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The object of the present paper is to establish some estimates for the
derivatives of the solution u(f) of the abstract differential equation

0.1) du(®)/dt+ A@Du(t) = (1)

of parabolic type in a Banach space X. Let {M,} be a sequence of positive
numbers which has the properties specified later (cf. [2], [5] [6]; e g M,
=(k")’, 0=1). Assuming that A(#) belongs to the class {M;} (5] [6) as a
function of ¢ in some sense, we shall prove that u(¢) is also a function of ¢ of
the class {M,} provided that f(f) is of the same class (see below).
This sort of problem was investigated in and for wide classes of
equations in Hilbert spaces including equations of parabolic type, of hyperbolic
type, of Schrodinger type, etc.; all of these equations discussed there are
associated with certain sesquilinear forms defined in some dense subspace.
The authors of these papers investigate solutions belonging to the spaces
DX), D(X), etc. (D(X) and D, (X) are the set of X-valued C*~ functions
and distributions respectively vanishing identically in ¢ < a for some ae(—oo,
o0) ; consequently smooth solutions investigated there satisfy so many initial
conditions u®(t)=0, k=1, 2, ---, at a certain time ¢{,, For this reason quasi-
analytic cases were naturally excluded so that the space (D, (X)), the set of
all functions of the class {M,} and belonging to ®,(X), might contain suffi-
ciently many elements. In the present paper only equations of parabolic type
are concerned ; however, the basic space X may te an arbitrary Banach space
and furthermore quasi-analytic cases are equally treated since we investigate
solutions satisfying in the ordinary sense imposing upon them only the
ordinary initial condition at an initial time.

The greater part of the paper is occupied by estimating the derivatives
of the evolution operator U(¢, s) which is a bounded-operator-valued function
satisfying

@/00U(t, s)+AMUE, s)=0, 0sSs<t&T,
UG, s)=1, 0<Ss<T,
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and whose existence was established in [3] The main result is that for some
constants L,, L and for all triplet of non-negative integers n, m, ! we have

O\ 0 | 0N/ 0N
(o) Cortae) (oo ues
With the aid of this result we shall establish the estimates for the solution
u(t) of the inhomogeneous equation taking a prescribed initial value at

t=s; the result is that for some constants C,, C and for all integers n=>0 we
have

0.2) ’

< LoL™ ™ My pma(E—$)"".

0.3) [d"u@®)/dt"| < C.C"M,(t—s)™", s<i<T,
provided that there exist constants F, and F such that for all integers n>0
0.4 ld*f(®)/di" | S FoF"M,,, s<t<T.

In case {M;}={k!} these are refinements of the results of [3] and [4] where
the analyticity of the solution was proved without the establishment of the
estimates of the form and [(0.3) In the last section we shall show that
the results stated above are applicable to the initial-boundary value problems
for parabolic differential equations using S. Agmon’s result on general elliptic
boundary value problems ([I]).

1. Assumptions and consequences.

Let {M,}, k=0,1,2, ---, be a sequence of positive numbers which has the
properties listed in [2], [6] and [6], i.e., for some positive constants d,, d,
and d,

L1 My < d,fM,  for all k=0,
1.2 (J’?)M,c_,-Mjg d.M, for all k and j such that 0<j<F,
1.3 M, < My, for all k=0,
(1.4 Mjue=d**M,M,  for all j and £=0.
From we easily deduce
(L5) EMy =0 M, forall kzl,
1
(L.6) Mep=( ]‘5411 )p--u(-,’?%{)l‘w M, for all p and k satisfying p< k.

Taking p==F in (1.6) we get

k .
(L7 r1=( Jc\ijl ) %: for all £>0.
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As was indicated in [6], [L.I), --- ,[T.4) hold in case M,=(k!)" for some ¢ =1.
Let X be a complex Banach space and T be a positive number.
AssSUMPTIONS (i). For each te[0, T], AQ®) is a densely defined linear

closed operator in X. The resolvent set of A(f) contains a fixed closed sector

Y={1:0<arg1<2r—0}, 0<O0< /2
(i) A@®™, which is a bounded operator for each ¢ [0, T] on account of

the preceding assumption, is infinitely differentiable in ¢.

(ili) There exist constants K, and K such that for all 2 2, t [0, T]

and non-negative integers n

KKM,

S -
- 4]

L9 I( 2y a—Awy

REMARK 1. If A(¢) has a continuation to a complex neighbourhood 4 of
[0, T] so that the assumptions (i) and (iii) for n =0 are satisfied in 4 and A{#)™!
is holomorphic there, then the assumption (iii) holds with {M,} ={n!}. This
is a simple consequence of the Cauchy integral formula

(=AW =g | Q= AGD(e—tyde,  0SI=T,
7

where y is a smooth closed curve in 4 enclosing [0, T'].

REMARK 2. Consider the case in which the domain D(A(?)) of A®) is
independent of . Suppose the assumptions (i) and (iii) for n =0 are satisfied
and A{)A)1, which is a bounded operator, is infinitely differentiable. Then
the assumptions (ii) and (iii) hold provided that there exist constants B, and
B such that for any n>=0

(1.9) I(d/dty* A AO) ] = [APDAQO)| = ByB*M,,

where A®®u =(d/dt)*A(t)u for u € D = D(A(@®)) (which does not depend on ¢
by assumption).

Proor. For each fixed s A(#)A(s)™* is infinitely differentiable since A(t)A{s)™!
= AN A0)*AW0)A(s)"t. Consequently in view of we may suppose that

(1.10) IAPOAD ™ = BB"M,, 0=t<T,

for each n replacing B, and B by some other constants if necessary. As is
easily seen

.11 (0/9)*(A—AD) ™ = A— AT A/ OA— AW .
Let us prove that as well as
(1.12) IA@0/00)"(A— AW = K, K" M,

holds for any n=0 if K, and K are suitably chosen. It is clear that and
are true for n =0 if K, is sufficiently large. Suppose that they are valid
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for 0,1, ---, n. Differentiating both sides of n times we get
a n+1
(5) G—Awy
13 =3 (")(L) T a—awy 2 (D) asra (L) a—amy.
j=o\J ot i=o\k ot
In view of and the induction hypothesis we get
a n+1 _
[ -]
n n n_ _ ‘7' 3 _ .
(L14) = 3 (KK M5 217 5 (1) BB M s KoK My
Since in virtue of and
O T Y ) AT
< dlMIdzJ'-—Ile(Zl_)Mn_ij < d2Md, "M,
it follows from that

G2y

< d 2B KM M, 2|~ 3 K™=3(d, By 3 (K/d, B .
j=0 k=0

(1.15)

If K>=2d,B, the right member of (1.15) is bounded by
24,2B,K*M,M,| 2|~ 3 K"3(d, By 1(K/d,BY < BKK™nM,| ]~ .
i=0

where B =2d,2d,B,BM,. Thus we obtain

1(3/8ty"+1(A— A®)™| < BKK"nM,| 2|7,
and similarly
I A@®@/aty (A~ A@®) ™| £ BK2K"n M, .

Hence noting we conclude that [1.8) and [1.12) are true for n4-1 provided
that K is so large that

K= max (2Bd,, BK,d,/M,).

Let I" be a smooth path running in Y from coe® to coe®. In view of
the assumption (i) —A(f) generates an analytic semigroup

(1.16) exp (—o AW = — oo | Q= AQ) A, 0> 0.
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A bounded-operator-valued function U(t,s) is called the evolution operator
associated with if it satisfies

@/00)UGE, s)+ADUE, s)=0, 0=s<t=T,

UGs, )=1, 0<s<T.
According to the evolution operator can be constructed as follows:
1.17) UG, s)= exp (—({—s)A®)+ W(t, )
(1.18) wa, s = :exp (—(t—)AB)R(, s)dz
(1.19) R, 5)= g:lRL(t’ s),
(1.20) R(t, s)=—(0/0t+0/0s) exp (—(—5)A(?)),
(1.21) Rt )= :Rl(t, DRz, )z, 1=2,3, .
In view of [3; pp. 115-116] U(t, s) has another expression
(1.22) U, s)= exp (—(—s)ASH+Z(, 5),
1.23) 2, 5)= [0, ) exp (T —9A®,
(1.24) Q9= 3 Qut ),
(1.25) Qult, )= (3/3t+3/35) exp (—(t—) A(s)
(1.26) Qt, 9= Qi DUz, Dz, 1=23, .
R(t s) and Q(, s) are the solutions of the following integral equations
1.27) R, )~ :Rl(t, Rz, )dr =Ry, 5),
1.28) Q9= 0t D, s =Qut, 9

respectively. Set
Ro,n,m(t, $)=—(9/0t)"(0/0t-+0/9s)™ exp (—(t—s)A®),
Rim(ty s)=(9/01)"(0/0t+0/9s)"R,({, s) ,
Qo,nm(t, )= (0/01)"(0/0t+0/9s)™ exp (—(t—$)A(s)),
Q1n,m(t, $)=(0/01)"(0/0t+0/3s)"Qu(t, $)

for all non-negative integers [, n, m. Clearly
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(1.29) Rynm(t, )= (0/0t+0/0S)Ronm(t, 5)
(1.30) Qu,nmlls $)=1(0/040/05)Q0,n,m(, $) -

LEMMA 1.1. There exist constants N, and N such that for |=0,1 and all
non-negative integers n, m

(131) “ Rl,n,m(tt S)“ = NONn+mMan(t_s)_n H
(1.32) [1Q%,n,m( I = NN™ ™M, Mp(t—s)™.
ProoF. In view of (1.16) we get

Ro,n,m(tr S) = I+I-[:

where
1 s a n+m _
(133) I=—f e () G—Awyaz,
1 n—1 Pl Al a m+k _
34 =g 2D (5p)  G-a@yd.

All the integrands in the above are holomorphic functions of 2 in Y. On the
right of (1.33) we take I'=1",JI',JI',, where I, is the half line connecting
coe~ and (t—s)le~, I, is the arc {({—s)"1*; 2r—0 < @ <6}, and I', is the
half line connecting (t—s)2¢*’ and coe®. In view of (1.8)

el oo 3
1
2r

_ 1 nim v e dE
- Z;T;KOK * Mn+m-{cosﬂe 3 o

IA

oo
j(t s)_le—z(z—S)rcosﬂKoKn+mMn+m7,—1dr

and similarly for the integral along I',, The integral of the same function
along I', is dominated in norm by

T—0
g KoKW M [ om0

Collecting these results and using (1.4) we obtain

1| £ coK(d K MM, < ¢ Ko(do KT Y (do K)"M M., (E—3)™,
where

L edE L L T ey
Co_ifrﬁfcosﬂe E + 27T jlﬂ ¢ aSD‘

On the right of (1.34) we take for /" the boundary of 3. Then putting A=re®
or re~* according as Re 1 >0 or Re A< 0 for A< " and using (1.8) we see that
II is dominated in norm by
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(1.35) *}r*j‘ oo ﬂil (Z)rn_lce*(t—S)rcosﬂKoKm+IcMm+k1,_1dr
0 &=0

_Iimﬂﬂ (n>K Mm-?—kj pr—k~1p- (1—3)rcosﬂdr

_ K, "3 nNem (n—k—-1)1
p 2 (K™ Mo~y o gl
In virtue of (1.4) and (1.6)

n—k k‘
(1.36) My < d,™ M, M, < d,™*M,, ( M ) — M.

Inserting this into the last member of and putting
¢, =max(, d,"*M,d,NT cos ),
we get

" (dK)"M, M, "
(t—s)cos O)"

0 n cl (de)mMan
¢ ) ((t—s) cos )"

c,d,e d, KM, M,,
“me, ( ) (@t—s)cos @ *

1= 5o (b 3 (&, M, Nt —s) cos O)F

IIA

Thus if we put
cade
M,cos @ ’

we get for [=0. Noting and we can establish for =1
replacing N, and N by some other constants if necessary. The proof of [(1.32)

is similar.

K .
Ny= 1% +Coko N=max ( doK, d,KT),

2. Differentiability of U(Z, s).

In this section we investigate the differentiability of U(#, s) and the esti-
mates for its derivatives replacing (iii) by the following weaker assumption :

(iii’) there exists a set of positive numbers {B,} such that for all integers
n=0

.1 ]] ( —gf)"(z—A(t))-l" < —Iffﬁ- e, 0<i<T.
LEMMA 2.1. Let F(t, s) and G(, s) be bounded-operator-valued functions m
times continuously differentiable in 0<s<t=T. Suppose that
(0/0t+0/3syF(, s), 0<j=m,
are uniformly bounded in 0<s<t<T. Then for s<r<t
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2.2 (7%)’” { :F(t, DG, s)de

=2 (TG Gt TR () 6 9
+j:k§(:) (% ) 7 m—kF(t, z).(%)kc(z, s)de;

and for s< p<r<t

23 (%)m f ;F(t, G, s)de
m—1 m—1—k —1— k O \m— k—
O G £ e (o

fp = )(‘%'l“;?)m_kF(t, 7). (-%)EG(':, sz ,

Proor. If ¢>0 is sufficiently small, then

%‘f t—EF ¢, 7)G(z, s)dt
. t—e, 0 0
=F(t, t—e)G(t—e, )+ r (—at—-{—W)F(t, 7)- G(z, s)dr
t—e o
—J‘r “S?F(t, ‘L') . G(T, s)dr .
Integrating by part in the last integral
D {'Fit, )6z, )tz
=F{t, NG, s)+ f ( s )F(t )+ G(z, s)dr
t—e 0
+[ R, 1) 5= Gz, 9)de.
Letting ¢—0 we get

7%— [ Fat, 6@, sz
=F(t, r)G(r, s)—l—f:<vgt~+-%)F , 7) - G(z, s)dz

+ j F(t, 7) G(Z‘, s)dz .

Repeating this argument we obtain (2.2). (2.3) can be established integrating
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by part in a similar manner.
LEmMMA 2.2. For [=2,3, -

(2.4 Rt 9= le_l(t, Rz, $dr .

ProoOF. The lemma can be proved easily by induction.

LEMMA 23. For any integer { =1 R{¢, s) is infinitely differentiable function
of (t,s). There exists a set of positive numbers {C,, ,,} such that for all integers
LLn,m=0

(2.5) ”Rl,n,m(t’ S) “ § Cl,n,m(t"‘S)l_n—l .

Proor. The statement in case [ =1 can be proved just as Lemma 1.1. We
prove the general case by induction with respect to /, and suppose that (2.5)
is true for /[—1 in place of /. In virtue of Lemma 2.2 and the argument in
the proof of Lemma 2.1 we get

(26) Rioiuts )= [ 35 () Ricsom-ilts 2+ Ruole, )z

s =0

Let  be any real number such that s<r» <t Applying Lemma 2.1 to the
integral over (7, ¢) on the right of (2.6) we get

Rl,n,m<t: S)

@D ( ){: :"jlo"(n - k)Rz n—t—it—gim—ills 7) * Ry 5,47, S)
j\r &= O(k)RL —1,0,n-ktm—ills T) + Ry 5 (T, S)dT

+J:Rz—1,n,m-i(f, DR,,0,i(7, s)d‘z‘} ’

Taking » =(t+s)/2 we can establish (2.5) without any difficulty.
LEMMA 2.4. There exists a sequence of positive numbers {B,,} such that
for any integers n, m,l with | =n+1

(28) ”Rl,n,m(t: S)” .g_ B;’-,T;,zl (t_s)lan_l/(l—n—l) !

Proor. If {=n+1, (2.8) holds with B, , = C,4;,0,, in view of Lemma 2.3.
Suppose (2.8) is true for [—1 in place of /. Differentiating in ¢ beth sides of
(2.6) n times w= get, on noting n </—2 and (2.5),

Rippnlts 9= [ 3 (") Rics mmeills 7 Ruo (e, S)de .

& 1=0

Using the induction hypothesis we get
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t m m
IRt = [ 2 (7)) Bk =) ={(1—=2—m) 1}C, 0, e
i [—s)-1n
< 2™ max Bl l-n. X -(—~—.
=2 Bt X Coor (=1 =y
Thus if {B,,} is a sequence which is increasing with respect to m and
satisfies

Cosrum = Bum, 2"maxCy, ;< B,
o=sism

for any n and m, then we can proceed by induction to show for all n, m.
with [ =n4-1.

LEMMA 2.5. R(,s) is infinitely differentiablein 0<s<t<T. There exists
a sequence of positive numbers {C,,} such that for any n,m =0

d\" 0 o \™
’(w) (5r+75) R
PrROOF. In virtue of Lemma 2.3 and 2.4

0 \*s 0 0 \™
(o) Gortas) R

CoinmE—S)"""14 33 Bin(t—s)=m=1/(I—n—1)!
{(=n+1

@9) < Comlt—9)", 0<s<t<T.

o
-

= 3 1Ryt 9]

M=

=

T

§ i Cl,n,m(t—s)l_n_l’l‘Bn,m €Xp (Bn,m(t—s)) ’
(=1

from which the conclusions of the lemma follow easily.
LEMMA 2.6. U(t, s) is infinitely differentiable in 0 <s<t<T. There exists
a sequence of positive number {Cn,m} such that for any n, m=0

0 \"s 0 0 \™
TY( 2T Z,
l( ar) Cortas) Ut
ProOF. By the same argument as the proof of Lemma 1.1 we get for all
n, m=0

211) |5 (G5 exp (—=9awm)

(2.10) SComl—5)™ 0<s<t<T.

= [Ronmlts O =Clpmt—9)™" 0Ss<I<T,

where {C’,,} is some sequence of positive numbers. In the same manner as
we deduced (2.6) we get

2.12) (2 2)wa, s

= Z(DRosim-it - (242 ) Rez, 4.
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Using the argument by which we obtained we deduce the similar formula
for (9/0t)%(d/0t+0/9s)y"W(t, s) from [(2.12). With the aid of that formula and
we get for all n, m=0

n a a m
2.13) ”(—g?) (2t ) W, 9| = Cramlt =9,

where {C”,,} is another sequence of positive numbers. Combining and
we conclude [2.10)

3. Proof of the main result.

In what follows the notations C,, C,, --- will be used to denote constants
depending only on 4, K,, K, T and the system {M;} all of which appeared in
the assumptions (i), (ii) and (iii). In order to establish the main result it is
convenient to use the expression of U(t, s).

LEmMA 3.1

3.1 zt, 5= ‘0., DUz, s)dz .

Proor. By induction we can easily show

Qut, 9= Qut, DQu-r(z. )de

for any [>2. In view of (1.24) we get

t
(3.2) Qt, )= Qu(t, )+ Qut, DRz, )z
Inserting this into we easily get

In order to prove the main theorem we need more careful treatment for
the derivatives of U(t, s) than that in the previous section. To begin with we
prepare the following lemma.

LEMMA 3.2. If s=r, <1< o+ <¥p, < ¥pyua=1, then

i—1

(w%—)nZ(f, s)= i > (i;I)Ql,n—i,i—l—j(t! i) - (‘a‘aﬁ)j Urs, )

=1 j=o0

+ é :Hzi (;‘)Ql,n—i,i—f(t! T)(‘a_a%‘)jU(T, s)dz.

=0

Proor. In view of (3.1)

()2t 9=(5)" & ", U, 9de

=(-2) [0t 90, sy
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+ 2 ( )n 1{( o ) f”HQ (t, ) Uz, s)dz'}

+(-5)'[ "aut, DUz, de

Applying [2.2) to the first term and (2.3) to the inside of the bracket { } in
the middle on the right member of the above equality, we get

@/01Z(t, s)

n—l n—1—k

= (n l k)Qlkn—l k- J(t 7"n) (a ) U(Tn’ S)

k()j“

+f 2 (1) uon-itts Y vee, e
nﬂl( ot )n 1{_; 101 ]1 :(2_1 k)[Qlkz 1-k- J(t Z')( af‘) U(T, S)_Ir_”

+" 3 () @uosstts )(50) Utz 93z}

+ :(‘37 ):Qx(” Uz, s)dz.

Putting the right member of the above equality in order, we get

(@/0ty"Z(t, s)=I+4+114+111,

where
1= 3 5 2 (TN it 0 () U 9,
n=—"¢¥'s (l“l )@ saiae st ) (r) Ulrinss )
ur=35""s (DNQunesicstts - () UG, )z

Replacing 7 by i—1 and then k2 by k—1 in II, we get

n  i—1
— 2 2P
i=2 k=1
where
i-1—k
i —

2 (T ssrisn it () Uy 9.

j=0

P

Hence

1—1

n i—1 no1—
I+11= 2 S Piy— > 2P
i=1 k=0 i=2 k=1

n i—-1 n -1
-+ E’Enpi,k— 2 2P

=2 k=1
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» n
:P1,0+ %Pi,ozizlpi,o

:ié‘—‘l ;Z:{:l: (i;l)Ql,n—i,i—l-j(tY ri)("aa?:>j U(T'i, S) .

Thus the proof of is completed.

According to Stering’s formula there exists a positive constant @ such that
for any n>1

(3.3) w-n"e"/n <nlZwne"Vn .
THEOREM 3.1. There exist constants H, and H such that for any n=0
B4 1@/00)" U, s)| = HH"M,(t—s)™".

Proor. For n=0 (3.4) holds for some H,=C,, (see (210)). Let us prove
(34) for arbitrary n by induction, and suppose that it is true for 0,1, -.-, n—1.
Suppose

(3.5 HZ= max {2N, 2NT}.

With the aid of Lemma 3.2 we get

(3.6) @/0t"U(t, s)y=I+1I+1IT+1IV+V,
where

I=(9/0t)" exp (—(t—3)A(S)),

II= i E}t (i—;l)Ql,n-i, i-1-5(ts Vi)(“ag,‘)jU(Ti» ),

1=1 j= i

=% jil 2(5)Qu-is-ots )+ () UG, ),

i=0 =0

IV:j" %1(?’)@1,0.7;—1@, T) . (‘aa;y Uz, s)dz

rn J=0

[2 a n
V= j Qut, ) 5-) Ule, 9)de
According to Lemma 1.1
3.7 1 < NeMN™M,(t—s)".

In virtue of [1.32), [1.2), [3.5) and the induction hypothesis we get
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-1\ NN* M, ;M; ,.; HH'M
< 0 n-ii¥g-1-4 0 J
1) = grz( ) t—r) (ri—s)!
n- M n-z
= diNHN IE (ti ;’)" J (N) (r-—s)f

3.8)

pos Moy M,_ Y
§ zleoHo.N 11‘21 (t ;,)n 1 (N) (r_s)i 1

- 2 (G—=1DIn—1)! -n N
< 20, N HH M 2 oy rtr— sy ()

If we choose 7, =s-++i(t—s)/(n+1), i=1, ---, n, then according to [3.3) the sum
in the last member of (3.8) is dominated by

(ﬁ%l“~)n_l(t—s)l‘”<-%)n_l+( n;i_l )n_l(t—s)"”
FE (Y ) (R (A e
se(t—s) (N/H) '+e(t—s)"

+wer(t—s)i- n (l-1)(n—-z)} ( %)n-—i

2= 2

Noting (3.5) and i—~1=<(n—-1)/2, n—i=(n—1)/2 for i=2,--,n—1, we see that
the last member is dominated by

e(t—s)t "2 " te(t— )"+ wie(t —s)1 "2/ n—1 "2_121'"
<Wher(t— )21/ n—1 32" < @ieta/n—1 (t—s)y-"
i=1

Inserting this into (3.8) and using we get
3.9) 1) < 2we2d,* M, *N H,H" *(t—s)'""n-2 M,
<CHH" M, ({t—s)".

With the aid of the similar argument

(3.10) W7 < d,NoH M N M{ (t—r)(r—3)

ncl il(n—i)! Tisr—75 H '
P e e s | o (v}
S GHH" M, (t—s)*",
and
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@3.11) IV < C.H,H" M, (t—sy-".
Combining [(3.6), [3.7), [3:9), [3.10) and [3.1I), we obtain
1@/0ty" U, )| < NoMN"M(t—s)""

FCHH™ M=+ NaMe [ [0/0 UG, 9)ld
Thus if H is so large that

HZ= max {2N, 2NT}, HH=2M,N,NJ, H=2C,]JT,
where = exp (N, M,%eT), then
312 I@/06" UG, ) =] *HH"M,(t—s)™

+NoMe [ 10/007 Uz, 9)lde -

Multiplying both members of by (t—s)* and noting that 7, <7 <t implies
t—sy" < L+n"Y(z—s)" < e(z—s)*,

we see that Y(¢, s)=({—s)*(@/0t)"U(t, s)| satisfies the following differential
inequality

3.13) Y(t, 5) <] HH"M,+NoMe Y(e, s)de,

where we invoked to ensure that the integral on the right of
is finite. Integrating we get
Y2, s) = exp (N, M2e(t—s)) ] *HH"M, < HH"M,,

completing the proof of the theorem.
THEOREM 3.2. There exist constants L, and L such that for any non-
negative integers n, m and |

61 (2 ()" () e
3.15) ( ) ( as) ( )W(t s)
3.16) (;%)"(—%Jr—aas-)m(%)‘za, 9

ProoF. For n=[=0, (3.14) may be proved by induction with the aid of
the formula

< Ly L™ My ai(E— ),

< Lo L™ M, G — ),

= LoLn+m+an+m+l(t'— s)l -t

@.17) (2 +-2) 0t 9=Quantts 9

+k20(k>f Q1 0,m~ es 7)( az_ ) U(z, s)dz,
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(3.14) for /=0 may be established by induction with respect to n+m following

the proof of to eact summand on the right of In the
general case with the aid of the result established already and we get

0\ 0 0 \™, 0 \!
" (”‘a?> (“374“*5;) (g—) U, s)
d 0 \"*%, 0 0 \m+i—k
() (ED) (ot o) Ut

e
kzz':o (k >L°Ln+m+LMn+ka+L—/c(t— 5)‘""”

A

IA

e B (HC T o

Since

-1 ‘ Ny [} k)t
({CEmY s (DICEDY = iy 50! <1,

the last member doe: not exceed
Ay Lo L™ ™ My ZI: (t—s)*"
k=0
< Ay L L™ My (f—s)™~ 3 {max (T, 1)}-*
k=0

S d Ll L™ ™ M, 4 (F—8)"Hmax (T, D},
From this (3.14) follows if we replace L, and L by some¢ other constants if
necessary. (3.15) and (3.16) can be proved with the aid of (3.14), and
W, 9= U, )R, s)dz

following the argument used to establish (3.14).
THEOREM 3.3. Suppose f(t) is an infinitely differentiable function with
values in X and there exist constants F, and F such that for any n=0

3.18) ld"f@/dt"| < FoF "M, s<t<T.

If v(@) is the solution of (0.1) satisfying the initial condition v(s)=0, then for
some constants F, and F and for any integer n=0 we have

(3.19) ld™v(t)/dt*| < FoF*M(t—s)t-", s<t<T.

If u(t) is the solution of (0.1) satisfying the initial condition u(s)=u,, then for
any integer n=0 we have

(3.20) |dmu(ty/dim)) < HyH* M|\, (t— )"+ F F "M (t—s)*=".

Proor. First note
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wh=| : UG, o) f(o)do ,

u(t)= Utt, syt U, o) flo)do .

As is easily seen
Nt
3.21) &Y U, 9)f(0)do

(V) (ot 29) 0w 959

|

n 1
=2
i=1

J

Il

+jl > G) (Vaat +7aaE>n_JU(t: 0) - f9o)do .

s j=0

Hence in virtue of theorem 2.2 we have
n n WA l_l n-1-4 j-n i
3.22) LUOLIEEPD> ( ; VoL 1M,y (t—sY"FoF /M,

+f 3 (G ) Lol MoesFoFMydo
Since in virtue of
(i?1>Mn_lﬁ M= dan_l(i;l){(";l)}_l <d,M,.,

for j<i1<mn, the right member of does not exceed

(3.23) L F LMy 3 S (F/ LYt — sy

i=1 j=
+d,LF,L"M, 3 (F/Ly{(t—s).
=0
Thus holds provided that

F,=6d,L,F, F=max{l,FT,2LT,2L}.
is a simple consequence of and Theorem 3.1.

4. Application.

537

In this section using S. Agmon’s result on general elliptic boundary value
problems we show that the results of the preceding sections are applicable to
a general class of well posed initial-boundary value problems for parabolic
differential equations. We denote by £ a bounded domain in n(= 2)-space E,
with boundary 92 and closure 2. We let x=(x,, -+, x,) be the generic point

of E, and use the notations
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Dm:(Dv Tt Dn):<a/ax1: tty a/axn)»
denoting by
D% =D*. ... D%

a general derivative in x. Here a stands for the multi-index a=(ay, -+, a,)
whose length a,+ -+ +a, is denoted by |a|. W), 1< p< oo, is to be the
set of all complex valued functions whose distribution derivatives up to order
J belong to L?(£2). In this set of functions we introduce the norm

0= ( 2, f 1Dz 17dx)"” .

W)= L*(2) and |ul,,.e is the usual L? norm. For k>0 W42(d%) is to
be the class of functions ¢ which are the boundary values of functions v be-
longing to W% (£2). In this class we introduce the norm

I ¢|lk—1/p,p,6’9 = inf ”v”f,p,.o ’

where the infimum is taken over all functions v in W% (£2) which equal ¢ on
the boundary.

For each t [0, T] let A(x, ¢, D,) be an elliptic linear differential operator
in @ of order 2m, and By(x,t, D,), j=1, -+, m, be a linear differential operator
of order m; (< 2m) with coefficients defined on the boundary, their highest
order parts being denoted by A* and B¥, j=1, .-, m, respectively. We con-
sider the following initial-boundary value problem

(4.1) ou(x, t)/0t+A(x, t, Dyu(x, ) =f(x, 1), x€ 2,0<I =T,
(4.2) u(x, 0) = u,(x), xe 2,
4.3) Bj(x, t, Dyu(x, )=0, j=1,---,m, xR, 0<t<T.

In what follows we assume that the coefficients of {B;} are defined in the
whole of 2 %[0, T].

We suppose the following cenditions are satisfied (cf. [1]):

(a) For every pair of linearly independent real vectors & » and (x,t)e Q
X [0, ] the polynomial in 7, A*(x, t, £+7x) has exactly m roots with positive
imaginary parts;

(b) {B,} is a normal system, i.e., (i) m;=m,; if j =+ £k, (ii) 02 is nowhere
characteristic with respect to By, j=1, -, m;

(© (=1)"A¥(x, t, )/ 1 A*(x, £, )| # €%

for all real vectors £+0, all (x, )2 X [0, T] and ¢ & [#/2, 37/2];

(d) let (x,¢) be any point on 0 x[0, T]. Let v be the normal vector
and £+ 0 be any real vector parallel to the boundary 0f£ at x. Denote by
7i(&, 4; x, t) the m roots with positive imaginary parts of the polynomial in ¢
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(=D"A*(x, t, E+Tv)—2,

where 1 is any complex number with non-positive real part (it follows from
() and (c) that this polynomial has no real root and has exactly m roots with
positive imaginary parts). Then the polynomials in ¢

Bf(xy t: E—*—TV); ]: 17 R m »

are linearly independent modulo the polynomial

11 (c—i (& 25 5, D)

() £ is of class C*;

(f) the coefficients of A and the x-derivatives of those of B, j=1, .-, m,
up to order 2m—m; have derivatives in ¢ of all orders which are continuous
in 2 x[0,T]. If a stands for any of the coefficients of A or the x-derivatives
of the coefficients of Bj, j=1, ---, m, up to order Zm—m;, then for all (x, 1) e
% [0, T] and all integers [=0

| Dta(x, )| < ByB'M,

for some constants B, and B independent of x,¢ and [.

According to the uniform continuity of the coefficients of A and{B;} there
exists a constant 6 € (0, #/2) such that (c¢) and (d) remain valid for §<p=<27—@
and 0 <arg 1< 2r—0 respectively.

For each t = [0, T] the operator A(?) is defined as follows:

¢)) DAW) ={ue L(2): Bix, t, Du(x)=0,7=1, -, m, xc 0},
(i1) for u € D(A®)), (AOw)(x) = A(x, t, Dy)u(x).

We write (4.1)—4.2)—(4.3) in the following form of the abstract differential
equation in LP(£2):

du(t)/dt+ A(Hu) = (@), 0<t<T,
u(0) =u,.

THEOREM 4.1. Under the conditions (@), ---, (f) the assumptions (i), (ii), (iiiy
of section 1 are satisfied by the family {A(t)} defined above if we replace
Ax, t, D) by A(x, t, D,)+k with some real number k if necessary.

As preparation let us consider the following boundary value problem

(44) (Z—A(X, Dz))u(x) :f(X), xe IQ ’
(4.5) Byx, Dyu(x)=gix), j=1, -+, m, xe a2

concerning the system (A(x, D), {Bj(x, D)} =(Alx, ty, D,), {Byx, t,, D)} mp>
tor some t, = [0, T]. Here fe L?(£2) and g, Wirmi(2),j=1, ---, m, are known
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functions. [4.5) is assumed tc be satisfied only on the boundary although the
functions on both sides are defined also in the interior. In what follows we
denote by C,, C,, --- constants depending only on the conditions (a), ---, (f), and

simply write || |z, Il I, Il k-1, in place of || |z 0 Il lop.r ! l5-1p,n02 TresSpec-
tively if there is no fear of confusion.

LEMMA 4.1. If 2 is & complex number with 0 < arg A< 2rm—60 and with
sufficiently large absolute value, then for the solution ue Wi (2) of (44)—(4.5)

(4.6) [elant 1211l S C{1F 14 2 Iglamem+ 35 121 0mm2m g}

Proor. This lemma is nothing other thar a very slight extension of
Theorem 2.1 of [1], and we follow the proof of that theorem. Let Q be the
cylindrical domain {(x, y): x€ 2, —co <y < oo} in (n+1)-space. According to
the assumptions of the present section, the following a priori estimate holds
for functions v e W2(Q) vanishing for |y|=1:

4.7) 1Vll2m,p,0 = CLUI (=)D — Ax, Dp))lo,p e

+ i 1B, Do)ollam-ms-1m,,50F 1Vl0,0,0}

when 0 <¢@=<2r—60. Let p be an arbitrary real number and {(y) be some
fixed C~ function such that ¢(»)=0 for |y|=1, {(3»)=1 for |y]<1/2. We
apply (4.7) to the function

V%, ¥) = {(@)e ux) .
As is easily seen (cf. [17])
(4.8) 21vullem, e = N Ullow+ | e[ 5
(4.9) I(=Dme* Dy — A(x, De)vullo,p.e
= (et — A(x, Doul +Col pe > Hu]] -
Since on the boundary of Q

Bj(x, D (x, =L(e"gfx), j=1,-,m,
we have

(410) “Bj(xl Dm)vﬂuzm—mj—llp,p,ﬂQ = Hceiﬂygjlbm—mf,p,Q

2m—m

=G )2 |27 g4lle

= Cgillem-m;+ 1™ ™ 251D ,
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where we used the well known inequality

.10 lwlls < ¢l ] 457

for 0<i<j. Setting 1= p*™e'* we obtain [4.6) in view of [4.7), [(4.8), [(49) and
4.10).

Replacing A(x, D,) by A(x, D,)+k with some real number 2 we may
assume that holds for any 2 satisfying 6 < arg A< 2xr—6. We return to
the proof of [Theorem 4.1 If g;=0, j=1, .-, m, we get in virtue of

21 ]ul = Coll(2—Au

for any ue D(A) (A= A(t,)) and 2 such that 6 < arg1=<2r—@¢. Hence the
assumption (i) of section 1 is satisfied. Let f be an arbitrary element of L?(£2)
and § < arg A< 2r—0. Then u(t)=(1—A(t)"f is the solution of the boundary
value problem

4.12) (A—Alx, 1, Dyu(x, H=f(x), xe. .=t<T,

(4.13) Bi(x, t, Dpu(x, t)=0,j=1,-, mxc0, 0=t=T.
Differentiating both sides of [4.12) and [4.13) in ¢/ times we get
(4.14) (A—=A(x, t, D))Diu(x, )

=3 (1) AP0 1, DIDsulx, ), x @, 0L T,
=0
(4.15) By(x, t, D)Dwu(x, 1)

—-3( é)B_‘,-""’(x, t, DD u(x, ), xe 02, 0=t <T,

k=0

where A%-® and B¢ are differential operators obtained by differentiating the
corresponding coefficients of A and B; [—Fk times in ¢t. If we apply to
bu(t), we get in view of [(4.14) and [(4.15)

I Dtu@llom+ 1 2 Die (D]l

=YY
= Calll () AP0, £, DADEuD)]
+ 31 Z () B0 1 DADEUD fom-m,

+ 33 |2 emmprm S (N BIw(r, 1, DADFUD]
j=1 k=0
(using the condition (f))

1—1
< Cl T (3) BB Mol DE (O
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+ 325 () BB+ My 2) &m-mm| D u(t)] )

i=1 k=0

(applying to the last sum)
=1,
= Co 3 () BoB M-I DE u(®)omt | 21 DE U]

We intend to prove that
(4.16) [ Diu()lzm+ | A1 Diu(®ll = KK M|\ £

for all integers /=0 and for some constants K, and K. It is clear that [(4.16)
is true for /=0 if K, is suitably chosen. If K is so large that

K= max (2B, 2d,C,B,B),

then we can proceed by induction to show that is true for all [=0.
Hence
(2L DIA— AW 1| = 12| Diu@)ll = KK M| £

which implies the desired result

IDEA—AW) | < K.K'My/]2].
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