Closed images of countable-dimensional spaces

Dedicated to Professor K. Noshiro on his sixtieth birthday

By Keiô NAGAMI

(Received Feb. 6, 1967)

A metric space X is called countable-dimensional or σ_0 if X is the sum of subsets X_i , $i=1, 2, \cdots$, with dim $X_i \leq 0$, where dim X_i denotes the covering dimension of X_i defined by means of finite open coverings. A metric space is called uncountable-dimensional if it is not σ_0 . The purpose of this paper is to prove the following:

THEOREM. Let X be a metric σ_0 -space, Y a metric uncountable-dimensional space and f a closed mapping (continuous transformation) of X onto Y. Then Y contains an uncountable-dimensional subset Y_0 such that for every point y in Y_0 , $B(f^{-1}(y))$, the boundary of $f^{-1}(y)$, is dense-in-itself and non-empty.

This was proved firstly by E. Sklyarenko [3] for the case when X is compact metric and generalized by A. Arhangelskii [1] to some class of spaces which contains all separable metric spaces. But Arhangelskii's generalization is not effective for general metric spaces yet. We need three lemmas.

LEMMA 1. If f is a closed mapping of a metric space X onto a metric space Y, then $B(f^{-1}(y))$ is compact for each point y in Y.

This was proved by K. Morita-S. Hanai [2] and by A. H. Stone [4].

LEMMA 2. Let X be a metric space which is locally σ_0 . Then X is σ_0 .

PROOF. Let \mathfrak{U} be a σ -discrete base of X and \mathfrak{U}' be the set of all elements U of \mathfrak{U} such that U is σ_0 . Since \mathfrak{U}' is a σ -discrete open covering of X, we can set $\mathfrak{U}' = \bigcup_{i=1}^{\infty} \mathfrak{U}_i$ where each \mathfrak{U}_i is a discrete collection of open sets. Set $U_i = \bigcup \{U: U \in \mathfrak{U}_i\}$. Then U_i is evidently σ_0 . Since $X = \bigcup U_i$, X is σ_0 .

LEMMA 3. Let X and Y be metric spaces and f a closed mapping of X onto Y such that $f^{-1}(y)$ is compact and is not dense-in-itself for any point y in Y. If X is σ_0 , then Y is.

PROOF. Let $\bigcup \mathfrak{l}_i$ be a σ -discrete base of X, where $\mathfrak{l}_i = \{U_\alpha : \alpha \in A_i\}$ and each \mathfrak{l}_i is discrete. By the condition every $f^{-1}(y)$ has an isolated point x(y). There exists an $\alpha(y) \in \bigcup A_i$ such that

$$x(y) = \overline{U}_{\alpha(y)} \cap f^{-1}(y).$$

For each $\alpha \in \bigcup A_i$ let

K. NAGAMI

$$Y_{\alpha} = \{ y \in Y : \alpha(y) = \alpha \},\$$
$$Y_{\alpha} = \bigcup \{ Y_{\alpha} : \alpha \in A_{\alpha} \}.$$

Then $Y = \bigcup Y_i$. For each $\alpha \in \bigcup A_i$ let

$$X_{\alpha} = \{x(y) : y \in Y_{\alpha}\},\$$
$$X_{i} = \{x(y) : y \in Y_{i}\}.$$

Then $f(X_{\alpha}) = Y_{\alpha}$ and $f(X_i) = Y_i$. Since $f | \overline{U}_{\alpha}$ is closed and $\overline{U}_{\alpha} \cap f^{-1}(Y_{\alpha}) = X_{\alpha}$, f maps X_{α} onto Y_{α} homeomorphically. Hence each Y_{α} is σ_0 .

Let us prove that $f(\overline{\mathfrak{U}}_i) = \{f(\overline{U}_\alpha) : \alpha \in A_i\}$ is locally finite in Y. For every point y in Y, $f^{-1}(y)$ meets at most finite elements of $\overline{\mathfrak{U}}_i$ by the compactness of $f^{-1}(y)$ and the discreteness of $\overline{\mathfrak{U}}_i$. Set

$$V = Y - \bigcup \{ f(\bar{U}_{\alpha}) : \alpha \in A_i, \ \bar{U}_{\alpha} \cap f^{-1}(y) = \emptyset \} .$$

Then V is an open neighborhood of y by the closedness of f and the discreteness of $\overline{\mathfrak{U}}_i$. Since V meets at most finite elements of $f(\overline{\mathfrak{U}}_i)$, $f(\overline{\mathfrak{U}}_i)$ is locally finite in Y. Therefore $\{f(X_{\alpha}) = Y_{\alpha} : \alpha \in A_i\}$ is locally finite in Y. Hence Y_i is locally σ_0 . By Lemma 2 Y_i is σ_0 and hence Y itself is σ_0 .

PROOF OF THE THEOREM. Let Y_1 be the aggregate of all points y in Y with $B(f^{-1}(y)) = \emptyset$. For each y in Y_1 select a point x(y) from $f^{-1}(y)$. Let

$$X_1 = \{x(y) \colon y \in Y_1\}$$

Then X_1 is closed in $f^{-1}(Y_1)$ since $\{x(y)\}$ is a discrete collection in $f^{-1}(Y_1)$. Therefore $f|X_1$ is a one-one closed mapping and hence a homeomorphism of X_1 onto Y_1 . Since dim $X_1 \leq 0$, dim $Y_1 \leq 0$.

Let Y_2 be the aggregate of all points y in $Y-Y_1$ such that $B(f^{-1}(y))(\neq \emptyset)$ is not dense-in-itself. Set

$$X_2 = \bigcup \{ B(f^{-1}(y)) : y \in Y_2 \}.$$

Since $X_2 = f^{-1}(Y_2) - \bigcup \{ \text{Interior of } f^{-1}(y) : y \in Y_2 \}$, X_2 is closed in $f^{-1}(Y_2)$. Hence $f_1 = f | X_2$ is a closed mapping of X_2 onto Y_2 . Since $f_1^{-1}(y) = B(f^{-1}(y))$ for every $y \in Y_2$, $f_1^{-1}(y)$ is compact by Lemma 1. Hence by Lemma 3 Y_2 is σ_0 . If we set

$$Y_0 = Y - Y_1 \cup Y_2$$

 Y_0 satisfies the desired condition.

Ehime University

458

References

- A. Arhangelskii, On closed mappings, bicompact spaces, and a problem of P. Alexandroff, Pacific J. Math., 18 (1966), 201-208.
- [2] K. Morita and S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad., 32 (1956), 10-14.
- [3] E. Sklyarenko, Some remarks on spaces having an infinite number of dimensions, Dokl. Acad. Nauk SSSR, 126 (1959), 1203-1206.
- [4] A.H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7 (1956), 690-700.