On semi-hereditary rings

By Shizuo Endo

(Received June 18, 1960)
(Revised Nov. 14, 1960)

§ 1. Introduction.

A ring R with unit element is called "left (right) semi-hereditary" according to [2] if any finitely generated left (right) ideal of R is projective.

The purpose of this paper is to determine completely the structure of commutative semi-hereditary rings. A. Hattori has recently given in [6] a homological characterization of Prüfer rings, i.e., semi-hereditary integral domains. This was generalized by M. Harada [5] to commutative rings whose total quotient rings are regular. The results of this paper will include those results of [5] and [6].

In §3 we shall give a necessary and sufficient condition for a ring to be regular by using the quotient rings. Also we shall introduce a notion of quasiregular rings and show some properties of them.

In $\S 4$ we shall characterize semi-hereditary rings by using the quotient rings as follows: A ring R is semi-hereditary if and only if the total quotient ring K of R is regular and the quotient ring R_{m} of R with respect to any maximal ideal \mathfrak{m} of R is a valuation ring. Furthermore we shall introduce a notion of algebraic extensions of regular rings and show that the integral closure R^{\prime} of a semi-hereditary ring R in any algebraic extension K^{\prime} of the total quotient ring K of R is also semi-hereditary.

In $\S 5$, we shall first prove that a local ring R is a valuation ring if and only if w. gl. $\operatorname{dim} R \leqq 1$. Secondly we shall show, as a generalization of [6], Theorem 2, that a ring R with the total quotient ring K is semi-hereditary if and only if w.gl. $\operatorname{dim} R \leqq 1$ and w.gl. $\operatorname{dim} K=0$, or if and only if any torsionfree R-module is flat.

§ 2. Notations and terminologies.

Throughout this paper a ring will mean a commutative ring with unit element 1. Our notations and terminologies are, in general, the same as in [2] but we shall make the following modifications.

A local ring will mean a (not always Noetherian) ring with only one
maximal ideal and a regular ring R will mean a ring such that for any $a \in R$ there is an element b of R with $a b a=a$ (cf. von Neumann [10]).

Let R be a ring, M an R-module and S a multiplicatively closed subset of R. Then the quotient ring and module of R, M with respect to S are defined as in [2] and denoted by R_{S}, M_{S} respectively. If S is the complementary set of a prime ideal \mathfrak{p} in R, then we shall use $R_{\mathfrak{p}}, M_{\mathfrak{p}}$ instead of R_{S}, M_{s}.

Let R be a ring and T be the set of all non zero divisors in R. Then the quotient ring K of R with respect to T will be called the " total quotient ring" of R. An element u of an R-module M will be called a "torsion element" if $t u=0$ for some $t \in T$. If we denote by $\mathrm{t}(M)$ the set of all torsion elements in M, then $\mathrm{t}(M)$ becomes an R-module and will be called a "torsion submodule" of M. If $\mathrm{t}(M)=M, M$ will be called a "torsion module", and on the other hand, if $\mathrm{t}(M)=0$, it will be called a "torsion-free" module. Furthermore an R-module M will be called a "divisible" module if for any $t \in T, u \in M$ there is an element v of M with $u=t v$.

§ 3. Regular rings and quasi-regular rings.

First we shall prove the following ${ }^{1)}$
Theorem 1. A ring R is regular if and only if the quotient ring R_{mi} of R with respect to any maximal ideal \mathfrak{m} of R is a field.

Proof. The only if part: If R is regular, then any R_{m} is obviously regular, hence we have only to show that if a local ring R is regular, it is a field. Let \mathfrak{m} be a maximal ideal of a local ring R. If there is a non-unit a in R, then a is contained in \mathfrak{m}. Since R is regular, we have $a^{2} b=a$ for a suitable element b of R, hence $(1-a b) a=0$. Since $a b \in \mathfrak{m}, 1-a b$ is a unit of R. Therefore $a=0$. Thus R must be a field.

The if part: Let a be an element of R and set $\mathfrak{b}=\{b ; b a=0, b \in R\}$. Since any R_{m} is a field, \mathfrak{b} is not contained in any maximal ideal \mathfrak{m} containing a. Setting $\mathfrak{c}=(a, \mathfrak{b}), \mathfrak{c}$ is not contained in any maximal ideal of R and so we have $R=(a, \mathfrak{b})$. Since $(a) \mathfrak{b}=0,(a)$ is a direct summand of R. Accordingly we have $(a)=(e)$ for a suitable idempotent e of R and also have $\mathfrak{b}=(1-e)$. Furthermore, if we set $d=1-e+a$, then d is clearly a unit of R and we have $d e=a e=a . \quad$ So we obtain $a d^{-1} a=a$. This proves that R is regular.

Corollary 1. A ring R is regular if and only if any element of R is expressible as a product of a unit and an idempotent in R.

Corollary 2. Let R be a regular ring and \mathfrak{a} be a finitely generated ideal of R. Then \mathfrak{a} is generated by a single idempotent.

[^0]Proof. By Corollary 1 we may assume that a is generated by a finite number of idempotents of R. It suffices to show this in case $\mathfrak{a}=\left(e_{1}, e_{2}\right)$, where e_{1}, e_{2} are idempotents of R. Setting $e=e_{1}+e_{2}-e_{1} e_{2}$, we obtain easily $e^{2}=e$ and $e e_{i}=e_{i}$ for $i=1,2$. Therefore $\mathfrak{a}=(e)$. Thus our proof is completed.

Corollary 3. Any regular ring is semi-hereditary.
A ring R is called a "quasi-regular" ring if the total quotient ring K of R is regular.

Proposition 1. Let R be a quasi-regular ring and K be the total quotient ring of R. Let \mathfrak{a} be an ideal of R such that $\mathfrak{a} K \cap R=\mathfrak{a}$. Then R / \mathfrak{a} is also a quasi-regular ring and $K / a K$ can be regarded as the total quotient ring of R / a.

Proof. R / a can be regarded as the subring of $K / a K$ by identifying $R+\mathfrak{a} K / \mathfrak{a} K$ to R / \mathfrak{a}. Then $K / \mathfrak{a} K$ is obviously contained in the total quotient ring of R / \mathfrak{a}. Since the homomorphic image of a regular ring is also regular, $K / a K$ is regular. Then the total quotient ring of R / a must coincide with $K / a K$, for the total quotient ring of a regular ring is itself.

Proposition 2. Let R be a quasi-regular ring with the total quotient ring K and S be a multiplicatively closed subset of R. Then the quotient ring R_{S} of R with respect to S is also a quasi-regular ring and the quotient ring K_{S} of K with respect to S is the total quotient ring of R_{S}.

Proof. Set $\mathfrak{a}_{S}=\{a ; a s=0$ for some $s \in S, a \in R\}$. Let a be an element of $a_{S} K \cap R$. Then we have $a=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\cdots+a_{t} \alpha_{t}, a_{i} \in \mathfrak{a}_{S}, \alpha_{i} \in K$. Let s_{i} be an element of S for each i such that $s_{i} a_{i}=0$, and set $s=\prod_{i=1}^{t} s_{i}$. Then we obtain $s a=0$, hence $a \in \mathfrak{a}_{s}$. This shows $\mathfrak{a}_{S}=\mathfrak{a}_{S} K \cap R$. So, by Proposition 1, R / a_{S} is a quasi-regular ring with the total quotient ring $K / a_{S} K$. Since $K_{S}=$ $K / \mathfrak{a}_{S} K$ and $K_{S} \supset R_{S} \supset R / \mathfrak{a}_{S}, R_{S}$ is a quasi-regular ring with the total quotient ring K_{s}.

Proposition 3. Let R be a quasi regular ring and \mathfrak{a} be a finitely generated ideal of R. Then the following statements are equivalent:

1) \mathfrak{a} is projective.
2) For any maximal ideal $\mathfrak{m a} R_{\mathfrak{m}}$ is zero or generated by a single non zero divisor of R_{m}.
3) $\mathfrak{a}^{-1} \mathfrak{a}$ is a direct summand of R.
4) \mathfrak{a} is a direct summand of an invertible ideal of R.

Proof. The implications 1) $\rightarrow 2$) and 4$) \rightarrow 1$) are obvious.
The implication 2) $\rightarrow 3$): If we set $\mathfrak{b}=\{b ; b \mathfrak{a}=0, b \in R\}$, then we have $\mathfrak{b} \nsubseteq \mathfrak{m}$ for any maximal ideal \mathfrak{m} of R such that $\mathfrak{a} R_{\mathfrak{m}}=0$. On the other hand, in case $\mathfrak{a} R_{\mathrm{m}} \neq 0, \mathfrak{a} R_{\mathfrak{m}}$ is invertible in R_{m} by our assumption. Setting $\mathfrak{a}=\left(a_{1}\right.$, \cdots, a_{n}) and $\overline{\mathfrak{a}}=a R_{\mathrm{m}}$, we have $\sum_{i=1}^{n} \bar{\alpha}_{i} \bar{a}_{i}=\overline{1}, \bar{\alpha}_{i} \in \overline{\mathfrak{a}}^{-1}$, where $\overline{1}, \bar{\alpha}_{i}$ are the residues of $1, a_{i}$ in R_{m} respectively. Set $\mathfrak{a}_{\mathrm{m}}=\{a ; a s=0$ for some $s \in R-\mathfrak{m}, a \in R\}$.

Since $\bar{\alpha}_{i} \in \mathfrak{a}^{-1}$, we have $\bar{\alpha}_{i} \bar{a}_{j}=\bar{t}_{i j} / \bar{s}_{i j}, \bar{s}_{i j} \in R / \mathfrak{a}_{\mathfrak{m}}-\mathfrak{m} / \mathfrak{a}_{\mathfrak{m}}, \bar{t}_{i j} \in R / \mathfrak{a}_{\mathfrak{m}}$ for any i and j. If we set $\bar{s}=\prod_{i, j} \bar{s}_{i j}$, we have $\bar{s} \bar{\alpha}_{i} \bar{\alpha}_{j} \in R / \mathfrak{a}_{\mathrm{m}}$. By Proposition 2 we can now choose a representative α_{i} of $\bar{\alpha}_{i}$ in K for any i. Furthermore, by choosing suitably an element s^{\prime} of $R-\mathfrak{m}$, we obtain $s^{\prime} s \alpha_{i} a_{j} \in R$ for any i and j, where s is a representative of \bar{s} in R. So $s^{\prime} s \alpha_{i} \in \mathfrak{a}^{-1}$ for any i. Now we have $s s^{\prime} s^{\prime \prime}=\Sigma\left(s s^{\prime} s^{\prime \prime} \alpha_{i}\right) \alpha_{i}$ for $s^{\prime \prime} \in R-\mathfrak{m}$. The left hand side of this formula is not contained in \mathfrak{m} but the right hand side is contained in $\mathfrak{a}^{-1} \mathfrak{a}$. This shows that if $\mathfrak{a} R_{\mathrm{m}} \neq 0$, then $\mathfrak{a}^{-1} \mathfrak{a} \notin \mathfrak{m}$. Hence, if we set $\mathfrak{c}=\left(\mathfrak{b}, \mathfrak{a}^{-1} \mathfrak{a}\right), \mathfrak{c}$ is not contained in any maximal ideal of R, and so we have $R=\left(\mathfrak{b}, \mathfrak{a}^{-1} \mathfrak{a}\right)$. Since $\mathfrak{b} \mathfrak{a}^{-1} \mathfrak{a}=0, \mathfrak{a}^{-1} \mathfrak{a}$ must be a direct summand of R.

The implication 3) $\rightarrow 4$). Suppose that $\mathfrak{a}^{-1} \mathfrak{a}$ is a direct summand of R. Then there is an idempotent e of R such that $\mathfrak{a}^{-1} \mathfrak{a}=(e)$. If we set $\mathfrak{b}=(1-e, \mathfrak{a})$, then \mathfrak{b} is invertible as $\mathfrak{b}^{-1}=\left(1-e, \mathfrak{a}^{-1} e\right)$. Since \mathfrak{a} is a direct summand of \mathfrak{b}, this proves our assertion.

Proposition 4. Let R be an integrally closed quasi-regular ring with the total quotient ring K and \mathfrak{a} be an ideal of R such that $\mathfrak{a}=\mathfrak{a} K \cap R$. Then R / \mathfrak{a} is also integrally closed.

Proof. By Proposition $1 K / a K$ is the total quotient ring of R. Now let $\bar{\alpha}$ be an element of $K / a K$ integral over R / a. Then we have $\bar{\alpha}^{n}+\bar{a}_{1} \bar{\alpha}^{n-1}+\cdots+$ $\bar{a}_{n}=0, \bar{a}_{i} \in R / a$. Denote by α, a_{i} representatives of $\bar{\alpha}, \bar{a}_{i}$ in K, R, respectively. Then $\alpha^{n}+a_{1} \alpha^{n-1}+\cdots+a_{n}=\beta \in \mathfrak{a} K$. Since K is regular, we have $\beta=\gamma e$ for a unit r and an idempotent e of K, by Corollary 1 to Theorem 1. Then we have $e \in R$, for R is integrally closed. So $e \in \mathfrak{a}=\mathfrak{a} K \cap R$. From ($1-e$) $\beta=0$ we obtain $((1-e) \alpha)^{n}+a_{1}((1-e) \alpha)^{n-1}+\cdots+a_{n}(1-e)=0$. Since R is integrally closed, we have $(1-e) \alpha \in R$. As $\overline{(1-e) \alpha}=\bar{\alpha}, \bar{\alpha}$ must be in R / \mathfrak{a}.

Proposition 5. Let R be a quasi-regular ring. Then R is integrally closed if and only if the quotient ring $R_{\mathfrak{m}}$ of R with respect to any maximal ideal \mathfrak{m} of R is integrally closed. In general, if R is integrally closed, the quotient ring R_{S} of R with respect to any multiplicatively closed subset S of R is integrally closed.

Proof. The only if part is contained in the second part and also the second part is easily obtained from Propositions 2 and 4. Hence we have only to show the if part. Let K be the total quotient ring of R and α be an element of K integral over R. If we set $S=R-\mathfrak{m}$ for any maximal ideal \mathfrak{m} of R, then K_{S} can be regarded as the total quotient ring of R_{m} according to Proposition 2. The residue $\bar{\alpha}$ of α in K_{S} is, then, integral over R_{m}, so, by our assumption, we have $\bar{\alpha} \in R_{\mathrm{m}}$. Hence we have $s \alpha \in R$ for some $s \in S$. If we set $c=\{c$; $c \alpha \in R, c \in R\}$, then we must have $c=R$, i. e., $\alpha \in R$.

Proposition 6. Let R be a local quasi-regular ring. If R is integrally closed, then it is an integral domain.

Proof. Let K be the total quotient ring of R. If K is not a field, then
there exists an idempotent e of K which is not a unit element by Corollary 1 to Theorem 1. Since R is integrally closed, e is contained in R. Then R is expressible as a direct sum of $R e$ and $R(1-e)$. Since R is local, this is obviously a contradiction. Consequently K is a field. Thus R is an integral domain.

Proposition 7. Let R be a quasi-regular ring. Then an R-module M is a torsion-free module if and only if the quotient module M_{m} with respect to any maximal ideal \mathfrak{m} of R is a torsion-free R_{m}-module.

Proof. The if part is evident, hence we have only to show the only if part. Suppose that M is a torsion-free R-module and that $\bar{\alpha} \bar{u}=0$ for a non zero divisor $\bar{\alpha}$ of R_{m} and an element \bar{u} of M_{m}. Set $\mathfrak{a}_{\mathrm{m}}=\{a ; a s=0$ for some $s \in R-\mathfrak{m}, a \in R\}$ and $M^{\prime}=\{u ; s u=0$ for some $s \in R-\mathfrak{m}, u \in M\}$. Then we may assume $\bar{\alpha} \in R / \mathfrak{a}_{\mathrm{m}}$ and $\bar{u} \in M / M^{\prime}$ by multiplying suitably elements of $R / \mathfrak{a}_{\mathfrak{m}}-\mathfrak{m} / \mathfrak{a}_{\mathfrak{m}}$ to $\bar{\alpha}, \bar{u}$. Denote by a a representative of $\bar{\alpha}$ in R and by u a representative of \bar{u} in M. Since $\bar{\alpha}$ is a non zero divisor of $R / \mathfrak{a}_{\mathfrak{m}}$, an ideal $\mathfrak{c}=\left(a, \mathfrak{a}_{\mathrm{m}}\right)$ of R contains a non zero divisor b of R for R is quasi-regular. Setting $b=r a+a^{\prime}, r \in R, a^{\prime} \in \mathfrak{a}_{\mathrm{m}}$, we have $\bar{b} \bar{u}=\bar{r} \bar{a} \bar{u}=0$. Hence, for a suitable element s of $R-\mathfrak{m}$, we have $s b u=0$. As b is a non zero divisor, we obtain $s u=0$. This shows $\bar{u}=0$. Thus M_{m} is a torsion-free R_{m}-module.

§ 4. Characterization by quotient rings and algebraic extension.

Here we shall prove our main theorem. ${ }^{2)}$
Theorem 2. A ring R is semi-hereditary if and only if the total quotient ring K of R is regular and the quotient ring R_{m} of R with respect to any maximal ideal \mathfrak{m} of R is a valuation ring.

Proof. The only if part: Assume that R is semi-hereditary. Then any R_{m} is obviously semi-hereditary, hence it is a valuation ring as any finitely generated projective ideal of a local ring is a principal ideal generated by a single non zero divisor. Similarly K is also semi-hereditary. Now suppose that K is not regular. Then, by Theorem 1 , there exists a maximal ideal \mathfrak{m}^{\prime} of K such that $K_{m^{\prime}}$ is not a field but a valuation ring. If we set $\mathfrak{p}^{\prime}=\left\{a^{\prime}\right.$; $a^{\prime} s^{\prime}=0$ for some $\left.s^{\prime} \in K-\mathfrak{m}^{\prime}, a^{\prime} \in K\right\}, \mathfrak{p}^{\prime}$ is a prime ideal of K strictly contained in \mathfrak{m}^{\prime}. Let a^{\prime} be an element of \mathfrak{m}^{\prime} not contained in \mathfrak{p}^{\prime}. Since K is semi-hereditary, a principal ideal $\left(a^{\prime}\right)$ is projective over K. If we set $\mathfrak{b}=\left\{b^{\prime} ; b^{\prime} a^{\prime}=0\right.$, $\left.b^{\prime} \in K\right\}$, then b^{\prime} is a direct summand of K and therefore we have $\mathfrak{b}^{\prime}=\left(e^{\prime}\right)$ for a suitable idempotent e^{\prime} of K. Further set $c^{\prime}=e^{\prime}+a^{\prime}$. Then c^{\prime} is contained in \mathfrak{m}^{\prime} since $a^{\prime} \notin \mathfrak{p}^{\prime}$, hence c^{\prime} is a non unit. On the other hand, if $c^{\prime} d^{\prime}=0$,

[^1]$d^{\prime} \in K$, then $d^{\prime} e^{\prime}=d^{\prime} a^{\prime}=0$. Since $d^{\prime} \in\left(e^{\prime}\right) \cap\left(1-e^{\prime}\right)$, we obtain $d^{\prime}=0$. Thus c^{μ} is a non zero divisor. Consequently c^{\prime} is a non unit and a non zero divisor of K. This contradicts the fact that K is the total quotient ring of R.

The if part: Let \mathfrak{a} be a finitely generated ideal of R. Since R is quasiregular and any R_{m} is a valuation ring, \mathfrak{a} satisfies the condition 2) in Proposition 3. Hence \mathfrak{a} is projective. This shows that R is semi-hereditary.

Corollary 1. A ring R is semi-hereditary if and only if any finitely generated ideal of R is a direct summand of an invertible ideal of R.

Proof. It is obvious by Proposition 3 and Theorem 2.
Corollary 2. A semi-hereditary ring is integrally closed.
Proof. This follows from Proposition 5 immediately.
Let R be a valuation ring and K be the quotient field of R. Let K^{\prime} be an algebraic extension of K and R^{\prime} be the integral closure of R in K^{\prime}. It is well known that the quotient ring $R^{\prime}{ }_{m^{\prime}}$ of R^{\prime} with respect to any maximal ideal \mathfrak{m}^{\prime} of R^{\prime} is a valuation ring (cf. [9]). This fact shows, according to Theorem 2, that R^{\prime} is a Prüfer ring. We shall give a generalization of this to general semi-hereditary rings.

Proposition 8. Let R be a regular ring and R^{\prime} be a subring of R such that R is integral over R^{\prime}. Then R^{\prime} is also a regular ring.

Proof. By Theorem 1 it suffices to prove that for any maximal ideal \mathfrak{m}^{\prime} of $R^{\prime} R^{\prime}{ }_{\mathfrak{m}^{\prime}}$ is a field. Now put $S^{\prime}=R-\mathfrak{m}^{\prime}$. Then $R_{S^{\prime}}$ is integral over $R^{\prime}{ }_{\mathfrak{m} \prime}^{\prime}$ 。 Therefore any maximal ideal \mathfrak{m} of $R_{S^{\prime}}$ contains $\mathfrak{m}^{\prime} R_{S^{\prime}}$. If we set $\mathfrak{n}=\cap \mathfrak{m}$ where \mathfrak{m} runs over all maximal ideals of $R_{S^{\prime}}, \mathfrak{n}$ contains $\mathfrak{m}^{\prime} R_{S^{\prime}}$. Since $R_{S^{\prime}}$ is regular, we have $\mathfrak{n}=0$, so $\mathfrak{m}^{\prime} R_{S^{\prime}}=0$. Consequently $\mathfrak{m}^{\prime} R^{\prime}{ }_{m^{\prime}}=0$. This shows that $R^{\prime}{ }_{\mathrm{m}^{\prime}}$ is a field.

Let R, R^{\prime} be regular rings with the common unit element such that $R \subset R^{\prime}$. Then R^{\prime} is called an "algebraic extension" of R if R^{\prime} is integral. over R.

Theorem 3. Let R be a semi-hereditary ring and K be the total quotient ring of R. Let K^{\prime} be an algebraic extension of K and $R^{\prime \prime}$ be any intermediate ring between R and K^{\prime}. Then the integral closure $\bar{R}^{\prime \prime}$ of $R^{\prime \prime}$ in its total quotient ring is also a semi-hereditary ring.

Proof. Let $K^{\prime \prime}$ be the total quotient ring of $R^{\prime \prime}$. Then, by Proposition 8, $K^{\prime \prime}$ is regular. Hence we may assume $K^{\prime}=K^{\prime \prime}$. Now let R^{\prime} be the integral closure of R in K^{\prime}. Then we have obviously $R^{\prime} \subset \bar{R}^{\prime \prime}$. First we shall prove that R^{\prime} is semi-hereditary. By the definition of algebraic extension K^{\prime} is the total quotient ring of R^{\prime}. Then, by Theorem 2, it suffices to show that the quotient ring $R^{\prime}{ }_{m^{\prime}}$ of R^{\prime} with respect to any maximal ideal \mathfrak{m}^{\prime} of R^{\prime} is a valuation ring. Set $\mathfrak{m}=\mathfrak{m}^{\prime} \cap R$ and $S=R-\mathfrak{m}$. Then R_{S}^{\prime} is a quasi-regular ring. with the total quotient ring K_{s}^{\prime} by Proposition 2. Since R^{\prime} is integrally
closed in $K^{\prime}, R_{S}^{\prime}$ is integrally closed in K_{S}^{\prime} by Proposition 5. Also it is obvious that R_{s}^{\prime} is integral over R_{m}. Hence $R^{\prime}{ }_{s}$ is the integral closure of R_{m} in K_{s}^{\prime}. Since we have $R_{m^{\prime}}^{\prime}=\left(R_{S}^{\prime}\right)_{m^{\prime} R^{\prime} S}$, we can suppose that R is a valuation ring. If we set $\mathfrak{p}^{\prime}=\left\{a^{\prime} ; a^{\prime} s^{\prime}=0\right.$, for some $\left.s^{\prime} \in R^{\prime}-\mathfrak{m}^{\prime}, a^{\prime} \in R^{\prime}\right\}$, then \mathfrak{p}^{\prime} is a prime ideal of R^{\prime} by Proposition 6. As is easily seen we can regard $K^{\prime} / p^{\prime} K^{\prime} \supset R^{\prime} / p^{\prime} \supset R$. Since R^{\prime} is integrally closed, $R^{\prime} / \mathfrak{p}^{\prime}$ is also integrally closed in $K^{\prime} / p^{\prime} K^{\prime}$ by Proposition 4. Since $K^{\prime} / \mathfrak{p}^{\prime} K^{\prime}$ is an algebraic extension (in the ordinary sense) of the quotient field K of $R, R^{\prime} / p^{\prime}$ is a Prüfer ring, as is well-known. Now we have $R_{m^{\prime}}^{\prime}=\left(R^{\prime} / \mathfrak{p}^{\prime}\right)_{m^{\prime} / p^{\prime}}$. Hence $R_{m^{\prime}}^{\prime}$ must be a valuation ring. Thus R^{\prime} is semi-hereditary. From this we may assume $R=R^{\prime}, K=K^{\prime}$ and $R \subset \bar{R}^{\prime \prime} \subset K$. Let $\overline{\mathfrak{m}}^{\prime \prime}$ be a maximal ideal of $\bar{R}^{\prime \prime}$ and set $\mathfrak{m}=\overline{\mathfrak{m}}^{\prime \prime} \cap R$. Then \mathfrak{m} is a prime ideal of R. If we set $S=R-\mathfrak{m}$, we have $K_{S} \supset \bar{R}^{\prime \prime}{ }_{s} \supset R_{\mathrm{m}}$. Since R_{m} is a valuation ring, $\bar{R}^{\prime \prime}{ }_{s}$ is also a valuation ring. Accordingly $\bar{R}^{\prime \prime}{ }_{\bar{m}}=\bar{R}_{S}$. Again, by Theorem 2, $\bar{R}^{\prime \prime}$ must be semi-hereditary.

§ 5. Homological characterization.

Now we refer to some well-known facts (cf. [2]).
(I) Let R be a ring and M be an R-module. Then M is R-flat, i.e., w. $\operatorname{dim}_{R} M=0$ if and only if for each relation $\sum_{i} \alpha_{i} u_{i}=0, a_{i} \in R, u_{i} \in M$, there exist elements $r_{i j} \in R, v_{j} \in M$, finite in number, such that $u_{i}=\sum_{j} r_{i j} v_{j}, \sum_{i} r_{i j} a_{i}=0$ (cf. [2, VI, Ex. 6]).
(II) Let R be a ring, M be an R-module and S be a multiplicatively closed subset of R. Then from (I) it follows immediately that R_{S} is R-flat as an R-module and we have $M_{S} \cong R_{S} \otimes M$ as R_{S}-modules. For any R-modules M, N and any integer $n \geqq 0$ we have $\left(\operatorname{Tor}{ }_{n}^{R}(M, N)\right)_{S} \cong \operatorname{Tor}{ }_{n}^{R_{S}}\left(M_{S}, N_{S}\right)$. If M is an R_{S}-module, then if we regard M as an R-module, we have $M_{S}=M$, $\mathrm{w} \cdot \operatorname{dim}_{R} M=$ w. $\operatorname{dim}_{R_{S}} M$. From these we obtain easily that for any R-module M we have w. $\operatorname{dim}_{R} M=\underset{\mathrm{m}}{ } \sup _{\mathrm{m}}$. w. $\operatorname{dim}_{R_{\mathrm{m}}} M$ and w. gl. $\operatorname{dim} R=\sup _{\mathrm{m}}$. w.gl. $\operatorname{dim} R_{\mathrm{m}}$, where \mathfrak{m} runs over all maximal ideals of R (cf. [2, VII, Ex. 9, 10, 11]).
(III) Let R be a ring with the total quotient ring K and M be an R module. Then, by (II) we have w. $\operatorname{dim}_{R} K=0$. If we set $\bar{K}=K / R$, then we have an exact sequence

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}(M, \bar{K}) \rightarrow M \rightarrow \underset{R}{\otimes} K \rightarrow
$$

and $\mathrm{t}(M) \cong \operatorname{Tor}_{1}^{R}(M, \bar{K})$. Therefore M is torsion-free if and only if $\operatorname{Tor}_{1}^{R}(M$, $\bar{K})=0$ and is a torsion module if and only if $\underset{R}{M} K=0$. Again, by (II), for any torsion-free divisible R-module M, we have $\mathrm{w} \cdot \operatorname{dim}_{R} M=\mathrm{w} \cdot \operatorname{dim}_{K} M$ since M can be regarded as a K-module. Conversely any K-module can be regarded as a torsion-free divisible R-module (cf. [2, VII]).

We shall begin with the following
Proposition 9. If a ring R is local, then any finite flat R-module M is always free.

Proof. Suppose that M is not free but flat. Denote by n the minimum number of elements generating M and by s the minimum number of non zero elements a_{i} of R such that $\sum_{i=1}^{n} a_{i} u_{i}=0$ for not all $a_{i}=0$ and a minimal base $\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ of M. By our assumption there exists such a positive integer s. Now we may assume $\sum_{i=1}^{s} a_{i} u_{i}=0$ for all $a_{i} \neq 0$ and $M=\left(u_{1}, \cdots, u_{s}, u_{s+1}, \cdots, u_{n}\right)$. Again, by applying (I), we obtain $u_{i}=\sum_{j=1}^{t} r_{i j} u^{\prime}{ }_{j}, \sum_{i=1}^{s} r_{i j} a_{i}=0$, for $r_{i j} \in R, u_{j}^{\prime} \in M$. If we set $u^{\prime}{ }_{j}=\sum_{k=1}^{n} r_{j k}^{\prime} u_{k}, r_{j k}^{\prime} \in R$, then we have $u_{i}=\sum_{j=1}^{t} \sum_{k=1}^{n} r_{i j} r_{j k}^{\prime} u_{k}$. Since $\left(u_{1}, \cdots\right.$, $\left.u_{n}\right)$ is minimal, $\sum_{j=1}^{t} r_{s j} r_{j s}^{\prime}$ is a unit of R, and so at least one $r_{s j_{0}}$ of $r_{s j}$'s is a unit of R. If $s=1$, then $a_{1}=0$. This is a contradiction. If $s>1$, then we have $a_{s}=\sum_{i=1}^{s-1} b_{i} a_{i}, b_{i} \in R$, as $\sum_{i=1}^{s} r_{i j_{0}} a_{i}=0$. If we set $u^{\prime}{ }_{i}=u_{i}+b_{i} u_{s}$, for $1 \leqq i \leqq s-1$, then we have $\sum_{i=1}^{s-1} a_{i} u^{\prime}{ }_{i}=0$ and $M=\left(u^{\prime}{ }_{1}, \cdots, u_{s-1}^{\prime}, u_{s}, \cdots, u_{n}\right)$. This is also a contradiction. Thus M must be free.

Theorem 4. ${ }^{3)}$ A local ring R is a valuation ring if and only if w.gl.dim $R \leqq 1$. Especially it is a field if and only if $\mathrm{w} . \mathrm{gl} \cdot \operatorname{dim} R=0$.

Proof. The only if part is well known (cf. [2, VI, 2.9]). Hence we have only to show the if part. If w.gl. $\operatorname{dim} R \leqq 1$, then any ideal of R is R-flat. By Proposition 9 any finitely generated ideal of R is free, hence it is generated by a single non zero divisor. Thus R is a valuation ring. Suppose that w. gl. $\operatorname{dim} R=0$. If R is not a field, there exists a non unit $a \neq 0$ of R. Then we have $\mathrm{w} \cdot \operatorname{dim}_{R} R /(a)=0$. Again, by Proposition $9, R /(a)$ is free. This is obviously a contradiction. Consequently R must be a field.

The following proposition is a special case of [4, Theorem 5].
Proposition 10. A ring R is regular if and only if $\mathrm{w} . \mathrm{gl} . \operatorname{dim} R=0$.
Proof. Obvious by Theorem 1, 4 and (II).
Proposition 11. For any ring R we have w. gl. $\operatorname{dim} R \leqq 1$ if and only if the quotient ring R_{m} of R with respect to any maximal ideal \mathfrak{m} of R is a valuation ring.

Proof. This follows from Theorem 4 and (II).
We shall now give a characterization of semi-hereditary rings, which is a generalization of Hattori's result (cf. [5] and [6]).

Theorem 5. For any ring R with the total quotient ring K, the following

[^2]conditions are equivalent:

1) R is a semi-hereditary ring.
2) w. g1. $\operatorname{dim} R \leqq 1$ and w. g1. $\operatorname{dim} K=0$.
3) For any torsion-free R-module M, we have $\mathrm{w} \cdot \operatorname{dim}_{R} M=0$.

Proof. ${ }^{4)}$ The equivalence of 1) and 2) follows from Theorem 2 and Propositions 11 and 12. Also the implication 3) $\rightarrow 2$) is obvious by (III). Hence it suffices to prove the implication 2) $\rightarrow 3$). If M is a torsion-free R-module, then for any maximal ideal m of $R M_{\mathrm{m}}$ is a torsion free R_{m}-module by Proposition 7. Since R_{m} is a valuation ring, any finite torsion-free R_{m}-module is projective (cf. [2, VII, 4.1]). Since Tor ${ }_{n}^{R}$ commutes with direct limites, we obtain w. $\operatorname{dim}_{R_{\mathrm{m}}} M_{\mathrm{m}}=0$. Then by applying (II) to M we obtain w. $\operatorname{dim}_{R} M=0$.

It is shown in [2, VII, 4.1] that an integral domain R is a Prüfer ring if and only if any finite torsion-free R-module is projective. However a finite torsion-free module over a semi-hereditary ring which is not an integral domain is not always projective.

Corollary. For any ring R with the total quatient ring K, the following statements are equivalent:

1) R is a direct sum of a finite number of Prüfer rings.
2) w. gl. $\operatorname{dim} R \leqq 1$ and g1. $\operatorname{dim} K=0$.
3) Any finite torsion-free R-module is projective.

Proof. The implications 1) $\leftrightarrow 2$) $\rightarrow 3$) are obvious by Theorem 4. Hence we have only to prove the implication 3) $\rightarrow 2$). Assume that R satisfies the condition 3). Then, by Theorem 5, we have w.gl. $\operatorname{dim} R \leqq 1$ and w.gl. $\operatorname{dim} K=0$. Hence it suffices to show gl. $\operatorname{dim} K=0$, that is, that K is semi-simple. If we set $\mathfrak{p}_{\mathfrak{m}}=\{a ; a s=0$ for some $s \in R-\mathfrak{m}, a \in R\}$ for any maximal ideal \mathfrak{m} of R, then $\mathfrak{p}_{\mathfrak{m}}$ is a prime ideal of R. Since any $R / \mathfrak{p}_{\mathfrak{m}}$ is a torsion-free R-module generated by a single element, it is projective by our assumption, and so $\mathfrak{p}_{\mathfrak{n}}$ is a direct summand of R. Accordingly we have $\mathfrak{p}_{\mathrm{m}}=\left(e_{\mathrm{m}}\right)$ for a suitable idempotent e_{m} of R. If we set $\bar{e}_{\mathfrak{m}}=1-e_{m}$ for any \mathfrak{m} and denote by \mathfrak{a} the ideal generated by all \bar{e}_{m} 's, then \mathfrak{a} is not contained in any maximal ideal \mathfrak{m} of R, hence we have $\mathfrak{a}=R$. Then we have $1=a_{1} \bar{e}_{m_{1}}+a_{2} \bar{e}_{m_{2}}+\cdots+a_{n} \bar{e}_{m_{n}}, a_{i} \in R$, by choosing suitably a finite number of $\bar{e}_{m}{ }^{\prime} s$. Since \bar{e}_{m} is contained in $\mathfrak{p}_{\mathrm{m}}$, such that $\mathfrak{p}_{m^{\prime}} \neq \mathfrak{p}_{m}$, this shows that there is only a finite number of $\mathfrak{p}_{\mathrm{m}}$ in R. Consequently K must be semi-simple, as any $\mathfrak{p}_{\mathrm{m}} K$ is a maximal ideal of K.

The following proposition is a slight generalization of [8, Theorem 1].
Proposition 12. Let R be a semi-hereditary ring whose total quotient ring

[^3]K is semi-simple. Then any finite R-module M is expressible as a direct sum of a torsion-free module and a torsion module.

Proof. By (III) we have an exact sequence

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}(M, K / R) \rightarrow M \rightarrow M \bigotimes_{R} K \rightarrow \cdots
$$

If we set $M^{\prime}=$ Image M in $M \underset{R}{\otimes} K$, then we have also an exact sequence:

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}(M, K / R) \rightarrow M \rightarrow M^{\prime} \rightarrow 0
$$

Since M^{\prime} is a finite torsion-free R-module, it is projective by Corollary to Theorem 5. Then the above exact sequence splits and we have $M \cong \operatorname{Tor}_{1}^{R}(M, K / R) \oplus M^{\prime}$ 。 This proves our assertion.

Finally we shall give a characterization of quasi-regular rings. ${ }^{5)}$
Proposition 13. For any ring R the following conditions are equivalent:

1) R is a quasi-regular ring.
2) Any torsion-free divisible R-module M is R-flat.
3) For any R-modules M, N and any $n \geqq 1 \operatorname{Tor}_{n}^{R}(M, N)$ is a torsion R-module.

Proof. Let K be the total quotient ring of R. By (III) we have $\mathrm{w} . \operatorname{dim}_{R} M=\mathrm{w} \cdot \operatorname{dim}_{K} M$ for any torsion-free divisible R-module M. If R is quasiregular, then we have w.gl. $\operatorname{dim} K=0$ by Proposition 10. Hence w. $\operatorname{dim}_{R} M=$ w. $\operatorname{dim}_{K} M=0$. This shows 1$) \rightarrow 2$). Let M, N be any R-modules. Applying (II), we have $\left(\operatorname{Tor}_{n}^{R}(M, N)\right)_{T} \cong \operatorname{Tor}_{n}^{K}\left(M_{T}, N_{T}\right) \cong\left(\operatorname{Tor}_{n}^{R}\left(M_{T}, N_{T}\right)\right)_{T}$. If R satisfies the condition 2), then $\operatorname{Tor}_{n}^{R}\left(M_{T}, N_{T}\right)=0$ for $n \geqq 1$ since M_{T}, N_{T} are regarded as torsion-free divisible R-modules. Therefore we have also $\left(\operatorname{Tor}_{n}^{R}(M, N)\right)_{T}=0$. Since $\left(\operatorname{Tor}_{n}^{R}(M, N)\right)_{T} \cong K \otimes \operatorname{Tor}_{n}^{R}(M, N)$ by (II), $\operatorname{Tor}_{n}^{R}(M, N)$ is a torsion R-module by (III). Thus 2) $\rightarrow 3$) is shown. Let M_{K}, N_{K} be any K-module. If we regard M_{K}, N_{K} as R-modules and $\operatorname{Tor}_{n}^{R}\left(M_{K}, N_{K}\right)$ is a torsion R-module, we obtain $\operatorname{Tor}_{n}^{K}\left(M_{K}, N_{K}\right) \cong K \otimes \operatorname{Tor}_{n}^{R}\left(M_{K}, N_{K}\right)=0$ by (II), (III). This proves 3$) \rightarrow 1$).

Kanto Gakuin University

References

[1] Y. Akizuki, The theory of local rings, Lecture notes at Univ. of Chicago, 1958.
[2] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, 1956.
[3] S. Endo, Note on P. P. rings, Nagoya Math. J., 17 (1960), 167-170.
[4] M. Harada, Note on the dimension of modules and algebras, J. Inst. Poly. Osaka City Univ., 7 (1956), 17-27.
[5] M. Harada, A note on Hattori's theorems, J. Inst. Poly. Osaka City Univ., 9 (1958), 43-45.
[6] A. Hattori, On Prüfer rings, J. Math. Soc. Japan, 9 (1957), 381-385.

[^4][7] A. Hattori, A foundation of the torsion theory over general rings, Nagoya Math. J., 17 (1960), 147-158.
[8] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., 72 (1952), 327-340.
[9] W. Krull, Idealtheorie, Berlin, 1935.
[10] J. v. Neumann, On regular rings, Proc. Nat. Acad. Sci. U. S. A., 22 (1936), 707-713.

[^0]: 1) The contents of Theorem 1 and its corollary 1 were published in author's paper [3].
[^1]: 2) Mr. M. Nagata reported to the author that there exists a ring R such that K is not regular but any R_{m} is a valuation ring. So we can not omit the condition that K is regular from the condition in our theorem.
[^2]: 3) This theorem and Proposition 9 may be known. However, as these could not be found in any papers, the proofs of these are given here.
[^3]: 4) This theorem can be proved by using the similar method as in [6]. However, in this case, we need to use the proof of the only if part of Theorem 2 to show the implication 1) $\rightarrow 2$). The condition d) in [6], Theorem 2 can not be generalized without assuming any condition for a ring.
[^4]: 5) The implications 1) $\rightarrow 2$) and 1) $\rightarrow 3$) in this proposition were first proved by M. Harada [5].
