable
idempotent $e_{m}$ cf $R$ . If we set $\overline{e}_{m}=1-e_{1I1}$ for any $\mathfrak{m}$ and denote by $r\iota$ the
ideal generated by all $\overline{e}_{m}’ s$ , then $\mathfrak{a}$ is not contained in any maximal ideal $\mathfrak{m}$ of
$R$ , hence we have $a=R$ . Then we have $1=a{}_{1}\overline{C}_{t\mathfrak{n}_{1}}+a{}_{2}\overline{C}_{\mathfrak{m}_{2}}+\cdots+a_{n}\overline{e}_{tn_{n}},$ $a_{i}\in R$ ,
by choosing suitably a finite number of $\overline{e}_{\mathfrak{m}}^{\prime}s$ . Since $\overline{e}_{!1t}$ is contained in $\mathfrak{p}_{\mathfrak{m}^{\prime}}$ such
that $\mathfrak{p}_{\mathfrak{m}/}\neq \mathfrak{p}_{\mathfrak{m}}$ , this shows that there is only a finite number of $\mathfrak{p}_{\mathfrak{m}}$ in $R$ .
Consequently $K$ must be semi-simple, as any $\mathfrak{p}_{\mathfrak{m}}K$ is a maximal ideal of $K$.

The following proposition is a slight generalization of [8, Theorem 1].

PROPOSITION 12. Let $R$ be a semi-hereditary ring whose total quotient ring

4) This theorem can be proved by using the similar method as in [6]. However,
in this case, we need to use the proof of the only if part of Theorem 2 to show the
implication $1$ ) $\rightarrow 2$). The condition d) in [6], Theorem 2 can not be generalized with-
out assuming any condition for a ring.
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$K$ is semi-simple. Then any finite R-module $M$ is expressible as a direct sum of
a torsion-free module and a torsion module.

PROOF. By (III) we have an exact sequence

$ 0\rightarrow Tor_{1}^{R}(M, K/R)\rightarrow M\rightarrow M\bigotimes_{R}K\rightarrow\cdots$

If we set $M^{\prime}=ImageM$ in $M\bigotimes_{R}K$, then we have also an exact sequence:

$0\rightarrow Tor_{1}^{R}(M, K/R)\rightarrow M\rightarrow M^{\prime}\rightarrow 0$ .
Since $M^{\prime}$ is a finite torsion-free R-module, it is projective by Corollary to Theorem
5. Then the above exact sequence splits and we have $M\cong Tor_{1}^{R}(M, K/R)\oplus M^{f_{\theta}}$

This proves our assertion.
Finally we shall give a characterization of quasi-regular rings.5)

PROPOSITION 13. For any ring $R$ the following conditions are $eq$ uivalent:
1) $R$ is a quasi-regular ring.
2) Any torsion-free divisible R-module $M$ is R-flat.
3) For any R-modules $M,$ $N$ and any $n\geqq 1Tor_{n}^{R}(M, N)$ is a torsion R-module.
PROOF. Let $K$ be the total quotient ring of $R$ . By (III) we have

$w.\dim_{R}M=w.\dim_{K}M$ for any torsion-free divisible R-module $M$. If $R$ is quasi-
regular, then we have $w$ . gl. $\dim K=0$ by Proposition 10. Hence $w.\dim_{R}M=$

$w.\dim_{K}M=0$ . This shows $1$) $\rightarrow 2$). Let $M,$ $N$ be any R-modules. Applying
(II), we have $(Tor_{n}^{R}(M, N))_{T}\cong Tor_{n}^{K}(M_{T}, N_{T})\cong(Tor_{n}^{R}(M_{T}, N_{T}))_{T}$ . If $R$ satisfies
the condition 2), then $Tor_{n}^{R}(M_{T}, N_{T})=0$ for $n\geqq 1$ since $M_{T},$ $N_{T}$ are regarded
as torsion-free divisible R-modules. Therefore we have also $(Tor_{n}^{R}(M, N))_{T}=0$ .
Since $(Tor_{n}^{R}(M, N))_{T}\cong K\otimes Tor_{n}^{R}(M, N)$ by (II), $Tor_{n}^{R}(M, N)$ is a torsion R-module
by (III). Thus $2$) $\rightarrow 3$) is shown. Let $M_{K},$ $N_{K}$ be any K-module. If we regard
$M_{K},$ $N_{K}$ as R-modules and $Tor_{n}^{R}(M_{K}, N_{K})$ is a torsion R-module, we obtain
$Tor_{n}^{K}(M_{K}, N_{K})\cong K\otimes Tor_{n}^{R}(M_{K}, N_{K})=0$ by (II), (III). This proves $3$) $\rightarrow 1$).

Kanto Gakuin University
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